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A FEATURE SELECTION METHOD FOR MULTIVARIATE PERFORMANCE
MEASURES

QI MAO AND IVOR W. TSANG

ABSTRACT. Feature selection with specific multivariate performameasures is the key
to the success of many applications, such as image retaaddext classification. The ex-
isting feature selection methods are usually designedidssification error. In this paper,
we propose a generalized sparse regularizer. Based onojpesad regularizer, we present
a unified feature selection framework for general loss fonet In particular, we study the
novel feature selection paradigm by optimizing multivegiperformance measures. The
resultant formulation is a challenging problem for higimdnsional data. Hence, a two-
layer cutting plane algorithm is proposed to solve this f@oh and the convergence is
presented. In addition, we adapt the proposed method tmizgtimultivariate measures
for multiple instance learning problems. The analyses bymaring with the state-of-
the-art feature selection methods show that the proposehomhés superior to others.
Extensive experiments on large-scale and high-dimenisieahworld datasets show that
the proposed method outperforfhsSVM and SVM-RFE when choosing a small subset
of features, and achieves significantly improved perforrearover SVMe”f in terms of
F-score.

1. INTRODUCTION

Machine learning methods have been widely applied to atyanidearning tasksd.g.
classification, ranking, structure prediction, etc) agsin computer vision, text mining,
natural language processing and bioinformatics apptinati Depending on applications,
specific performance measures are required to evaluatathess of a learning algorithm.
For instance, the error rate is a sound judgment for evalgdtie classification perfor-
mance of a learning method on datasets with balanced positid negative examples.
On the contrary, in text classification where positive exisiare usually very few, one
can simply assign all testing examples with the negativesoithe major class), this trivial
solution can easily achieve very low error rate due to theeex¢ imbalance of the data.
However, the goal of text classification is to correctly detgositive examples. Hence,
the error rate is considered as a poor criterion for the grablwith highly skewed class
distributions [11]. To address this issu&,-score and Precision/Recall Breakeven Point
(PRBEP) are employed as the evaluation criteria for texgsifization. Besides this, in
information retrieval, search engine systems are requo@éturn the topk documents
(images) with the highest precision because most userssmaly the first few of them
presented by the system, so precision/recadllate preferred choices.

Instead of optimizing the error rate, Support Vector Maehfior multivariate perfor-
mance measures (SV1/) [11] was proposed to directly optimize the losses based on a
variety of multivariate performance measures. A smoothirgion of SVM*"/ [37] was
proposed to accelerate the convergence of the optimizatioblem specially designed
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for PRBEP and area under the Receiver Operating Charactetsve (AUC). Structural
SVMs are considered as the general framework for optimiaingriety of loss functions
[27,[13,28]. Other works optimize specific multivariate foemance measures, such as
F-score[[21], normalize discount cumulative gain (NDCQJ][2rdinal regressiori [12],
ranking loss[[16] and so on.

For some real applications, such as image and documeravasj a set of sparse yet
discriminative features is a necessity for rapid predictbo massive databases. However,
the learned weight vector of the aforementioned methodsuslly non-sparse. In ad-
dition, there are many noisy or non-informative featuresext documents and images.
Even though the task-specific performance measures cantineizga directly, learning
with these noisy or non-informative features may still hooth prediction performance
and efficiency. To alleviate these issues, one can resonmntmedded feature selection
methods[[15], which can be categorized into the following twajor directions.

One way is to consider the sparsity of a decision weight vegtby replacing>-norm
lwl|2 regularization in the structural risk functiona.¢. SVM, logistic regression) with
I1-norm ||w||; [39,[8,[23]. A thorough study to compare several recentlyetimed!; -
regularized algorithms has been conductedin [33]. Accwydo this study, coordinate
descent method using one-dimensional Newton directionN)C&chieves the state-of-
the-art performance by solvirig-regularized models on large-scale and high-dimensional
datasets. To achieve a sparser solution, the Approximatitre zeRO norm Minimization
(AROM) was proposed[30] to optimiZg models. Its resultant problem is non-convex, so
it easily suffers from local optima. However, the recenttss[18] and theoretical studies
[17,[36] have showed th&t models (where < 1) even with a local optimal solution can
achieve better prediction performance than conemodels, which are asymptotically
biased([18].

Another way is to sort the weights of a SVM classifier and reettne smallest weights
iteratively, which is known as SVM with Recursive Featur@thation (SVM-RFE) [9].
However, as discussed in [32], such nested “monotonictifeatelection scheme leads to
suboptimal performance. Non-monotonic feature sele¢diMMKL) [82] has been pro-
posed to solve this problem, but each feature correspondioge kernel makes NMMKL
infeasible for high-dimensional problems. Recently, @aal. [26] proposed Feature Gen-
erating Machine (FGM), which shows great scalability tomanotonic feature selection
on large-scale and very high-dimensional datasets.

The aforementioned feature selection method5s[[33,130,|R&2are usually designed
for optimizing classification error only. To fulfill the negaf different applications, it is
imperative to have a feature selection method designedfimizing task-specific perfor-
mance measures.

To this end, we first propose a generalized sparse reguldoizieature selection. After
that, a unified feature selection framework is presentedéoeral loss functions based on
the proposed regularizer. Particularly, in this paperimizing multivariate performance
measures is studied in this framework. To our knowledgs, iththe first work to opti-
mize multivariate performance measures for feature setedDue to exponential number
of constraints brought by non-smooth multivariate losfioms [11/13] and exponential
number of feature subset combinatiohs![26], the resultptitnization problem is very
challenging for high-dimensional data. To tackle this tdraje, we propose a two-layer
cutting plane algorithm, includingroup feature generatio(see Sectiofi 511) angroup
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feature selectiofisee Sectiof 512), to solve this problem effectively andieffitly. Specif-
ically, Multiple Kernel Learning (MKL) trained in the prinh@y cutting plane algorithm is
proposed to deal with exponential size of constraints ieduxy multivariate losses.

This paper is an extension of our preliminary wdrk|[19]. Thaimcontributions of this
paper are listed as follows.

e The implementation details and the convergence proof optbhposed two-layer
cutting plane algorithm and MKL algorithm trained in therpél are presented.

e Connections to a variety of the state-of-the-art featulexs$ien methods including
SKM [3], NMMKL [82], 1;-SVM [33], Io-SVM [30] and FGM [26] are discussed
in details. By comparing with these methods, the advantafesir proposed

methods are summarized as follows:
(1) The tradeoff parametér in I, SVM [33] is too sensitive to be tuned properly

since it controls both margin loss and the sparsitwoHowever, our method
alleviates this problem by introducing an additional paggenB to control

the sparsity ofw. This separation makes parameter tuning for our methods
much easier than those of SKM [3] ahdSVM.

(2) NMMKL [82] uses the similar parameter separation stpgtéout it is in-
tractable for this method to handle high-dimensional datadet alone opti-
mize multivariate losses. The proposed method can reaptiynize multi-
variate losses for high-dimensional problems.

