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A Unifying Model for Camera Calibration
Srikumar Ramalingam and Peter Sturm, Members, IEEE

Abstract—This paper proposes a unified theory for calibrating a wide variety of camera models such as pinhole, fisheye, cata-dioptric,
and multi-camera networks. We model any camera as a set of image pixels and their associated camera rays in space. Every pixel
measures the light traveling along a (half-) ray in 3-space, associated with that pixel. By this definition, calibration simply refers to the
computation of the mapping between pixels and the associated 3D rays. Such a mapping can be computed using images of calibration
grids, which are objects with known 3D geometry, taken from unknown positions. This general camera model allows to represent
non-central cameras; we also consider two special subclasses, namely central and axial cameras. In a central camera, all rays
intersect in a single point, whereas the rays are completely arbitrary in a non-central one. Axial cameras are an intermediate case: the
camera rays intersect a single line. In this work, we show the theory for calibrating central, axial and non-central models using
calibration grids, which can be either three-dimensional or planar.

Index Terms—camera calibration, generic imaging model, non-central, cata-dioptric, omni-directional

F

1 INTRODUCTION

Several applications in medicine, surveillance, virtual
reality, autonomous navigation and robotics involve cam-
eras which go beyond the pinhole model: stereo, fisheye
cameras, cata-dioptric systems (combinations of lenses and
mirrors), multi-camera setups and other non-central cam-
eras [1], [2]. We propose and develop a calibration approach
that would work for any type of camera model, and espe-
cially for cameras without a single viewpoint. To do so, we
first renounce on parametric models, and adopt the follow-
ing general model: a camera acquires images consisting of
pixels; each pixel captures light that travels along a ray in
3D. The camera is fully described by:

• the coordinates of these rays (given in some local
coordinate system).

• the mapping between pixels and rays; this is basi-
cally a simple indexing.

The non-parametric nature of this model adds one diffi-
culty: how to compute 3D rays for an image point with non-
integer image coordinates? To do so, the only possibility is
to add continuity assumptions, e.g. that neighboring pixels
have neighboring 3D rays. Under this or more restrictive
assumptions, 3D rays for arbitrary image points can be com-
puted by interpolation. Similarly the projection of 3D points
onto images, is not straightforward, but can for example
be solved analogously, by interpolation. The general camera
model allows to describe any camera that captures light rays
traveling along straight lines. A few examples are:

• a camera with any type of geometrical distortion,
such as radial or tangential.

• a camera looking at a reflective surface, e.g. as often
used in surveillance, a camera looking at a spherical
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or otherwise curved mirror [3]. Such systems, as op-
posed to central catadioptric systems [4] composed
of cameras and parabolic mirrors, do not in general
have a single viewpoint.

• multi-camera stereo systems: put together the pixels
of all image planes – they “catch” light rays that def-
initely do not travel along lines that all pass through
a single point. Nevertheless, in the above general
camera model, a stereo system (with rigidly linked
cameras) may be considered as a single camera.

• other acquisition systems, see e.g. [5], [6], [7], or eyes
of some insects.

1.1 Relation to previous work
The generic imaging model was used in more or less explicit
form, in various works [6], [7], [8], [9], [10], [11], [12], [13],
[14], [15], [16], [17], [18], and is best described in [9], [19].
There are conceptual links to other works: acquiring an
image with a camera of our general model may be seen
as sampling the plenoptic function [20], and a light field
[21] or lumigraph [22] may be interpreted as a single image,
acquired by a camera of an appropriate design.

In the last decade, there has been a lot of progress
in using non-parametric camera models for calibration. It
has been shown that generic imaging models may give
better calibration results than parametric approaches when
the distortion is very high [23], [24]. Miraldo and Araujo
showed interesting approaches for generic cameras using
radial basis functions [25], [26]. Absolute pose and rela-
tive motion algorithms have been developed for general
cameras [12], [27], [28], [29], [30], [31], [32], [33]. A few
approaches have been proposed for the self-calibration of
general camera models [34], [35], [36], [37], [38], which do
not use known calibration grids. Several robust calibration
toolboxes exist for omni-directional cameras based on lenses
and mirrors [39], [40]. An elaborate survey of the camera
models used in the geometrical vision community can be
found in the review by Sturm et al. [41].

In this article, we focus on the generalized theory for
calibrating cameras using calibration grids. In particular,
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we provide the theory for computing the camera rays for
a generalized family of cameras based on 2D to 3D point
correspondences obtained using calibration grids.

1.2 Overview

In prior work we showed the theory for one or two cases to
illustrate the main idea [19], [42], [43]. This work is a more
complete version where we provide a complete overview
and the theory for all the important cases in the generic
imaging model. For the purpose of illustration we first
introduce the underlying idea for 2D cameras in section 2.1
and 2.2. Then we focus on the more practical scenario
involving 3D cameras in section 2.3. By 3D cameras we
do not mean cameras providing three-dimensional images,
but cameras evolving in 3D space and acquiring 2D images.
The calibration algorithms are developed for two kinds of
calibration grids: 3D and planar.

We use a simple idea to calibrate our generic imaging
model. Three points that correspond to a single pixel in
the image, are sampled on different calibration grids whose
relative position is not assumed to be known. Since every
pixel samples light ray passing through a single straight
line in space, the grid points have to be collinear. We
formulate a collinearity constraint on the grid points to first
compute the relative position of the calibration grids. Once
this is done, we complete the calibration by computing the
camera rays passing through the sampled grid points. This
idea is used to calibrate different camera models. Although
the basic principle is the same for different cameras, the
specific equation systems and solution methods it gives
rise to, depends on the geometry of the camera rays. We
consider three classes of general cameras (depending on the
geometry of the camera rays): fully non-central (the general
case), central, and axial. In a central model, all camera rays
pass through a single point, the optical center. Examples are
pinhole cameras with and without radial distortion, fisheye
lenses and central catadioptric systems using parabolic,
hyperbolic and elliptical mirrors. A non-central camera may
have completely arbitrary camera rays. The so-called axial
cameras [43] are non-central but their rays are constrained
by the existence of a line that cuts all of them. First we
provide the theory for various cases of the general, non-
central model, followed by the central case and finally the
axial one.

