
http://wrap.warwick.ac.uk

Original citation:
Chen, Hao, Sun, Jianhua, He, Ligang, Li, Kenli and Tan, Huailiang. (2014) BAG :
Managing GPU as buffer cache in operating systems. IEEE Transactions on Parallel and
Distributed Systems, Volume 25 (Number 6). pp. 1393-1402. ISSN 1045-9219

Permanent WRAP url:
http://wrap.warwick.ac.uk/64422

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

Publisher’s statement:
“© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting
/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.”

A note on versions:
The version presented here may differ from the published version or, version of record, if
you wish to cite this item you are advised to consult the publisher’s version. Please see
the ‘permanent WRAP url’ above for details on accessing the published version and note
that access may require a subscription.

For more information, please contact the WRAP Team at: publications@warwick.ac.uk

http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/64422
mailto:publications@warwick.ac.uk

1

BAG: Managing GPU as Buffer Cache in
Operating Systems

Hao Chen, Member, IEEE, Jianhua Sun, Ligang He, Member, IEEE , Kenli Li, and Huailiang Tan

Abstract—This paper presents the design, implementation and evaluation of BAG, a system that manages GPU as the buffer cache
in operating systems. Unlike previous uses of GPUs, which have focused on the computational capabilities of GPUs, BAG is designed
to explore a new dimension in managing GPUs in heterogeneous systems where the GPU memory is an exploitable but always
ignored resource. With the carefully designed data structures and algorithms, such as concurrent hashtable, log-structured data store
for the management of GPU memory, and highly-parallel GPU kernels for garbage collection, BAG achieves good performance under
various workloads. In addition, leveraging the existing abstraction of the operating system not only makes the implementation of BAG
non-intrusive, but also facilitates the system deployment.

Index Terms—Graphics Processing Unit (GPU), CUDA, Buffer Cache, Operating Systems.

F

1 INTRODUCTION

Despite the considerable endeavors, the operating sys-
tems support for GPU resource management in com-
modity software is still highly limited. Little work has
been conducted to promote research in this area. In fact,
recent operating system (OS) designs like Helios [14] and
Barrelfish [5] have investigated the importance of hetero-
geneity in contemporary computer systems. However,
both targeted heterogeneous CPU-cores in traditional
OS contexts featuring preemptive scheduling, interrupts,
and direct IO access, which are all absent in current GPU
computing platforms. Different from CPUs, GPUs are
managed by the OS as peripheral devices rather than
as shared computing resources, which severely limits
the applicability of GPU to certain application domains.
Lack of support for OS interfaces, such as GPU scheduler
and GPU resource management that are all encapsulated
in vendor-specific kernel drivers and runtime systems,
rules out many potential usage scenarios of GPUs.

In response to the practical issues of GPUs, a recent
work [15] proposed new OS abstractions called PTask
API to support a dataflow programming model in the
OS. By promoting GPUs to first-class citizens, PTask
provides the OS kernel sufficient visibility and control
over GPUs to achieve fairness and performance isolation.
Another work [7] proposed a system Pegasus to ad-
dress similar problems as with PTask, but in virtualized
environments. We strongly agree with the proposals

• Hao Chen, Jianhua Sun, Kenli Li, and Huailiang Tan are with School
of Information Science and Engineering, Hunan University, Chang Sha,
410082, China.
E-mail: haochen@aimlab.org, jhsun@aimlab.org, lkl510@263.net, tanhuail-
iang@hnu.edu.cn

• Ligang He is with Department of Computer Science, University of
Warwick, Coventry, CV47AL, United Kingdom.
E-mail: liganghe@dcs.warwick.ac.uk

attempting to better utilize heterogeneous GPU com-
puting resource in the OS. However, in this work, we
explore a new dimension in managing GPU resources of
heterogeneous systems where the GPU memory is a type
of exploitable but always ignored resource. In contrast to
current research activities focusing on the computational
power of GPUs, we argue that the GPU memory is
also a valuable resource in heterogeneous systems and
can be leveraged to extend the functionality of the OS.
Specifically, we have designed and implemented a sys-
tem called BAG (Buffer cAche on GPU) to demonstrate
the feasibility and performance gains of a GPU-enhanced
buffer cache in the OS.

The main challenge in designing BAG is to avoid in-
troducing extra complexities into the existing OS kernel
with a good abstraction for GPUs and to retain high
performance at the same time. To this end, we built BAG
as a virtual block device, which is the interface provided
by most operating systems to abstract away the complex-
ity of interaction across different storage components.
The proposed abstraction for GPUs guarantees maximal
reuse of the storage stack in the OS and eliminate redun-
dant hard-coded logic. We have implemented indirector,
one component of BAG to transparently intercept file-
system IO requests, which are then redirected to the
GPU-based block device via block IO interfaces in the
Linux kernel. Considering the performance goal, we
organize the data storage on GPU in a log structure. Cou-
pled with multi-threaded design, internal read/write
queues, and unique parallel garbage collector, the log
structure not only optimizes random read/write opera-
tions, but also eases memory management.

The asymmetric programming model of GPU comput-
ing frameworks severely limits the programmability and
efficiency of accelerator-based systems. Emerging efforts
have tried to address the issue of scheduability of GPUs
as compute nodes in heterogeneous systems. However,

ligang
Inserted Text
the

2

another inherent problem in the GPU computing, a uni-
fied data access model, deserves at least equal attention.
Although focusing on the buffer cache as an illustrating
example to address how to exploit the GPU memory as
a heterogeneous resource in the OS, we believe that the
abstraction we proposed has important implications for
the GPU programming model, which is beneficial to both
user-level GPU applications and OS designs.

We make the following contributions.
• We identified the feasibility of exploiting GPU mem-

ory as a heterogeneous resource to augment the
OS kernel, and used virtual block device as the OS
abstraction to support the design of the GPU-based
buffer cache.

• We identified a key design choice of using log-
structured data store in the management of GPU
memory, which provides high performance read
and write accesses. Together with the log structure,
we also implemented an efficient parallel CUDA
kernel to garbage collect orphaned data blocks and
security mechanisms to protect data confidentiality.

• We built a prototype system BAG to demonstrate
the effectiveness of a GPU-based buffer cache, and
conducted extensive performance evaluation to val-
idate our choices of the OS abstraction and algorith-
mic designs.

2 MOTIVATION

This section presents the motivation in the design and
implementation of BAG. More background about the
GPU architecture is given in the supplementary file.

Recent trends show that memory capacity is increas-
ingly becoming a limiting factor in commodity systems,
due to the continued growth of big-data workloads, the
technology shift to Cloud computing based on virtual
machine consolidation, and the increasing demand for
desktop applications such as video games. To address
this emerging memory wall problem, hardware and soft-
ware based approaches have been demonstrated to be
effective in scaling the memory capacity and improving
the utilization of physical memory.

