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A FEATURE SELECTION METHOD FOR MULTIVARIATE PERFORMANCE
MEASURES

QI MAO AND IVOR W. TSANG

ABSTRACT. Feature selection with specific multivariate performancemeasures is the key
to the success of many applications, such as image retrievaland text classification. The ex-
isting feature selection methods are usually designed for classification error. In this paper,
we propose a generalized sparse regularizer. Based on the proposed regularizer, we present
a unified feature selection framework for general loss functions. In particular, we study the
novel feature selection paradigm by optimizing multivariate performance measures. The
resultant formulation is a challenging problem for high-dimensional data. Hence, a two-
layer cutting plane algorithm is proposed to solve this problem, and the convergence is
presented. In addition, we adapt the proposed method to optimize multivariate measures
for multiple instance learning problems. The analyses by comparing with the state-of-
the-art feature selection methods show that the proposed method is superior to others.
Extensive experiments on large-scale and high-dimensional real world datasets show that
the proposed method outperformsl1-SVM and SVM-RFE when choosing a small subset
of features, and achieves significantly improved performances over SVMperf in terms of
F1-score.

1. INTRODUCTION

Machine learning methods have been widely applied to a variety of learning tasks (e.g.
classification, ranking, structure prediction, etc) arising in computer vision, text mining,
natural language processing and bioinformatics applications. Depending on applications,
specific performance measures are required to evaluate the success of a learning algorithm.
For instance, the error rate is a sound judgment for evaluating the classification perfor-
mance of a learning method on datasets with balanced positive and negative examples.
On the contrary, in text classification where positive examples are usually very few, one
can simply assign all testing examples with the negative class (the major class), this trivial
solution can easily achieve very low error rate due to the extreme imbalance of the data.
However, the goal of text classification is to correctly detect positive examples. Hence,
the error rate is considered as a poor criterion for the problems with highly skewed class
distributions [11]. To address this issue,F1-score and Precision/Recall Breakeven Point
(PRBEP) are employed as the evaluation criteria for text classification. Besides this, in
information retrieval, search engine systems are requiredto return the topk documents
(images) with the highest precision because most users onlyscan the first few of them
presented by the system, so precision/recall atk are preferred choices.

Instead of optimizing the error rate, Support Vector Machine for multivariate perfor-
mance measures (SVMperf ) [11] was proposed to directly optimize the losses based on a
variety of multivariate performance measures. A smoothingversion of SVMperf [37] was
proposed to accelerate the convergence of the optimizationproblem specially designed
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for PRBEP and area under the Receiver Operating Characteristic curve (AUC). Structural
SVMs are considered as the general framework for optimizinga variety of loss functions
[27, 13, 28]. Other works optimize specific multivariate performance measures, such as
F-score [21], normalize discount cumulative gain (NDCG) [29], ordinal regression [12],
ranking loss [16] and so on.

For some real applications, such as image and document retrievals, a set of sparse yet
discriminative features is a necessity for rapid prediction on massive databases. However,
the learned weight vector of the aforementioned methods is usually non-sparse. In ad-
dition, there are many noisy or non-informative features intext documents and images.
Even though the task-specific performance measures can be optimized directly, learning
with these noisy or non-informative features may still hurtboth prediction performance
and efficiency. To alleviate these issues, one can resort to embedded feature selection
methods [15], which can be categorized into the following two major directions.

One way is to consider the sparsity of a decision weight vector w by replacingl2-norm
‖w‖2 regularization in the structural risk functional (e.g. SVM, logistic regression) with
l1-norm ‖w‖1 [39, 8, 23]. A thorough study to compare several recently developedl1-
regularized algorithms has been conducted in [33]. According to this study, coordinate
descent method using one-dimensional Newton direction (CDN) achieves the state-of-
the-art performance by solvingl1-regularized models on large-scale and high-dimensional
datasets. To achieve a sparser solution, the Approximationof the zeRO norm Minimization
(AROM) was proposed [30] to optimizel0 models. Its resultant problem is non-convex, so
it easily suffers from local optima. However, the recent results [18] and theoretical studies
[17, 36] have showed thatlp models (wherep < 1) even with a local optimal solution can
achieve better prediction performance than convexl1 models, which are asymptotically
biased [18].

Another way is to sort the weights of a SVM classifier and remove the smallest weights
iteratively, which is known as SVM with Recursive Feature Elimination (SVM-RFE) [9].
However, as discussed in [32], such nested “monotonic” feature selection scheme leads to
suboptimal performance. Non-monotonic feature selection(NMMKL) [32] has been pro-
posed to solve this problem, but each feature correspondingto one kernel makes NMMKL
infeasible for high-dimensional problems. Recently, Tanet al. [26] proposed Feature Gen-
erating Machine (FGM), which shows great scalability to non-monotonic feature selection
on large-scale and very high-dimensional datasets.

The aforementioned feature selection methods [33, 30, 9, 32, 26] are usually designed
for optimizing classification error only. To fulfill the needs of different applications, it is
imperative to have a feature selection method designed for optimizing task-specific perfor-
mance measures.

To this end, we first propose a generalized sparse regularizer for feature selection. After
that, a unified feature selection framework is presented forgeneral loss functions based on
the proposed regularizer. Particularly, in this paper, optimizing multivariate performance
measures is studied in this framework. To our knowledge, this is the first work to opti-
mize multivariate performance measures for feature selection. Due to exponential number
of constraints brought by non-smooth multivariate loss functions [11, 13] and exponential
number of feature subset combinations [26], the resultant optimization problem is very
challenging for high-dimensional data. To tackle this challenge, we propose a two-layer
cutting plane algorithm, includinggroup feature generation(see Section 5.1) andgroup
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feature selection(see Section 5.2), to solve this problem effectively and efficiently. Specif-
ically, Multiple Kernel Learning (MKL) trained in the primal by cutting plane algorithm is
proposed to deal with exponential size of constraints induced by multivariate losses.

This paper is an extension of our preliminary work [19]. The main contributions of this
paper are listed as follows.

• The implementation details and the convergence proof of theproposed two-layer
cutting plane algorithm and MKL algorithm trained in the primal are presented.

• Connections to a variety of the state-of-the-art feature selection methods including
SKM [3], NMMKL [32], l1-SVM [33], l0-SVM [30] and FGM [26] are discussed
in details. By comparing with these methods, the advantagesof our proposed
methods are summarized as follows:
(1) The tradeoff parameterC in l1 SVM [33] is too sensitive to be tuned properly

since it controls both margin loss and the sparsity ofw. However, our method
alleviates this problem by introducing an additional parameterB to control
the sparsity ofw. This separation makes parameter tuning for our methods
much easier than those of SKM [3] andl1 SVM.

(2) NMMKL [32] uses the similar parameter separation strategy, but it is in-
tractable for this method to handle high-dimensional datasets, let alone opti-
mize multivariate losses. The proposed method can readily optimize multi-
variate losses for high-dimensional problems.