2 GENERIC CALIBRATION OF NON-CENTRAL
CAMERAS

2.1 Calibration of 2D cameras

We consider here a camera and scene living in a 2D plane,
i.e. camera rays are lines in that plane. Input are two images
of an object undergoing some motion. Consider here a single
pixel and its camera ray, as illustrated in figure 1(a). Fig-
ures 1 (b) and (c) show the two points on the object that are
seen by that pixel in the two images. We suppose to be able
to determine the coordinates of these two points, in some
local coordinate frame attached to the object (“matching”).

(a) (b) (c) (d)

Fig. 1. (a) The camera as black box, with one pixel and its camera ray.
(b) The pixel sees a point on a calibration object, whose coordinates
are identified in a frame associated with the object. (c) Same as (b),
for another position of the calibration object. (d) If the object’s motion
is known, the two points on the calibration object can be placed in the
same coordinate frame (here the same one as in (c)). The camera ray
is then determined by joining them.

2.1.1 The case of known motion

If the object’s motion between the image acquisitions is
known, then the two object points can be mapped to a single
coordinate frame, e.g. the object’s coordinate frame for the
second image, as shown in figure 1 (d). Computing our
pixel’s camera ray is then simply done by joining the two
points. This summarizes the calibration approach proposed
by Grossberg and Nayar [9], applied here for the 2D case.
Camera rays are thus initially expressed in a coordinate
frame attached to one of the calibration object’s positions.
This does not matter (all that counts are the relative posi-
tions of the camera rays), but for convenience, one would
typically try to choose a better frame. For a central camera
for example, one would choose the optical center as origin
or for a non-central camera, the point that minimizes the
sum of distances to the set of camera rays (if it exists).

2.1.2 The case of unknown motion

The above approach is no longer applicable, and we need to
estimate, implicitly or explicitly, the unknown motion. We
now show how to do this, given three images instead of only
two as above. Let us note the three points on the calibration
objects, that are seen in the same pixel, by Q,Q′ and Q′′.
These are 3-vectors of homogeneous coordinates, expressed
in the respective local coordinate frame. Without loss of
generality, we choose the coordinate frame associated with
the object’s first position, as common frame. The unknown
(relative) motions, that allow to map the second and third
frames onto the first one, are given by 2×2 rotation matrices
R′ and R′′ and translation vectors t′ and t′′. Note that for
the rotation matrices we have R′

11 = R′
22 and R′

12 = −R′
21

(and similarly for R′′). The calibration points, after mapping
them to the common frame, are given as:

Q

(
R′ t′

0T 1

)
Q′

(
R′′ t′′

0T 1

)
Q′′

They must all lie on the pixel’s camera ray, hence they
must be collinear. Algebraically, this collinearity constraint
is expressed by the fact that the determinant of the 3 × 3
matrix composed of the above three coordinate vectors,
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i Ci Vi

1 Q1Q′
1Q

′′
3 +Q2Q′

2Q
′′
3 R′

21
2 Q1Q′

2Q
′′
3 −Q2Q′

1Q
′′
3 R′

11
3 Q1Q′

3Q
′′
1 +Q2Q′

3Q
′′
2 −R′′

21
4 Q1Q′

3Q
′′
2 −Q2Q′

3Q
′′
1 −R′′

11
5 Q3Q′

1Q
′′
1 +Q3Q′

2Q
′′
2 R′

11R
′′
21 −R′

21R
′′
11

6 Q3Q′
1Q

′′
2 −Q3Q′

2Q
′′
1 R′

11R
′′
11 +R′

21R
′′
21

7 Q1Q′
3Q

′′
3 t′2 − t′′2

8 Q2Q′
3Q

′′
3 −t′1 + t′′1

9 Q3Q′
1Q

′′
3 R′

11t
′′
2 −R′

21t
′′
1

10 Q3Q′
2Q

′′
3 −R′

21t
′′
2 −R′

11t
′′
1

11 Q3Q′
3Q

′′
1 R′′

21t
′
1 −R′′

11t
′
2

12 Q3Q′
3Q

′′
2 R′′

22t
′
1 +R′′

21t
′
2

13 Q3Q′
3Q

′′
3 t′1t

′′
2 − t′′1 t

′
2

TABLE 1
Coupled variables in the trifocal calibration tensor for the general 2D

camera.

vanishes:∣∣∣∣∣∣
Q1 R′

11Q
′
1 −R′

21Q
′
2 + t′1Q

′
3 R′′

11Q
′′
1 −R′′

21Q
′′
2 + t′′1Q

′′
3

Q2 R′
21Q

′
1 +R′

11Q
′
2 + t′2Q

′
3 R′′

21Q
′′
1 +R′′

11Q
′′
2 + t′′2Q

′′
3

Q3 Q′
3 Q′′

3

∣∣∣∣∣∣ = 0

(1)
This equation is of the form∑3

i=1

∑3
i′=1

∑3
i′′=1 Vi,i′,i′′QiQ

′
i′Q

′′
i′′ = 0, i.e. it is trilinear in

the calibration point coordinates. The equation’s coefficients
V may be interpreted as elements of a trilinear “calibration
tensor” (somewhat related to the homography tensor derived
in [44]); they depend on the unknown motions’ coefficients.
Among the 3 · 3 · 3 = 27 coefficients of the calibration
tensor, 8 are always zero and among the remaining 19 ones,
there are 6 pairs of identical ones. There are thus in general
13 different coefficients to consider; these are shown in
table 1. The table and the entries Ci and Vi it contains, are
interpreted as follows:

13∑
i=1

CiVi = 0 (2)

is merely a reformulation of the collinearity constraint (1).
It is linear in the coefficients Vi. Given sufficiently many
triplets of points Q,Q′ and Q′′, we may expect to compute
the trilinear tensor up to an unknown scale λ using linear
least squares. Note that we have verified using simulated
data, that in general we indeed can obtain a unique solution
(up to scale) for the tensor. The minimum number of triplets
is 12 (estimation of 13 coefficients, up to scale).

The main question now is, if the motion coefficients R′,
R′′, t′ and t′′ can be extracted from the Vi. This is indeed
possible, as shown below. Once the motions are determined,
the above approach for known motions, can be readily
applied to compute camera rays.

