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Abstract—Link-based analysis of the Web provides the basis for many important applications—like Web search, Web-based data
mining, and Web page categorization—that bring order to the massive amount of distributed Web content. Due to the overwhelming
reliance on these important applications, there is a rise in efforts to manipulate (or spam) the link structure of the Web. In this manuscript,
we present a parameterized framework for link analysis of the Web that promotes spam resilience through a source-centric view of the
Web. We provide a rigorous study of the set of critical parameters that can impact source-centric link analysis and propose the novel
notion of influence throttling for countering the influence of link-based manipulation. Through formal analysis and a large-scale
experimental study, we show how different parameter settings may impact the time complexity, stability, and spam resilience of Web link
analysis. Concretely, we find that the source-centric model supports more effective and robust rankings in comparison with existing Web

algorithms such as PageRank.
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systems, distributed systems, systems and software, Web search, general, Web-based services, online information services.

1 INTRODUCTION

HE Web is arguably the most massive and successful

distributed computing application today. Millions of
Web servers support the autonomous sharing of billions of
Web pages. From its earliest days, the Web has been the
subject of intense focus for organizing, sorting, and under-
standing its massive amount of data. One of the most
popular and effective Web analysis approaches is link-
based analysis for considering the number and nature of
hyperlink relationships among Web pages. Link analysis
powers many critical Web applications, including Web
crawling, Web search and ranking, Web-based data mining,
and Web page categorization.

Since Web link analysis plays a central role in so many
critical Web applications, Web spammers spend a consider-
able effort on manipulating (or spamming) the link structure
of the Web to undermine the link-based algorithms that drive
these applications (like the PageRank algorithm for Web page
ranking). This manipulation is a serious problem, and more
and more incidents of Web spam are observed, experienced,
and reported [1], [2], [3]. In this manuscript, we focus on three
prominent types of link-based vulnerabilities we have
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identified in Web ranking systems. These vulnerabilities
corrupt link-based ranking algorithms like HITS [4] and
PageRank [5] by making it appear that a reputable page is
endorsing the Web spam target pages. The three types are the
following;:

e Hijacking. Spammers insert links into legitimate
pages that point to a spammer-controlled page.
There are a number of avenues for hijacking
legitimate pages, including the insertion of spam
links into public message boards, openly editable
wikis, and Web logs.

e  Honeypots. Spammers create quality sites to collect
legitimate links that are then passed on to
spammer-controlled pages. Rather than risking
exposure by hijacking a link, a honeypot induces
links so that it can pass its accumulated authority
to a spam target page.

o  Collusion. A spammer constructs specialized linking
structures across one or more spammer-controlled
pages. In a link exchange, multiple spammers trade
links to pool their collective resources for mutual
page promotion. Another example is a link farm, in
which a large number of colluding pages point to a
single target page.

To defend against these important types of link-based
vulnerabilities, we promote a source-centric view of the Web
and a novel notion of influence throttling for countering the
influence of spammers to manipulate link-based algorithms.
Most link-based algorithms to date have been based on the
most basic Web element—Web pages. Page-based link
analysis relies on a fundamentally flat view of the Web, in
which all pages are treated as equal nodes in a Web graph. In
contrast, a number of recent studies have noted a strong Web
link structure, in which links display strong source-centric
locality in terms of domains and hosts (e.g., [6] and [7]). This
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link locality naturally suggests the importance of source-
centric link analysis (SLA). Complementary to the page-
based view, the source-centric view relies on a hierarchical
abstraction of the flat page-level view.

Research on SLA has shown some initial success;
however, most studies over the past years have focused
exclusively on a single goal—improving the efficiency of
page-based ranking algorithms (e.g., [8], [7], and [9]). All of
the approaches have explored only a fraction of the
parameter space, leaving many important questions unan-
swered. We argue that fully exploring SLA can have a
profound impact on link-based algorithms and our general
understanding of the Web.

In this manuscript, we introduce a parameterized frame-
work to support the systematic study and evaluation of SLA
of the Web with an emphasis on spam resilience. We
address the following three important open questions:

e What are the most important parameters for
guiding SLA?

e How should these parameters be set to achieve the
specific objectives of the link analysis?

e  What impact do the parameter settings have on the
effectiveness of the analysis? Do certain parameter
settings conflict or correlate with the objectives?

To this end, we identify a set of critical parameters that
can impact the effectiveness of SLA, including source size,
the presence of self-links, and different source-citation link
weighting schemes (e.g., uniform, link count, and source
consensus). We provide a rigorous study on the set of
critical parameters, especially with respect to the above
three open questions. We conduct a large-scale compara-
tive study of different parameter settings of SLA over four
large Web data sets against multiple and possibly
competing objectives—spam resilience, time complexity,
and stability—and we show how the parameters should
be tuned to ensure efficient, stable, and robust Web
ranking. Analytically, we provide a formal discussion on
the effectiveness of SLA against link-based attacks. We
show how source-centric analysis provides strong resis-
tance to manipulation and raises the cost of rank
manipulation to a Web spammer.

The rest of this manuscript is organized as follows: We
present source-centric analysis in Section 2 and describe
several critical parameters impacting the quality of source-
centric analysis. In Section 3, we examine SLA in the context
of Web ranking. In Section 4, we analyze the spam-
resilience properties of source-centric link-based ranking.
We evaluate the approach in Section 5, describe related
work in Section 6, and wrap up in Section 7.

2 SOURCE-CENTRIC LINK ANALYSIS

To counter link-based vulnerabilities, we study the Web
from a source-centric point of view. In this complementary
hierarchical view to the traditional page graph, pages are
grouped into logical collections of Web pages that we call
sources. In this section, we identify important parameters
for guiding SLA, including how sources are defined, and
discuss how these parameters impact the effectiveness of
link analysis. SLA relies on a source view of the Web. Just as
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the page graph Gp = (P, Lp) models the Web as a directed
graph where the nodes of the graph correspond to Web
pages P and the set of directed edges Lp correspond to
hyperlinks between pages, the source graph has nodes that
correspond to sources and edges that denote the linkage
between sources. We use the term source edge to refer to the
notion of source-centric citation. A source s; has a source
edge to another source s; if one page in s; has a hyperlink to
a page in s3. We call s; the originating source and s, the
target source.

A source graph can consist of multiple levels of source
hierarchy; that is, a page may belong to a source that
belongs to a larger source, and so on. In the rest of this
manuscript, we shall require that each page in the page
graph belong to one and only one source in the source
graph, meaning that the hierarchical view of the Web
consists of two levels: a page level and a source level.
Hence, a Web source graph Gs = (S,Ls) is a directed
graph where the nodes of the graph correspond to Web
sources in S and the set of directed edges Ls corresponds
to source edges, as described above.

2.1 Overview
Given the source view of the Web, we next discuss the choice
of parameters for guiding SLA. The choice of parameters and
their specific settings are greatly impacted by the particular
application of the link analysis (e.g., ranking, categorization,
and clustering). In this manuscript, we focus our parameter
discussion primarily on the objective of spam resilience.
Spam resilience may come ata price, however, and so, we also
consider two additional objectives that are fundamental
across link analysis applications: time complexity for under-
standing how to leverage the higher source-abstraction level
to improve the time complexity relative to page-based
approaches and stability for understanding SLA in the face
of the Web’s constant evolution.

We identify five key parameters that impact the
objectives of SLA:

e  Source definition (I"). The first and most important
parameter is the source definition. The determina-
tion of how sources are organized is at the heart of
SLA, and all other parameter settings are entirely
dependent on the source definition.

e  Source-centric citation (©). The second parameter we
consider is the nature of the citation-based associa-
tion between sources. We study the presence and
strength of the linkage arrangements from one
source to another.

e  Source size (Z). Since sources may vary greatly in the
number of constituent pages, the third parameter we
study is the source size and how this nonlinkage
information may be directly incorporated into the
analysis.

e Influence throttling (A). The fourth parameter con-
siders the degree to which a source’s influence in the
underlying application should be limited or
throttled. Determining the level of influence throt-
tling may require information external to the link
structure of the source graph.
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TABLE 1
Summary of Web Data Sets (in Millions)
Dataset | Pages Links
WB2001 118.1 992.8
UK2002 18.5 292.2
1T2004 41.3 | 1,135.7
UK2006 80.6 | 2465.8

e Application-specific parameters (). Finally, there may
be some additional application-specific parameters
that are necessary, e.g., the number of iterations to
run a ranking algorithm until sufficient convergence.