(3) FGM [2€] is a special case of the propose framework wheimiging square
hinge loss with indicator variables in integer domain. Thepoesed frame-
work is formulated in the real domain for general loss fuoresi. In particular,
we provide a natural extension of FGM for multivariate lasse

(4) The proposed framework can be interpretedagiorm constraint, so it can
be considered as one {f methods. This gives another interpretation of the
additional parameteB.

e Recall that Multiple-Instance Learning via Embedded ins&Selection (MILES)
[6], which transforms multiple instance learning (MIL) ana feature selection
problem by embedding bags into an instance-based feataee gnd selecting
the most important features, achieves state-of-the-afopeance for multiple
instance learning problems. Under our unified feature seledramework, we
extend MILES and study MIL for multivariate performance rs@e. To our best
knowledge, this is seldom studied in MIL scenarios, butiriportant for the real
world applications of MIL tasks.

e Extensive experiments on several challenging and very-fligiensional real world
datasets show that the proposed method yields better pefme than the state-
of-the-art feature selection methods, and outperforms 8¥iusing all features
in terms of multivariate performance measures. The exparial results on the
multiple instance dataset show that our proposed methoéashpromising re-
sults.

The rest of the paper is organized as follows: We briefly rev#/M?*"/ in Section
[@. We then introduce the proposed generalized sparse rezgulm Sectio B. In partic-
ular, we study the feature selection framework for mulia@r performance measures, its
algorithm and its application to multiple instance leatnin Sectio 4[ b and] 7, respec-
tively. Sectior 6 gives the analysis of connections to aetpof feature selection methods.
The extensive empirical results are shown in Sedtion 8. llyineonclusive remarks are
presented in the last section.
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In the sequelA > 0 means that the matriA is symmetric and positive semidefinite
(psd). We denote the transpose of a vector/matrix by thersopet” andi,, norm of
a vectorv by ||v||,. Binary operator> represents the elementwise product between two
vectors/matrices.

2. SVM FORMULTIVARIATE PERFORMANCEMEASURE

Given a training sample of input-output paiss, y;) € X x Y fori =1,...,n drawn
from some fixed but unknown probability distribution with C R™ and)y € {—1, +1}.
The learning problem is treated as a multivariate predictimblem by defining the hy-
pothesed, : X — Y that map a tupl& € X of n feature vector& = (xi,...,x,) to a
tupley € Y of n labelsy = (y1,...,y,) whereX = X x ..., X andy C {—1,+1}".
The linear discriminative function of SVM"/ is defined as

n

(1) Tiw(X) = argmax f(X,7') = argmax »_ yiw’x;,
y'ey yey i
wherew = [wy, ..., w,,]" is the weight vector.

To learn the hypothesig](1) from training data, large margathod is employed to
obtain the good generalization performance by enforciegctimstraints that the decision
value of the ground truth labeisshould be larger than any possible lalgls Y\ {7}, i.e.,
FXy) > f(X7) + A(y,7'), whereA(y,7') is some type of multivariate loss functions
(several instantiated losses are presented in Sdcfibn S#)ctural SVMs([[28|13] are
proposed to solve the corresponding soft-margin casedsick variable formula as,

.1 9
) Jnin o w5+ C¢&

n
sty € W\g:w' D (g —yixi > AGT) - &,
=1
whereC' is a regularization parameter that trades off the empirisikl and the model
complexity.

The optimization probleni{2) is convex, but there is the equial size of constraints.
Fortunately, this problem can be solved in polynomial tige@tlopting the sparse approx-
imation algorithm of structural SVMs. As shown in|11], apizing the learning model
subject to one specific multivariate measure can really ttbesperformance of this mea-
sure.

3. GENERALIZED SPARSEREGULARIZER
In this paper, we focus on minimizing the regularized encpirioss functional as

3) min Q(w) + Cl(w),

whereQ)(.) is a regularization function ard.) is any loss function, including multivariate
performance measure losses.

Sincels-norm regularization is used il(2), the learned weight @eetis non-sparse,
and so the linear discriminant function [d (1) would involwany features for the predic-
tion. As discussed in Secti@h 1, selecting a small set ofidisicative features is crucial
to many real applications. In order to enforce the sparsitwpwe propose a new sparse
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regularizer

whered is in the real domain oD = {d| Z;”Zl dj =B,0<d; <1,Vj=1,...,m},
p > 0andB > 0 are two parameters. The optimal solution of the new propresdarizer
should satisfyw; = 0 if d; = 0 since|w;|? = 0 with p > 0 inducesw; = 0, otherwise
the objective value approaches to infinite. Thexorm constraintZ}”:1 d; = B and
0 < d; < 1 will force somed; to be zero, so the correspondingis zero,vj = 1,...,m.
Hence, the parametét is interpreted as a budget to control the sparsitwof

This regularizer is similar to SimpleMKIL[24] with each fea¢ corresponding to one
kernel, but SimpleMKL is a special case Bfwith B = 1, which also can be interpreted
by the quadratic variational formulation &f norm [2]. However, it is different frond,
when B # 1. To explain the difference, we consider the probl€in (2) urde general
framework [(8). In the separable case, paraméteioes not affect the optimum solution
since the erro€ = 0. If I; norm is applied to replack in Problem [2), the sparsity of
w will be fixed once optimal solution is reached. Hence, patem@ in D now can be
considered as the only factor to enforce sparsitywan However, in the non-separable
case where errors are allowed, paramétewill also influence the sparsity of, but B
is expected to enforce the sparsitywfmore explicity whenC' becomes larger. This
argument will be empirically justified in Sectién 8.1.

The learning algorithm with the proposed generalized speegularizer is formulated
as

R N 1
4) min min 5; 4 + Cl(w).

This formulation is more general for feature selection.

Lemmal. If p > 2, Problem[#) is jointly convex with respectwoandd; otherwise, it is
not jointly convex.

Proof. We only need to prove that,if> 2, g(w;, d;) = % whered; > 0is jointly con-
vex with respect tav; andd;. The convexity ofy in its domain is established when the fol-
2[w,|” _plwlP !
&
Cplwi P plp—1)|w, P2
4 d;

0, which is equivalent tov’ V2gv > 0 for any nonzero vectov. WLOG we assume
v = [1 a]T wherea is any real number, then this condition is reduced 20w;|? —

2 2 52 _
2ap|wj|d; + a*p(p —1)d? > 0 & 2(|wj| — i) > %@p). This condition always

holds wherp > 2, which completes the proof. O

2lw;|* —plw;ld;

lowing holds:V2g =
g g —plwjld; p(p—1)d7 | =

0|

In what follows, we focus on the convex formulation wijth= 2. In Sectior 6, we will
discuss the relationships with a variety of the state-efdnt feature selection methods.

4. FEATURE SELECTION FORMULTIVARIATE PERFORMANCEMEASURES

To optimize the multivariate loss functions and learn a sp&eature representation si-
multaneously, we propose to solve the following jointly eexiproblem oved and(w, £)
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in the case op = 2,

m

. .1
Q BRI, 52
=

|w; |*
T+ Ce

n

T WL S e > AT
Stvy eN\g:w' ;(yl yi)Xi > A@,7) — €.