Disaggregated memory [11], [12] is a new architectural
extension, called memory blade, which expands local
memory with a remote memory that can be dynam-
ically partitioned and assigned to blade servers. The
authors [12] developed a software-based prototype by
augmenting the Xen hypervisor to evaluate the design of
disaggregated memory, which leverages hardware sup-
port for virtualization to manage remote memory as a
transparent demand-paging store. Transcendent memory
(Tmem) [4] is a recently proposed approach to improving
the utilization of physical memory. Tmem is a collection
of idle physical memory in a system, managed as a fast
pseudo-RAM of dynamically variable size. Tmem can be
configured either as persistent or as ephemeral, and is
only addressable indirectly by the kernel through a well-
defined API that can be used by clients to implement

VFS

File system
Ext3, ...

IO scheduler

Read Queue

Relay

User space daemon
Read Thread

Write Thread

Garbage Collector Kernel

Hardware Accelerator (GPU)

Cryptographic Kernel

Write Cache

GPU Space Management

Logical Block Mapping
Indirector

Fig. 1. System architecture of BAG

a variety of functionalities, such as clean page cache
and fast swap device. Recent studies [1], [6], [16] show
that low-latency and high-speed solid-state drives can be
leveraged as an effective buffer cache at the block layer.

High performance demand of applications stimulates
the rapid development of the GPU technology, resulting
in not only more computing power but also larger mem-
ory capacity in GPUs. For example, some GPUs released
to the market are equipped with up to 6 GB memory
that is even larger than the main memory. In systems
that is not intended for graphics or GPGPU computing
most of the time, a large proportion of GPU memory
would be left unused. In such systems, we can view GPU
memory as a special kind of disaggregated memory, and
manage it with interfaces similar to Tmem to augment
the OS services, such as buffer cache and swap device,
due to its abundant capacity and low access latency. All
these above observations directly motivated the design
and implementation of BAG as we elaborate next.

3 DESIGN AND IMPLEMENTATION

We start with an overview of the system architecture
of BAG, and then discuss various design choices and
implementation issues in constructing BAG.

3.1 Architectural Overview

BAG has three main components (shaded areas) as
shown in Figure 1. The indirector is responsible for
intercepting every block I/O request from the upper
layer to the disk drive, and redirecting the I/O request
to the virtual block device (relay) as necessary. BAG
redirects read-hit requests and all write requests to the
relay, and passes read-miss requests to the disk. Upon
receiving I/O requests from the indirector, the relay copies
write requests to an internal buffer and queues read
requests temporarily, and then maps the I/O data to
the user space daemon (referred to as the daemon in the
following) in batches. The daemon fulfills the real task of
storing/loading I/O blocks to/from the GPU memory
organized in log structure, by encrypting/decrypting

3

data blocks with the corresponding cryptographic ker-
nels. The garbage collector kernel periodically checks if
the state of the GPU cache necessitates a defragmen-
tation operation. If such an operation is required, the
garbage collector starts to reorganize the GPU memory
by reclaiming free slots and sorting the occupied slots in
the order specified by the cache eviction policy (LRU).
In the rest of this section, we elaborate each BAG com-
ponent.

3.2 Logical Block Mapping
Positioning the indirector at the block I/O layer has
three benefits. First, the indirector can communicate with
the relay using a common interface without introduc-
ing OS kernel modifications, because the relay is also
located at the same layer. Second, the manipulation of
I/O requests, such as interception and redirection, is
straightforward at this layer. Third, caching operations
and configurations are transparent to the upper-level
components, so that different types of file systems can
be seamlessly supported. Next, we describe how to map
logical disk blocks to the GPU memory that acts as a
write-through cache.

3.2.1 Aligning I/O Requests
In BAG, we maintain the metadata of I/O requests at
the granularity of a page (4KB), which reduces mem-
ory consumption of metadata significantly, as compared
to the granularity used in the sector-based addressing
mode (512Byte). However, it complicates the handling of
I/O requests that are not page-aligned or span multiple
pages. For each request issued to the disk by the OS,
the indirector first splits it into a series of blocks, each
representing a potential page in the cache, and then uses
the first logical block address (LBA) in each block as the
index to determine if there is a cache-hit or cache-miss
for that block.

We adopt an approach similar to the one described in
[13] to address the issue of block alignment. Normally,
the starting sector of a file system is rarely the first
sector of the disk partition on which the file system
is installed, or strictly aligned on a specific boundary,
so I/O requests issued by the OS may cross page
boundaries. For example, in our case, a page contains
eight sectors, but the LBAs for the indexing purpose
are not always guaranteed to be aligned on the eight-
sector boundary. As a result, we need to identify the
file system offset to make indexing LBAs aligned when
splitting I/O requests. The side effect of splitting I/O
requests and processing each separately is that it would
inevitably lead to additional cache (GPU memory) and
disk accesses as we show next.

3.2.2 Splitting I/O Requests
Any given I/O request can be composed of many cache
blocks, each of which may or may not be present in
the cache. Worse, in certain cases, a cache block may be

B CA D

E F G

I/O Request

GPU Cache

Fig. 2. I/O request example

subject to the partially-addressed access, which means
the location of the starting LBA of the request is in the
middle of the cache block. These observations indicate
that we can not handle the I/O request by simply
sending it as a whole to the cache or the disk.

Figure 2 shows an illustrating example, in which a
read request consists of a cache-hit block B mapped to
cache block F, a cache-miss block C, and two cache-hit
blocks A and D that are not page-aligned and mapped
to cache blocks E and G respectively. Processing such
a complicated request results in a series of cache and
disk accesses, and memory copies that finally merge the
individually requested data. In this example, the indirec-
tor groups block A and B into one request and issues
them to the cache together, since they are consecutively
situated. The indirector passes Block C to the disk as a
single request, and redirects Block D to the cache even
though only part of the block is accessed as in the case
of Block A. Only until the three requests return, can
the indirector acknowledge the completion of the original
I/O request. The indirector forwards the non-aligned
write requests to the disk directly, because caching them
would invalidate a portion of the target cache block,
which makes it difficult to bookkeep the cached data.

3.3 GPU Storage Management
The management of GPU storage space plays a vital role
in the whole system. Optimized algorithms and well-
designed data structures have a significant impact on
both I/O throughput and latency.

3.3.1 Overview of the GPU Storage
Given that the bulk data transfer is preferable for GPUs,
we maintain the I/O blocks on GPU in a log-like
structure to allow write operations to be sequentially
organized, thereby not only speeding up writes but
improving overall performance (see Section 3.4.1). The
GPU cache is regarded implicitly as a circular buffer,
which represents a contiguous block of logical addresses
with a tail pointing to the least-recently-written page and
a head pointing to the most-recently-written page. As a
consequence of the GPU cache being an append-only
structure, the blocks previously written may become
invalidated or orphaned upon the arrival of new writes,
making the cache space fragmented. Thus, when the
usage of the GPU cache exceeds a certain threshold or
the degree of cache fragmentation surpasses a prede-
fined value, the garbage collector wakes up to perform
a cleaning operation that reclaims orphaned blocks and
rearranges the active blocks in sorted order.