(3) FGM [26] is a special case of the propose framework when optimizing square
hinge loss with indicator variables in integer domain. The proposed frame-
work is formulated in the real domain for general loss functions. In particular,
we provide a natural extension of FGM for multivariate losses.

(4) The proposed framework can be interpreted byl0-norm constraint, so it can
be considered as one ofl0 methods. This gives another interpretation of the
additional parameterB.

• Recall that Multiple-Instance Learning via Embedded instance Selection (MILES)
[6], which transforms multiple instance learning (MIL) into a feature selection
problem by embedding bags into an instance-based feature space and selecting
the most important features, achieves state-of-the-art performance for multiple
instance learning problems. Under our unified feature selection framework, we
extend MILES and study MIL for multivariate performance measure. To our best
knowledge, this is seldom studied in MIL scenarios, but it isimportant for the real
world applications of MIL tasks.

• Extensive experiments on several challenging and very high-dimensional real world
datasets show that the proposed method yields better performance than the state-
of-the-art feature selection methods, and outperforms SVMperf using all features
in terms of multivariate performance measures. The experimental results on the
multiple instance dataset show that our proposed method achieves promising re-
sults.

The rest of the paper is organized as follows: We briefly review SVMperf in Section
2. We then introduce the proposed generalized sparse regularizer in Section 3. In partic-
ular, we study the feature selection framework for multivariate performance measures, its
algorithm and its application to multiple instance learning in Section 4, 5 and 7, respec-
tively. Section 6 gives the analysis of connections to a variety of feature selection methods.
The extensive empirical results are shown in Section 8. Finally, conclusive remarks are
presented in the last section.
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In the sequel,A � 0 means that the matrixA is symmetric and positive semidefinite
(psd). We denote the transpose of a vector/matrix by the superscript T and lp norm of
a vectorv by ||v||p. Binary operator⊙ represents the elementwise product between two
vectors/matrices.

2. SVM FOR MULTIVARIATE PERFORMANCEMEASURE

Given a training sample of input-output pairs(xi, yi) ∈ X × Y for i = 1, . . . , n drawn
from some fixed but unknown probability distribution withX ⊆ Rm andY ∈ {−1,+1}.
The learning problem is treated as a multivariate prediction problem by defining the hy-
pothesesh : X → Y that map a tuplex ∈ X of n feature vectorsx = (x1, . . . , xn) to a
tupley ∈ Y of n labelsy = (y1, . . . , yn) whereX = X × . . . ,X andY ⊆ {−1,+1}n.
The linear discriminative function of SVMperf is defined as

(1) hw(x) = argmax
y′∈Y

f(x, y′) = argmax
y′∈Y

n∑

i=1

y′iw
T xi,

wherew = [w1, . . . , wm]T is the weight vector.
To learn the hypothesis (1) from training data, large marginmethod is employed to

obtain the good generalization performance by enforcing the constraints that the decision
value of the ground truth labelsy should be larger than any possible labelsy′ ∈ Y\{y}, i.e.,
f(x, y′) ≥ f(x, y′) + ∆(y, y′), where∆(y, y′) is some type of multivariate loss functions
(several instantiated losses are presented in Section 5.4). Structural SVMs [28, 13] are
proposed to solve the corresponding soft-margin case by1-slack variable formula as,

min
w,ξ≥0

1

2
‖w‖22 + Cξ(2)

s.t.∀y′ ∈ Y\y : wT

n∑

i=1

(yi − y′i)xi ≥ ∆(y, y′)− ξ,

whereC is a regularization parameter that trades off the empiricalrisk and the model
complexity.

The optimization problem (2) is convex, but there is the exponential size of constraints.
Fortunately, this problem can be solved in polynomial time by adopting the sparse approx-
imation algorithm of structural SVMs. As shown in [11], optimizing the learning model
subject to one specific multivariate measure can really boost the performance of this mea-
sure.

3. GENERALIZED SPARSEREGULARIZER

In this paper, we focus on minimizing the regularized empirical loss functional as

(3) min
w

Ω(w) + Cℓ(w),

whereΩ(.) is a regularization function andℓ(.) is any loss function, including multivariate
performance measure losses.

Sincel2-norm regularization is used in (2), the learned weight vector w is non-sparse,
and so the linear discriminant function in (1) would involvemany features for the predic-
tion. As discussed in Section 1, selecting a small set of discriminative features is crucial
to many real applications. In order to enforce the sparsity on w, we propose a new sparse
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regularizer

Ω(w) = min
d∈D

1

2

m∑

j=1

|wj |p
dj

,

whered is in the real domain ofD = {d|∑m
j=1 dj = B, 0 ≤ dj ≤ 1, ∀j = 1, . . . ,m},

p > 0 andB > 0 are two parameters. The optimal solution of the new proposedregularizer
should satisfywj = 0 if dj = 0 since|wj |p = 0 with p > 0 induceswj = 0, otherwise
the objective value approaches to infinite. Thel1-norm constraint

∑m
j=1 dj = B and

0 ≤ dj ≤ 1 will force somedj to be zero, so the correspondingwj is zero,∀j = 1, . . . ,m.
Hence, the parameterB is interpreted as a budget to control the sparsity ofw.

This regularizer is similar to SimpleMKL [24] with each feature corresponding to one
kernel, but SimpleMKL is a special case ofD with B = 1, which also can be interpreted
by the quadratic variational formulation ofl1 norm [2]. However, it is different froml1
whenB 6= 1. To explain the difference, we consider the problem (2) under the general
framework (3). In the separable case, parameterC does not affect the optimum solution
since the errorξ = 0. If l1 norm is applied to replacel2 in Problem (2), the sparsity of
w will be fixed once optimal solution is reached. Hence, parameterB in D now can be
considered as the only factor to enforce sparsity onw. However, in the non-separable
case where errors are allowed, parameterC will also influence the sparsity ofw, butB
is expected to enforce the sparsity ofw more explicitly whenC becomes larger. This
argument will be empirically justified in Section 8.1.

The learning algorithm with the proposed generalized sparse regularizer is formulated
as

min
d∈D

min
w

1

2

m∑

j=1

|wj |p
dj

+ Cℓ(w).(4)

This formulation is more general for feature selection.

Lemma 1. If p ≥ 2, Problem (4) is jointly convex with respect tow andd; otherwise, it is
not jointly convex.