The partial dual with respect tow, £) is obtained by Lagrangian functiof(w, &, o, 7)

. . m w5 2 n
with dual variablesr > 0 andr > 0 as follows: > e | dJJ_' +CE—TE=3 pr vy O (WTL S (yi—
yi)x; —A(g,7)+£). As the gradients of Lagrangian function with respedtto£) vanish
at the optimal points, we obtain the KKT conditions; = d; >~ 35 oy 230 (i —
i)z and 3 o 35 a7 < C. By substituting KKT conditions back t6(w, {, a, 7), we
obtain the dual problem as

1
6 min max —— - 08, +§ :a7b7
( ) deD aci 2 ZZ y/ y”Qy’,y” g, y/ y/’

ﬂ’ g//

whereA(7,7) = 0, A7) > 0if 5 £ 7,

m 1 n 2
d
QL =) d, ( ag — ) (i~ yé)ffj,i)
=1

7 EV\T i=1
m 1 n 2
= S ag= > Wi yway da>
J=1 NyreP\y i=1

ay = 520 (i — y) (% © V), by = TA@,T), andA = {o] 3y oy < Coa >
0}. Problem[() is a challenging problem because of the exg@iaize ofa and high-
dimensional vectod for high-dimensional problems.

5. Two-LAYER CUTTING PLANE ALGORITHM

In this section, we propose a two-layer cutting plane athorito solve Problen{{6)
efficiently and effectively. The two layers, namely groupti@e generation and group
feature selection, will be described in Sectionl 5.1 g8pectively. The two-layer
cutting plane algorithm will be presented in Secfiod 5.3[&E@H

5.1. Group Feature Generation. By denotingS(a, d) = —3 D g ag/agan/@N +
>y 0 by, Problem([() turns out to be

min max S(a, d).

deD acA
Since domaing and.A are nonempty, the functiof(«*,d) is closed and convex for
all d € D given anya* € A, and the functionS(«,d*) is closed and concave for
all « € A given anyd* € D, the saddle-point propertymingep maxye4 S(a,d) =
max,e 4 mingep S(«, d) holds [4].

We further denoteFy(a) = —S(a, d), and then the equivalent optimization problems

are obtained as

7 i or mi Dy > deD.
(7) min max Fo(a) Jmin_ 7y v = Fa(a), Vd €
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Cutting plane algorithm[14] could be used here to solvefihiblem. Sincenaxgcp Fy(a)
Fqt (), Vd! € D, the lower bound approximation ¢f(30) can be obtainediaytgep Fo ()
max;—1, 1 Fqt(a). Then we minimize Probleni (BO) over the $ef' } 7, by,

>
>

8 i Fat (o) or min y:y>Fge(a),VEi=1...T
® ity e, For (o) O i 72 Fan(e), Ve =1

As from [22], such cutting plane algorithm can converge totaust optimal solution within
tens of iterations with the exact worst-case analysis. ifipalty, for a fixeda?, the worst-
case analysis can be done by solving,

t _ t
9) d* = argmax Fy(a'),

which is referred to as the group generation procedure. Ehamgh Problem(8) andl(9)
cannot be solved directly due to the exponential sizev,0fve will show that they are
readily solved in Sectidn 5.2 and Section] 5.4, respectively

5.2. Group Feature Selection. By introducing dual variableg = [u1, 2, . .., ur]T >
0, we can transforni{8) to an MKL problem as follows,

T

(10) max min —% Z Z agragr <Z mQme) + Z agrby,
vy = Y

whereMy = {3 =1, > 0,9t =1,...,T}.

However, due to the exponential sizeaafthe complexity of Probleni (29) remains. In
this case, state-of-the-art multiple kernel learning gthms [25] 24/ 31] do not work any
more. The following proposition shows that we can indingstblve Problem[{29) in the
primal form.

Proposition 1. The primal form of Probleni(29) is

r 2
. 1

(11) Wi, €0 §<;||Wt|2> +C¢

T

€2y - Y ) €7

t=1
According to KKT conditions, the solution 6f{29) is
(12) W=y apal

gl

wherey; is a dual value of the'" constraint of [(8).

The detailed proof of Propositidn 1 is given in the suppletagnmaterial.
Here, we define the regularization termta@v) = 1 (Y7, HWt||2)2 withw = [wy, ..., wr]Tand
the empirical risk function as

T
(13) Repmp(W) = max (0, max by — Z(Wt, af,)),
TEVT P ‘

which is a convex but non-smooth function wii.t Then we can apply the bundle method
[27] to solve this primal problem. Problein {29) is transfedas

min J (W) = QW) + CRepnp (W).
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SinceR..,(W) is a convex function, its subgradient exists everywheresidomain[[10].
Suppos&v” is a point whereR.,,,,,(W) is finite, we can formulate the lower bound accord-
ing to the definition of subgradient,

Remp(W) > Remp(W*) + (W — W*, p*)
= (W,p") + Repmp(W") — (W", p¥)
where subgradieqt® ¢ OwRemp (Wk) is atw”. In order to obtairp*, we need to solve the
following inference problem

T

(14) 7" = arg max by — Y (w;,al)
TEV\T P ‘

which is a problem of integer programming. We delay the dismn of this problem to
Sectior[5.4. After that, we can obtain the subgraigent= —aiyk, o) thatRemp(W’“) =
bgk — Z?:1<Wt7 afyk) = bﬂk + <Wk7 pk>

Given the subgradient sequenge p?, ..., p¥, the tighter lower bound foR.,,,, (W)
can be reformulated as follows,

W > RE (W) — ( Tk k)
Remp(w) = Remp(w) max 071I§I}caéXK<W7p >+q )

whereg® = Ry, (W") — (W*, p*) = by« Following the bundle methof[27], the criterion
for selecting the next point™ ™! is to solve the following problem,

T 2
. 1
e Wi, g0 2 (; ||th|2> +C¢

st.e>w,ph) +¢"VEk=1,..., K.
The following Corollary shows that Problem {15) can be gasillved by QCQP solvers,
and the number of variables is independent of the numberarhples.

Corallary 1. Interms of Propositiohll, the dual form of Probldml(15) is

K
(16) max max -0+ Z arg®

k=1

2
<ovt=1,...,T,
2

1
s.t. -
2

K

k
E Py
k=1

where Ay = {Zszl ar < C,a > 0,Vk =1,...,K}, and which is a QCQP problem
with T+ 1 constraints andX” + 1 variables.

The proof of Corollary1L follows the same derivation of Prejion[] withp* = —a%k,
¢ = by and the size ofy, as K. Consequently, the primal variables are recovered by

W= —flg ) arpf.

Let Jx (W) = Q(W)+CRF, (W), thee-optimal condition in AlgorithniL isning << & T (WH)—
Jx(WX) < e. The convergence proof i [27] does not apply in this casdiasenchel
dual of Q(W) fails to satisfy the strong convexity assumptiorkif > 1. As K = 1, Al-
gorithm[d is exactly the bundle methdd [27]. Whé&h > 2, we can adapt the proof of

Theoren® in [13] for the following convergence results.
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Algorithm 1 Groupfeatureselection

1 Input: X = (X1,...,X,),7 = (y1,-..,yn), @an initial group sew, ¢, C
2Y=0,k=0

3: repeat

4 k=k+1

5:  Finding the most violateg’

6: Computep® andg®

7 Y=Yu{z) B

8:  Solving Problem[{16) overV and)

9: until e-optimal

Theorem 1. Forany0 < C,0 < e < 4R2C and any training exampley, 41), - - -, (Xn, Yn),
Algorithm[d converges to the desired precisioafter at most,

e () | <[]

iterations. R? = maxge 5 |2 >0 (i — y})(Xi © Vd)|?2, A = maxy A®F,7) and ]
is the integer ceiling function.