4

3.3.2 Data Structures and Associated Operations

We use a hash table to maintain the mapping between
logical block addresses and GPU cache pages, and
choose hopscotch hashing [8] to resolve hash collisions.
The hopscotch hashing is an open-addressing based hash
algorithm, and is well-suited for our scenario because of
its three key advantages. The first is that it exhibits good
performance at very high load factors of the hash table.
The second is that the multi-threaded implementation of
hopscotch hashing proves to be highly scalable. The last
advantage is that hopscotch hashing is insensitive to the
choice of hash function, and particularly suggests simple
ones that are close-to-universal.

The hash table maintains the key-value association
in an array, in which each slot contains a pointer to
a node (located in a doubly-linked list) that stores the
key-value pair with the disk LBA as the key and the
logical page number of the GPU cache as the value. As
shown in Figure 3, the hash table provides interfaces
for processing the I/O requests, while the doubly-linked
list defines the access order in which the nodes are
read, updated, and inserted through the hash table. In
a convenient manner, this data structure not only offers
predictable performance such as fast access to the hash
table and constant time manipulation of the linked list,
but also naturally expresses the LRU access order for
I/O requests in the course of system evolution.

Three basic operations (lookup, insert, delete) exposed
by the hash table can be used for manipulating the
I/O requests. We use the lookup operation to query the
existance of the I/O data, and the insert operation to
add new items to the cache. For non-aligned write-hit
requests, we need to delete the corresponding cache slots
to ensure that there do not exist partially cached blocks
in the cache. Furthermore, as the system progresses and
the working set changes, we also need to delete the aged
blocks in the cache to make room for new I/O requests.
To aid the selection of cache blocks for eviction, we use
a linked list to maintain the LRU order of I/O requests
present in the hash table.

The indirector intercepts all I/O requests regardless of
if they are forwarded to the disk or the cache, so the
lookup operation is always involved. For read requests, a
hash table hit incurs a READ operation on a node of the
LRU list and returns the node’s content immediately, and
the READ operation only changes the node position. For
write requests, a hash table hit will cause the invalidation
of an existing slot on GPU and an UPDATE operation on
the LRU list; when a miss occurs, we insert a new entry
into the table and perform an ADD operation. In both
cases of write-hit and write-miss, we append I/O pages
of the write-requests to the cache and increment the head
indicating the most-recently-written page accordingly. In
addition, if the cache is full when inserting a new entry,
we evict the oldest page in the cache and DELETE the
corresponding node in the LRU list.

A 1lookup

A 1READB 3READ

C 2READE 4ADD

A 1READC 2READB 3READE 4ADD

A

C

B

HashTable

LRU Eviction List

Sorted Queue

I/O Requests

Queues

...

C 2lookup

B 3lookup

E 4insert

Fig. 3. Hash table and LRU list data structures.

3.3.3 Algorithmic Design

Since the indirector is in charge of interpreting all I/O
requests, the processing speed in the respective opera-
tions such as looking up the hash table and maintaining
the eviction list in the LRU order, is critical to system
performance. These concerns motivate the algorithmic
design that aims to maximize the exploitation of paral-
lelism in the management of the GPU storage space. To
provide concurrent accesses to the hash table, we adopt
a multi-threaded design, and each thread can perform
lookup, insert, and delete operations independently. BAG
schedules requests in a round-robin manner to balance
load across service threads. The concurrency control
for the hash table is as follows. At any time instant,
there may be multiple reads with the same LBA and
multiple reads/writes with different LBAs. This strategy
can not only exploit as much parallelism as possible but
avoid the ordering issues arising from the asynchronous
processing of I/O requests in other modules of BAG.
We partition the hash table into multiple segments with
each having a lock to mediate concurrent accesses. Two
threads need to compete for the segment lock when
they concurrently access different entries in the same
segment. Accesses to distinct segments and concurrent
hash table lookups are lock-free. This design strikes a
balance between the concurrency level and the overhead
of maintaining one lock per hash table entry.

Only parallelizing the accesses to the hash table is
not sufficient to improve overall performance, because
strict synchronization between the hash table and the
LRU list would lead to sequential updates to the list and
lock contention among service threads, neutralizing the
proposed optimizations. To address this issue, we make
a key observation that we can queue the operations to
be applied to the list and keep the LRU list eventually
consistent with the hash table, because the system only
occasionally accesses the LRU list when evicting and
reclaiming the cache slots. To this end, each service
thread independently records the operations in an inter-
nal queue, and the queues are merged and then drained
in batches when one or more predefined conditions are

5

satisfied, for example, when the queues are full or when
the garbage collector performs synchronization between
the LRU list and the GPU cache. Although multiple
queues improves concurrency as compared to a single
queue that may become another point of contention, we
can no longer maintain the order of the I/O requests
with multiple queues. The solution is to attach a unique
id to each request before dispatching the request to a
service thread, which allows the queues to be merged
in sorted order prior to draining them. We use counting
sort to perform sorting due to its linear time complexity
for small integer values. After the queues are processed,
the counter used to generate id values is reset to avoid
numeric overflow. The proposed strategy for optimizing
access to the LRU list avoids lock contention and only
incurs slight overhead by spreading penalty across mul-
tiple threads.

3.3.4 Garbage Collection
As a result of the log-structured design and the insert
(update) and delete operations, the orphaned pages accu-
mulate in the GPU cache. These garbage pages scatter
among active pages and can not be effectively used.
Therefore, when a certain amount of orphaned pages is
present in the GPU cache, we need to invoke the garbage
collector to clean and compact the GPU cache. The clean-
ing operation first makes the state of the LRU list up-to-
date by draining queued operations, and then calls a se-
ries of GPU kernels to rearrange active pages in the order
specified by the LRU list. The functionalities of the GPU
kernels range from analyzing the LRU list to prepare a
plan for page moves, to copying memory to compact the
cache space. Preserving the LRU order in defragmenting
the GPU cache is beneficial in two aspects. On one
hand, with an ordered cache, it is straightforward to
displace the aged pages indicated by the tail of the cache
with new content when the cache eviction is needed,
guaranteeing not to break the large I/O buffer written
to GPU (discussed in Section 3.4.1) into small chunks.
On the other hand, unordered organization of the cache
makes it complicated to maintain the mapping between
LBA and logical page number, because the system needs
to record new location for each cache page to update the
hash table accordingly after the cleaning operation. The
maintenance procedure may involve scanning the LRU
list or a set of recorded locations multiple times (O(n2)
time complexity and O(n) space complexity). However,
this procedure is much easier to achieve if we keep the
order of the cache the same as that of the LRU list.