Proof. We only need to prove that, ifp ≥ 2, g(wj , dj) =
|wj|

p

dj
wheredj > 0 is jointly con-

vex with respect towj anddj . The convexity ofg in its domain is established when the fol-

lowing holds:∇2g =




2|wj |
p

d3
j

− p|wj |
p−1

d2
j

− p|wj|
p−1

d2
j

p(p−1)|wj |
p−2

dj


 � 0 ⇔

[
2|wj |2 −p|wj |dj

−p|wj|dj p(p− 1)d2j

]
�

0, which is equivalent tovT∇2gv ≥ 0 for any nonzero vectorv. WLOG, we assume
v = [1 a]T wherea is any real number, then this condition is reduced to:2|wj |2 −
2ap|wj|dj + a2p(p− 1)d2j ≥ 0 ⇔ 2

(
|wj | − apdj

2

)2
≥ a2d2

jp(2−p)

2 . This condition always

holds whenp ≥ 2, which completes the proof. �

In what follows, we focus on the convex formulation withp = 2. In Section 6, we will
discuss the relationships with a variety of the state-of-the-art feature selection methods.

4. FEATURE SELECTION FORMULTIVARIATE PERFORMANCEMEASURES

To optimize the multivariate loss functions and learn a sparse feature representation si-
multaneously, we propose to solve the following jointly convex problem overd and(w, ξ)
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in the case ofp = 2,

min
d∈D

min
w,ξ≥0

1

2

m
∑

j=1

|wj |
2

dj
+ Cξ(5)

s.t. ∀y′ ∈ Y\y : wT 1

n

n
∑

i=1

(yi − y
′
i)xi ≥ ∆(y, y′)− ξ.

The partial dual with respect to(w, ξ) is obtained by Lagrangian functionL(w, ξ, α, τ)

with dual variablesα ≥ 0 andτ ≥ 0 as follows:12
∑m

j=1
|wj |

2

dj
+Cξ−τξ−∑y′∈Y\y αy′(wT 1

n

∑n
i=1(yi−

y′i)xi−∆(y, y′)+ξ). As the gradients of Lagrangian function with respect to(w, ξ) vanish
at the optimal points, we obtain the KKT conditions:wj = dj

∑
y′∈Y\y αy′

1
n

∑n
i=1(yi −

y′i)xj,i and
∑

y′∈Y\y αy′ ≤ C. By substituting KKT conditions back toL(w, ξ, α, τ), we
obtain the dual problem as

min
d∈D

max
α∈A

−1

2

∑

y′

∑

y′′

αy′αy′′Qd
y′,y′′ +

∑

y′

αy′by′ ,(6)

where∆(y, y) = 0, ∆(y, y′) > 0 if y 6= y′,

Qd
y′,y′′ =

m∑

j=1

dj

( ∑

y′∈Y\y

αy′

1

n

n∑

i=1

(yi − y′i)xj,i

)2

=

m∑

j=1

( ∑

y′∈Y\y

αy′

1

n

n∑

i=1

(yi − y′i)xj,i

√
dj

)2

= 〈ay′ , ay′′〉,
ay′ = 1

n

∑n
i=1(yi − y′i)(xi ⊙

√
d), by′ = 1

n
∆(y, y′), andA = {α|∑y′ αy′ ≤ C,α ≥

0}. Problem (6) is a challenging problem because of the exponential size ofα and high-
dimensional vectord for high-dimensional problems.

5. TWO-LAYER CUTTING PLANE ALGORITHM

In this section, we propose a two-layer cutting plane algorithm to solve Problem (6)
efficiently and effectively. The two layers, namely group feature generation and group
feature selection, will be described in Section 5.1 and 5.2,respectively. The two-layer
cutting plane algorithm will be presented in Section 5.3 and5.4.

5.1. Group Feature Generation. By denotingS(α, d) = − 1
2

∑
y′

∑
y′′ αy′αy′′Qd

y′,y′′ +∑
y′ αy′by′ , Problem (6) turns out to be

min
d∈D

max
α∈A

S(α, d).

Since domainsD andA are nonempty, the functionS(α∗,d) is closed and convex for
all d ∈ D given anyα∗ ∈ A, and the functionS(α,d∗) is closed and concave for
all α ∈ A given anyd∗ ∈ D, the saddle-point property:mind∈D maxα∈A S(α, d) =
maxα∈A mind∈D S(α, d) holds [4].

We further denoteFd(α) = −S(α, d), and then the equivalent optimization problems
are obtained as

min
α∈A

max
d∈D

Fd(α) or min
α∈A,γ

γ : γ ≥ Fd(α), ∀d ∈ D.(7)
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Cutting plane algorithm [14] could be used here to solve thisproblem. Sincemaxd∈D Fd(α) ≥
Fdt(α), ∀dt ∈ D, the lower bound approximation of (30) can be obtained bymaxd∈D Fd(α) ≥
maxt=1,...,T Fdt(α). Then we minimize Problem (30) over the set{dt}Tt=1 by,

min
α∈A

max
t=1,...,T

Fdt(α) or min
α∈A,γ

γ :γ≥Fdt(α), ∀t=1,. . .,T.(8)

As from [22], such cutting plane algorithm can converge to a robust optimal solution within
tens of iterations with the exact worst-case analysis. Specifically, for a fixedαt, the worst-
case analysis can be done by solving,

(9) dt = argmax
d∈D

Fd(α
t),

which is referred to as the group generation procedure. Eventhough Problem (8) and (9)
cannot be solved directly due to the exponential size ofα, we will show that they are
readily solved in Section 5.2 and Section 5.4, respectively.

5.2. Group Feature Selection. By introducing dual variablesµ = [µ1, µ2, . . . , µT ]
T ≥

0, we can transform (8) to an MKL problem as follows,

(10) max
α∈A

min
µ∈MT

−
1

2

∑

y′

∑

y′′

αy′αy′′

(

T
∑

t=1

µtQ
dt

y′,y′′

)

+
∑

y′

αy′by′ ,

whereMT = {∑T
t=1 µt = 1, µt ≥ 0, ∀t = 1, . . . , T }.

However, due to the exponential size ofα, the complexity of Problem (29) remains. In
this case, state-of-the-art multiple kernel learning algorithms [25, 24, 31] do not work any
more. The following proposition shows that we can indirectly solve Problem (29) in the
primal form.

Proposition 1. The primal form of Problem (29) is

min
w1,...,wT ,ξ≥0

1

2

( T∑

t=1

‖wt‖2
)2

+ Cξ(11)

s.t. ξ ≥ by′ −
T∑

t=1

〈wt, at
y′〉, ∀y′ ∈ Y\y.

According to KKT conditions, the solution of (29) is

wt = µt

∑

y′

αy′aty′(12)

whereµt is a dual value of thetth constraint of (8).