We now describe an algorithm for extracting the motion
parameters. Let the estimated tensor coefficients be V ′

i ; they
are equal to the coefficients of table 1 up to an unknown
scale: V ′

i = λVi, i = 1 . . . 13. The proposed algorithm works
as follows:

• Estimate λ : λ = ±
√
(V ′

1)
2 + (V ′

2)
2) (exploiting

orthonormality of R′). λ is defined up to sign.
• Compute Vi =

V ′
i

λ , i = 1 . . . 13.
• Compute R′: R′

11 = R′
22 = V2 and R′

21 = −R′
12 = V1

i Ci Vi

1 Q1Q′
1Q

′′
3 R′

21
2 Q1Q′

3Q
′′
1 −R′′

21
3 Q1Q′

3Q
′′
3 t′2 − t′′2

4 Q3Q′
1Q

′′
1 R′

11R
′′
21 −R′

21R
′′
11

5 Q3Q′
1Q

′′
3 R′

11t
′′
2 −R′

21t
′′
1

6 Q3Q′
3Q

′′
1 R′′

21t
′
1 −R′′

11t
′
2

7 Q3Q′
3Q

′′
3 t′1t

′′
2 − t′′1 t

′
2

TABLE 2
Coefficients of the trifocal calibration tensor for the general 2D camera

and a linear calibration object.

• Compute R′′: R′′
11 = R′′

22 = −V4 and R′′
21 = −R′′

12 =
−V3

• Compute t and t′: From table 1 we have:
0 1 0 −1
−1 0 1 0
0 0 −R′

21 R′
11

0 0 −R′
11 −R′

21

−R′′
21 −R′′

11 0 0
R′′

11 R′′
21 0 0


︸ ︷︷ ︸

M


t′1
t′2
t′′1
t′′2

 =


V7

V8

V9

V10

V11

V12



The least-squares solution for t and t′ is always
well-defined: MTM is always a non-singular matrix
due to the orthonormality of R′ and R′′. Finally, we
resolve the sign ambiguity in λ by recomputing all
tensor coefficients from the motion parameters and
verifying if they are equal to all computed tensor
coefficients.

2.2 Calibration of 2D cameras using linear calibration
objects

It is equally worthwhile to specialize our concept to the
case of a linear calibration object. We now consider again
the general, non-central camera model. Without loss of
generality, we suppose that the calibration points lie on a
line expressed as Y = 0 in the local coordinate frame of the
object, i.e. Q2 = Q′

2 = Q′′
2 = 0. The collinearity equation

(1) gives then rise to a 2 × 2 × 2 trifocal calibration tensor.
Among its 8 coefficients, only 1 is always zero, and among
the others, none are identical to one another, cf. table 2.

We observe that the rotation coefficients R′
11 and R′′

11

do not appear individually, contrary to the tensor for the
general case (cf. table 1). Hence, the scale factor λ can no
longer be determined as easily as in the above algorithm.
Due to lack of space, we omit the details of this algorithm.

We have proven theoretically (not shown due to lack of
space, but the proof can be sent by the authors upon request)
that there is in general a unique solution for the tensor (in
the absence of noise) unless two or all three of the calibration
object’s poses correspond to collinear lines.

2.3 3D cameras

We now extend the calibration concept from 2D to 3D
cameras, i.e. cameras evolving in 3D space. This is first done
for the case of non-central cameras undergoing unknown
motion while capturing images of a 3D calibration object.
Input are now, for each pixel, three 3D points Q,Q′ and Q′′,
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given by 4-vectors of homogeneous coordinates, relative to
the calibration object’s local coordinate system. Again, we
adopt the coordinate system associated with the first image
as global coordinate frame. The motion for the other two
images is represented by 3 × 3 rotation matrices R′ and R′′

and translation vectors t′ and t′′, all unknown. We stack the
3D points, after transforming them to the global coordinate
system, in the following 4× 3 matrix:


Q1

∑3
i=1 R

′
1iQ

′
i + t′1Q

′
4

∑3
i=1 R

′′
1iQ

′′
i + t′′1Q

′′
4

Q2

∑3
i=1 R

′
2iQ

′
i + t′2Q

′
4

∑3
i=1 R

′′
2iQ

′′
i + t′′2Q

′′
4

Q3

∑3
i=1 R

′
3iQ

′
i + t′3Q

′
4

∑3
i=1 R

′′
3iQ

′′
i + t′′3Q

′′
4

Q4 Q′
4 Q′′

4

 (3)

The collinearity constraint means that this matrix must
be of rank less than 3, which implies that all sub-
determinants of size 3 × 3 vanish. There are 4 of them,
obtained by leaving out one row at a time from the original
matrix. Each of these corresponds to a trilinear equation in
point coordinates and thus to a trifocal calibration tensor
whose coefficients depend on the motion parameters.