Besides space efficiency considerations, the garbage
collector also performs cleaning operations under cir-
cumstances where the aged pages may be frequently
accessed due to large working sets or irregular I/O
patterns. The situation is exacerbated if eviction decision
is dependent on pending operations performed on pages
that are exactly the candidates for eviction. For example,
when the oldest page is to be evicted, but a READ
operation on this page is still in the queue. In such a case,

we can not guarantee the consistency when the queued
operation is finally drained, or extra programming logic
may be needed to avoid potentially inconsistent state.
To address these issues, we maintain the access history
for an amount of aged pages to assist in predicting the
consequences of evicting the tracked pages reasonably.
Negative predictions would cause the rearrangement of
cache space. Furthermore, if the number of free pages
is less than the expected threshold value when cleaning
the cache space, we intentionally deallocate a percentage
of aged pages (say, up to 10%) to reduce explicit eviction
in subsequent execution. In doing so, the problems, such
as inconsistent state and extra logic, can be alleviated at
the cost of incurring cache misses due to the deallocated
pages. While taking into account the limited perfor-
mance impact of cache misses, the alleviation of design
issues, and most importantly, the time consumption of
the garbage collector (typically tens of milliseconds), we
believe this strategy is cost-effective. The algorithm of
garbage collection is present in the supplementary file.

3.3.5 Memory Evacuation
It may not make sense to exclusively use all or part
of the GPU memory as buffer cache, because normal
GPU applications may fail to run due to inadequate
memory. Managing memory effectively has been an ac-
tive research topic, but implementing a custom memory
management framework is tedious and error-prone. In
the following, we present a simple strategy that achieves
automatic evacuation of the memory reserved by BAG
when needed.

We implemented a dynamic library to intercept the cu-
daMalloc call (using the LD PRELOAD trick) to mediate
memory allocation requests from both BAG and other
applications. The intercepted cudaMalloc call only tracks
the memory usage of each request, and forwards the
real memory allocation to the CUDA runtime. BAG acts
as a server that communicates with client applications
using the message queue IPC mechanism because the
dynamic library is linked to different address spaces.
The server initially allocates a portion of GPU memory
that is split into blocks of equal size to facilitate fine-
grained memory (de)allocation, and this reserved space
may shrink or grow dynamically. Clients obtain the
amount of memory reserved by BAG when cudaMalloc
is called at the first time, and only need to communicate
with the server when the system can not fulfill the
allocation request, but the requested memory size is less
than the sum of the available memory and the memory
used by BAG. Upon receiving client requests, the server
releases one or more memory blocks according to the
specified allocation size, which may incur a garbage
collection operation. We found that the time taken by
each cudaMalloc or cudaFree call is relatively indepen-
dent of the memory size, which indicates that we can
arbitrarily choose the size for memory blocks. However,
large blocks may make memory management inefficient
(comparing memory requests of size 1M to blocks of size

6

32 MB); small blocks would lead to excessive memory
allocation time (with block size of 1MB, allocating 32MB
memory needs to invoke the cudaFree call 32 times).
Thus, we make the block size a configurable parameter.

3.4 Moving Data to GPU
The kernel-level relay and the user-level daemon together
form a virtual block device that cooperatively serves
I/O requests issued by the indirector. In this section, we
presents the rationale behind the design choices of the
two components.

3.4.1 Relay
The relay is responsible for transferring and buffering
I/O data between the daemon and the indirector. As a
pseudo block device, the implementation of the relay
leverages existing block I/O interfaces in the Linux
kernel. The relay processes I/O requests asynchronously
with one thread receiving requests from the indirector
and another two threads dispatching read and write
requests to the daemon respectively. Because of the lack of
a kernel-facing interface to communicate with the GPU,
this indirection layer is indispensable for delegating OS
data to user space. A naive method for transferring data
between OS kernel and user space is to deliver each
I/O request individually. Obviously, this would result
in low throughput due to frequent context switches and
underutilized parallelism of the GPU due to insufficient
I/O data. As a result, BAG buffers the I/O requests in the
relay and delivers the pending requests to the daemon in
batches. We deal with read and write requests differently
as described next.

Read requests are aggregated in a fixed-length queue
and processed when the queue is full or a predefined
timeout interval expires. This design can help reduce the
amortized cost of communication between kernel space
and user space, and avoid queuing the requests for an
excessively long time. However, the physical memory
pages (see bv page member in bio vec structure in the
Linux kernel) allocated for the individual read requests
are typically not contiguous, so we need to invoke mmap
system call multiple times to map all the I/O requests to
user space. For large queues, the overall overhead will be
dominated by too many mmap calls. Thus, we allocate a
data buffer with the desired number of contiguous phys-
ical pages, which acts as an intermediate staging post for
reads. Although involving considerable memory copies,
this strategy improves read performance remarkably.

In contrast, writes are copied to an internal buffer,
and mapped to user space once the buffer size has
reached maximum capacity. Despite the penalty incurred
by memory copies, the write buffer has several benefits.
First, if there is room in the buffer, we can complete
write requests (e.g. by calling bio end in the Linux kernel)
as soon as possible, reducing response latency. Second,
reads can be firstly served by querying the write buffer,
and a read hit in the buffer will save the cost of visiting

user space. Third, as in the case of reads, by combining
scattered memory pages into a write buffer with con-
tiguous address space, we can map the buffer to user
space using one mmap call. Fourth, buffering write re-
quests reduces bandwidth contention with read requests,
since read requests are generally more important than
write requests, and often granted higher priority when
mapping I/O data between kernel space and user space.
Finally, frequent writes targeting the same block can be
absorbed by the buffer and acknowledged before they
go to user space. This strategy has a positive impact
on performance, but it would break the intended log
structure of the cache. Therefore, we reject this idea
and maintain structural consistency between the write
buffer and the GPU cache. We present the optimization
against the structure of the write buffer in Section 3.4.2.
The supplementary file provides more details about the
kernel-user communication mechanisms.

3.4.2 User Space Daemon
The relay processes I/O requests in separate threads, so
we use two threads to handle data transfer between host
and device in the daemon accordingly. We assign threads
with the same type (read or write) in the relay and
daemon to a single core to avoid context switching and
cache bouncing costs. The daemon calls cryptographic
GPU kernels in processing I/O data due to the reasons
discussed in Section 3.5. In the read thread, we configure
the decryption kernel to make the output (a page array
residing in the device memory) properly arranged in
the order in which I/O requests are mapped into the
user-space page array, so that we need only one device-
to-host memory copy to transfer the output back to
the host. In the write thread, since the write buffer in
the relay may contain invalidated pages as described in
Section 3.4.1, the encryption kernel excludes these pages
to save computational resources, even though the whole
write buffer is present in the GPU cache. The garbage
collector kernel obtains its input from the indirector us-
ing the procfs interface as well, and the communication
protocol between them is similar to that used in the relay.