We describe SLA in terms of an application and a specific
objective and as a combination of these five parameters:
SLA appovi>T5;0;5;A; 7). In the following sections, we
discuss the first four of these important parameters, present
some of their possible settings, and provide insight into
how best these parameters may be assigned based on the
ultimate objectives of the link analysis. We examine the fifth
parameter in the context of Web ranking in Section 3. We
find that a careful approach to these parameters is necessary
to ensure high-quality results across objectives, especially
with respect to spam resilience.

2.2 Parameter 1: Source Definition

How does the source definition impact the quality of SLA
with respect to the three objectives? Clearly, the determina-
tion of how sources are organized should have a profound
impact on the quality and value of SLA. Previous studies
have noted the importance of source definition, including
some definitions based on functional properties and others
based on link-based properties of the sources (see, e.g., [10]
and [11]).

To understand the importance of source definition, we
consider five different approaches—in the first, we treat
each page as a unique source, meaning that the source view
of the Web corresponds directly to the page view; in the
second, we disregard all page relationships and randomly
assign pages to sources. The other approaches rely on the
link locality of the Web and assign pages based on their
administrative organization—by domain, host, or directory.

To illustrate the locality-based linking phenomenon on
the Web, we consider four large real-world Web data sets
(see Table 1). The first data set—WB2001—was collected by
the Stanford WebBase project and includes pages from a
wide variety of top-level domains (TLDs). The second data
set—UK2002—is derived from a 2002 crawl of the .uk TLD
by UbiCrawler [12]. The third data set—IT2004—is derived
from a 2004 crawl of the .it TLD, again by UbiCrawler.
The fourth data set—UK2006—is derived from a 2006 crawl
of .uk; note that this more recent data set is significantly
larger than the UK2002 Web graph.'

In Table 2, we report four classes of links over these
four data sets. We report the fraction of all links that point
from pages in one domain to pages in the same domain
(intradomain links), the fraction that point from pages in
one host to pages in the same host (intrahost links), and
the fraction that point from pages in one directory to

1. All four data sets are available at http://webgraph-data.dsi.unimi.it/.
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TABLE 2
Fraction of Page Links

Intra- Intra- Intra- Intra-
Dataset TLD Domain | Host | Directory
WB2001 | 97.9% 95.5% 94.1% 62.7%
UK2002 | 100.0% 94.6% 92.3% 66.9%
1T2004 100.0% 91.0% 90.8% 67.9%
UK2006 | 100.0% 98.0% 96.0% 72.4%

pages in the same directory or lower in the directory
hierarchy (intradirectory links). Since the WB2001 data set
includes pages from many domains, we also report the
fraction of pages that point from pages in one TLD to
pages in the same TLD.

These statistics consistently show that the Web exhibits a
strong locality-based link structure. Given this phenomen-
on, it is natural to assign pages to sources based on one of
these administrative organizations. Hence, we study five
different settings for the source definition parameter I'—by
domain, by host, and by directory, as well as the extremes
of by page and by random assignment.

As we shall see in Section 5, the analysis quality
depends heavily on the presence of link locality and the
source definition. We find that a lack of locality results in
poor time complexity but that even moderate locality
(~65 percent) leads to good time complexity and stability
results that are comparable with source definitions with
extremely high locality.

The source definition provides a first step toward
mitigating the influence of a Web spammer. In the ideal
scenario, all of the pages under the control of a Web
spammer would be mapped to a single source (and all
legitimate pages would be mapped to their appropriate
source as well), meaning that collusion among Web
spammers could be muted entirely by discounting the links
within each source. In practice, spammers can never be
perfectly identified, and they can still rely on hijacking and
honeypots to collect links from legitimate pages. Hence, the
next parameter—source-centric citation—can provide an-
other layer of defense against link-based manipulation.

2.3 Parameter 2: Source-Centric Citation

Unlike the straightforward notion of linkage in the page
graph, source edges are derived from the page edges in the
underlying page graph. Different page edges often carry
different significance with respect to the sources involved.
Careful design that takes these factors into account is
critical, and so, the second parameter we study is the nature
and strength of source-centric citation. Several previous
studies have identified this parameter as an important one,
but there has been little systematic study on how the choice
of source-centric citation impacts link analysis (see, e.g.,
[13], [7], and [14]).

Given the directed source graph Gs = (S, Ls), our goal
is to understand the source-centric citation in terms of the
appropriate edge weights for the set of directed edges Ls.
Let w(s;,s;) denote the weight assigned to the source
edge (si,s;) € Ls. We consider source-centric citation as a
scalar value in the range [0, 1], where the outgoing edge
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weights for any source sum to 1. In cases where the
normalization is not explicit, we will require the normal-
ization of the raw edge weights. We consider six edge
weighting schemes:

1.  Uniform. This is the simplest case where all source
edges pointing out from an originating source are
treated equally. This uniform (u) weighting is
defined as

1
Y es Ll(sisse) € Ls]’

where the indicator function Z(-) is 1 if the argument
to the function is true and 0 otherwise.

Since each node in the source graph is an aggrega-
tion of one or more pages, treating each source edge
equally may not properly capture the citation strength
between two sources. With this in mind, we next

wu(si7 S}) =

introduce three source edge weighting schemes that
arebased on the hyperlink information encoded in the
page graph Gp = (P, Lp).

2. Link count. The link count scheme assigns edge
weights based on the count of page links between
pages that belong to sources. Such an edge weight-
ing is effective when we would like to reward
sources that have strong linkage at the page level.
The link count (Ic) weighting is

> I(pipy) € Lp] |,

pjls(pi)=s;

wie(s1,85) =
pils(pi)=si

where the source to which page p; belongs is
denoted by s(p;).

3. Source consensus. This edge weighting scheme
counts the number of unique pages within an
originating source that point to a target source. We
may wish to differentiate between the case where a
single page within the originating source is con-
tributing all n links to the target and the case where
there are n pages in the originating source and each
has a single link to the target. We capture this notion
of source consensus (sc) in the following edge
weighting definition:

wsc(sia Sj) =
pils(pi)=si

\/  Z[(i.p)) € Lp]

pjls(pj)=s;

4. Target diffusion. In contrast to how many pages in
the originating source are responsible for the page
links between sources, another factor that is of
interest when evaluating the source-citation strength
is the number of different target pages that are
pointed to by the originating source. The target
diffusion (td) weighting is defined as

\/  Z[pi.p) € Lo

pils(pi)=si

wyq (8, 85) =
pjls(pj)=s;
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In addition to these purely link-based approaches,
we also consider two approaches that rely on both
the page links and the quality of the pages that
provide the linking, where we denote page p;’s
quality score by ¢(p;). Quality could be measured
using the PageRank score for the page or a simple
heuristic like the page’s relative depth in the
directory tree.

5. Quality-weighted link count. This edge weighting
scheme directly integrates the page quality score into
the link count weighting scheme. Let (¢q) denote the
use of a page quality metric. We define the quality-
weighted link count scheme as follows:

> ap) - Z[(pirp)) € Lp)

pils(pj)=s;

Wic(q) (Sia S]) =
pils(pi)=si

6. Quality-weighted source consensus. Similarly, we
can integrate the page quality score into the source
consensus edge weighting scheme to produce the
quality-weighted source consensus edge weighting

scheme:
Wse(q) (37',7 Sj) = Z q(p7)
pils(pi)=si
\/ Z[(pi,p;) € Lp]
pils(pi)=s;

There is not a natural quality-weighted extension to
the target diffusion edge weighting scheme since it is
not focused on which page in the source is providing
the forward linkage.