The detailed proof of Proposition 1 is given in the supplementary material.
Here, we define the regularization term asΩ(w) = 1

2

(∑T
t=1 ‖wt‖2

)2
with w = [w1, . . . ,wT ]

T and
the empirical risk function as

(13) Remp(w) = max

(
0, max

y′∈Y\y
by′ −

T∑

t=1

〈wt, at
y′〉
)
,

which is a convex but non-smooth function w.r.tw. Then we can apply the bundle method
[27] to solve this primal problem. Problem (29) is transformed as

min
w

J (w) = Ω(w) + CRemp(w).
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SinceRemp(w) is a convex function, its subgradient exists everywhere in its domain [10].
Supposewk is a point whereRemp(w) is finite, we can formulate the lower bound accord-
ing to the definition of subgradient,

Remp(w) ≥ Remp(wk) + 〈w − wk, pk〉
= 〈w, pk〉+Remp(wk)− 〈wk, pk〉

where subgradientpk ∈ ∂wRemp(wk) is atwk. In order to obtainpk, we need to solve the
following inference problem

(14) yk = arg max
y′∈Y\y

by′ −
T∑

t=1

〈wt, aty′〉

which is a problem of integer programming. We delay the discussion of this problem to
Section 5.4. After that, we can obtain the subgraidentpk

t = −at
yk , so thatRemp(wk) =

byk −∑T
t=1〈wt, at

yk〉 = byk + 〈wk, pk〉.
Given the subgradient sequencep1, p2, . . . , pK , the tighter lower bound forRemp(w)

can be reformulated as follows,

Remp(w) ≥ RK
emp(w) = max

(
0, max

1≤k≤K
〈w, pk〉+ qk

)
,

whereqk = Remp(wk)−〈wk, pk〉 = byk . Following the bundle method [27], the criterion
for selecting the next pointwK+1 is to solve the following problem,

min
w1,...,wT ,ξ≥0

1

2

( T∑

t=1

‖wt‖2
)2

+ Cξ(15)

s.t. ξ ≥ 〈w, pk〉+ qk, ∀k = 1, . . . ,K.

The following Corollary shows that Problem (15) can be easily solved by QCQP solvers,
and the number of variables is independent of the number of examples.

Corollary 1. In terms of Proposition 1, the dual form of Problem (15) is

max
α∈AK

max
θ

−θ +

K∑

k=1

αkq
k(16)

s.t.
1

2

∥∥∥∥∥

K∑

k=1

αkpkt

∥∥∥∥∥

2

2

≤ θ, ∀t = 1, . . . , T,

whereAK = {∑K
k=1 αk ≤ C,αk ≥ 0, ∀k = 1, . . . ,K}, and which is a QCQP problem

with T + 1 constraints andK + 1 variables.

The proof of Corollary 1 follows the same derivation of Proposition 1 withpk
t = −at

yk ,

qk = byk and the size ofαk asK. Consequently, the primal variables are recovered by
wt = −µt

∑
k αkpk

t .
LetJK(w) = Ω(w)+CRK

emp(w), theǫ-optimal condition in Algorithm 1 ismin0≤k≤K J (wK)−
JK(wK) ≤ ǫ. The convergence proof in [27] does not apply in this case as the Fenchel
dual ofΩ(w) fails to satisfy the strong convexity assumption ifK > 1. As K = 1, Al-
gorithm 1 is exactly the bundle method [27]. WhenK ≥ 2, we can adapt the proof of
Theorem5 in [13] for the following convergence results.
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Algorithm 1 Groupfeatureselection

1: Input: x = (x1, . . . , xn), y = (y1, . . . , yn), an initial group setW , ǫ, C
2: Y = ∅, k = 0
3: repeat
4: k = k + 1
5: Finding the most violatedy′

6: Computepk andqk

7: Y = Y ∪ {y′}
8: Solving Problem (16) overW andY
9: until ǫ-optimal

Theorem 1. For any0 < C, 0 < ǫ ≤ 4R2C and any training example(x1, y1), . . . , (xn, yn),
Algorithm 1 converges to the desired precisionǫ after at most,

⌈
log2

(
∆

4R2C

)⌉
+

⌈
16R2C

ǫ

⌉

iterations.R2 = maxdt,y′ ‖ 1
n

∑n
i=1(yi − y′i)(xi ⊙

√
dt)‖2, ∆ = maxy′ ∆(y′, y) and⌈.⌉

is the integer ceiling function.

Proof. We adapt the proof of Theorem 5 in [13], and sketch the necessary changes corre-
sponding to Problem (29). For a given setWT , the dual objective of(8) can be reformu-
lated as

max
α∈A

min
d∈WT

Θd(α) = −
1

2

∑

y′

∑

y′′

αy′αy′′Q
d
y′,y′′ +

∑

y′

αy′by′ .

Since there are theT constrained quadratic problems, we consider eachd ∈ WT at one
time asmaxα∈A Θd(α), whereQd is positive semi-definite, and derivative∂Θd(α) = b−
Qdα. The Lemma 2 in [13] states that a line search starting atα along an ascent direction
η with maximum step-sizeC > 0 improves the objective by at leastmax0≤β≤C

{
Θd(α+

βη) − Θd(α)
}

≥ 1
2 min

{
C, ∂Θd(α)

T η

ηT Qdη

}
∂Θd(α)

T η. If we consider subgradient descent

method, the line search along the subgradient of objective is∂Θd∗(α) whered∗ = mind∈WT
Θd(α).

Therefore, the maximum improvement is

max
0≤β≤C

{Θd∗(α+ βη) −Θd∗(α)}

≥ 1

2
min

{
C,

∂Θd∗(α)T η

ηTQd∗

η

}
∂Θd∗(α)T η

≥ 1

2
min

d∈WT

{
C,

∂Θd(α)
T η

ηTQdη

}
∂Θd(α)

T η.(17)

We can see that it is a special case of [13] ifT = 1. According to Theorem 5 in [13],
for a newly added constraint̂y and someγd > 0, we can obtain∂Θd(α)

T η = γd by
setting the ascent directionηŷ = 1 for the newly added̂y andηy = − 1

C
αy for the others.

Here, we setγ = mind∈WT
γd so as to be the lower bound of∂Θd(α)

T η, ∀d ∈ WT . In
addition, the upper bound forηTQdη ≤ 4R2, ∀d ∈ WT can also be obtained by the fact
thatηTQdη = Qd

ŷ,ŷ − 2
C

∑
y′ αy′Qd

y′,ŷ +
1
C2

∑
y′

∑
y′′ αy′αy′′Qd

y′,y′′ ≤ R2 + 2
C
CR2 +

1
C2C

2R2 = 4R2, ∀d ∈ WT . By substituting them back to (17), the similar result shows
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the increase of the objective is at least

min

{
Cγ

2
,
γ2

8R2

}
.

Moreover, the initial optimality gap is at mostC∆. Following the remaining derivation
in [13], the overall bound results are obtained. �

Remark 1: Problem (15) is similar to Support Kernel Machine (SKM) [3] in which
the multiple Gaussian kernels are built on random subsets offeatures, with varying widths.
However, our method can automatically choose the most violated subset of features as a
group instead of a subset of random features. Such random features lead to a local opti-
mum; while our method could guarantee theǫ-optimality stated in Theorem 1. However,
due to the extra cost of computing nonlinear kernel, the current model are only imple-
mented for linear kernel with learned subsets of features.