CUDA devices with Compute Capability 2.0 support
concurrent GPU kernel execution and data copy for
better utilization of the GPU. We do not currently realize
concurrent data copy that requires memory to be allo-
cated in page-locked mode, which is not supported in
our implementation of memory mapping. GPUstore [18]
has a flexible framework for integrating GPU computing
into storage systems. In future work, we plan to reinforce
BAG with GPUstore’s mechanisms. Our current imple-
mentation works well due to the goal of using GPU as
buffer cache that involves less data transfer, as compared
to GPUstore that performs cryptographic operations on
all data stored in the system.

3.5 Data Confidentiality
GPU device provides shared access to user-level appli-
cations, so without appropriate protection, backing up

7

the OS kernel data on GPUs may lead to the risk of
information disclosure. In this section, we first show
the inadequacy of memory protection implemented in
the current generation of GPUs, and then present the
approaches to securing data storage on GPUs.

3.5.1 Threat Model
We assume that the operating system is trusted, and
only the GPU’s global memory is potentially vulnerable
to compromise. In other words, our assumption is that
the adversary has necessary privileges to compute on
GPU device, but its activity is under the control of the
standard Linux security model. Privilege escalation to
the OS kernel is beyond the scope of this paper because
attackers with root access to all system resources would
have no intentions to subvert data protection on GPUs.

3.5.2 CUDA Memory Protection Model
It is worth noting that, in CUDA, the virtual memory
system coupled with context-based memory isolation
guarantees that distinct and simultaneously running
contexts would not interfere with each other. In the
following, we demonstrate two properties (not officially
documented) of CUDA that motivated us to develop
solutions to address data confidentiality concerns.

Property 1: The GPU does not scrub the global
memory between kernel invocations. We can verify this
property as follows. We first launch a CUDA kernel
generating a random string in global memory. Then,
after its completion, we can fully recover the randomly
generated string by searching the GPU memory dump
in another CUDA context with distinct user privilege.

Property 2: Kernel’s code memory is not accessible via
the global memory space. Official documents of CUDA
do not explicitly specify the storage location or the acces-
sibility of kernel code memory. However, experimental
measurements we conducted show that it is not feasible
to read or write the code memory via global memory
space, because by calculating the MD5 hashes of global
memory space in two subsequent kernels (both of which
do not involve modification to global memory), we can
always obtain the same value.

3.5.3 Data Protection with GPU-accelerated AES
On one hand, to address the security issue impilied
by Property 1, we implemented GPU-accelerated AES
kernels that are detailed in the supplementary file. On
the other hand, data confidentiality is based on the
assumption that cryptographic keys are kept absolutely
secret. In our setting, managing keys in memory spaces
that are vulnerable to memory disclosure attacks, would
compromise data security. Therefore, the cryptographic
kernels generate keys dynamically on the GPU to elimi-
nate persistent storage for the keys. Inspired by Property
2, we developed a custom key generator that produces
keys directly in shared memory. It is also possible to store
keys in registers, but due to the per-thread register limit,

 0

 5000

 10000

 15000

 20000

1 2 3 4

op
s

/ m
s

Number of Threads

Hashtable
SQ
MQ-WRT
MQ-OPT

(a) Write-heavy workload

 0

 5000

 10000

 15000

 20000

 25000

 30000

1 2 3 4

op
s

/ m
s

Number of Threads

Hashtable
SQ
MQ-WRT
MQ-OPT

(b) Write-light workload

Fig. 4. Evaluation results of the hash table.

this option may cause register spilling into local memory.
Additionally, according to the choice of storage location
for keys, we also derive the round key in shared memory.
While incurring a constant computational overhead, this
design eliminates expensive global memory access and
consequently reduces latency.

4 EVALUATION

In this section, we evaluate the performance of BAG
using micro-benchmarks and macro-benchmarks. The
experiments were conducted on a machine equipped
with a AMD phenomII X6 1055T CPU, 4 GB memory,
and a Nvidia GTX 480 GPU. The GPU card has 15
streaming multiprocessors (SMs), each containing 32
cores (480 cores in total), and 1.5 GB device memory.
The maximum amount of shared memory for each SM
is 48 KB. The operating system was Ubuntu Linux 11.04
with NVIDIA driver version 280.13 installed.

4.1 Micro-benchmarks
We first examine the performance of each main compo-
nent in BAG individually (The results for ASE evaluation
are shown in the supplementary file). The experimental
results were all averaged over 10 runs.

4.1.1 Hashtable
We evaluate the performance of hashtable using four
configurations: 1) The original hashtable implementation
without maintaining the LRU list (Hashtable). 2) A sin-
gle queue connecting the hashtable and LRU list (SQ).
3) Multiple queues that are drained upon a put/delete
operation (MQ-WRT). 4) Optimized design of multiple
queues as described in this paper (MQ-OPT). For this
test, we populated a hash table that has approximately
223 items to a high density 90%. To examine the perfor-
mance variations under different loads, we performed
this experiment with a write-heavy workload that con-
sists of 60% get, 30% put and 10% delete, and a write-light
workload that contains 90% get, 5% put and 5% delete.

As shown in Figure 4, the hopscotch hash algorithm
scales equally well under different loads, but exhibits
better performance measured in terms of operations per

ligang
Inserted Text
the

ligang
Inserted Text
the

ligang
Cross-out

ligang
Inserted Text
 it would compromise data security to manage the keys in the memory spaces that are vulnerable to memory disclosure attacks.

ligang
Inserted Text
the

ligang
Cross-out

ligang
Inserted Text
dynamically

ligang
Inserted Text
the

ligang
Inserted Text
the

ligang
Inserted Text
the

ligang
Inserted Text
the

ligang
Inserted Text
the

ligang
Inserted Text
the

ligang
Inserted Text
the

ligang
Inserted Text
the

ligang
Inserted Text
the

ligang
Inserted Text
of

ligang
Inserted Text
the

ligang
Inserted Text
of

Ligang
Inserted Text

8

TABLE 1
Overhead of garbage collection.

ms 128M 256M 512M 768M 1024MB
GPU (load factor 0.9) 3.05 6.02 12.07 18.14 24.21
CPU (load factor 0.9) 181.48 361.99 725.05 1093.52 1461.31
GPU (load factor 0.8) 2.86 5.67 11.41 17.20 23.01
CPU (load factor 0.8) 139.77 280.11 560.73 842.25 1129.34

TABLE 2
Breakdown of garbage collection overhead.