Proof. We adapt the proof of Theorem 5 in[13], and sketch the necgsbanges corre-
sponding to Probleni {29). For a given 3&Y, the dual objective off) can be reformu-
lated as

max min Og(a g g Qg Ot 7+ E oy
acA dEWr vy Q Yy

'’

Since there are th& constrained quadratlc problems, we consider eheh Wy at one
time asmax,e 4 O4(c), whereQ! is positive semi-definite, and derivati@®q(a) = b —
Q%. The Lemma 2 in[[13] states that a line search starting albng an ascent direction
1 with maximum step-siz€ > 0 improves the objective by at leasiaxo<s<c {@d(a +
Bn) — Og¢(a)} > $min {O, %n—”} 004(a)Tn. If we consider subgradient descent

method, the line search along the subgradient of objec®¥®j- (o) whered™ = mingeyy,. Od(«).
Therefore, the maximum improvement is

max {@d* (a+ Bn) — Og+ ()}

0<p<
L. 904q-(a)" T
Z Emm{C, W 3@(1* (Oé) n
[ 3®d(04)T77 T
>
(A7) = 2 dewr {O’ nT Q4 99a(a) n

We can see that it is a special caselof [13]'if= 1. According to Theorem 5 in [13],
for a newly added constraift and someyy > 0, we can obtaiOq(a)’n = ~q by
setting the ascent directiop = 1 for the newly added andr; = — %y for the others,
Here, we sety = mingeyy, g SO as to be the lower bound 884(a)Tn,vd € Wr. In
addition, the upper bound for’ Q9 < 4R? vd € Wr can also be obtained by the fact
thatn” Q% = Q% 5 — & X5 ag QS 5+ &= Yoy g ooy QS 2 < R? + 2CR? +
2C?R? = 4R? vd € Wr. By substituting them back tG{lL7), the similar result shows
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the increase of the objective is at least

w01 7
min 5 RRE [

Moreover, the initial optimality gap is at moStA. Following the remaining derivation
in [13], the overall bound results are obtained. O

Remark 1: Problem [(IF) is similar to Support Kernel Machine (SKM) [&]which
the multiple Gaussian kernels are built on random subsdéatires, with varying widths.
However, our method can automatically choose the mostteidlaubset of features as a
group instead of a subset of random features. Such randdordsdead to a local opti-
mum; while our method could guarantee theptimality stated in Theorefd 1. However,
due to the extra cost of computing nonlinear kernel, theenirmodel are only imple-
mented for linear kernel with learned subsets of features.

Remark 2: The original Probleni(30) could be easily formulated as a @ @@blem
with exponential size of variablas needed to be optimized and huge number of base
kernels in the quadratic term. Unfortunately, the standdkd. methods cannot handle
Problem [(3D) even for a small dataset, let alone the stan@&QP solver. However,
Corollary[d makes it practical to solve a sequence of smalDB@roblems directly using
standard off-line QCQP solvers, such as Mosek. Note thi-stfathe-art MKL solvers can
also be used to solve the small QCQP problems, but they anerefirred because their
solutions are less accurate than that of standard QCQPrspWhkich can solve Problem
(I8) more accurately in this case.

5.3. The Proposed Algorithm. Algorithm [ can obtain the-optimal solution for the
original dual problem[{8). By denotinG,(a) = || S, arp*||3 — Sp, axd”, the
group feature generation layer can directly usestbptimal solution of the objectivéq(«)

to approximate the original objectivEy(«). The two-layer cutting plane algorithm is
presented in Algorithrhl2. From the description of Algorit@nit is clear to see that

Algorithm 2 The Two-Layer Cutting Plane Algorithm

1 Input:X = (X1,...,%X0), 7= (Y1,---,Yn), & C
2W=0,t=0

3: repeat

4 t=t+1

5. Finding the most violated’

6

7

8

w=wu{d"}
Call group featureselectiorfX, 7, W, ¢, C)
. until e-optimal

groups are dynamically generated and augmented into aettW® for group selection.

In terms of the convergence proof of FGM [n[26] and Theokémé can obtain the
following theorem to illustrate the approximation with @optimal solution to the original
problem.

Theorem 2. After Algorithm2 stops in a finite number of steps, the difiee between
optimal solutiond”, «*) of Problem[(2P) and the solutiddl, «) of Algorithn{2 isFy(a) —
Fa(a*) <.

The detailed proof of Theoreln 2 is given in the supplementzaterial.



A FEATURE SELECTION METHOD FOR MULTIVARIATE PERFORMANCE MBSURES 11

5.4. Finding the Most Violated " and d. Algorithm[J and Algorithfi2 need to find the
most violatedy’ andd, respectively. In this subsection, we discuss how to ohtaése
quantities efficiently. Algorithri]ll needs to calculate thbgradient of the empirical risk
function Rfmp(w). SinceRf,,,(W) is a pointwise supremum function, the subgradient
should be in the convex hull of the gradient of the decompdsections with the largest
objective. Here, we just take one of these subgradientslingo

(18) 7" = arg max A(7,7) Z — Yy,
7eEV\Y i—1

WherevZ = Y wl(x; © Vd'). After obtainingg", it is easy to comput@? —
— I3 (i — yF) (% © V') andgt = L30T, A@FR, 7).

For finding the most violate@’, it depends on how to define the lo&$y,7’) in Prob-
lem (I8). One of the instances is the Hamming loss which caffebemposed and com-
puted independently, i.eA(y,7') = Y., (v, y.), whered is an indicator function with
d(yi,yi) = 0if y; = y., otherwisel. However, there are some multivariate performance
measures which could not be solved independently. Forbntihere are a series of struc-
tured loss functions, such as Area Under ROC (AUC), AverageiBion (AP), ranking
and contingency table scores and other measures listedlii341 27], which can be im-
plemented efficiently in our algorithms. In this paper, wdyamse several multivariate
performance measures based on contingency table as theasesand their finding®
could be solved in time complexity(n?) [L11].

Given the true labely and predicted labelg’, the contingency tables is defined as
follows

y:]_ =-1
y'=1 a b
y'=-1 c d

F-score: The Fg-score is a weighted harmonic average of Precision and Rea

cording to the contingency table, we can obtain = (1+/(312;L+1)7162 The most com-
mon choice is8 = 1. The corresponding balancéd measure loss can be written as
Ap, (a,b,c,d) =100(1 — Fy). Then, Algorithm 2 in[[11] can be directly applied.

Precision/Recall@k: In search engine systems, most users scan only the firstrilesy li
that are presented. In this situation, Prec@k and Rec@kurteme precision and recall
of a classifier that predicts exacttydocuments, i.e.PrecQk = 45 andRec@Qk = -,
subject toa + b = k. The corresponding loss could be deﬁnedﬁasmuC = 100(1 —
Prec@k) andAgecar = 100(1 — Rec@k). And the procedure of finding most violated
y is similar to F-score, while the only difference is keepiranstrainta + b = k and
removinga + b # k.

Precision/Recall Break-Even Point (PRBEP): The Precision/Recall Break-Even Point
requires that the precision and its recall are equal. Adngrtb above definition, we can
see PRBEP only adds a constraind- b = a + ¢, orb = ¢. The corresponding loss is
defined axAprprp = 100(1 — PRBEP). Finding the most violategl should enforce
the constrainb = c.
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After t iterations in Algorithn 2, we transform in Problem[(®) from the exponential
size to a small size‘. Now, finding the most violated becomes

t_ t
(19) d _argxgleaggd(oz )

1 K K
_ 1 tak|l t k
—argz%%H > afe| > aka
_argmax

deD 2 Z Z — o) Xl@f)

=arg max Z ch

wherec; = S0, ok S (yi — y¥)x;;. With the budget constraift” , d; = B in
D, (19) can be solved by first sortirzg’s in the descent order and then setting the fi?st
numbers correspondingﬂ? to 1 and the rest t0. This takes only)(m log m) operations.