Remark 2: The original Problem (30) could be easily formulated as a QCQP problem
with exponential size of variablesα needed to be optimized and huge number of base
kernels in the quadratic term. Unfortunately, the standardMKL methods cannot handle
Problem (30) even for a small dataset, let alone the standardQCQP solver. However,
Corollary 1 makes it practical to solve a sequence of small QCQP problems directly using
standard off-line QCQP solvers, such as Mosek. Note that state-of-the-art MKL solvers can
also be used to solve the small QCQP problems, but they are notpreferred because their
solutions are less accurate than that of standard QCQP solvers, which can solve Problem
(16) more accurately in this case.

5.3. The Proposed Algorithm. Algorithm 1 can obtain theǫ-optimal solution for the
original dual problem (8). By denotingGd(α) = 1

2 ||
∑K

k=1 αkpk||22 −∑K
k=1 αkq

k, the
group feature generation layer can directly use theǫ-optimal solution of the objectiveGd(α)
to approximate the original objectiveFd(α). The two-layer cutting plane algorithm is
presented in Algorithm 2. From the description of Algorithm2, it is clear to see that

Algorithm 2 The Two-Layer Cutting Plane Algorithm

1: Input: x = (x1, . . . , xn), y = (y1, . . . , yn), ǫ, C
2: W = ∅, t = 0
3: repeat
4: t = t+ 1
5: Finding the most violateddt

6: W = W ∪ {dt}
7: Call group featureselection(x, y, W , ǫ, C)
8: until ǫ-optimal

groups are dynamically generated and augmented into activesetW for group selection.
In terms of the convergence proof of FGM in [26] and Theorem 1,we can obtain the

following theorem to illustrate the approximation with anǫ-optimal solution to the original
problem.

Theorem 2. After Algorithm 2 stops in a finite number of steps, the difference between
optimal solution(d∗, α∗) of Problem (29) and the solution(d, α) of Algorithm 2 isFd(α)−
Fd∗(α

∗) ≤ ǫ.

The detailed proof of Theorem 2 is given in the supplementarymaterial.
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5.4. Finding the Most Violated y′ and d. Algorithm 1 and Algorithm2 need to find the
most violatedy′ andd, respectively. In this subsection, we discuss how to obtainthese
quantities efficiently. Algorithm 1 needs to calculate the subgradient of the empirical risk
functionRK

emp(w). SinceRK
emp(w) is a pointwise supremum function, the subgradient

should be in the convex hull of the gradient of the decomposedfunctions with the largest
objective. Here, we just take one of these subgradients by solving

yk = arg max
y′∈Y\y

∆(y′, y)−
n∑

i=1

(yi − y′i)vi,(18)

wherevi =
∑T

t=1 wT
t (xi ⊙

√
dt). After obtainingyk, it is easy to computepk

t =

− 1
n

∑n
i=1(yi − yki )(xi ⊙

√
dt) andqk = 1

n

∑n
i=1 ∆(yk, y).

For finding the most violatedy′, it depends on how to define the loss∆(y, y′) in Prob-
lem (18). One of the instances is the Hamming loss which can bedecomposed and com-
puted independently, i.e.,∆(y, y′) =

∑n
i=1 δ(yi, y

′
i), whereδ is an indicator function with

δ(yi, y
′
i) = 0 if yi = y′i, otherwise1. However, there are some multivariate performance

measures which could not be solved independently. Fortunately, there are a series of struc-
tured loss functions, such as Area Under ROC (AUC), Average Precision (AP), ranking
and contingency table scores and other measures listed in [11, 34, 27], which can be im-
plemented efficiently in our algorithms. In this paper, we only use several multivariate
performance measures based on contingency table as the showcases and their findingyk

could be solved in time complexityO(n2) [11].
Given the true labelsy and predicted labelsy′, the contingency tables is defined as

follows

y=1 y=-1
y’=1 a b
y’=-1 c d

F1-score: TheFβ-score is a weighted harmonic average of Precision and Recall. Ac-

cording to the contingency table, we can obtainFβ = (1+β2)a
(1+β2)a+b+β2c

. The most com-
mon choice isβ = 1. The corresponding balancedF1 measure loss can be written as
∆F1

(a, b, c, d) = 100(1− F1). Then, Algorithm 2 in [11] can be directly applied.
Precision/Recall@k: In search engine systems, most users scan only the first few links

that are presented. In this situation, Prec@k and Rec@k measure the precision and recall
of a classifier that predicts exactlyk documents, i.e.,Prec@k = a

a+b
andRec@k = a

a+c
,

subject toa + b = k. The corresponding loss could be defined as∆Prec@k = 100(1 −
Prec@k) and∆Rec@k = 100(1 − Rec@k). And the procedure of finding most violated
y is similar to F-score, while the only difference is keeping constrainta + b = k and
removinga+ b 6= k.

Precision/Recall Break-Even Point (PRBEP): The Precision/Recall Break-Even Point
requires that the precision and its recall are equal. According to above definition, we can
see PRBEP only adds a constrainta + b = a + c, or b = c. The corresponding loss is
defined as∆PRBEP = 100(1 − PRBEP ). Finding the most violatedy should enforce
the constraintb = c.
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After t iterations in Algorithm 2, we transformα in Problem (9) from the exponential
size to a small sizeαt. Now, finding the most violatedd becomes

dt =argmax
d∈D

Gd(α
t)(19)

=argmax
d∈D

1

2

∥∥∥∥
K∑

k=1

αt
kpk

∥∥∥∥
2

2

−
K∑

k=1

αt
kq

k

=argmax
d∈D

1

2

∥∥∥∥
1

n

K∑

k=1

αt
k

n∑

i=1

(yi − yki )(xi ⊙
√

d)

∥∥∥∥
2

=argmax
d∈D

1

2n2

m∑

j=1

c2jdj

wherecj =
∑K

k=1 α
t
k

∑n
i=1(yi − yki )xi,j . With the budget constraint

∑m
i=1 di = B in

D, (19) can be solved by first sortingc2j ’s in the descent order and then setting the firstB

numbers corresponding todtj to 1 and the rest to0. This takes onlyO(m logm) operations.

6. RELATIONS TO EXISTING METHODS

In this section, we will discuss the relationships between our proposed method for mul-
tivariate loss (5) and the state-of-the-art feature selection methods including SKM [3],
NMMKL [32], l1-SVM [33], l0-SVM [30] and FGM [26]. It can be easily adapted to the
general framework (4).