From a spam-resilience point of view, the source
consensus edge weighting schemes place the burden on
the hijacker (or honeypot) to capture many pages within a
legitimate source to exert any influence over the spam
target pages. Hijacking a few pages in source ¢ will have
little impact over the source-level influence flow to a
spammer source j; that is, w(s;,s;) is less subject to
manipulation in the presence of many other pages within
a source, since it is aggregated over the link characteristics
of all pages in the source.

Another factor that can influence source-centric citation
is whether we take into account self-edges. Given a
particular edge weighting scheme, there may be some
applications that require self-edges, while others do not. For
example, in a ranking context, a self-edge may be inter-
preted as a self-vote by the source, meaning that the source
could manipulate its own rank. In the case where self-edges
are eliminated, we will require the edge weight w(s;,s;) =0
for all s; € S. On the other hand, it may be reasonable to
include self-edges since the locality-based structure of Web
links indicates a strong degree of association between a
source and itself.

Hence, we shall consider 12 different settings for the
source citation parameter ©—the looped and loopless
versions of the six association strength edge weighting
schemes. We find that some edge weighting schemes are
extremely vulnerable to spam manipulation, while others
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are much less vulnerable. In terms of stability, we find that
self-edges have a very strong impact.

2.4 Parameter 3: Source Size

Since sources may vary greatly in size, from a source of a
single page to a source encompassing millions of pages,
what is the impact of source size on the underlying
objectives of SLA? For many applications, it may be
reasonable to distinguish between sources based on the
per-source size discrepancy. The importance of source size
has been noted previously (see, e.g., [13] and [7]), but there
has been little systematic study of its impact on SLA.

The source size is one example of nonlinkage informa-
tion that can be incorporated into the link analysis. Of
course, there could be other nonlink information of interest
(like source topic or source trustworthiness), but in this
manuscript, we shall restrict our examination to the source
size. The parameter = considers two options—the size in
pages of each source s; (denoted by |s;|) and no size
information. As we shall see in Section 5, the source size is a
very important parameter for the stability of the algorithm
but results in the least satisfactory spam resilience. In our
experiments, we further explore this fundamental tension.

2.5 Parameter 4: Influence Throttling

The fourth parameter is concerned with selectively limiting
or throttling the influence of certain sources based on
external knowledge. The source view of the Web and the
careful selection the other source-centric parameters can
provide a foundation toward mitigating the influence of
link-based manipulation, but there are still open vulner-
abilities. For example, a spammer may control pages in
multiple colluding sources, meaning that the spammer can
construct a linking arrangement to ensure any arbitrary
edge weight between colluding sources.

As a result, we next consider the final parameter of
source-centric analysis for managing the impact of
spammer-controlled links—influence throttling—so that a
spammer cannot take unfair advantage of the underlying
application, even in the presence of large-scale link
manipulation. For each source s; € S, we associate a
throttling factor x; € [0,1]. We refer to this |S|-length
vector k as the throttling vector. Many factors may impact
the specific choice of &, including the size of the Web
data set, the number of pages considered, the link
density, and other link characteristics. In the rest of this
manuscript, we focus on one alternative for determining x
using the notion of spam proximity. We consider two
settings for the influence throttling parameter A—in one
case, we extract influence throttling factors based on spam
proximity; in the other, we apply no influence throttling
at all. Our goal in this manuscript is to provide an initial
understanding of influence throttling; we anticipate
further study of the optimal setting in future work.

3 APPLYING SLA 1o WEB RANKING

The parameters introduced in the previous section can be
combined in a number of ways to achieve a particular
objective with respect to a link-based application (e.g.,
ranking and clustering). To more fully examine SLA, we
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select one application area—Web ranking—and examine the
parameter settings with respect to the three objectives—
spam resilience, time complexity, and stability. Source-
centric ranking has intuitive appeal since many users may
be interested in identifying highly ranked sources of
information (e.g., CNN or ESPN) rather than specific pages.

Here, we adopt a ranking approach that is similar in
spirit to the “random surfer” model often used to describe
PageRank but adapted to SLA. Just as PageRank provides a
single global authority score to each page on the Web based
on a random walk over the linkage structure of the entire
Web, the source-centric ranking approach (SLApqy;) can be
used to rank all sources. In general, a source will be ranked
highly if many other high-ranking sources point to it. We
denote source s;’s authority score as o;, where o; > o
indicates that the ith source is more important than the
Jth source. We write the authority score for all sources
using the vector notation o, where all |S| sources are
assigned a score.

The random walk over the source graph proceeds as
follows: for each source s € S

e with probability a, the random source walker

follows one of the source edges of source s, and

e with probability 1 — «, the random source walker

teleports to a randomly selected source.

We refer to the first option as the edge following factor and
the second option as the teleportation factor. Associated with
the edge following factor is an |S| x |S| transition matrix T,
where the ijth entry indicates the probability that the random
source walker will navigate from source s; to source s;.
Associated with the teleportation factor is an |S|-length
teleportation probability distribution ¢, where ¢; indicates
the probability that the random walker will teleport to
source s;. Such a random walk may be written as

ol =a-0 - TH+(1-0a) c. (1)

Given the source-centric ranking model (SLAgg.;), we
next address two questions: 1) How do the SLA parameters
map to the Web ranking context? 2) How do we evaluate
the objectives of link analysis in the context of Web ranking?

3.1 Mapping Parameters

All five parameters—source definition (I'), source-centric
citation (©), source size (2), influence throttling (A), and
the application-specific parameters (T)—impact Web rank-
ing. Clearly, the source definition is critically important
since it determines the fundamental unit of ranking. The
source-centric citation is necessary to construct the transi-
tion matrix T according to the edge weights determined
by O, that is, Tj; = w(s;, s;). The source size parameter can
be used to guide the teleportation factor—that is,
¢ = |sil/ Z‘,‘il |s;|—which intuitively captures the behavior
of a random surfer being more likely to jump to large
sources. Alternatively, the source size can be disregarded,
so the teleportation factors defaults to a uniform distribu-
tion: ¢; = 1/|S].

For Web ranking, there are two application-specific
parameters—the mixing parameter o and the convergence
criterion for terminating the algorithm. For the influence
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throttling parameter A, we augment the original source
graph Gs = (S, Ls) to require that all sources have a self-
edge, regardless of the characteristics of the underlying
page graph, ie., Vs; € S, (si,s;) € Ls holds. Including self-
edges in the source graph is a sharp departure from the
classic PageRank perspective and may initially seem
counterintuitive—since it allows a source to have a direct
influence over its own rank—but we will see how it is a
critical feature of adding spam resilience to SLA.

For each source s; € S, we associate the throttling factor
ki € [0,1] such that the self-edge weight w(s;,s;) > k;. By
requiring a source to direct some minimum amount of
influence (x;) on itself, we throttle the influence it can pass
along to other sources. In the extreme, a source’s influence
is completely throttled when &; = 1, meaning that all edges
to other sources are completely ignored (and hence, the
throttled source’s influence on other sources is diminished).
Conversely, a source’s influence is not throttled at all when
k; = 0. Based on the throttling vector x, we can construct a
new influence-throttled transition matrix T’ where the
transition probabilities are

Ki, if TL'J' < K;and i = j,
TL.’J.: T Tﬂ~(1—f~e7;), if Tj; < k; and @ # 7,
itk T
otherwise.

]y

For a source that does not meet its minimum
throttling threshold (ie., Tj; < k;), the self-edge weight
in the transformed transition matrix is tuned upward
(i.e., T, =k;), and the remaining edge weights are
rescaled such that 3,7}, =1 — ;.