6. RELATIONS TO EXISTING METHODS

In this section, we will discuss the relationships betweenproposed method for mul-
tivariate loss[(b) and the state-of-the-art feature sieleainethods including SKM[]3],
NMMKL [82], 1;-SVM [33], 1p-SVM [30] and FGM [26]. It can be easily adapted to the
general framework{4).

6.1. Connections to SKM and I; SVM. Let Dy = {d|>)}.,d; = 1,d; > 0,Vj =
1,...,m} be in the real domain. We observe tlfat= D; whenB = 1. According to
[24], we transform Probleni]5) in the special casebof= 1 to the following equivalent
optimization problem,

(20) Hélilo §<Z|w3|> + C¢
SLYy €eV\G:w —Z — Y% = A@,Y) - ¢

SKM [3] attempts to obtain the sparsity af by penalizing the square of a weighted block
l1-norm (Zle villw;l|2)? wherek is the number of groups andl; is the weight vector
for the features in thgth group. The regularize{E;.”:1 |w;|)? used in[(2D) is the square of
thel, norm(||w||1)?, which is a special case of SKM whén= m and~; = 1, i.e., each
group contains only one feature. Minimizing the square efl{hnorm is very similar to
I;-norm SVM [33] by settind2(w) = ||w||; with the non-negative (convex) loss function.

Regardless of,-norm or the square df-norm, the parameter' is too sensitive to be
tuned properly since it controls both margin loss and thesifyaof w. However, our
method alleviates this problem by two parametérand B which control margin loss and
sparsity ofw, respectively. This separation makes parameter tuningiofrethod easier
than those of SKM anéi SVM.
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6.2. Connection to NMMKL. Instead of directly solving Probleri (R0), we formulate
a more general problerfi](5) by introducing an additional letiggarametei3, which di-
rectly controls the sparsity of. The advantage is to make parameter tuning easily done
sinceC is not sensitive to the sparsity of. This strategy is also used in NMMKL[32],
but one feature corresponding to one base kernel makes NMMiactable for high-
dimensional problems. The multivariate loss is even hardet@ptimized by NMMKL
since there are exponential dual variables in the dual fdriMIMKL from the exponen-

tial number of constraints. However, our method can reagplymize multivariate loss on
high-dimensional data.

6.3. Connection to FGM. According to the work[[40], we can reformulate Problém]| (20)
as an equivalent optimization problem

S )
@) g g2 dimlece

— 1 m n L
Sy €T =D djw; Y (v —vi)xi > A@.T) — &
=1 i=1

After the substitutions of; = v/d;w;,¥j = 1,...,m and the general case Bf, we can
obtain the following problem

. . 1.5
(22) min min §HV||2+C§

sty € V\j : VT% Y -y o Vd) = A@.7) - &,

=1

wherev = [v1,...,v,]|T. After deriving Lagrangian dual problem df{22), we observe
that it is same as Probleifd (6). Probldml(19) always finds th& molatedd in the integer
domain{0, 1}™, so the solutions of the following problem solved by the wegd two-
layer cutting plane algorithm is the same as the solutiof®ablem[(6)

. . 1, .9
(23) roin min, S lIvIl2 +C¢

_ 1 &
sty € V\T V=Y (i —y) (i 0 d) 2 A@ ) ¢,
=1

where the integer domai®, = {d|> 7", d; < B,d € {0,1}"}. This formula can
be equally derived as the extension of FGM for multivaris¢gfgrmance measures by
defining the new hypotheses

(24) hy(X) = arg max Z yi(v e d)x;,
vey

whereﬁv : X — Yandd € D,. ltis not trivial to perform the extension of FGM
to optimize multivariate loss because original FGM methH26] [cannot directly apply
to solve the exponential number of constraints. And our dormogd is in real domairD
which is more general than the integer dom2inused in FGM and the proposed extension
(23), even though the final solutions bf (5) ahd](23) are tineesa
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6.4. Connection to [, SVM. The following Lemma indicates that the proposed formula
can be interpreted blg-norm constraint.

Lemma 2. (23) is equivalent to the following problem
. 1,
(25) minge>0 5 W3 + C¢

st. vy e\ wh

S|

IWllo < B.

Proof. Note, at the optimality 0of{22), WLOG, suppoge= 0, the corresponding; must
be 0. Thus||v|jo < ||d||o. Letw = vod, we have|w||o = ||[vad|lo < min{||V|lo, |ld|lo} <
[dllo = =7, d; < B. Moreover,|W|]3 = [lv® d||5 = |[v|3 at the optimality. Therefore,
the optimal solution of(22) is a feasible solution[ofl(25n the other hand, for the optimal
win (23), letv = w andd; = é(w;) whered(t) = 1if ¢ # 0; otherwise, 0. So, the optimal
solution of [25) is a feasible solution ¢f(22). O

This gives another interpretation of paramdbdirom the perspective df-norm. Since
lo-norm||w||o represents the number of non-zero entrieg’pf0 B in our method can be
considered as the parameter which directly controls thesgpaf w.

7. MULTIPLE INSTANCE LEARNING FORMULTIVARIATE PERFORMANCEMEASURES

We have already illustrated the proposed framework by dpiig multivariate perfor-
mance measures for feature selection in Se€fion 4. In thisewe extend this approach
to solve multiple instance learning problems which haventeraployed to solve a variety
of learning problems, e.g., drug activity prediction [fhdge retrieval[35], natural scene
classification[[2D] and text categorizatidn [1], but it iddgem optimized for multivariate
performance measures in the literature. However, it isiatt@ optimize the task specific
performance measures, e.g.score is widely considered as the most important evaluation
criterion for a learning method in image retrieval.

Multi-instance learning was formally introduced in the t@i of drug activity predic-
tion [7]. In this learning scenario, a bag is represented bgteof instances where each
instance is represented by a feature vector. The clasgifidabel is only assigned to each
bag instead of the instances in this bag. We name a bag asta@dsig if there is at
least one positive instance in this bag, otherwise it isedaliegative bag. The learning
problem is to decide whether the given unlabeled bag isipesit not. By defining a
similarity measure between a bag and an instance, Mulligance Learning via Embed-
ded instance Selection (MILES) [6] successfully transfermmultiple instance learning into
a feature selection problem by embedding bags into an iosthased feature space and
selecting the most important features.