6.1. Connections to SKM and l1 SVM. Let D1 = {d|∑m
j=1 dj = 1, dj ≥ 0, ∀j =

1, . . . ,m} be in the real domain. We observe thatD = D1 whenB = 1. According to
[24], we transform Problem (5) in the special case ofB = 1 to the following equivalent
optimization problem,

min
w,ξ≥0

1

2

(
m∑

j=1

|wj |
)2

+ Cξ(20)

s.t.∀y′ ∈ Y\y : wT 1

n

n∑

i=1

(yi − y′i)xi ≥ ∆(y, y′)− ξ.

SKM [3] attempts to obtain the sparsity ofw by penalizing the square of a weighted block
l1-norm(

∑k
j=1 γj ||wj ||2)2 wherek is the number of groups andwj is the weight vector

for the features in thejth group. The regularizer(
∑m

j=1 |wj |)2 used in (20) is the square of
thel1 norm(||w||1)2, which is a special case of SKM whenk = m andγj = 1, i.e., each
group contains only one feature. Minimizing the square of the l1-norm is very similar to
l1-norm SVM [33] by settingΩ(w) = ||w||1 with the non-negative (convex) loss function.

Regardless ofl1-norm or the square ofl1-norm, the parameterC is too sensitive to be
tuned properly since it controls both margin loss and the sparsity of w. However, our
method alleviates this problem by two parametersC andB which control margin loss and
sparsity ofw, respectively. This separation makes parameter tuning of our method easier
than those of SKM andl1 SVM.
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6.2. Connection to NMMKL. Instead of directly solving Problem (20), we formulate
a more general problem (5) by introducing an additional budget parameterB, which di-
rectly controls the sparsity ofw. The advantage is to make parameter tuning easily done
sinceC is not sensitive to the sparsity ofw. This strategy is also used in NMMKL [32],
but one feature corresponding to one base kernel makes NMMKLintractable for high-
dimensional problems. The multivariate loss is even hard tobe optimized by NMMKL
since there are exponential dual variables in the dual form of NMMKL from the exponen-
tial number of constraints. However, our method can readilyoptimize multivariate loss on
high-dimensional data.

6.3. Connection to FGM. According to the work [40], we can reformulate Problem (20)
as an equivalent optimization problem

min
d∈D1

min
w,ξ≥0

1

2

m∑

j=1

dj |wj |2 + Cξ(21)

s.t.∀y′ ∈ Y\y :
1

n

m∑

j=1

djwj

n∑

i=1

(yi − y′i)xj,i ≥ ∆(y, y′)− ξ.

After the substitutions ofvj =
√
djwj , ∀j = 1, . . . ,m and the general case ofD, we can

obtain the following problem

min
d∈D

min
v,ξ≥0

1

2
‖v‖22 + Cξ(22)

s.t.∀y′ ∈ Y\y : vT
1

n

n∑

i=1

(yi − y′i)(xi ⊙
√

d) ≥ ∆̃(y, y′)− ξ,

wherev = [v1, . . . , vm]T . After deriving Lagrangian dual problem of (22), we observe
that it is same as Problem (6). Problem (19) always finds the most violatedd in the integer
domain{0, 1}m, so the solutions of the following problem solved by the proposed two-
layer cutting plane algorithm is the same as the solutions ofProblem (6)

min
d∈D2

min
v,ξ≥0

1

2
‖v‖22 + Cξ(23)

s.t.∀y′ ∈ Y\y : vT 1

n

n∑

i=1

(yi − y′i)(xi ⊙ d) ≥ ∆̃(y, y′)− ξ,

where the integer domainD2 = {d|∑m
j=1 dj ≤ B,d ∈ {0, 1}m}. This formula can

be equally derived as the extension of FGM for multivariate performance measures by
defining the new hypotheses

(24) h̃v(x) = argmax
y′∈Y

n∑

i=1

y′i(v ⊙ d)T xi,

whereh̃v : X → Y andd ∈ D2. It is not trivial to perform the extension of FGM
to optimize multivariate loss because original FGM method [26] cannot directly apply
to solve the exponential number of constraints. And our domain of d is in real domainD
which is more general than the integer domainD2 used in FGM and the proposed extension
(23), even though the final solutions of (5) and (23) are the same.
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6.4. Connection to l0 SVM. The following Lemma indicates that the proposed formula
can be interpreted byl0-norm constraint.

Lemma 2. (23) is equivalent to the following problem

minw̃,ξ≥0
1

2
‖w̃‖22 + Cξ(25)

s.t. ∀y′ ∈ Y\y : w̃T 1

n

n∑

i=1

(yi − y′i)xi ≥ ∆̃(y, y′)− ξ,

‖w̃‖0 ≤ B.

Proof. Note, at the optimality of (22), WLOG, supposedj = 0, the correspondingvj must
be 0. Thus,‖v‖0 ≤ ‖d‖0. Letw̃ = v⊙d, we have‖w̃‖0 = ‖v⊙d‖0 ≤ min{‖v‖0, ‖d‖0} ≤
‖d‖0 =

∑m
j=1 dj ≤ B. Moreover,‖w̃‖22 = ‖v ⊙ d‖22 = ‖v‖22 at the optimality. Therefore,

the optimal solution of (22) is a feasible solution of (25). On the other hand, for the optimal
w̃ in (25), letv = w̃ anddi = δ(w̃i) whereδ(t) = 1 if t 6= 0; otherwise, 0. So, the optimal
solution of (25) is a feasible solution of (22). �

This gives another interpretation of parameterB from the perspective ofl0-norm. Since
l0-norm||w̃||0 represents the number of non-zero entries ofw̃, soB in our method can be
considered as the parameter which directly controls the sparsity ofw.

7. MULTIPLE INSTANCE LEARNING FOR MULTIVARIATE PERFORMANCEMEASURES

We have already illustrated the proposed framework by optimizing multivariate perfor-
mance measures for feature selection in Section 4. In this section, we extend this approach
to solve multiple instance learning problems which have been employed to solve a variety
of learning problems, e.g., drug activity prediction [7], image retrieval [35], natural scene
classification [20] and text categorization [1], but it is seldom optimized for multivariate
performance measures in the literature. However, it is crucial to optimize the task specific
performance measures, e.g.,F score is widely considered as the most important evaluation
criterion for a learning method in image retrieval.

Multi-instance learning was formally introduced in the context of drug activity predic-
tion [7]. In this learning scenario, a bag is represented by aset of instances where each
instance is represented by a feature vector. The classification label is only assigned to each
bag instead of the instances in this bag. We name a bag as a positive bag if there is at
least one positive instance in this bag, otherwise it is called negative bag. The learning
problem is to decide whether the given unlabeled bag is positive or not. By defining a
similarity measure between a bag and an instance, Multiple-Instance Learning via Embed-
ded instance Selection (MILES) [6] successfully transforms multiple instance learning into
a feature selection problem by embedding bags into an instance-based feature space and
selecting the most important features.