ms Step 1 Step 2 Step 3 Step 4 Step 5 Sum
128M 0.13366 0.01078 0.01517 2.87248 0.01955 3.05164
256M 0.13398 0.01366 0.02278 5.83702 0.00941 6.01685
512M 0.17360 0.02861 0.07117 11.78397 0.01648 12.07383
768M 0.32685 0.02608 0.08589 17.68806 0.01699 18.14387
1024M 0.39882 0.03056 0.12870 23.63338 0.01834 24.2098

millisecond for write-light workload (compare the scale
of y-axis in two sub-figures). In contrast, the performance
of SQ drops quickly as the number of threads increases
(from 6537 ops/ms at 1 thread to 960 ops/ms at 4 threads
in Figure 4(a)), due to the significant overhead incurred
by lock contention among threads. Although MQ-WRT
shows good scalability for workload containing fewer
writes as shown in Figure 4(b), it degrades performance
under write-heavy workload as shown in Figure 4(a)
because intensive writes cause frequent synchronization
between the queues and the LRU list. The optimized de-
sign of multiple queues, MQ-OPT, not only outperforms
SQ and MQ-WRT, but scales with the number of threads
under both workloads.

4.1.2 Garbage Collection
Table 1 compares the time consumption of garbage col-
lection between two implementations. One is the GPU-
accelerated implementation as proposed in this paper,
and the other is a single-threaded implementation on
CPU using the CUDA API cudaMemcpy with the param-
eter cudaMemcpyDeviceToDevice specified. We conducted
the measurements using the same memory layout and
load factors. The results for the GPU version only contain
the kernel execution times, and the data transfer for ker-
nel input, such as the auxiliary array, consumes less than
1ms. As shown in Table 1, for all the cache sizes, the GPU
version outperforms the CPU version by a factor of 60
when the cache is 90% full. In comparison, the speedup
factor is reduced to 49 with a less loaded cache. Table 2
shows the breakdown of garbage collection overhead
into five categories corresponding to the five steps (see
the supplementary file) described in Section 3.3.4. We
can observe that the vast majority of overhead comes
from memory copy for chains (Step 4), implying the
presence of a small number of loops and the significance
of exploiting data-parallelism on GPUs.

4.1.3 Memory Evacuation
Table 3 shows the overhead of our memory evacuation
mechanism discussed in Section 3.3.5. The row marked

TABLE 3
Overhead of memory evacuation.

ms 1M 2M 4M 8M 16MB 32M 64M 128M
NAT 0.098 0.069 0.067 0.067 0.068 0.071 0.082 0.124
INT 0.134 0.118 0.113 0.114 0.117 0.117 0.126 0.177

as ’NAT’ is the baseline measurement of the native
cudaMalloc call, and the row marked as ’INT’ presents
the time consumption of the intercepted cudaMalloc. The
later does not consider the overhead in scenarios where
an allocation request may result in multiple memory
deallocation operations in BAG. For example, if the
memory block size is 16MB, and we have a request
of allocating 64MB memory. Then, we need to free 4
memory blocks, which would incur an additional cost
of invoking cudaFree 4 times.

4.1.4 Virtual Block Device
We used the Intel Open Storage Toolkit [3] to generate
complex I/O patterns to evaluate the performance of
reads and writes of the virtual block device. For each
test scenario, we set the number of outstanding requests
to 64 with various request sizes (8KB, 16KB, 32KB,
256KB). Each workload was configured to access raw
block devices directly to bypass the buffer cache and file
system. All read and write requests were synchronous
I/O with no think time.

Figure 5(a) depicts the write performance. As ex-
pected, the throughput increases linearly with the buffer
size. For example, with a request size of 8KB, writes
using a buffer size of 4MB achieve 6.4 times higher band-
width as compared to a buffer size of 8KB. As request
size increases to 256KB, the relative throughput gain of
writes increases to 9.2 times. Note that random reads
and writes can achieve almost identical performance
as sequential reads and writes, so we only present the
results of sequential workloads in this experiment. As
for reads, increasing the queue size does not always
help improve performance, because the queuing delay
may outweigh the benefits of batching process of read
requests, especially for large queues with small request
sizes. For example, as shown in Figure 5(b), with a
request size of 8KB, the read performance drops dramat-
ically from 348MB/s to 125MB/s when the queue size
exceeds 512KB. For a larger request size of 256KB, the
throughput reaches a maximum of 582MB/s around the
queue size of 2MB. These observations indicate that we
need an adaptive queuing policy for reads to handle the
real-life workloads that can be a mix of various access
patterns. For example, we can use differentiated queuing
service for read requests with varying access patterns.
We leave this optimization to future work.

Figure 5(c) quantifies the copy-based optimization for
reads as described in Section 3.4.1. The results were
obtained using the request size of 256KB. When the
queue size is less than 32KB, mapping each read re-
quest individually is more preferable than memory copy.

ligang
Cross-out

ligang
Cross-out

ligang
Cross-out

ligang
Inserted Text
T

ligang
Cross-out

Ligang
Inserted Text
the

Ligang
Inserted Text
s

9

 0

 100

 200

 300

 400

 500

 600

 700

 800

8K 16K
32K

64K
128K

256K
512K

1M 2M 4M

T
hr

ou
gh

pu
t (

M
B

/s
)

Buffer Size (byte)

WRITE-256K
WRITE-32K
WRITE-16K
WRITE-8K

(a) Write Performance

 0

 100

 200

 300

 400

 500

 600

8K 16K
32K

64K
128K

256K
512K

1M 2M 4M

T
hr

ou
gh

pu
t (

M
B

/s
)

Queue Size (byte)

READ-256K
READ-32K
READ-16K
READ-8K

(b) Read Performance

 150

 200

 250

 300

 350

 400

 450

 500

 550

 600

8K 16K
32K

64K
128K

256K
512K

1M 2M 4M

T
hr

ou
gh

pu
t (

M
B

/s
)

Queue Size (byte)

NO-COPY
COPY

(c) Copy Based Read

 0

 200

 400

 600

 800

 1000

128M 256M 512M 768M 1024M

T
hr

ou
gh

pu
t (

M
B

/s
)

Cache Size (byte)

WITH-GC

75
8

75
7

76
0

76
2

76
1

WITHOUT-GC

77
5

77
3

77
3

77
4

77
2

(d) Overhead of GC

Fig. 5. Evaluation results of the virtual block device.

 0

 5

 10

 15

 20

 25

 30

 35

 40

128M 256M 512M 768M 1024M

H
it

 R
at

io
 (

%
)

GPU Cache Size (byte)

varmail

0%

3%

11
%

17
%

25
%

fileserver

0%

6%

9%

20
%

33
%

(a) Cache Hit Ratio

 0

 100

 200

 300

 400

 500

128M 256M 512M 768M 1024M

op
s

/ s

GPU Cache Size (byte)

varmail

35
0

36
0 38

1 40
1 41

7fileserver

26
8 28
2

28
8

30
1 31
6

(b) Impact on Performance

Fig. 6. Performance and cache hit ratios of workloads.