Before discussing the transformation in MILES, we first give notations of multiple
instance learning problem. Following the notation<in {8 denoteth positive bags as

+
B/ = {x;;}}., which consists of.; instancesc;;,j = 1,...,n;. Similarly, theith
negative bags is denoted Bs = {x;j}?il. All instances belongs to the same feature
spaceX. The number of positive bags and negative bag< arand/—, respectively. The

. . Vas 0 _
instances in all bags are rearranged=5, ..., x"} wheren = Y, nf + >, n; .
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By considering each instance in the training bags as a catedidr target concepts, the
embedded feature space is represented as

(26) % = [s(x',By),...,s(x",B;)]" € R",

where the similarity measure between the fagand the instanc&” is defined as the
most-likely-cause estimator

202
It follows the intuition that the similarity between a coptand a bag is determined by the
concept and the closest instance in this bag. The corresmplatels are constructed as
follows: y; = 1 if B, is a positive bag, otherwisg = —1. For a givery™ positive bags
and/— negative bags, we form a new classification representafitreanultiple instance

. o~ o~ + - . .
learning problem a$x;, yi}f:;“é . For each instance”, the new feature representation

corresponds to the values of thth feature variable(x”, -) is
[s(x*, B),..., s(x", BL), s(x", By),.... s(x", B, )]

where the feature induced &y provides the useful information for separating the positiv
and negative bags. The linear discriminant function

(28) 7 = sign((w, %) +b)

wherew andb are the model parameters. The embedding induces a posgjbidimensional
space when the number of instances in the training set is.|&imce some instances may
not be responsible for the label of the bags or might be sirtdlaach other, many features
are redundant or irrelevant, so MILES empldysSVM to select a subset of mapped fea-
tures that is most relevant to the classification problemweéi@r, L,-SVM cannot fulfill

to obtain a high performance over the task-specific measigesuse it only focuses on
optimizing zero-one loss function. Our proposed Algorif@ris a natural alternative fea-
ture selection method for multi-variate performance messurhe proposed algorithm for
multiple instance learning to optimize multivariate measus shown in Algorithral3.

— D)
(27) s(x*, B;) = maxexp <_M) _
j

Algorithm 3 Learning a bag classifier

1: Input: positive bag§B; }/,, negative bag§B; }._,, C, ande
2: Construct the embedding representation of training data

{(iz,@\l)},VZ =1,... ,f+ + /-

3 X=[X1,..., Xpr -] ANAY = [U1, -+, Ut o]
4: call Algorithm[2 with argumenty,C',)
5. Output: parameters

According to Algorithn8, we do not need the model paramétsince the structural
SVM is irrelevant to the relative offsét i.e.,y = arg max,c_1,41} ¥(W, X).

8. EXPERIMENTS

In this Section, we conduct extensive experiments to etaltee performance of our
proposed method and state-of-the-art feature selectidghads: 1) SVM-RFE[[D]; 2);-
SVM; 3) FGM [26]; 4)ll-bmrm-|—'1|1 which isl; regularized SVM for optimizing Fscore

lhttp://users.cecs.anu.edu.au/‘chteo/BMRM.htmI
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TABLE 1. Datasets used in our experiments

Dataset #classes  #features  #train #test
points  points
News20.binar 2 1,355,191 11,997 7,999
URL1 2 3,231,961 20,000 20,000
Image 5 10,800 1,200 800
Sector 105 55,197 6,412 3,207
News20 20 62,061 15,935 3,993

by bundle method[27]. SVM-RFE and FGM use Liblinear sofeffas the QP solver for
their SVM subproblems. Fdi-SVM, we also use Liblinear software, which implements
the state-of-the-aift -SVM algorithm [33]. In addition to the comparison forl loss, we
also perform experiments on image data for F1 measure. éfuntre, several specific
measures on the contingency table are investigated on Basets by comparing with
SvMPe"/ [17]. All the datasets shown in Tatile 1 are of high dimensions

For convenience, we name our proposed two-layer cuttingepégorithm F%um—,
whereA represents different type of multivariate performancesuness. We implemented
Algorithm[2 in MATLAB for all the multivariate performance easures listed above, us-
ing Mosek as the QCQP solver for Probldml(16) which yields esexwase complexity of
O(KT?). Removing inactive constraints from the working [13the inner layer is
employed for speedup the QCQP problem. Since the valuestbfddandT are much
smaller than the number of exampleand its dimensionalityn, the QCQP is very effi-
cient as well as more accurate for large-scale and high+ibioeal datasets. Furthermore,
the codes simultaneously solve the primal and its dual f@mthe optimal, anda can
be obtained after solving Problem{16).

For a test patter, the discriminant function can be obtained px) = (w © d, x)
wherew = 327 Bix;, B = 1 SO0 gy — yF), andd = 3/, u,Vd'. This leads to
the faster prediction since only a few of the selected featare involved. After computing
p*, the matrices of Probleri{lL6) can be incrementally updatit,can be done totally in
O(TK?).

8.1. Parameter Sensitivity Analysis. Before comparing FS,,;;; with other methods, we
first conduct empirical studies for the parameter sensjtanalysis oiNews20.binaryThe
goal is to examine the relationships among parameteasnd B, performance measures
and the number of selected features with the rang€ of [0.1, 1, 10, 100] x n andB in
2,5, 10, 50, 100, 150, 200, 250].

Figured(a-b) show the testing accuracy and F1 scores assviile number of selected
features by varying’ and B. We observe that the results are very sensitiv€ iwwhen B
is very small. This indicates that tiemodel, which is equivalent to the proposed method
in the case ofB = 1, is vulnerable to the choice @f. On the other hand, the results
are rather insensitive t6' when B is large. Hence, the proposed method is less sensitive
to C thanl; model. We also observe that the proposed method prefergadavalue
for better performances. Figurk 1(c-d) demonstrate theesponding relationships among
parameter®3, C' and the number of selected features of Fidure 1(a-b). WerabteatB
and the number of selected features always exhibits a limead with a constant slope.
Moreover, the slope remains the same whehr 10, but a smallC’ will increase the slope.
This means that, compared wifh, parameterC’ has less influence on the sparsityvof

2http://www.csie.ntu.edu.tw/‘cjlin/liblinear/
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FIGURE 1. First row (a-b): Testing Accuracy anfgy scores as well
as the number of selected features of the proposed methf)g, Fn
News20.binandataset by varying” and B. Second row (c-d): The
corresponding relationship among paramefer€’, and the number of
selected features.

and the learned feature selection model becomes stahilizedC' > 10. These empirical
results are consistent to the discussions of paranizterSectiorf 8.

Since largeC’ needs more iterations to converge according to Thebtenelgdimpro-
mise is to set” not too large and leB dominate the selection of features. According to
these observations, we can safely@band study the results by varyirgto compare with
other methods in the following experiments.

8.2. TimeComplexity Analysis. We empirically study the time complexity of [rfn%m by
comparing with other methods. Two datasdtsvs20.binarandimage (Desertare used
for illustration. The detailed setting are shown in SedBdhand Section 814, respectively.
Figure[2 gives the training time over five different methdds.News20.binarglataset, we
cannot report the training time fdg-bmrm-F sincel;-bmrm-R cannot terminate after
more than two days with the maximum iteratio@00 and parametek € [10~7,102] due
to the extremely high dimensionality. We observe that tteppsed methods are slower
thani;-SVM, but much faster than SVM-RFE arigbmrm-F. In addition, onimage
dataset, when the termination condition with the relatifetence between the objective
and its convex linear lower bound lower th@n is set,/;-bmrm-F also cannot converge
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FIGURE 2. Training time on different datasets

after the maximum iteration, which is consistent with thecdission in Appendix C of [27]
that bundle method with regularizer cannot guarantee the convergence. This ledts t
similar number of selected features (e48,in Figure[2(b)) even though is decreasing
gradually.

These observations implies that our proposed two-layénguplane method needs less
time for training with guaranteed convergence than buneithod. Moreover, our method
can work on large scale and high dimensional data for optigiaser-specified measure,
but bundle method cannot. As aforementiongehmrm-F is much slower on the high
dimensional datasets in our experiments, so we can onlytriépoesults in Section 8l4.