Unlike the original PageRank-style random source
walker, the influence-throttled random source walker can
be interpreted as a selective random walk, whereby a random
walker arrives at a source and flips a source-specific biased
coin. The random walk proceeds as follows: For source s; € S

e with probability ax;, the random walker follows

source s;’s self-edge,

e with probability (1 —&;), the random walker

follows one of source s;’s out edges, and

e with probability 1 — «, the random walker teleports

to a randomly selected source.

Note that this influence-throttled random walk could
also be applied to the original PageRank formulation.
Indeed, similar approaches for page-based ranking have
been considered elsewhere, including [15] and [16]. How-
ever, the observed link locality phenomenon naturally
couples with the notion of influence throttling by revising
the weight of the self-directed links in the source graph, and
so, we believe that the source-based version is intuitively
more appealing.

3.2 Spam-Proximity Throttling

Determining the level of influence throttling for each
source is an important component. In this section, we
discuss one alternative for determining x using the notion
of spam proximity. The key insight is to tune x; higher for
known spam sources and those sources that link to known
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spam sources (e.g., through hijacking, honeypots, or
collusion). Spam proximity is intended to reflect the
“closeness” of a source to other spam sources in the
source graph. A source is “close” to spam sources if it is a
spam source itself, if it directly links to a spam source, or if
the sources it directly links to a link to spam sources, and
so on (recursively).

Given a small seed of known spam sources, we adopt
a propagation approach that relies on an inverse
PageRank-style model to assign a spam proximity value
to every source in the Web graph, similar to the BadRank
[17] approach for assigning in essence a “negative”
PageRank value to spam. First, we reverse the links in
the original source graph Gs = (S, Ls) so that we have a
new inverted source graph Gs = (S, L), where the source
edge (si,s;) € Ls = (sj,s;) € L. A source that is pointed
to by many other sources in the original graph will now
itself point to those sources in the inverted graph. The
spam-proximity vector oy is the solution to the linear
system:

o, =00, U+ (1-p)-d", (2)

where U is the transition matrix associated with the
reversed source graph G, (3 is a mixing factor, and d is a
static score vector derived from the set of prelabeled spam
sources. An element in d is 1 if the corresponding source
has been labeled as spam and 0 otherwise. By including the
prelabeled spam sources, the stationary distribution o, is a
spam-proximity vector biased toward spam and sources
“close” to spam.

Based on the stationary distribution, we can assign a
throttling value to each source such that sources that are
“closer” to spam sources are throttled more than more
distant sources. Naturally, there are a number of possible
ways to assign these throttling values. In this manuscript,
we choose a simple heuristic such that sources with a spam-
proximity score in the top-k are throttled completely (i.e.,
ki =1 for all s; in the top-k) and all other sources are not
throttled at all.

3.3 Evaluating Objectives

In addition to the spam-resilience, time complexity, and
stability objectives, we also consider a fourth objective that
is specific to Web ranking—approximating PageRank.

e Spam resilience. To evaluate the spam-resilience
properties, we measure the impact of several spam
scenarios in terms of the ranking impact on a target
source: SLARrunk;spam (I'; ©; 25 A; T).

e Time complexity. To measure time complexity, we
examine the calculation efficiency of the source-
centric ranking approach in terms of the time it
takes to calculate each ranking vector:

SLARankTLm((Fv @7 Ev A7 T)

e Stability. We consider two flavors of stability.
First, we evaluate the stability of the ranking
algorithm as the Web graph evolves and new
pages and sources are discovered. Second, we
investigate the stability in terms of the similarity of
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rankings induced by the various parameter set-
tings: SLARankstar(I'; ©; 2, A; T).

e Approximating PageRank. Finally, we consider the
ranking-specific objective of approximating the
traditional global PageRank vector by combining
the source-level ranking information with the per-
source ranking information. Such approximation
promises to speed the PageRank calculation con-
siderably: SLAgani; approz (I'; ©; Z; A; T).

Several previous research efforts have considered a
source-centric ranking calculation over groups of pages,
including [18] and [11]. These approaches have had
different ultimate objectives, and each approach has
focused exclusively on a handful of parameter settings
with respect to a single objective. The first approach sought
to bootstrap the calculation of PageRank with an initial
starting “guess” derived from a decomposition of the Web
into a higher level block layer and a local level [7]. The
second approach has focused on replacing the traditional
PageRank vector with an alternative ranking approach by
determining a page’s authority as a combination of multiple
disjoint levels of rank authority (e.g., [8], [19], [9], [20], and
[21]); the traditional PageRank vector is never computed.
The third approach decentralizes the computation for use in
peer-to-peer networks (e.g., [14] and [22]).

Each of these previous approaches relies on only a few
parameter settings in the context of a single objective and
can be seen as a fairly limited exploration of the parameter
space of SLApy. For example, the BlockRank [7] and
ServerRank [14] algorithms both consider host-level sources
and a quality-weighted link count citation weight with self-
edges and disregard source size. By considering the five
source definition parameter settings, the 12 source-citation
settings, and the two teleportation vectors, we examine
120 different parameter settings for source-centric ranking
(SLARq), which we evaluate over four distinct objectives.
To the best of our knowledge, ours is the first study to
consider such a large parameter space and in the context of
multiple possibly competing objectives.

4 SpPAM-RESILIENCE ANALYSIS

In this section, we analyze the spam-resilience properties of
the ranking model and compare it to PageRank. We
consider a Web spammer whose goal is to maximize its
influence over a single target source through the manipula-
tion of links (both from within the source and from other
sources), which corresponds to the vulnerabilities identified
in the Introduction.”

We focus on two important spam techniques. These
two techniques—link manipulation within a source (in
Section 4.1) and cross-source link manipulation (in
Section 4.2)—are fundamental building blocks that spam-
mers can combine in sophisticated ways to achieve their
goals (see, e.g., [26]). Effectively countering these funda-
mental techniques is important and informative for
developing more customized antispam defenses.

2. The analysis in this section builds on previous studies of PageRank
and its variations, e.g., [23], [24], and [25].
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Fig. 1. What is the optimal source configuration?

41 Link Manipulation within a Source

We begin by studying link manipulation that is confined to
a single source, which would correspond to collusive
arrangements among spammer-controlled Web pages, like
link farms and link exchanges. In the source view of the
Web, all intrasource page links are reflected in a single self-
edge to the source, and all page links to others sources are
reflected in source edges to external sources.

How should the Web spammer configure the target
source s; to maximize its SLARy,. score, which in turn will
have the greatest impact on the target source’s rank relative
to all other sources? In Fig. 1a, we consider a generic source
configuration for s;. The target has a self-edge weight of
w(sy, s¢), leaving 1 — w(s, s;) for all source edges to external
sources. Let z denote the aggregate incoming score to the
target source from sources beyond the control of the Web
spammer. Here, the Web spammer has direct influence over
its own links (reflected in w(s;, s;)) but no influence over the
incoming links from other sources. Recall (1); we can write
the target source’s score:

-«
ot =az+ a-w(st, st) - o +W7

az + —1‘3‘“

Utzl—a-w(st,st)’

which is maximized when w(s;,s;) =1. The optimal
configuration is for the source to eliminate all out edges and
retain only a self-edge. Hence, the optimal o} is
l1-a
oy =B 3)
Given that the target source has an initial throttling
factor k <1 and that w(s;,s;) =k, the next question to
consider is by how much may a source improve its score by
adopting a self-edge weight even higher than its throttling
factor (i.e., by increasing w(s;, s;) beyond the minimum &
throttling value). Examining the relative SLA gy score for
s, we have

11—«

azize
* 1S _
0 TTa 1—ak
= = .
Ot az+\T‘T l—«o
1-ak

For a source with an initial baseline throttling value of
k=0, a source may increase its SLARq; score by 1}0 by
increasing its w(s¢, s;) to 1. For typical values of a—from
0.80 to 0.90—this means that a source may increase its score
from 5 to 10 times. For sources that are more throttled, there
is less room for manipulation. In Fig. 2, we show, for

increasing values of a baseline x, the maximum factor
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Fig. 2. Change in the spam-resilient SR score by tuning x from a
baseline value to 1.

change in the SL ARy score by tuning the x value closer
to 1. A highly throttled source may tune its SLAgq score
upward by a factor of two for an initial x = 0.80, a factor of
1.57 for k = 0.90, and not at all for a fully throttled source.