i Ci Vi Wi

1 Q1Q′
1Q

′′
4 0 R′

31
2 Q1Q′

2Q
′′
4 0 R′

32
3 Q1Q′

3Q
′′
4 0 R′

33
4 Q1Q′

4Q
′′
1 0 −R′′

31
5 Q1Q′

4Q
′′
2 0 −R′′

32
6 Q1Q′

4Q
′′
3 0 −R′′

33
7 Q1Q′

4Q
′′
4 0 t′3 − t′′3

8 Q2Q′
1Q

′′
4 R′

31 0
9 Q2Q′

2Q
′′
4 R′

32 0
10 Q2Q′

3Q
′′
4 R′

33 0
11 Q2Q′

4Q
′′
1 −R′′

31 0
12 Q2Q′

4Q
′′
2 −R′′

32 0
13 Q2Q′

4Q
′′
3 −R′′

33 0
14 Q2Q′

4Q
′′
4 t′3 − t′′3 0

15 Q3Q′
1Q

′′
4 −R′

21 −R′
11

16 Q3Q′
2Q

′′
4 −R′

22 −R′
12

17 Q3Q′
3Q

′′
4 −R′

23 −R′
13

18 Q3Q′
4Q

′′
1 R′′

21 R′′
11

19 Q3Q′
4Q

′′
2 R′′

22 R′′
12

20 Q3Q′
4Q

′′
3 R′′

23 R′′
13

21 Q3Q′
4Q

′′
4 t′′2 − t′2 t′′1 − t′1

22 Q4Q′
1Q

′′
1 R′

21R
′′
31 −R′′

21R
′
31 R′

11R
′′
31 −R′′

11R
′
31

23 Q4Q′
1Q

′′
2 R′

21R
′′
32 −R′′

22R
′
31 R′

11R
′′
32 −R′′

12R
′
31

24 Q4Q′
1Q

′′
3 R′

21R
′′
33 −R′′

23R
′
31 R′

11R
′′
33 −R′′

13R
′
31

25 Q4Q′
1Q

′′
4 R′

21t
′′
3 −R′

31t
′′
2 R′

11t
′′
3 −R′

31t
′′
1

26 Q4Q′
2Q

′′
1 R′

22R
′′
31 −R′′

21R
′
32 R′

12R
′′
31 −R′′

11R
′
32

27 Q4Q′
2Q

′′
2 R′

22R
′′
32 −R′′

22R
′
32 R′

12R
′′
32 −R′′

12R
′
32

28 Q4Q′
2Q

′′
3 R′

22R
′′
33 −R′′

23R
′
32 R′

12R
′′
33 −R′′

13R
′
32

29 Q4Q′
2Q

′′
4 R′

22t
′′
3 −R′

32t
′′
2 R′

12t
′′
3 −R32t′′1

30 Q4Q′
3Q

′′
1 R′

23R
′′
31 −R′′

21R
′
33 R′

13R
′′
31 −R′′

11R
′
33

31 Q4Q′
3Q

′′
2 R′

23R
′′
32 −R′′

22R
′
33 R′

13R
′′
32 −R′′

12R
′
33

32 Q4Q′
3Q

′′
3 R′

23R
′′
33 −R′′

23R
′
33 R′

13R
′′
33 −R′′

13R
′
33

33 Q4Q′
3Q

′′
4 R′

23t
′′
3 −R′

33t
′′
2 R′

13t
′′
3 −R′

33t
′′
1

34 Q4Q′
4Q

′′
1 R′′

31t
′
2 −R′′

21t
′
3 R′′

31t
′
1 −R′′

11t
′
3

35 Q4Q′
4Q

′′
2 R′′

32t
′
2 −R′′

22t
′
3 R′′

32t
′
1 −R′′

12t
′
3

36 Q4Q′
4Q

′′
3 R′′

33t
′
2 −R′′

23t
′
3 R′′

33t
′
1 −R′′

13t
′
3

37 Q4Q′
4Q

′′
4 t′2t

′′
3 − t′3t

′′
2 t′1t

′′
3 − t′′1 t

′
3

TABLE 3
Coupled variables in the trifocal calibration tensors for a general 3D

camera. Coefficients not shown here are always zero.

Table 3 shows the coefficients of the first two tensors.
The associated equations are

∑
i ViCi = 0 and

∑
i WiCi =

0. In both, 34 of the 64 coefficients are always zero. One

may observe that the tensors share several coefficients, e.g.
V8 = W1 = R′

31. The situation is similar for the other two
tensors, which are not shown here since the first two are
sufficient to compute the motion parameters and thus to
perform calibration.

The tensors can be estimated by solving linear equation
systems, and we verified using simulated random exper-
iments that in general unique solutions (up to scale) are
obtained, if 3D points for sufficiently many pixels (29 at
least) are available. In the following, we give an algorithm
for computing the motion parameters. Let V ′

i = λVi and
W ′

i = µWi, i = 1 . . . 37 be the estimated (up to scale)
tensors. The algorithm proceeds as follows.

1) Estimate scale factors based on the orthonormal-
ity of R′: λ =

√
(V ′

8)
2 + (V ′

9)
2 + (V ′

10)
2, µ =√

(W ′
1)

2 + (W ′
2)

2 + (W ′
3)

2. This defines λ and µ
each up to sign; this is solved in the following two
steps.

2) Compute Vi =
V ′
i

λ and Wi =
W ′

i

µ , i = 1 . . . 37. If
(V8W1 + V9W2 + V10W3) < 0 then set µ = −µ and
multiply W by −1.

3) Compute R′ and R′′:

R′ =

−W15 −W16 −W17

−V15 −V16 −V17

V8 V9 V10

 ,

R′′ =

W18 W19 W20

V18 V19 V20

−V11 −V12 −V13


If det(R′) < 0 then scale V and W by −1 and update
R′ and R′′ accordingly. In the presence of noise
these matrices will in general not be orthonormal.
We “correct” this by computing the orthonormal
matrices that are closest to the original matrices
(in the sense of the Frobenius norm). To do so, let
UΣVT be the SVD of one of the original matrices.
The required orthonormal matrix is then given by
UVT.

4) Compute t′ and t′′ by solving the following linear
system using least squares:

A


t′1
t′2
t′3
t′′1
t′′2
t′′3

 =



V14

V21

W21

V25

W25

V29

W29

V33

W33

V34

W34

V35

W35

V36

W36


︸ ︷︷ ︸

b
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where A is given by:

A =



0 0 1 0 0 −1
0 −1 0 0 1 0
−1 0 0 1 0 0
0 0 0 0 −R′

31 R′
21

0 0 0 −R′
31 0 R′

11

0 0 0 0 −R′
32 R′

22

0 0 0 −R′
32 0 R′

12

0 0 0 0 −R′
33 R′

23

0 0 0 −R′
33 0 R′

13

0 R′′
31 −R′′

21 0 0 0
R′′

31 0 −R′′
11 0 0 0

0 R′′
32 −R′′

22 0 0 0
R′′

32 0 −R′′
12 0 0 0

0 R′′
33 −R′′

23 0 0 0
R′′

33 0 −R′′
13 0 0 0


The least squares solution

(
ATA

)−1
ATb is well de-

fined since it can be shown that, due to the or-
thonormality of the rotation matrices R′ and R′′, the
product ATA is always an invertible matrix. This
implies that a unique solution for motion can always
be estimated and that it is correct if the calibration
tensors are correct.

2.4 Calibration of 3D cameras with a planar calibration
object
If we feed the general calibration algorithm of the previous
section with data stemming from a planar calibration ob-
ject, then the linear systems for estimating the tensors are
more rank-deficient than they ought to be, i.e. the tensors
cannot be estimated uniquely. In order to remove this extra
rank deficiency, we have to make the following change to
incorporate the planarity constraint: Q3 = Q′

3 = Q′′
3 = 0.