8.3. Feature Selection for Accuracy. Since [11] has proven that SVA,;,; with Ham-
ming loss, namelA g,.. (7,7’ ) = 2(b+c), is the same as SVM. In this subsection, we eval-
uate the accuracy performances of £§, for Hamming loss function, namely %%ng

as well as other state-of-the-art feature selection methdéé compare these methods on
two binary dataset:NewsZO.binarﬂ andURLL1in Table[d1. Both datasets are usedinl[26],
and they are already split into training and testing sets.

We test FGM and SVM-RFE in the gridr¢, = [0.001,0.01,0.1, 1,5, 10 and choose
Cram = 5 which gives good performance for both FGM and SVM-RFE. Thishie
same as[[26]. For FS""""9 we do the experiments by fixinGran,,,,,, as0.1 x
n for URL1 and 1.0 x n for New20.binary The setting for budget paramet& =
2,5, 10, 50, 100, 150, 200, 250] for News20.binaryand B = [2, 5, 10, 20, 30, 40, 50, 60
for URLL The elimination scheme of features for SVM-RFE method caneberred to
[26]. Fori;-SVM, we report the results of differeidt values so as to obtain different
number of selected features.

Figure[3 reports testing accuracy on different datasets.t@ting accuracy is compa-
rable among different methods, but botH'#4"¢ and FGM can obtain better prediction
performances than SVM-RFE in a small number (less than 26gletted features on both
News20.binanandURLL These results show that the proposed method with Hamming
loss can work well on feature selection tasks especiallywvdm®osing only a few features.
FS“mming glso performs better thap-SVM on News20.binaryn most range of selected

features. This is possibly becausenodels are more sensitive to noisy or redundant fea-
tures orNews20.binarglataset.

3http://www.csie.ntu.edu.tW/‘chin/IibsvmtooIs/da(a!s
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FIGURE 3. Testing accuracy on different datasets
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FIGURE 4. The sparsity of features of EL%TW with varying B
on different datasets. Each row bar with different colorespents the
different subset of features selected under curfgnivhere the white
region means the features are not selected.

Figure[4 shows that our method with the smialwill select smaller number of features
than the largeB. We also observed that most of features selected by the ggnalso
appeared in the subset of features using the larg&his phenomenon can be obviously
observed orNews20.binary This leads to the conclusion that g™ can select the
important features in the given datasets due to the inséhsitf parameterB. However,
we notice that not all the features in the selected subsetaitifes with smalleB fall
into that of subset of features with the lar@e so our method is non-monotonic feature
selection. This argument is consistent with the test aoguiraFigure[3. News20.binary
seems to be monotonic datasets from Figdre 4, sinéé’FS™Y, FGM and SVM-RFE
demonstrate similar performance. HowewdRL1 is more likely to be non-monotonic,
as our method and FGM can do better than SVM-RFE. All the fefdy that the pro-
posed method is comparable with FGM and SVM-RFE. And it almanstrates the non-
monotonic property for feature selection.

8.4. Feature Selection for Image Retrieval. In this subsection, we demonstrate the spe-
cific multivariate performance measures are important kecééeatures for real applica-
tions. In particular, we evaluat®, measure (commonly used performance measure) for
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FIGURE 5. TestingF; scores orimagedataset.

the task of image retrieval. Due to the success of transfaymmiultiple instance learning

into a feature selection problem by embedded instancete®iewe use the same strategy

in Algorithm 4.1 of [6] to construct a dense and high-dimensil dataset on a prepro-
cessed image dalfa This dataset is used in B8] for multi-instance learningcdntains

five categories and, 000 images. Each image is represented as a bag of nine instances
generated by the SBN methdd [20]. Each image bag is repezsbgta collection of nine

4http://Iamda.nju.edu.cn/daﬂatlIMLimage.ashx
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TABLE 2. The macro-average testing performance comparisonsg@mon
different methods. The quantities in the parentheses septevon/lost

of the current method comparing with £S,,. The last column in-
dicates the average number of features is actually useceircubrent
method for a specific measure. The symbol * indicates thell®f
significance at).95 according to t-test applied to pairs of results over

classes
Dataset| method | i Rec@2p PRBEP | #selected features
FSE .0 92.07 95.77 93.25 | 787.6/658.9/508.3
Sector | FS'*™ming | 84.99(12/91)* 90.01(0/71)* 85.54(0/86)* 689.2
SVM2 .. | 33.35(1/104)* 95.52(11/19) 91.24(11/47)* 55,197
FSE .0 77.56 91.21 81.46 | 1,301/1,186/931
News20| FS'“™ming | 49 61(0/20)* 66.32(0/20)* 52.14(0,/20)* 485.1
SVM2 .. | 55.53(0/20)* 93.08(16/2)  80.83 (6/11) 62,061

15-dimensional feature vectors. After that, following,[Ble natural scene image retrieval
problem turns out to be a feature selection task to seleetaat embedded instances for
prediction. Themagedataset are split randomly with the proportion of 60% foirtirsg
and 40% for testing (Tabld 1). Sindg-score is used for performance metric, we perform

FS5 . for Fi-score, namely FS, ,,. as well as other state-of-the-art feature selection
methods. As mentioned above, FGM and'£%"""? have similar performances, we will
not report the results of FGM here. %79 and FS, ;,; use the fixed?' = 10 x n.
For other methods, we use the previous settings. The teBtinmglues of all methods on
each category are reported in Figlle 5.

From Figurd®, we observe that P'S,. and F$“"""9 achieve significantly improved
performance over -SVM in term of I, -score especially when choosing less than fea-
tures. Moreover, SVM-RFE also outperforipsSVM on three categories out of five. This
verifies tha¥, penalty does not perform as well@smethods like F§',,,. and F$*77"9
on dense and high-dimensional datasets. It is possiblyuse¢a-norm penalty is very
sensitive to dense and noisy features. We also observe 8jat F performs better than
FSemming and SVM-RFE on four over five categories-bmrm-F performs competi-
tively but it is unstable and time-consuming as shown ini8af@.2. All these facts imply
that directly optimizingF; measure is useful to boost performance measure, and our

proposed F§ ,,. is efficient and effective.

8.5. Multivariate Performance Measures for Document Retrieval. In this subsection,
we focus on feature selection for different multivariatefpemance measures on imbal-
anced text data shown in Talilé 1. For multiclass classifingiroblems, one vs. rest
strategy is used. The comparing model is SXYM B Following [11], we use the same
notation SVM,,,,; for different multivariate performance measures. The camdrused
for training SVMP"/ can work for different measures byoptionﬁ. In our experiments,
we search th€,,, s in the same rang@~°, ..., 2% as in [11]. We choose the one which

5Www.cs.cornelI.edu/PeopIe/tj/szight/svm_perf.htmI
6 svmperflearn -cCy,,r -w 3 —b 0 trainfile trainmodel
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FIGURE 6. The average performance improvement of ES with
varying B on different datasets.

demonstrates the best performance of SY). to each multivariate performance mea-
sure for comparison. ES,;,; and F$“7""" fix Crgar,,..,. = 0.1 x n for News20
except.0 x n for Sector For Rec@Fk, we usek as twice the number of positive examples,
namelyRec@2p The evaluation for this measure uses the same strategyebtigice the
number of positive examples as positive in the test dataaetsthen calculatRec@?2p
Table[2 shows the macro-average of the performance ovelaalies in a collection in
which both FS ;.. and F$“"/""9 at B = 250 are listed. The improvement of ES;,;

ulti

over F$“"9 and SVM;,,..; With respect to differen3 values are reported in Fig-
ure[8. From Tablgl2, FS,,,; is consistently better than EE7™"9 on all multivariate
performance measures and two multiclass datasets. Siregalts can be obtained com-
paring with SVM,; ., while the only exception is the measiRec@2mn News20where
SVMZ . ..; is a little better than FS,;,,. The largest gains are observed for score on
all two text classification tasks. This implies that a smailiipber of features selected by
FS, ..:; is enough to obtain comparable or even better performanceifferent measures
than SVM: ,,;; using all features.