However, as the queue size increases, the superiority of
copy-based method becomes more and more evident.
For example, with a queue size of 2MB, ”COPY” beats
”NO-COPY” by a factor of 1.3. To estimate the overhead
of garbage collection, we performed two experiments
(using the same configuration, writes with request size
of 256KB), in which the garbage collection is enabled
and disabled respectively. Figure 5(d) shows that the
overhead caused by garbage collection is at most 2.1%.

4.2 Macro-benchmarks

To demonstrate the performance benefits of BAG for real
system workloads, we used FileBench [2] to generate
file system workloads. We chose two common server
workloads: mail server and file server (other workloads
show similar trends, but the chosen workloads are more
representative because of the desired write frequency).
Two basic performance metrics, throughput measured
in terms of operations per second and cache hit ra-
tio, are reported. In mail server workload, FileBench
spawns 16 threads to perform a sequence of operations
to imitate reading mails (open, read the whole file, and
close), composing (open/create, append, close, and fsync)
and deleting mails. The average file size is 32KB, and the
read-write ratio is 1:1. This workload generates 1872MB
data including 60,000 files. The file server workload
emulates servers hosting home directories of multiple

users. It spawns 50 threads each performing a series
of create, delete, append, read, write, and stat operations.
The average file size is 256KB, and the read-write ratio
is 1:2. This workload generates 2482MB data including
10,000 files. The results shown below were obtained by
taking into account all the overhead incurred by the
components of BAG detailed in Section 4.1.

Figure 6 shows that BAG effectively improves hit ratio
as well as throughput for both workloads. As shown
in Figure 6(a), with the increase of cache space, the hit
ratios of the two workloads are increased up to 33%
and 25% respectively when the cache size reaches 1GB.
Here, we measured the results by considering the system
cache and GPU cache as a whole. Due to the large
synthetic workload and limited system memory, we can
observe from Figure 6 that adding 128MB GPU memory
to the cache has no impact on cache hit ratio. The re-
sulting cache hit ratio directly translates into throughput
improvement. Figure 6(b) shows that 1GB cache can
improve performance by 19% and 18% for varmail and
fileserver respectively, if we use the throughput with
cache size of 128MB as the baseline that is slightly lower
than actual throughput without cache. Considering that
the workloads features large working sets and a signif-
icant proportion of write operations (see the read-write
ratio), we believe BAG achieves reasonable performance
gains for the chosen workloads.

5 RELATED WORK
OS Support for Heterogeneous Processors: The research
community has spent considerable effort on the problem
of processor heterogeneity in OS designs. The Helios
[14] OS introduces satellite kernels that export a set of
OS abstractions for CPUs with distinct ISAs to simply
the task of programming heterogeneous systems. The
Barrelfish OS [5] treats the underlying hardware as a dis-
tributed network with independent OS kernels on each
core, communicating via RPC. However, the abstractions
proposed by Helios and Barrelfish do not support GPUs,
which lack features such as preemptive scheduling, in-
terrupts, and direct IO access to create the full context to
run the OS code. PTask [15] addresses the issue of insuf-
ficient support of existing OS abstractions for GPU-based

Ligang
Inserted Text
the

Ligang
Inserted Text
the

Ligang
Inserted Text
the

Ligang
Inserted Text
the

Ligang
Inserted Text
 the

Ligang
Inserted Text
the

Ligang
Cross-out

Ligang
Inserted Text
increase

Ligang
Note
cache size or gpu cache size

Ligang
Inserted Text
the

Ligang
Inserted Text
the

Ligang
Cross-out

10

interactive applications. With the dataflow programming
model provided by PTask, the programmer can manage
computation in a graph structure that consists of OS
objects to provide the OS kernel with sufficient visibility
and control over the course of the computation, thereby
guaranteeing fairness and performance isolation.

Efficient scheduler for heterogeneous systems such as
CPU-GPU hybrids has received considerable attention.
TimeGraph [9] is a GPU scheduler to support real-time
multi-tasking environments, providing isolation and pri-
oritization capabilities in GPU resource management.
Currently, TimeGraph only supports graphics work-
loads. The Pegasus system [7] offers a uniform resource
usage model and schedules virtual machines to share
accelerators fairly and efficiently, targeting virtualized
systems. PTask also provides support for GPU-aware
scheduling and makes applications respect scheduling
priorities in the OS kernel. In contrast to these research
endeavors, we mainly focus on exploiting the potential
of GPUs for data storage in the OS kernel, more than
just the computational capabilities of GPUs.

Gdev [10] introduces an open source kernel driver
and user-level library to manage the GPU as first-class
computing resource, facilitating the sharing of GPU re-
sources. GPUfs [17] is a system that exposes POSIX-like
file system API to GPU programs. In order to optimize
GPU file access, GPUfs also maintain a buffer cache in
GPU memory. Although both GPUfs and BAG manages
GPU memory as buffer cache, there are many differences
between the designs of these two systems because of
the distinct goals. GPUstore [18] is a general-purpose
framework that is intended to accelerate computational
tasks in storage systems. GPUstore provides efficient
mechanism for mapping memory pages between kernel
and user space, and we hope to integrate it into BAG to
further improve performance. The RAID 6 implemen-
tation on GPU in GPUstore can also be used in our
system for fault tolerance, since only high-end GPUs
support ECC for GPU memory. Both GPUstore and BAG
operate at the storage layer, but BAG focuses on how
to expand memory capacity with GPU’s disaggregated
RAM, instead of just the computational capability.
Memory expansion: Disaggregated memory [11], [12]
has been proposed as an effective approach to scaling the
local memory capacity of blade servers. The work in [12]
also demonstrated the feasibility of enhancing disaggre-
gated memory with content-based page sharing, which
would be a good fit for GPUs. Transcendent memory
(Tmem) [4] is a new approach to improving the utiliza-
tion of physical memory, and a well-designed front-end
API of Tmem can be used to implement various memory
capacity optimizations, such as remote paging and page
compression. We believe that developing a back-end for
Tmem using GPUs is an interesting future work. Flash
has been identified to be a promising way to expand
the buffer cache [1], [6], [16]. All these previous studies
in part motivated our work. More discussion about the
related work can be found in the supplementary file.

6 CONCLUSIONS

This paper presents the design, implementation and
evaluation of BAG, a system managing GPU as the
buffer cache to augment the operating system kernel.
With efficient data structures and algorithmic designs
for GPU storage management, BAG exploits only exist-
ing OS interfaces to achieve good throughput and low
latency, while providing an abstract view of the GPU
memory to retain modularity and composability.