By including self-edges in the source graph and the
throttling factor x, we allow a Web spammer some room for
manipulating the score of its sources; however, the manip-
ulation is for a one-time increase only, and it may be limited by
tuning the x throttling factor higher. No such limitis provided
under PageRank, meaning that a Web spammer may
arbitrarily increase the score of a series of target pages by a
factor even larger than what we see for SLApgpy.

4.2 Cross-Source Link Manipulation

We now study link manipulation across two or more sources,
which corresponds to hijacking and honeypot scenarios, as
well as collusive arrangements that span multiple sources.
For this analysis, the spammer wishes to maximize the score
for the single target source by manipulating the links
available in one or more colluding sources.

In Fig. 1b, we show a generic source configuration for a
single target source sy and a single colluding source s;. We
let 6y and 6, denote the edge weighting for each source to
sources outside the sphere of influence of the Web
spammer. Hence, source sy has 1—w(sy,so) —6y edge
weighting available for the edge to source s;. The
corresponding edge weight holds for the edge from s; to
5. Let zy and z; denote the incoming score to each source,
respectively, from other sources beyond the control of the
Web spammer. Hence, we may describe the SLARg,,; for the
two sources with a system of equations, where the Web
spammer may manipulate w(s, sg), w(s1, s1), 6y, and 6;:

1-a
oy = azy + aw(sg, so)oo + W +a(l -

w(ShSI) —91)017

4+ a(l —w(so, s0) — bo)oo

1-—

o1 =az + aw(sy, $1)01 + ——=— S
Solving and taking the partial derivative with respect to
the four parameters, we find that the optimal scenario for a
Web spammer who wishes to maximize the SLARg,,; score
for source s is to set §y = 0; = 0, meaning that there are no

1429

source edges to sources outside of the Web spammer’s
sphere of influence; w(sy, sy) = 1, meaning that the target
source points only to itself and not at all to the colluding
source; and w(sy, s1) = 0, meaning that the colluding source
points only to the target source. With the x, throttling factor
requirement, this means that the best the colluding source
can do is meet the minimum requirement w(si, s1) = x; and
direct the rest (1 — x;) to the target.

If we extend this analysis to consider x colluding sources
(labeled sy, ...,s,;) all in service to a single target source,
then the system of equations is

1l -«
||
R e
az; + IS]

oo = azy + aw(sy, So)oo +

+aZ w(si, 5:)

o; = az; + aw(s;, 5;)0;

1 —aw(s;, s;)’

(80, SU) — 90)0’0.

a
IS

The optimal configuration is for all colluding sources to
set 0; =0, meaning that there are no source edges from
colluding sources to sources outside of the Web spammer’s
sphere of influence; w(sy, sy) = 1, meaning that the target
source points only to itself and not at all to the colluding
source; and w(s;, s;) = k;, meaning that the colluding source
directs the minimum edge weight to itself and the
remainder (1—k;) to the target source. Hence, each
colluding source s; contributes some SLARgui Ay (00) to
the target so:

T 1—
- @z + 5t

:1602(1_’%)

i=1

Am (00) (4)

1— ak;

Clearly, tuning the & throttling factor for each source closer
to 1 (meaning that the majority of the colluding source’s
edge weight is directed to itself) results in a smaller change
to the score of the target source. Hence, the introduction of
the self-edge and the use of the throttling factor limit the
impact of intersource link manipulation.

To further understand the importance of the « throttling
factor on muting the impact of a Web spammer across
sources, we consider a scenario in which a Web spammer
controls = colluding sources, each source has the same
throttling factor of x, and the sources are configured
optimally (as described above). Now, suppose the throttling
factor is raised to ' for each source, meaning that each
colluding source has less influence on the target source. How
many sources z’ are needed to achieve the same score as in the
original case? That is, what impact does raising the throttling
factor have on the Web spammer?

If we let z; = 0, we may write the original Spam-Resilient
SLApg; score with z colluding sources and an initial
throttling factor «, as well as the SLAp,,; score under the
higher throttling factor (x’) scenario:

(1-r) l-a
(01—(:;1 + 1) ST

O—O(xa“i): 1—a
a(l— h’)f —a
. ( T—an’ +1) 5]
UO(CL’,/{):T.
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Fig. 3. Additional sources needed under x’ to equal the impact
when x = 0.

Letting oy(z, k) = 0y(z’, &), we may find a relationship
between the number of original colluding sources x and the
number of colluding sources z' necessary under the higher
throttling factor:

Z 1l—ark 1—k

r l—ark 1—#"

In Fig. 3, we plot the percentage of additional sources
(£ — 1) needed for a choice of «’ to equal the same influence
on the score of the target page as that under an initial choice
k = 0. For example, when « = 0.85 and ' = 0.6, there are
23 percent more sources necessary to achieve the same score
as in the case when k = 0. When «’ = 0.8, the Web spammer
needs to add 60 percent more sources to achieve the same
influence; for ' = 0.9, he needs 135 percent more sources;
and for ' =0.99, he needs 1,485 percent more sources.
Tuning the throttling factor higher considerably increases
the cost of intersource manipulation.

4.3 Comparison with PageRank

Now that we have studied source-centric ranking and seen
how influence throttling can be used to significantly
increase the cost of manipulation to a Web spammer, we
next compare SLApq,, to PageRank. Since PageRank
provides page-level rankings, we consider a Web spammer
whose goal is to maximize its influence over a single target
page within a target source. Extending the framework from
the previous section, we consider three scenarios:

1. The target page and all colluding pages belong to the
same source.

2. The target page belongs to one source, and all
colluding pages belong to one colluding source.

3. The target page belongs to one source, and the
colluding pages are distributed across many collud-
ing sources.

For each scenario, the colluding pages are structured
with a single link to the target page. We consider the impact
of an increasing number of colluding pages (7). Adopting a
linear formulation of PageRank that is similar in spirit to (1),
we may denote the PageRank score 7 for the target page in
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terms of the PageRank due to pages outside of the sphere of
influence of the Web spammer, the PageRank due to the
teleportation component, and the PageRank due to the
7 colluding pages:
1-a -«

+ T

m =2+ Ta——,
P P

where o refers to the teleportation probability, and |P]
refers to the total number of pages in the page graph. The

contribution of the 7 colluding pages (where 7 << |P|) to
the overall PageRank score of the target page is

11—«

Pl

A (m) = T

For Scenario 1, the Web spammer configures the target
source optimally (as we presented in (3)), meaning that the
colluding pages’ intrasource links to the target page have no
impact on the SL AR,y score (other than perhaps a one-time
increase due to tuning the self-edge weight up from « to 1).
PageRank is extremely susceptible, as illustrated in Fig. 4,
where the PageRank score (PR) of the target page jumps by
a factor of nearly 100 with only 100 colluding pages.

For Scenario 2, the Web spammer adopts the optimal
(worst case) two-source configuration discussed in the
previous section. In this configuration, the target source
points only to itself, and the colluding source that contains
the colluding pages directs x edge weight to itself and the
rest to the target source. In Fig. 5, we see how PageRank is
again extremely susceptible to such collusion, whereas the
maximum influence over SLAR,, is capped at ~2 times the
original score for several values of . Since PageRank has no
notion of a source, makes no effort to regulate the addition
of new pages to the Web graph, and has no notion of
influence throttling, all three spam scenarios under con-
sideration will have the same extreme impact on the
PageRank score of the target page.