The 4 × 3 matrix containing the calibration point triplet, cf.
equation (3), then becomes:

Q1

∑2
i=1 R

′
1iQ

′
i + t′1Q

′
4

∑2
i=1 R

′′
1iQ

′′
i + t′′1Q

′′
4

Q2

∑2
i=1 R

′
2iQ

′
i + t′2Q

′
4

∑2
i=1 R

′′
2iQ

′′
i + t′′2Q

′′
4

0
∑2

i=1 R
′
3iQ

′
i + t′3Q

′
4

∑2
i=1 R

′′
3iQ

′′
i + t′′3Q

′′
4

Q3 Q′
4 Q′′

4


We obtain 4 matching constraints by setting the minors

of degree 3 of this matrix equal to zero. Each such equation
gives rise to a trifocal tensor, analogously to the previ-
ous section. Using simulations, we found that the minor
corresponding to the removal of the third row, does not
provide a unique solution for the associated tensor. The
reason might be that, while removing the third row, we do
not actually utilize the planarity constraint. In the following
we use only the first two tensors for computing the motion
parameters. Their defining equations are

∑
i ViCi = 0 and∑

i WiCi = 0. The coefficients Ci are the same as the ones
for the non-planar case, see Table 3, however all entries of
the table corresponding to Ci’s that contain one or more of
the coefficients Q3, Q

′
3 or Q′′

3 , disappear in the case of planar
calibration objects. Only 19 coefficients Ci remain.

The extraction of individual motion parameters is
slightly more complicated compared to the earlier cases.
First of all we do not have any direct constraint to compute
the scale parameters. However we may compute V and W

up to a common scale λ, since they share some common
variables. Let V′ = λV and W′ = λW be the estimated
coefficients. In the following, we explain how to extract the
scale λ and the rotation parameters from V′ and W′, then
the translation parameters.

We have the following relations, see table 3:

R′
3,1 =

1

λ
V ′
8 , R

′
3,2 =

1

λ
V ′
9 , R

′′
3,1 = − 1

λ
V ′
11, R

′′
3,2 = − 1

λ
V ′
12

(4)

M


R′

2,1 R′
1,1

R′
2,2 R′

1,2

R′′
2,1 R′′

1,1

R′′
2,2 R′′

1,2

 =


V ′
22 W ′

22

V ′
23 W ′

23

V ′
26 W ′

26

V ′
27 W ′

27


where M is given by:

M =


−V ′

11 0 −V ′
8 0

−V ′
12 0 0 −V ′

8

0 −V ′
11 −V ′

9 0
0 −V ′

12 0 −V ′
9


The rank of M is 3 and hence we obtain the solution

for the rotation coefficients in the above equation in the
following subspaces:

R′
2,1

R′
2,2

R′′
2,1

R′′
2,2

 =


a1
a2
a3
a4

+ l1


V ′
8

V ′
9

−V ′
11

−V ′
12

 (5)


R′

1,1

R′
1,2

R′′
1,1

R′′
1,2

 =


a5
a6
a7
a8

+ l2


V ′
8

V ′
9

−V ′
11

−V ′
12

 (6)

where the ai depend on the V ′ and W ′ (closed-form expres-
sions exist but are not given due to lack of space).

We estimate the values of l1 and l2 using orthonormality
constraints on the rotation matrices R′ and R′′, in particular:
R′

1,1R
′
1,2 + R′

2,1R
′
2,2 + R′

3,1R
′
3,2 = 0 and R′2

1,1 + R′2
2,1 +

R′2
3,1 = R′2

1,2 + R′2
2,2 + R′2

3,2 = 1 and analogously for R′′.
When substituting the rotation variables in these constraints
and using (4), and after simplifying the expressions, we get
the following system:

V

 l1
l2

l21 + l22 +
1
λ2

 =


−a5a6 − a1a2
−a7a8 − a3a4
1− a21 − a25
1− a22 − a26
1− a23 − a27
1− a24 − a28


where V is given by:

V =



a1V
′
9 + V ′

8a2 a5V
′
9 + V ′

8a6 V ′
8V

′
9

−a3V
′
12 − V ′

11a4 −a7V
′
12 − V ′

11a8 V ′
11V

′
12

2a1V
′
8 2a5V

′
8 V ′

8
2

2a2V
′
9 2a6V

′
9 V ′

9
2

−2a3V
′
11 −2a7V

′
11 V ′

11
2

−2a4V
′
12 −2a8V

′
12 V ′

12
2


By solving this system to least squares, we get the solutions
for l1, l2 and, up to sign, for λ. The sign of λ cannot
be recovered; this gives rise to two possible solutions, as
described below. Equations (4), (5) and (6), allow to compute
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the first two columns of R′ and R′′. The third column of each
rotation matrix is simply computed as the cross-product of
the first two. Now, the translation parameters can be com-
puted by linear least squares, based on equations associated
with coefficients V21, V25, V29, V34, V35,W21,W25,W29,W34

and W35, cf. table 3.
Overall, we obtain two solutions for the motion pa-

rameters (corresponding to positive and negative λ) and
ultimately, of the camera rays. These two solutions are
symmetric to one another: roughly speaking, one is obtained
by mirroring the poses of the second and third calibration
objects, in the plane of the first one. They thus correspond
to the same set of camera rays, expressed in two different
coordinate systems. Note that this is analogous to what
happens for the pose estimation of a perspective camera
from an image of a planar reference object, which also gives
rise to two mirror solutions.

3 GENERIC CALIBRATION OF A CENTRAL CAM-
ERA

3.1 2D central cameras

In this section we study central cameras, i.e. all camera rays
pass through a single point in space called the optical center
O (O1, O2). Since the point O lies on all the rays we only
need two calibration points to formulate collinearity con-
straints. In other words two calibration objects are sufficient
to calibrate a central 2D camera. We use the constraint that
with the correct estimates of the object’s poses and the
optical center, the latter is collinear with the two calibration
points associated to any pixel:∣∣∣∣∣∣

O1 Q1 R′
11Q

′
1 −R′

21Q
′
2 + t′1Q

′
3

O2 Q2 R′
21Q

′
1 +R′

11Q
′
2 + t′2Q

′
3

1 Q3 Q′
3

∣∣∣∣∣∣ = 0

i Ci Vi

1 Q1Q′
1 +Q2Q′

2 R′
21

2 Q1Q′
2 −Q2Q′

1 R′
11

3 Q1Q′
3 t′2 −O2

4 Q2Q′
3 O1 − t′1

5 Q3Q′
1 −O1R′

21 +O2R′
11

6 Q3Q′
2 −O1R′

11 −O2R′
21

7 Q3Q′
3 −O1t′2 +O2t′1

TABLE 4
Coupled variables in the bifocal matching tensor for a central 2D

camera.