7 ACKNOWLEDGMENTS

The authors are grateful to the anonymous reviewers
for their helpful feedback. This research was supported
in part by the National Natural Science Foundation of
China under grants 61272190 and 61173166, the Program
for New Century Excellent Talents in University, the
Leverhulme Trust under grant RPG-101, and the Key
Program of National Natural Science Foundation of
China under grant 61133005.

REFERENCES
[1] Facebook Flashcache. https://github.com/facebook/flashcache/.
[2] FileBench. http://www.fsl.cs.sunysb.edu/∼vass/filebench/.
[3] Intel open storage toolkit. http://www.sourceforge.org/projects/

intel-iscsi.
[4] Transcendent Memory. https://oss.oracle.com/projects/tmem/.
[5] A. Baumann, P. Barham, P. E. Dagand, T. Harris, R. Isaacs, S. Peter,

T. Roscoe, A. Schupbach, and A. Singuhania. The Multikernel: a
New OS Architecture for Scalable Multicore Systems. In Proc. SOSP
2009. ACM.

[6] F. Chen, D. Koufaty and X. D. Zhang. Hystor: Making the Best
Use of Solid State Drives in High Performance Storage Systems. In
Proc. ICS 2011, pp.22-32.

[7] V. Gupta, K. Schwan and N. Tolia. Pegasus: Coordinated Schedul-
ing for Virtualized Accelerator-based Systems. In Proc. USENIX
2011.

[8] M. Herlihy , N. Shavit, and M. Tzafrir. Hopscotch Hashing. In Proc.
DISC 2008.

[9] S. Kato, K. Lakshmanan, R. Rajkumar, and Y. Ishikawa. Timegraph:
GPU scheduling for real-time multi-tasking environments. In Proc.
USENIX Annual Technical Conference, Berkeley, CA, USA, 2011.
USENIX Association.

[10] S. Kato, M. McThrow, C. Maltzahn, and S. Brandt. Gdev: First-
class GPU resource management in the operating system. In Proc.
USENIX Annual Technical Conference (ATC), June 2012.

[11] K. Lim, J. Chang, T. Mudge, P. Ranganathan, S. K. Reinhardt, and
T. F. Wenisch. Disaggregated memory for expansion and sharing
in blade servers. In Proc. ISCA, 2009.

[12] K. Lim, Y. Turner, J. R. Santos, A. AuYoung, J. Chang, P. Ran-
ganathan and T. Wenisch. System-level Implications of Disaggre-
gated Memory. In Proc. HPCA, 2012.

[13] J. Matthews, S. Trika, D. Hensgen, R. Coulson, and K. Grimsrud.
Intel Turbo Memory: Nonvolatile disk caches in the storage hier-
archy of mainstream computer systems. In ACM Transactions on
Storage, volume 4, May 2008.

[14] E. B. Nightingale, O. Hodson, R. McIlroy, C. Hawblitzel, and
G. Hunt. Helios: Heterogeneous Multiprocessing with Satellite
Kernels. In Proc. SOSP 2009. ACM.

[15] C. J. Rossbach, J. Currey, M. Silberstein, B. Ray, and E. Witchel.
PTask: Operating System Abstractions To Manage GPUs as Com-
pute Devices. In Proc. SOSP 2011. ACM.

[16] M. Saxena, M. M. Swift and Y. Y. Zhang. FlashTier: a Lightweight,
Consistent and Durable Storage Cache. In Proc. EUROSYS 2012.

[17] M. Silberstein, B. Ford, I. Keidar, and E. Witchel. GPUfs: Integrat-
ing a File System with GPUs. In Proc. ASPLOS 2013

[18] W. B. Sun, R. Ricci, and M. L. Curry. GPUstore: Harnessing GPU
Computing for Storage Systems in the OS Kernel. In Proc. SYSTOR
2012.

Ligang
Inserted Text
the

Ligang
Cross-out

Ligang
Inserted Text
only

Ligang
Inserted Text
the

11

Hao Chen received the BS degree in chemical
engineering from Sichuan University, China, in
1998, and the PhD degree in computer science
from Huazhong University of Science and Tech-
nology, China in 2005. He is now an Associate
Professor at the School of Information Science
and Engineering, Hunan University, China. His
current research interests include parallel and
distributed computing, operating systems, cloud
computing and systems security. He published
more than 60 papers in journals and confer-

ences, such as IEEE Transactions on Parallel and Distributed Systems,
IEEE Transactions on Computers, IPDPS, IWQoS, HiPC, and CCGrid.
He is a member of the IEEE and the ACM.

Jianhua Sun is an Associate Professor at the
School of Information Science and Engineering,
Hunan University, China. She received the Ph.D.
degree in Computer Science from Huazhong
University of Science and Technology, China
in 2005. Her research interests are in security
and operating systems. She has published more
than 50 papers in journals and conferences,
such as IEEE Transactions on Parallel and Dis-
tributed Systems, IEEE Transactions on Com-
puters.

Ligang He studied for the Ph.D degree in Com-
puter Science at the University of Warwick, UK,
from 2002 to 2005, and then worked as a post-
doctor in the University of Cambridge, UK. In
2006, he joined the Department of Computer
Science at the University of Warwick as an As-
sistant Professor. He is now an Associate Pro-
fessor in the Department of Computer Science
at the University of Warwick. His research inter-
ests focus on parallel and distributed processing,
Cluster, Grid and Cloud computing. He has pub-

lished more than 40 papers in international conferences and journals,
such as IEEE Transactions on Parallel and Distributed Systems, IPDPS,
CCGrid, MASCOTS. He has been a member of the program committee
for many international conferences, and been the reviewer for a number
of international journals, including IEEE Transactions on Parallel and
Distributed Systems, IEEE Transactions on Computers, etc. He is a
member of the IEEE.

Kenli Li received the Ph.D degree in computer
science from Huazhong University of Science
and Technology, China, in 2003, and the B.S.
degree in mathematics from Central South Uni-
versity, China, in 2000. He has been a visiting
scholar at University of Illinois at Champaign and
Urbana from 2004 to 2005. He is now a Pro-
fessor of the School of Information Science and
Engineering at Hunan University. He is a senior
member of CCF. His major research contains
parallel computing, Grid and Cloud computing,

and DNA computer.

Huailiang Tan received the BS degree from
Central South University, China, in 1992, and
the MS degree from Hunan University, China, in
1995, and the PhD degree from Central South
University, China, in 2001. He has more than
eight years of industrial R&D experience in the
field of information technology. He was a visit-
ing scholar at Virginia Commonwealth University
from 2010 to 2011. He is currently an Associate
Professor at College of Information Science and
Engineering Hunan University, China. His re-

search interests include embedded systems and GPU architectures.