In Scenario 3, the Web spammer adopts the optimal
configuration for x colluding sources (as we established in
the previous section). Fig. 6 plots the extreme impact on
PageRank. As the influence throttling factor is tuned higher,
the SLApgei score of the target source is less easily
manipulated.
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5 EXPERIMENTAL EVALUATION

In this section, we experimentally evaluate SLA in the context
of Web ranking with respect to four objectives—spam
resilience, time complexity, ranking stability, and approx-
imating PageRank. Our spam-resilience evaluation is in-
tended to confirm the analysis of the previous section over
real Web data. Careful tuning of parameters is vital to ensure
success over each objective. Some objectives cannot be
maximized without negatively impacting other objectives.
Note that the experimental validation focuses on several
fundamental spamming scenarios over static snapshots of the
Web; we anticipate revisiting dynamic Web models and more
sophisticated scenarios in our future work.

5.1 Experimental Setup

All of our experimental evaluation is over the four Web
data sets described in Section 2.2. For each data set, we
extracted the domain, host, and directory information for
each page URL and assigned pages to sources based on
these characteristics. We also consider the extreme case
when each page belongs to its own source (equivalent to the
page graph described in Table 1). For the random source
definition, we set the number of nodes in the graph to be the
same as the number of hosts. In Table 3, we present
summary information for each of the source graphs.

All of the ranking code was written in Java. The data
management component was based on the WebGraph
compression framework described in [27]. All experiments
were run on a dual-processor Intel XEON at 2.8 GHz with
8-Gbyte of memory. We measured the convergence rate
for all ranking calculations using the L2 distance of
successive iterations of the Power Method. We terminated
the ranking calculations once the L2 distance dropped
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below a threshold of 10e-9. As a baseline, we computed
the PageRank vector (7) over each page graph using the
parameters typically used in the literature (e.g., [5]),
including a mixing parameter of 0.85, a uniform tele-
portation vector, and a uniform link following probability.
For the quality-weighted edge weighting, we measure the
quality of each page ¢(p;) using the page’s PageRank
score m;. Although in practice, it may not be reasonable to
use the PageRank score as a measure of quality since it is
so expensive to calculate, we include these PageRank-
weighted options here to understand their impact relative
to the edge weighting schemes that do not require
PageRank.

For compactness, we shall write a particular SLARgx
parameter combination like SR(T};, c,), where the transi-
tion matrix T is appended with a subscript to indicate
which source edge weighting scheme we use: Ty, Ty, and
so on. We shall append an asterisk to the transition matrix
to indicate the inclusion of self-edges: T*. For the choice of
teleportation vector c, we consider the standard uniform
vector (c,) and the source-size-based vector (cs).

5.2 Measures of Ranking Distance

We rely on two distance metrics for comparing ranking
vectors. The Kendall Tau Distance Metric [28] is based solely
on the relative ordering of the sources in two ranking vectors.
In contrast, the Jensen-Shannon Divergence (JS-Divergence)
[29] measures the distributional similarity of two vectors,
meaning that it considers the magnitude of each source’s
authority score and not just the relative ordering.

Kendall Tau distance metric. This metric measures the
relative ordering of two lists of ranked objects [28]. It is
based on the original Kendall Tau correlation described in

TABLE 3
Source Graph Summary—By Source Definition
Domain Host Dir Rand Page
Dataset | Nodes Links | Nodes Links | Nodes Links | Nodes Links | Nodes Links
WB2001 620k  10.5m 739k  124m | 3315k 24.7m 739k 9554m | 118.1m 992.8m
UK2002 81k 1.2m 98k 1.6m 360k 3.5m 98k 286.0m 18.5m 292.2m
172004 136k 2.7m 141k 2.8m 505k 8.6m 141k  1,069.3m 41.3m 1,135.7m
UK2006 81k 1.5m 95k 1.8m 638k 8.1m 95k  2,047.6m 80.6m  2,465.8m
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TABLE 4
Wallclock Time (in Minutes) per lteration

Source Definition
Dataset | Domain | Host | Dir | Rand | Page
WB2001 0.21 0.25 | 0.46 11.32 | 12.28
UK2002 0.02 0.03 | 0.07 2.45 2.76
172004 0.05 0.05 | 0.13 9.33 9.44
UK2006 0.02 0.03 | 0.10 16.63 | 19.18

[30] and provides a notion of how closely two lists rank the
same set of objects (or Web sources in our case). The
Kendall Tau Distance Metric takes values in the range [0, 1],
where two rankings that are exactly the same have a
distance of 0, and two rankings in the reverse order have a
distance of 1. We rely on a variation of an O(nlogn) version
described in [31].

JS-Divergence. The JS-Divergence is a measure of the
distributional similarity between two probability distribu-
tions [29]. It is based on the relative entropy measure (or
KL-divergence), which measures the difference between
two probability distributions p and ¢ over an event space
X: KL(p,q) = > ,cx p(x) - log(p(z)/q(x)). If we let p be one
of the ranking vectors o and ¢ be the other ranking vector o/,
then we have KL(o,0') =), 50 -log(o;/0}). Intuitively,
the KL-divergence indicates the inefficiency (in terms of
wasted bits) of using the ¢ distribution to encode the
p distribution. Since the KL-divergence is not a true distance
metric, the JS-Divergence has been developed to overcome
this shortcoming, where

JS(0,0") = )1 KL(0, 910 + ¢20") + 92 K L(0', p10 + ¢20”),

where ¢1, ¢2 > 0, and ¢; + ¢2 = 1. In these experiments, we
consider ¢; = ¢ = 0.5.

5.3 Objective-Driven Evaluation

We report the most significant results from a total of
480 different ranking vectors we computed by combining
the five source definitions, the 12 source-citation edge
weights, the two teleportation vectors, and the four data
sets. For the 480 ranking vectors we analyze, we fix the

mixing parameter « at the commonly adopted value of 0.85
used for PageRank (e.g., [5]).

5.4 Time Complexity

We begin by examining the ranking efficiency of the source-
centric ranking approach in terms of the time it takes to
calculate each ranking vector. The PageRank-style calcula-
tion scans the link file for each source graph multiple times
until convergence.

Table 4 shows the average time per iteration to calculate
the ranking vector over the five different source graphs for
each of the data sets. We report the results for a ranking
based on the uniform edge weight and a uniform teleporta-
tion vector: SR(Ty, c,). These general per-iteration results
also hold for the total time to reach the L2 stopping
criterion. In our examination of the 480 different ranking
vectors, we find that the source definition has the most
significant impact on the calculation time, since the source
definition directly impacts the size of the source graph. The
choice of edge weights and teleportation vector has little
discernable impact.
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TABLE 5
Ranking Similarity: Parameter Settings

Edge Self- Telep.
Shorthand | Version Weight | Edges? Factor
Baseline SR(T7} o, cu) LC Yes | Uniform
NoL SR(TLc,cu) LC No | Uniform
Size SR(T} -, cs) LC Yes Size
Uni SR(T};, cu) U Yes | Uniform
SC SR(TEo,cu) SC Yes | Uniform
TD SR(T%p,cu) TD Yes | Uniform
LC(q) SR(T; o (@ Cy) LC(q) Yes | Uniform
SC(q) SR(Tgc<q) ,Cu) SC(q) Yes | Uniform

As we can see, the directory, host, and domain source
definitions result in ranking computation that is one to two
orders of magnitude faster than the page-based graph. Since
PageRank over a Web graph of billions of nodes takes days,
this improvement is important for source-centric ranking to
compensate for PageRank’s slow time to update. The random
source definition performs poorly, even though there is the
same number of nodes in the random graph and in the host
graph. The key difference s that the random graph hasnolink
locality structure and hence consists of nearly as many links
as in the page graph. We conclude that link locality strongly
impacts the degree of source graph size reduction and, hence,
the ranking calculation time. Due to its poor performance, we
shall drop the random source definition from the rest of our
reported experimental results.