This can be written as
∑

i=1 CiVi = 0, where Ci and Vi

are given in Table 4. There are only 7 coupled variables,
which we may compute up to scale from the extracted
calibration points using linear least squares. Let V′ = λV
be the estimated variables. The motion parameters can be
extracted as follows:

1) λ = ±
√
(V ′

1)
2 + (V ′

2)
2;Vi =

V ′
i

λ . Do steps 2 and 3
for both signs of λ.

2) From table 4 we get:

R′ =

(
V2 −V1

V1 V2

)

3) From table 4 we get:
0 1 0 −1
−1 0 1 0
0 0 −V1 V2

0 0 −V2 −V1




t′1
t′2
O1

O2

 =


V3

V4

V5

V6


We obtain the following closed-form solution, due
to the relation between V1, V2 and R′ as per step 2.

t′1
t′2
O1

O2

 =


0 −1 −V1 −V2

1 0 V2 −V1

0 0 −V1 −V2

0 0 V2 −V1



V3

V4

V5

V6


This implies that the solution is always well-
defined.

4) Select the sign of λ for which V7 = −O1t
′
2 +O2t

′
1.

The projection rays are then computed for all pixels. In
fact only their directions are computed (they are constrained
to pass through the computed optical center).

3.2 3D central cameras
As in the 2D case, we have a 3D point O(O1, O2, O3), which
lies on all rays. We construct a matrix with O, Q and Q′ in
the same coordinate frame as shown below.

O1 Q1

∑3
i=1 R

′
1iQ

′
i + t′1Q

′
4

O2 Q2

∑3
i=1 R

′
2iQ

′
i + t′2Q

′
4

O3 Q3

∑3
i=1 R

′
3iQ

′
i + t′3Q

′
4

1 Q4 Q′
4


The collinearity of these three points gives four constraints
by removing one of the 4 rows at a time from the above
matrix and equating the determinant of the remaining sub-
matrix to zero. Two of these constraints are shown in Table 5.
Using simulations, we observed that the third constraint
failed to give a unique solution for the coupled variables.
To extract the motion variables we used only the first and
the second constraints.

i Ci Vi Wi

1 Q1Q′
1 0 R′

31
2 Q1Q′

2 0 R′
32

3 Q1Q′
3 0 R′

33
4 Q1Q′

4 0 −O3 + t′3
5 Q2Q′

1 R′
31 0

6 Q2Q′
2 R′

32 0
7 Q2Q′

3 R′
33 0

8 Q2Q′
4 −O3 + t′3 0

9 Q3Q′
1 −R′

21 −R′
11

10 Q3Q′
2 −R′

22 −R′
12

11 Q3Q′
3 −R′

23 −R′
13

12 Q3Q′
4 O2 − t′2 O1 − t′1

13 Q4Q′
1 −O2R′

31 +O3R′
21 −O1R′

31 +O3R′
11

14 Q4Q′
2 −O2R′

32 +O3R′
22 −O1R′

32 +O3R′
12

15 Q4Q′
3 −O2R′

33 +O3R′
23 −O1R′

33 +O3R′
13

16 Q4Q′
4 −O2t′3 +O3t′2 −O1t′3 +O3t′1

TABLE 5
Coupled variables in the bifocal matching tensors for a 3D single center

camera.

Now we explain how to extract the individual mo-
tion parameters from the estimated variables V′ and W′.
First, we estimate and undo the scale ambiguity in their
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estimation. We compute the scale for V′ up to sign as
λ =

√
(V ′

5)
2 + (V ′

6)
2 + (V ′

7)
2 and set Vi =

V ′
i

λ . Next we
compute the scale µ such that µW ′

1, µW
′
2 respectively µW ′

3

are equal to V5, V6 respectively V7, and compute W = µW′.
Then, the rotation matrix is estimated:

R′ =

 −W9 −W10 −W11

−V9 −V10 −V11

V5 V6 V7

 ,

We remove the ambiguity on the sign of the scale parameter
λ by checking if det(R′) = 1 or det(R′) = −1. In the latter
case, we change the sign of both V and W and recompute
R′. Finally, the optical center and the translation of the
second calibration object, are estimated:

O =


V13R

′
32−V14R

′
31

R′
21R

′
32−R′

22R
′
31

O3R
′
21−V13

R′
31

O3R
′
11−W13

R′
31

 , t′ =

 O1 −W12

O2 − V12

W4 +O3



3.3 Calibration of Central 3D cameras using planar cal-
ibration patterns
It is possible to obtain constraints with just two views, like
in the 2D case (section 3.1). However the constraints are
insufficient to estimate the motion variables. This is to be
expected since even for the pinhole model, full calibration
using a planar calibration grid requires three views at least
[45], [46]. We thus have to consider three views at least. We
build a 4× 4 matrix consisting of O, Q, Q′ and Q′′:


Q1

∑2
i=1 R

′
1iQ

′
i + t′1Q

′
4

∑2
i=1 R

′′
1iQ

′′
i + t′′1Q

′′
4

Q2

∑2
i=1 R

′
2iQ

′
i + t′2Q

′
4

∑2
i=1 R

′′
2iQ

′′
i + t′′2Q

′′
4

Q3

∑2
i=1 R

′
3iQ

′
i + t′3Q

′
4

∑2
i=1 R

′′
3iQ

′′
i + t′′3Q

′′
4

Q4 Q′
4 Q′′

4

 (7)

The collinearity of these four points implies that the 4x4
matrix has to be of rank less than three. As a result all its 16
minors of degree 3 vanish. Please refer to Section 5.3 of [47]
for the details on computing the motion parameters.