Before discussing the transformation in MILES, we first givethe notations of multiple
instance learning problem. Following the notations in [6],we denoteith positive bags as

B+
i = {x+

i,j}
n
+

i

j=1 which consists ofn+
i instancesx+

i,j , j = 1, . . . , n+
i . Similarly, theith

negative bags is denoted asB−
i = {x−

i,j}
n−

i

j=1. All instances belongs to the same feature
spaceX . The number of positive bags and negative bags areℓ+ andℓ−, respectively. The

instances in all bags are rearranged as{x1, . . . ,xn} wheren =
∑ℓ+

i=1 n
+
i +

∑ℓ−

i=1 n
−
i .
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By considering each instance in the training bags as a candidate for target concepts, the
embedded feature space is represented as

(26) x̂i = [s(x1,Bi), . . . , s(x
n,Bi)]

T ∈ Rn,

where the similarity measure between the bagBi and the instancexk is defined as the
most-likely-cause estimator

(27) s(xk,Bi) = max
j

exp

(
−||xi,j − xk||2

2σ2

)
.

It follows the intuition that the similarity between a concept and a bag is determined by the
concept and the closest instance in this bag. The corresponding labels are constructed as
follows: ŷi = 1 if Bi is a positive bag, otherwisêyi = −1. For a givenℓ+ positive bags
andℓ− negative bags, we form a new classification representation of the multiple instance
learning problem as{x̂i, ŷi}ℓ

++ℓ−

i=1 . For each instancexk, the new feature representation
corresponds to the values of thekth feature variables(xk, ·) is

[s(xk,B+
1 ), . . . , s(x

k,B+
ℓ+
), s(xk,B−

1 ), . . . , s(x
k,B−

ℓ−
)]

where the feature induced byxk provides the useful information for separating the positive
and negative bags. The linear discriminant function

(28) ŷ = sign(〈w, x̂〉+ b)

wherew andb are the model parameters. The embedding induces a possible high-dimensional
space when the number of instances in the training set is large. Since some instances may
not be responsible for the label of the bags or might be similar to each other, many features
are redundant or irrelevant, so MILES employsL1-SVM to select a subset of mapped fea-
tures that is most relevant to the classification problem. However,L1-SVM cannot fulfill
to obtain a high performance over the task-specific measuresbecause it only focuses on
optimizing zero-one loss function. Our proposed Algorithm2 is a natural alternative fea-
ture selection method for multi-variate performance measures. The proposed algorithm for
multiple instance learning to optimize multivariate measures is shown in Algorithm 3.

Algorithm 3 Learning a bag classifier

1: Input: positive bags{B+
i }ℓ

+

i=1, negative bags{B−
i }ℓ

−

i=1, C, andǫ
2: Construct the embedding representation of training data

{(x̂i, ŷi)}, ∀i = 1, . . . , ℓ+ + ℓ−

3: x = [x̂1, . . . , x̂ℓ++ℓ− ] andy = [ŷ1, . . . , ŷℓ++ℓ− ]
4: call Algorithm 2 with arguments (x,y,C,ǫ)
5: Output: parametersw

According to Algorithm 3, we do not need the model parameterb since the structural
SVM is irrelevant to the relative offsetb, i.e., ŷ = argmaxy∈{−1,+1} y〈ŵ, x̂〉.

8. EXPERIMENTS

In this Section, we conduct extensive experiments to evaluate the performance of our
proposed method and state-of-the-art feature selection methods: 1) SVM-RFE [9]; 2)l1-
SVM; 3) FGM [26]; 4)l1-bmrm-F11, which isl1 regularized SVM for optimizing F1 score

1http://users.cecs.anu.edu.au/˜chteo/BMRM.html
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TABLE 1. Datasets used in our experiments

Dataset #classes #features #train #test
points points

News20.binary 2 1,355,191 11,997 7,999
URL1 2 3,231,961 20,000 20,000
Image 5 10,800 1,200 800
Sector 105 55,197 6,412 3,207
News20 20 62,061 15,935 3,993

by bundle method [27]. SVM-RFE and FGM use Liblinear software 2 as the QP solver for
their SVM subproblems. Forl1-SVM, we also use Liblinear software, which implements
the state-of-the-artl1-SVM algorithm [33]. In addition to the comparison for0-1 loss, we
also perform experiments on image data for F1 measure. Furthermore, several specific
measures on the contingency table are investigated on Text datasets by comparing with
SVMperf [11]. All the datasets shown in Table 1 are of high dimensions.

For convenience, we name our proposed two-layer cutting plane algorithm FS∆multi,
where∆ represents different type of multivariate performance measures. We implemented
Algorithm 2 in MATLAB for all the multivariate performance measures listed above, us-
ing Mosek as the QCQP solver for Problem (16) which yields a worse-case complexity of
O(KT 2). Removing inactive constraints from the working set [13] inthe inner layer is
employed for speedup the QCQP problem. Since the values of both K andT are much
smaller than the number of examplesn and its dimensionalitym, the QCQP is very effi-
cient as well as more accurate for large-scale and high-dimensional datasets. Furthermore,
the codes simultaneously solve the primal and its dual form.So the optimalµ andα can
be obtained after solving Problem (16).

For a test patternx, the discriminant function can be obtained byf(x) = 〈w ⊙ d̃, x〉
wherew =

∑n
i=1 βixi, βi =

1
n

∑K
k=1 αk(yi − yki ), andd̃ =

∑T
t=1 µt

√
dt. This leads to

the faster prediction since only a few of the selected features are involved. After computing
pk, the matrices of Problem (16) can be incrementally updated,so it can be done totally in
O(TK2).

8.1. Parameter Sensitivity Analysis. Before comparing FS∆multi with other methods, we
first conduct empirical studies for the parameter sensitivity analysis onNews20.binary. The
goal is to examine the relationships among parametersC andB, performance measures
and the number of selected features with the range ofC in [0.1, 1, 10, 100]× n andB in
[2, 5, 10, 50, 100, 150, 200, 250].

Figure 1(a-b) show the testing accuracy and F1 scores as wellas the number of selected
features by varyingC andB. We observe that the results are very sensitive toC whenB
is very small. This indicates that thel1 model, which is equivalent to the proposed method
in the case ofB = 1, is vulnerable to the choice ofC. On the other hand, the results
are rather insensitive toC whenB is large. Hence, the proposed method is less sensitive
to C than l1 model. We also observe that the proposed method prefers a largeC value
for better performances. Figure 1(c-d) demonstrate the corresponding relationships among
parametersB, C and the number of selected features of Figure 1(a-b). We observe thatB
and the number of selected features always exhibits a lineartrend with a constant slope.
Moreover, the slope remains the same whenC ≥ 10, but a smallC will increase the slope.
This means that, compared withB, parameterC has less influence on the sparsity ofw,

2http://www.csie.ntu.edu.tw/˜cjlin/liblinear/
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FIGURE 1. First row (a-b): Testing Accuracy andF1 scores as well
as the number of selected features of the proposed method FS∆

multi on
News20.binarydataset by varyingC andB. Second row (c-d): The
corresponding relationship among parametersB, C, and the number of
selected features.

and the learned feature selection model becomes stabilizedwhenC ≥ 10. These empirical
results are consistent to the discussions of parameterB in Section 3.