5.5 Stability—Ranking Similarity

We next explore the parameter space to investigate the
stability in terms of the similarity of rankings induced by
the various parameter settings. Due to its popularity in
other works (e.g., [7] and [22]), we adopt a baseline ranking
based on the link count edge weight with self-edges and a
uniform teleportation vector, SR(T} ., c,), and report seven
alternative ranking vectors computed by tweaking these
baseline parameter settings. We consider a version without
self-edges (SR(T1c,cy)), a version including self-edges and
the size-based teleportation component (SR(T7j, c;)), and
five additional versions using the other edge weighting
schemes (e.g., SR(T};, c,)), as shown in Table 5. We report
the results for the host-based graph in this section; we see
similar results across the directory and domain source
definition settings.’?

In Figs. 7 and 8, we compare the ranking vector resulting
from the baseline parameter settings with the ranking
vector resulting from each of these seven alternative
parameter settings. The y-axis measures the distance
between these alternative ranking vectors and the baseline
configuration via the Kendall Tau Distance Metric and the
JS-Divergence.

As we can see, the exclusion of self-edges (NoL) and the
choice of teleportation vector (Size) are the two factors with
the most significant impact on the resulting ranking vector in
terms of ranking distance from the baseline setting. Hence, we

3. We also considered a version that used a teleportation component
based on the sum of the PageRank scores of each source’s constituent pages,
but we find that such a version qualitatively behaves much like the size-
based version.
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must be careful when setting these two critical parameters,
since the resulting ranking vectors depend so heavily on
them. The choice of edge weights has less impact, though we
observe that the uniform edge weighting results in the most
dissimilar ranking vector of all the edge weighting schemes.
The uniform edge weighting scheme is a less intuitively
satisfactory edge weighting scheme, and these results
confirm this view. What is interesting here is that the source
consensus, target diffusion, quality-weighted link count, and
quality-weighted source consensus edge weights have a
relatively minor impact on the resulting ranking vector
versus the baseline link count version. We note that the
quality-weighted link count deviates very little from the link
count version, in spite of the incorporation of the expensive
PageRank scores.

5.6 Stability—Link Evolution

We next evaluate the stability of SLAg,,; as the Web graph
evolves for each of the four Web data sets. Since the source
view of the Web provides an aggregate view over Web
pages, we anticipate that domain, host, and directory-based
rankings should be less subject to changes in the underlying

0.60

| Kendall Tau Distance

JS-Divergence

Fig. 8. Parameter tuning: ranking distance versus baseline configura-
tion, UK2006.
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page graph than page-based rankings. Our goal is to
emulate the gradual discovery of Web pages, similar to
how a Web crawler may incrementally discover new pages
for ranking.

For each data set, we randomly selected a fraction of the
pages (10 percent, 30 percent, ...) and computed the
standard PageRank vector over just this fraction of pages,
yielding 19 percent, T30 percent, and so on. Additionally, we
computed the ranking vector for the domain-, host-, and
directory-based source graphs derived from the same
fraction of all pages, yielding o9 percents 0730 percent, and so
on. We then compared the relative page rankings for the
pages in o percent, T30 percent; - - - t0 the relative rankings of
the exact same pages in the PageRank vector for the full Web
page graph. Similarly, we compared the relative source
rankings for the sources in 1o percent> 030 percent; - - - to the
relative rankings of the exact same sources in the ranking
vector for the full Web source graph. We have also
considered a third model, in which we first randomly
sample sources (and then randomly sample pages from
each source). Qualitatively, such an alternative Web page
discovery model behaves similarly to the results reported
here. To evaluate the stability, we rely on the Kendall Tau
Distance Metric as a measure of ranking error.

In Fig. 9, we show the ranking error for the WB2001 data
set for PageRank and for three representative parameter
settings over the host-based source graph—the baseline
version SR(T7, c,), the loopless version SR(T ¢, c,), and
the size-based teleportation version SR(T} -, c;). Note that
these are the three settings that resulted in the most
different ranking vectors in our previous experiment. In
all cases, the source-centric rankings display significantly
less error relative to the rankings over the full Web graph
than the PageRank rankings do, meaning that we can rely
on source-centric rankings computed over an incomplete
Web crawl with substantial confidence. Also, note that the
size-based version is the most stable, and we find that this
stability generally improves as the source definition
becomes more inclusive (from page to directory to host to
domain). Since the page and source ranking vectors are of
different lengths, we additionally considered a similar
stability analysis over just the top-100 and top-1,000 page
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and source rankings. We relied on a variation of the Kendall
Tau Distance Metric known as the Kendall Min Metric [28]
for evaluating top-k ranked lists. These results further
validate the source stability.

5.7 Approximating PageRank

As we have mentioned, one of the important goals of
source-centric ranking is to approximate the traditional
global PageRank vector by combining the source-level
ranking information with per-source ranking information
(the local PageRank scores). Such approximation promises
to speed the PageRank calculation considerably. In this
experiment, we aim to understand under what conditions
source-centric ranking may be used to reasonably approx-
imate PageRank. We decompose the global PageRank of a
page into source and local components:

(pi) = o(s)) - w(pilsy), ()

where we denote the local PageRank score for page ¢ in
source j as m(p;|s;). The local PageRank score is calculated
based only on local knowledge (e.g., based on the linkage
information of pages within the source), takes comparably
little time relative to the full PageRank calculation, and
forms a probability distribution (i.e., 3, ¢, m(pkls;) = 1).
For the PageRank decomposition to hold over all pages,
ideally, we would have that the local PageRank scores
7(p;|s;) would exactly match the relative global distribution:

1) = m(pi)
m(pil J) = 72;463]- g (6)

By replacing 7(p;|s;) in (5) with the right-hand side of (6),
we find that the source-centric component o(s;) should
equal the sum of the global PageRanks of the constituent
pages: o(s;) = Zpk@, (pr)-

To test how well the source-centric rankings may be used
to approximate PageRank, we compare the rankings
induced from various parameter settings with the rankings
induced from ranking the sources by the sum of the global
PageRanks of their constituent pages. In Fig. 10, we report
the Kendall Tau Distance Metric and the JS-Divergence for
three representative parameter settings—the baseline ver-
sion SR(T ., cy), the loopless version SR(T ¢, c.), and the
size-based teleportation version SR(Tj.,c,)—over the
domain, host, and directory-based source definitions for
the IT2004 data set. Similar results hold for the other two
data sets.

The baseline parameter setting (used elsewhere, e.g., [7]
and [22]) performs poorly and is not appropriate for
approximating PageRank. Similarly, the loopless version,
which disregards the strong evidence of link locality for
setting edge weights, also performs poorly. Only the size-
based version is highly correlated with the sum of the actual
PageRank values for each source, meaning that source size
and the presence of self-edges are critical for approximating
PageRank.

5.8 Spam Resilience

Finally, we study the spam-resilience properties of SLA
through two popular Web spam scenarios.
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We first aim to validate the analysis in Section 4.1 by
considering the impact of page-level manipulation within a
single source. For this intrasource manipulation, we study the
impact of a spammer who manipulates the pages internal to
a target source for increasing the rank of a target page
within the target source. We again consider the three
representative parameter settings—the baseline, loopless,
and size-based teleportation versions. For each version, we
randomly selected five sources from the bottom 50 percent
of all sources on the host graph (averaging in the
26th percentile of all sources for WB2001, the 26th percentile
for UK2002, 32nd percentile for IT2004, and 24th percentile
for UK2006). For each source, we randomly selected a target
page within the source and created a link farm consisting of
a single new spam page within the same source with a link
to the target page. This is case A. For case B, we added
10 spam pages to the link farm within the source, each with
a link to the target page. We repeated this setup for
100 pages (case C) and 1,000 pages (case D). For each case,
we then constructed the new spammed page graph and
host graph for each of the four Web data sets. We ran
PageRank and the three source-centric versions for each of
the four cases. In Figs. 11 and 12, we show the influence of
the Web spammer in manipulating the rank of the target
page and the rank of the target source through the average
ranking percentile increase. For example in the WB2001
case, the PageRank of the target page jumped 80 percentile
points under case C (from an average rank in the
19th percentile to the 99th), whereas the score of the target
source jumped only 4 percentile points for the baseline
version (from the 27th percentile to the 31st).