4 AXIAL CAMERAS

The axial model is a rather useful one. Many misaligned
cata-dioptric configurations fall under this model (cf. Table
6.4 in [47]). Such configurations, which are slightly non-
central, are usually classified as a non-central camera and
calibrated using an iterative nonlinear algorithm [1], [2],
[42]. For example, whenever the mirror is a surface of
revolution and the central camera looking at the mirror
lies anywhere on the revolution axis, the system is of axial
type. Furthermore, two-camera stereo systems or systems
consisting of three or more aligned cameras, are axial, as
well as typical underwater cameras [48], [49]. Pushbroom
cameras [50] are another example, although they are of a
more restricted class (there exist two camera axes [51]).

We will call camera axis the line cutting all rays of an
axial camera. It will be represented by a 6-vector L and
the associated 4 × 4 skew-symmetric Plücker matrix [L]×.
The product [L]×Q gives the plane spanned by the line
L and the point Q. Consider further the two 3-vectors
A =

(
L5 L6 L4

)T and B =
(
L2 L3 L1

)T . The

Plücker constraint holds: BTA = 0. A represents the point
at infinity of the line. The Plücker matrix can be written as:

[L]× =


0 −L4 L6 −L2

L4 0 −L5 −L3

−L6 L5 0 −L1

L2 L3 L1 0

 =

(
[A]× −B
BT 0

)

Camera rays will be constrained to cut the camera axis.
Calibration thus consists in computing the position of the
camera axis and of the camera rays. The proposed approach
proceeds by first estimating the camera axis and the pose of
all calibration objects.

5 CALIBRATION OF AXIAL CAMERAS WITH A 3D
OBJECT

5.1 What can be done with only two views of 3D cali-
bration objects?

Consider some pixel and let Q and Q′ be the corresponding
points on the two calibration objects, given as 3D points in
the objects’ local coordinate systems.

We have the following constraint on the pose of the
second object (R′, t′) as well as the unknown camera axis
L: the line spanned by Q and Q′ cuts L, hence is coplanar
with it. Hence, for the correct pose and camera axis, we must
have:

QT[L]×

(
R′ t′

0T 1

)
Q′ = 0

Hence:
Q1

Q2

Q3

Q4


T 

0 −L4 L6 −L2

L4 0 −L5 −L3

−L6 L5 0 −L1

L2 L3 L1 0

(
R′ t′

0T 1

)
Q′

1

Q′
2

Q′
3

Q′
4

 = 0

We thus have the following 4× 4 binocular matching tensor
that can be estimated linearly from calibration point corre-
spondences:

F ∼


0 −L4 L6 −L2

L4 0 −L5 −L3

−L6 L5 0 −L1

L2 L3 L1 0

(
R′ t′

0T 1

)
(8)

One can extract, from F, the complete camera axis L, in
the coordinate frame of each of the two calibration objects.
For simplicity we apply, to each object, a rotation and
translation such that the camera axis becomes the Z-axis,
i.e.,

[L]× =


0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0


These rotations and translations are not unique – the

pose of the second object is determined up to a rotation
about the camera axis (the Z-axis) and translation along it:

R′ =

c −s 0
s c 0
0 0 1

 t′ =

0
0
Z


with c = cos(θ) and s = sin(θ) for some angle θ.
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F is now of the form

F = [L]X

(
R′ t′

0T 1

)
=


−s −c 0 0
c −s 0 0
0 0 0 0
0 0 0 0


We may compute the angle θ by θ = arctan F11

F12
; this

gives two solutions, separated by a 180◦ rotation about
the camera axis. However, as for the translation along the
camera axis, there is no possibility to compute it.

Hence, a complete calibration is not possible from only
two views, even with three-dimensional calibration objects.
Only one degree of freedom remains to be estimated (trans-
lation t′3 of the second object along the camera axis) and
there remains a two-fold ambiguity on the rotational pose.

5.2 Full calibration using three views of 3D calibration
objects

We use the technique described in the previous section on
the image pairs (1, 2) and (1, 3). Our goal is to compute
the remaining unknowns t′3 and t′′3 , and fix the 2-fold
ambiguities for R′ and R′′. Since Q, Q′ and Q′′ are collinear
we form the following matrix and exploit the fact that its
minors of degree 3 must vanish:

M =


Q1 ±Q′

1 ±Q′′
1

Q2 ±Q′
2 ±Q′′

2

Q3 ±Q′
3 + t′3Q

′
3 ±Q′′

3 + t′′3Q
′′
4

Q4 ±Q′
4 ±Q′′

4


• Concerning the 2-fold sign ambiguities: We consider

the following minor, after removing the third row of
M.

det

Q1 ±Q′
1 ±Q′′

1

Q2 ±Q′
2 ±Q′′

2

Q4 ±Q′
4 ±Q′′

4

 = 0

There are four variables (Q′
1, Q

′
2, Q

′′
1 , Q

′′
2 ) with

sign ambiguities. We take several point triplets
(Qi,Q

′
i,Q

′′
i ) and compute the value of the above

determinant. We try all 16 combinations (two possi-
bilities for every variable) and only one combination
will give zero determinant values for all the general
triplets.

• Computing t′3 and t′′3 . By removing one of the rows 1,
2 or 4 from matrix M and equating the determinant of
the remaining matrix to zero, we get three constraints
of the following form.

det

Qi Q′
i Q′′

i

Qj Q′
j Q′′

j

Q3 Q′
3 + t′3Q

′
4 Q′′

3 + t′′3Q
′′
4

 = 0

They can be rewritten as: Q′
4(QjQ

′′
i −QiQ

′′
j )

Q′′
4(QiQ

′
j −QjQ

′
i)

QiQ
′
jQ

′′
3 +Q3Q

′
iQ

′′
j +QjQ

′
3Q

′′
i

T t′3
t′′3
1

 = 0

We stack all such equations for all calibration point
triplets, and solve for the two translation coefficients
using linear least squares.