From Figurd®, F§,;,; consistently performs better than/&.""" for all of the mul-
tivariate performance measures from the figures in thenleftd side. Moreover, the figures
in the right-hand side show that the small number of featareggood forF; measures,
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FIGURE 7. TestingF; in terms of the average number of selected fea-
tures on Sector and News20.

but poor for other measures. As the number of features inesgRec@2p and PRBEP
can approach to the results of SV)y},,; and all curves become flat. The performance of
PRBEP and Rec@2p is relatively stable when sufficient features are seledved our
method can choose very few features for fast prediction. Afameasure, our method is
consistently better than SV4,,,;, and the results show significant improvement over all
range ofB. This improvement may be due to the reduction of noisy or imdormative
features. Furthermore, ES,,; can achieve better performance measures thﬁﬁb s Y

We also compared different feature selection algorithroh sis SVM-RFE anéi -SVM
on SectorandNews20n the same setting as the previous sections. The resulsrirstof
F1 measure are reported in Figlie 7. We clearly observe Bjmllt—‘i outperformg;-SVM
on both datasets, and comparable or even better than SVM-R#E& small number of
features, FS,,;,; can still demonstrate very good F1 measure.

9. CONCLUSION

In this paper, we propose a generalized sparse regulaorédture selection, and the
unified feature selection framework for general loss fuori We particularly study in
details for multivariate losses. To solve the resultantnojiation problem, a two-layer
cutting plane algorithm was proposed. The convergenceeptppf the proposed algo-
rithm is studied. Moreover, connections to a variety ofestaftthe-art feature selection
methods are discussed in details. A variety of analyses hypeoing with the various
feature selection methods show that the proposed methagpéevisr to others. Experi-
mental results show that the proposed method is comparatieRr@M and SVM-RFE
and better thah, models on feature selection task, and outperforms SVM fdtivadate
performance measures on full set of features.
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Appendices

A. PROOF OFPROPOSITION1

Since the loss termA (7', 7') = O forall 7’ € ), we can equivalently transform Problem

1 (& ’
i - w C
Wi €20 2 <;| t”2> e
T

st.&>by — Y (wy,al), vy € Y\,

t=1

into the following optimization problem

MH

St&>by — ) (wg,al), vy e ).

t=1

By introducing a new variable € R and moving out summation operator from objective
to be a constraint, we can obtain the equivalent optimingiimblem as

Lo
i = C
il v et

T

st E2by =Y (W, &), vy €Y

t=1
T
S ] < .
t=1

We can further simplify above problem by introducing anotfeiables) € R™ such that
HWtH < ps, Yt = 1,... ,T, to be

1
min —u? 4+ C¢

W,u,p,€>0 2

T
S.t. 5 Z Wt7 a E

Zpt <u
=1

||Wt|| SPtth: 17"'7T'

<l

We know that for each, ||w;|| < p; is a second-order cone constraint. Following the
recipe of [5], the self-dual conev;||2 < n;,Vt = 1,...,T can be introduced to form the
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Lagrangian function as follows

L(W, & u, p; o, T,7,V,1)

T
1
= 5’[1,2—’—05—2@@’ <§_by’+zwt7 >_T§
v t=1
T

+7<Zpt - U) - Z(Wt,Wt) +Mepr),

t=1

with dual variablesy, € Ry, 7 € R4, v € Ry. The derivatives of the Lagrangian with
respect to the primal variables have to vanish which leattetéollowing KKT conditions:

Zayay vt=1,...,T

C - Zay/—r—o

U—V
y=n,Vt=1,...,T

By substituting all the primal variables with dual variabley above KKT conditions, we
can obtain the following dual problem,

L o
max —57 —i—_z/ag/bg,

a7y

s |3

Vi=1,...,T

Za— <C,ay >0,V €)Y

v

By settingd = 37 and A = {} ., ay < C,ay > 0,¥y € Y}, we can reformulate
above problem as

max —0 + Z by
0,acA — vy

1
s.t. §aTQtoz <ovt=1,...,T

whereQ%,_g,, = <at,, o ). According to the property of self-dual cone [3], we can abta
the primal solution from its dual a®; = —u vy = Zg, ay/ag, wherey; is the dual
variable of thej*" quadratic constraint such et pj =1, €ERy,Vi=1,...,m
By constructing Lagrangian with dual variablesvith respect t@, we can recover Prob-
lem

(29) max min —3 Z > ayay (Z QY. ) + ; ag by,

—//

whereMp = {Zthl we=1,u; > 0,Vt =1,...,T}. This completes the proof.
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B. PROOF OFTHEOREM 2

Given the Problem

30 i Doy > deD
(30) min max Fy(a) or Jmin v v = Fa(o), Vd € D,

we have the equivalent optimization problem as

max —y
a€EA,y

st > Fa(a),vd € D.

The outer layer of Algorithm 2 can generate a sequence ofgurafiions ofl as{d*, ..., d"}
afterk iterations. In the:th iteration, the most violated constraifft™! is found in terms of
ay, SO thatFgi+1 () = maxaep Fa(a) according to Problem’ = arg maxqep Falat).
Hence, we can construct two sequenfes} and{¥, } such that

(31) Y = max Fat(ag)
42 Te = min Faen = i, gy Faled)

Suppose that we can solvgin,c 4 max;<;<; Fat(«) exactly. Due to the equivalence to
Problem[(2D), it means that we can obtain the exact solufiteeqoroblem[(2P). Based on
this assumption, equation {31) can be further reformed as
¢ L = 2 Far o) = g Farloo)

This turns out to be the same problem of FGMI[26]. For self-pateness, we give the
theorem as follows,

Theorem 3 ([26]). Let (a*,7*) be the globally optimal solution pair of Problein {30),
sequence$y, } and{¥, } have the following property

(34) Ve <k <
Ask increases{y, } is monotonically increasing anffy,, } is monotonically decreasing.

Based on above theorem, global optimal solution can berddafter a finite number of
iterations. However, the assumption of the accurate swidtr (29) usually has no formal
guarantee. We have already proven in Theorem 1 that thepmablem of Algorithm 2 can
reach the desired precisierafter a finite number of iterations by Algorithm 1. Therefore
according to Algorithm 2, we can construct the following sence

/
- (o) < :
(35) 7, = max Far(ar) min max Far(oy) + e

By combining inequalities(34) and(35), we obtain the failog inequalities
(36) Y, — €<, < < Ty

After a finite number of iterations, the global optimal sautis +* =%, =% =Tk
Hence, the solution of the Algorithm 2 may be not less tharidier boundy’ bye. Itis
complete for Theorem 2.
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