We first note the dramatic increase in PageRank for the
target page across all four Web data sets, which confirms the
analysis about the susceptibility of PageRank to rank
manipulation. Although PageRank has typically been
thought to provide fairly stable rankings (e.g., [32]), we can
see how link-based manipulation has a profound impact,
even in cases when the spammer expends very little effort (as
in cases A and B). We note that the loopless source-centric
version shows no change in rank value, since the addition of
new intrasource links has no impact on the resulting source
graph and ranking vector. The baseline version does increase
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some but not nearly as much as PageRank. Since the source is
an aggregation of many pages, the weighting of the source
edges is less susceptible to changes in the underlying page
graph. In contrast, the size-based teleportation version is the
most vulnerable to intrasource manipulation. In fact, under
this scenario, a spammer need only add new pages (not links)
to increase a source’s score. The addition of so many new
pages increases the size of the source, making it more
attractive to the random walker who considers the size-based
teleportation component. In fact, under this scenario, a
spammer need only add new pages (not links) to increase
the score of a source.

In the second Web spam scenario, we consider the
impact of manipulation across sources, which corresponds
to the analysis in Section 4.2. For this scenario, the spam
links are added to pages in a colluding source that point to
the target page in a different source. We paired the
randomly selected target sources from the previous experi-
ment with a randomly selected colluding source, again from
the bottom 50 percent of all sources. For each pair, we
added a single spam page to the colluding source with a
single link to the randomly selected target page within the
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Fig. 12. Intrasource link farm, WB2001.
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target source. This is case A. We repeated this setup for
10 pages (case B), 100 pages (case (), and 1,000 pages
(case D). For each case, we then constructed the new
spammed page graph and source graph for each of the four
Web data sets. We ran PageRank and Spam-Resilient
SourceRank for each of the four cases.

In Figs. 13 and 14, we show the influence of the Web
spammer in manipulating the rank of the target page and the
target source. Since the page-level view of the Web does not
differentiate between intrasource and intersource page links,
we again see that the PageRank score dramatically increases,
whereas the source-centric scores are impacted less. We are
encouraged to observe that all three source-centric versions
perform better than PageRank. We witness this advantage
using no additional influence throttling information for the
sources under consideration, meaning that the source-centric
advantage would be even greater with the addition of more
throttling information. The baseline version does increase
some, but not nearly as much as PageRank. Since the source is
an aggregation of many pages, the weighting of the source
edges is less susceptible to changes in the underlying page
graph. Interestingly, the loopless version is the least resistant
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Fig. 14. Intersource link farm, WB2001.
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to manipulation for cases A, B, and C. In the loopless version,
external links are the sole determiner of a source’s rank,
meaning that intersource manipulation wields more influ-
ence here than for the looped versions. The size-based
teleportation version is the most vulnerable for case D.

5.9 Influence Throttling Effectiveness

In the final experiment, we study the impact of influence
throttling on the spam-resilience characteristics of source-
centric ranking. For the WB2001 data set, we manually
identified 10,315 pornography-related sources and labeled
these as spam. It is unreasonable for a spam identification
algorithm (whether manual or automated) to identify all
spam sources with high precision. Hence, of these 10,315
spam sources, we randomly selected just 1,000 (fewer than
10 percent) to use as a seed set for the spam-proximity
calculation. We calculated the spam-proximity score for each
source using the approach described in Section 2.5.

Based on these scores, we assigned an appropriate
throttling value to each source, such that sources that are
“closer” to spam sources are throttled more than more
distant sources. These spam proximity scores are propa-
gated to all sources in the data set based only on the seed set
of 1,000 identified spam sources. We assigned the top-
20,000 spam-proximity sources a throttling value of x =1,
meaning that their influence was completely throttled. For
all other sources, we assigned a throttling value of x =0,
meaning that these sources were throttled not at all. We
then computed the source-centric ranking vector using
these throttling values. As a point of comparison, we also
computed the baseline ranking vector using no throttling
information.

For each of the two ranking vectors, we sorted the sources
in decreasing order of scores and divided the sources into
20 buckets of equal number of sources. Along the z-axis in
Fig. 15, we consider these 20 buckets for the WB2001 data set,
from the bucket of top-ranked sources (bucket 1) to the bucket
of the bottom-ranked sources (bucket 20). Along the y-axis,
we plot the number of actual spam sources (of the 10,315 total
spam sources) in each bucket. The approach using influence
throttling penalizes spam sources considerably more than the
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baseline approach, even when fewer than 10 percent of the
spam sources have been explicitly marked as spam.

Note that this experiment provides evidence of the
importance of influence throttling, but there are many
alternative approaches worthy of consideration. We believe
that further study of influence throttling would be valuable
in work that builds on the results reported here.

5.10 Summary of Experiments
The evaluation has yielded interesting observations:

e SLA heavily depends on the source definition and
the degree of link locality. We find that a lack of
locality results in poor time complexity but that even
moderate locality (e.g., ~65 percent) leads to good
time complexity and stability results that are
comparable with source definitions that display
extremely high locality.

e In terms of ranking vector stability, the most im-
portant parameters are self-edges and the source-size
teleportation component. We also found that incor-
porating expensive quality information into the edge
weighting schemes resulted in only a slight change to
the resulting ranking vector.

e To best approximate PageRank and for the most
stable rankings in the face of Web link evolution, we
saw the critical need for using the size-based
teleportation component.

e However, using the size-based teleportation compo-
nent resulted in the most severe vulnerability to
spam, although it has these two desirable properties.

e Finally, we saw how incorporating influence throt-
tling information resulted in better spam-resilience
properties than the baseline approach.

6 RELATED WORK

In addition to the related work cited elsewhere, there have
been some other efforts to understand higher level Web
abstractions. In [33], the hostgraph was explored in terms of
various graph properties like indegree and outdegree
distribution and size of connected components. Crawling
mechanisms based on the site paradigm, rather than the
traditional page-based one, were enumerated in [34]. In [11],
the potential spam properties of a HostRank algorithm were
observed, and in [35], the ranking quality of several site-level-
style PageRank variations was studied. In contrast to page
aggregations, other researchers [36] have considered disag-
gregating Web pages into smaller units for providing ranking
over individual components of Web pages. Several studies
have identified large portions of the Web to be subject to
malicious rank manipulation [1], [37], especially through the
construction of specialized link structures for promoting
certain Web pages. Several researchers have studied collusive
linking arrangements with respect to PageRank, including
[38]and [39]. Link farms have been studied in [40]. Separately,
optimal link farms and the effectiveness of spam alliances
have been studied in [24]. Davison [41] was the first to
investigate the identification of so-called nepotistic links on
the Web.
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7 SUMMARY

In this manuscript, we have introduced a parameterized
framework for SLA, explored several critical parameters,
and conducted the first large-scale comparative study of
SLA over multiple large real-world Web data sets and
multiple competing objectives. We find that careful tuning
of these parameters is vital to ensure success over each
objective and to balance the performance across all
objectives. We have introduced the notion of influence
throttling, studied analytically its impact, and provided
experimental validation of the effectiveness and robustness
of our spam-resilient ranking model in comparison with
PageRank.

The struggle to combat spam is an evolutionary process
with each side constantly shifting strategies and techniques.
A natural and important extension to this work would be
the dynamic analysis of the factors impacting SLA to
provide adaptive spam resilience. In our continuing work,
we are considering a number of dynamic models for
capturing the dynamic and evolutionary nature of the
Web graph, for example, to dynamically adapt the
intrasource link weights based on the behavior of source
nodes in previous time instances. We are also interested in
dynamically updating the influence throttling values from
period to period for providing some measure of adaptation
to shifts in spammer strategies.
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