6 CALIBRATION OF AXIAL CAMERAS WITH PLA-
NAR OBJECTS

6.1 What can be done with two views of planar calibra-
tion objects?

Consider some pixel and let Q and Q′ be the corresponding
points on the two calibration grids, given as 3D points in the
objects’ local coordinate systems. Since we consider planar
objects, we impose Q3 = Q′

3 = 0.
We have the following constraint on the pose of the

second object (R′, t′) as well as the unknown camera axis
L: the line spanned by Q and Q′ cuts L, hence is coplanar
with it. Hence, for the correct pose and camera axis, we must
have:

QT[L]×

(
R′ t′

0T 1

)
Q′ = 0

Hence:Q1

Q2

Q4

T  0 −L4 L6 −L2

L4 0 −L5 −L3

L2 L3 L1 0

(
R̄′ t′

0T 1

)Q′
1

Q′
2

Q′
4

 = 0

where R̄′ refers to the 3 × 2 sub-matrix of R′ containing
only the first and the second columns. We thus have the
following 3 × 3 tensor that can be estimated linearly from
point correspondences:

F ∼

 0 −L4 L6 −L2

L4 0 −L5 −L3

L2 L3 L1 0

(
R̄′ t′

0T 1

)
(9)

F is in general of rank 2. One could give the following
interpretation of it: F can be interpreted as the fundamental
matrix of a pair of perspective images, as follows. Imagine
the two planar calibration objects as image planes of two
perspective cameras, and the camera axis of the axial camera
as the baseline containing the optical centers of these two
perspective cameras. The epipolar geometry of this stereo
system is given by F. It has only 7 degrees of freedom (9 - 1
for scale, -1 for rank-deficiency) so the 10 unknowns (4 for
the camera axis, 3 for R′ and 3 for t′) cannot be recovered
from it.

We now look at what can actually be recovered from F.
Let us first notice that its left null-vector is (L3,−L2, L4)

T

(it truly is the null-vector, as can be easily verified when
taking into account the Plücker constraint given above).
We thus can recover 2 of the 4 parameters of the camera
axis. That null-vector contains actually the coordinates of
the camera axis’ intersection with the first planar calibration
object (in plane coordinates). Its 3D coordinates are given
by (L3,−L2, 0, L4)

T. Similarly, the right null-vector of F
gives the plane coordinates of the axis’ intersection with the
second object. Besides this F also gives constraints on R′ and
t′. For example R′ can be extracted up to 2 to 4 solutions,
see [47].

To summarize, two views of planar calibration objects
are not sufficient to uniquely calibrated an axial camera.
Again, this is not surprising since even in the more con-
strained case of central cameras, two planar objects are
not sufficient for calibration. The details of using three
calibration objects for a full calibration, are given in Section
6.3.2 of [47].
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7 EXPERIMENTS

Central model: We devised a method for taking into account
multiple calibration grids at the same time, to obtain a good
initial calibration for a sub-region of the image. During
this phase, we obtain the poses, that is the orientation and
position of these grids w.r.t. a common coordinate system.
In Figure 2 we show multiple calibration grids used to com-
pute the calibration for the omni-directional image. Details
on how to extract the individual motion parameters from
collinearity constraints on more than 3 images can be found
in [47] (cf. Chapter 7). For example, in Figure 2(middle)
we show the partial calibration using 5 planar grids. We can
compute the position and orientation of a new grid by using
this partial calibration and treating this problem as a generic
pose estimation problem [27], [43]. We incrementally add
new images of grids and increase the region of calibration as
shown in Figure 2(right), which shows an almost completely
calibrated image using 23 images. In Figure 3 we show
an accurate distortion correction result for a fisheye image,
obtained as a straightforward result of our calibration ap-
proach.

Fig. 2. Left: An omnidirectional image taken with a fisheye and the region
of calibration grids occupied in 4 other images (shown using convex hulls
of grid points). Middle: We show the 5 calibrated grid positions, which
are used to compute the camera rays. Right: Example of a complete
calibration for a fisheye camera from 23 overlapping grids.

Fig. 3. Complete distortion correction of a fisheye image shown in the
middle. Note that heavily distorted lines are corrected in the undistorted
images. Only very close to the image border, residual distortions remain,
which seems acceptable for such a generic calibration approach.

Stereo camera: We tested our axial calibration algorithm
on a stereo system and 3 pairs of images of a calibration
grid. Once we compute the poses of the grids we can
compute rays corresponding to individual cameras in the
stereo system. The reconstructed rays and axis are shown
in Figure 4(a). For optimization we use a ray-point bundle
adjustment minimizing the 3D distance between 3D points
and camera rays [43]. The final RMS error for the stereo
system is 0.04 with respect to the overall size of the scene.
After clustering the two centers of the stereo camera, the
RMS error is 0.07.

(a)

(b)

Fig. 4. Calibration of a stereo system using the axial algorithm with 3
images and a total of 481 rays. (a) Computed camera rays and axis. (b)
Camera rays of the stereo system after clustering them and enforcing
rays in each cluster to cut a single 3D point.
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8 CONCLUSION

In this paper, we explain the theory and basic algorithms
for calibrating a highly generic camera model consisting of
just a collection of pixels and associated camera rays, from
images of calibration objects with unknown poses. We have
developed the theory and algorithms for three subclasses:
fully non-central, axial and central cameras. Algorithms for
usage of three-dimensional as well as planar calibration
objects, are provided. Table 6 summarizes the nature of the
results when applying the various calibration algorithms for
different camera models. Additional experiments for non-
central cameras are provided in [42], [47].

Actual type of camera and calibration object
Algorithm C-2D C-3D A-2D NC-2D NC-3D
C-2D Unique NS NS NS NS
C-3D 7/12 Unique NS 6/12 NS
A-2D 2/10 4/10 Unique NS NS
NC-2D 5/14 8/14 2/14 Unique NS
NC-3D 21/30 19/30 18/30 17/30 Unique

TABLE 6
Nature of solutions on applying the calibration algorithms on cameras

of specific types. The labels ’C’, ’NC’, and ’A’ denote central,
non-central and axial respectively and the keywords ’3D’ and ’2D’ refer
to the type of calibration object. ’NS’ means that no solution exists: for
instance, when applying the ’C-2D’ algorithm (designed for a central

camera and images of a planar object) to images taken actually with an
axial or non-central camera, there is no solution that is consistent with

the images. In the inverse case, applying an algorithm for a camera
model that is more general than the actual camera, the solution is

underconstrained: ’r/n’ designates a rank deficiency of r when the linear
system underlying the calibration has n rows. The rank deficiency can
also be useful to detect whether a given camera is central, non-central

or axial.
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