Since largeC needs more iterations to converge according to Theorem 1, the compro-
mise is to setC not too large and letB dominate the selection of features. According to
these observations, we can safely fixC and study the results by varyingB to compare with
other methods in the following experiments.

8.2. Time Complexity Analysis. We empirically study the time complexity of FSF1

multi by
comparing with other methods. Two datasetsNews20.binaryandImage (Desert)are used
for illustration. The detailed setting are shown in Section8.3 and Section 8.4, respectively.
Figure 2 gives the training time over five different methods.OnNews20.binarydataset, we
cannot report the training time forl1-bmrm-F1 sincel1-bmrm-F1 cannot terminate after
more than two days with the maximum iteration1000 and parameterλ ∈ [10−7, 102] due
to the extremely high dimensionality. We observe that the proposed methods are slower
than l1-SVM, but much faster than SVM-RFE andl1-bmrm-F1. In addition, onImage
dataset, when the termination condition with the relative difference between the objective
and its convex linear lower bound lower than0.1 is set,l1-bmrm-F1 also cannot converge
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FIGURE 2. Training time on different datasets

after the maximum iteration, which is consistent with the discussion in Appendix C of [27]
that bundle method withl1 regularizer cannot guarantee the convergence. This leads to the
similar number of selected features (e.g.,98 in Figure 2(b)) even thoughλ is decreasing
gradually.

These observations implies that our proposed two-layer cutting plane method needs less
time for training with guaranteed convergence than bundle method. Moreover, our method
can work on large scale and high dimensional data for optimizing user-specified measure,
but bundle method cannot. As aforementioned,l1-bmrm-F1 is much slower on the high
dimensional datasets in our experiments, so we can only report its results in Section 8.4.

8.3. Feature Selection for Accuracy. Since [11] has proven that SVM∆multi with Ham-
ming loss, namely∆Err(y, y

′) = 2(b+c), is the same as SVM. In this subsection, we eval-
uate the accuracy performances of FS∆

multi for Hamming loss function, namely FShamming
multi

as well as other state-of-the-art feature selection methods. We compare these methods on
two binary datasets,News20.binary3 andURL1 in Table 1. Both datasets are used in [26],
and they are already split into training and testing sets.

We test FGM and SVM-RFE in the gridCFGM = [0.001, 0.01, 0.1, 1, 5, 10]and choose
CFGM = 5 which gives good performance for both FGM and SVM-RFE. This is the
same as [26]. For FShamming

multi , we do the experiments by fixingCFGMmulti
as 0.1 ×

n for URL1 and 1.0 × n for New20.binary. The setting for budget parameterB =
[2, 5, 10, 50, 100, 150, 200, 250] for News20.binary, andB = [2, 5, 10, 20, 30, 40, 50, 60]
for URL1. The elimination scheme of features for SVM-RFE method can be referred to
[26]. For l1-SVM, we report the results of differentC values so as to obtain different
number of selected features.

Figure 3 reports testing accuracy on different datasets. The testing accuracy is compa-
rable among different methods, but both FShamming

multi and FGM can obtain better prediction
performances than SVM-RFE in a small number (less than 20) ofselected features on both
News20.binaryandURL1. These results show that the proposed method with Hamming
loss can work well on feature selection tasks especially when choosing only a few features.
FShamming

multi also performs better thanl1-SVM onNews20.binaryin most range of selected
features. This is possibly becausel1 models are more sensitive to noisy or redundant fea-
tures onNews20.binarydataset.

3http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets
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FIGURE 3. Testing accuracy on different datasets
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FIGURE 4. The sparsity of features of FShamming
multi with varying B

on different datasets. Each row bar with different color represents the
different subset of features selected under currentB, where the white
region means the features are not selected.

Figure 4 shows that our method with the smallB will select smaller number of features
than the largeB. We also observed that most of features selected by the smallB also
appeared in the subset of features using the largeB. This phenomenon can be obviously
observed onNews20.binary. This leads to the conclusion that FShamming

multi can select the
important features in the given datasets due to the insensitivity of parameterB. However,
we notice that not all the features in the selected subset of features with smallerB fall
into that of subset of features with the largeB, so our method is non-monotonic feature
selection. This argument is consistent with the test accuracy in Figure 3.News20.binary
seems to be monotonic datasets from Figure 4, since FShamming

multi , FGM and SVM-RFE
demonstrate similar performance. However,URL1 is more likely to be non-monotonic,
as our method and FGM can do better than SVM-RFE. All the factsimply that the pro-
posed method is comparable with FGM and SVM-RFE. And it also demonstrates the non-
monotonic property for feature selection.

8.4. Feature Selection for Image Retrieval. In this subsection, we demonstrate the spe-
cific multivariate performance measures are important to select features for real applica-
tions. In particular, we evaluateF1 measure (commonly used performance measure) for
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FIGURE 5. TestingF1 scores onImagedataset.

the task of image retrieval. Due to the success of transforming multiple instance learning
into a feature selection problem by embedded instance selection, we use the same strategy
in Algorithm 4.1 of [6] to construct a dense and high-dimensional dataset on a prepro-
cessed image data4. This dataset is used in [38] for multi-instance learning. It contains
five categories and2, 000 images. Each image is represented as a bag of nine instances
generated by the SBN method [20]. Each image bag is represented by a collection of nine

4http://lamda.nju.edu.cn/dataMIMLimage.ashx
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TABLE 2. The macro-average testing performance comparisons among
different methods. The quantities in the parentheses represent won/lost
of the current method comparing with FS∆

multi. The last column in-
dicates the average number of features is actually used in the current
method for a specific measure. The symbol ’*’ indicates the level of
significance at0.95 according to t-test applied to pairs of results over
classes

Dataset method F1 Rec@2p PRBEP #selected features

FS∆multi 92.07 95.77 93.25 787.6/658.9/508.3
Sector FShamming

multi 84.99(12/91)∗ 90.01(0/71)∗ 85.54(0/86)∗ 689.2
SVM∆

multi 33.35(1/104)∗ 95.52(11/19) 91.24(11/47)∗ 55,197

FS∆multi 77.56 91.21 81.46 1,301 / 1,186 / 931
News20 FShamming

multi 49.61(0/20)∗ 66.32(0/20)∗ 52.14(0/20)∗ 485.1
SVM∆

multi 55.53(0/20)∗ 93.08 (16/2) 80.83 (6/11) 62,061

15-dimensional feature vectors. After that, following [6], the natural scene image retrieval
problem turns out to be a feature selection task to select relevant embedded instances for
prediction. TheImagedataset are split randomly with the proportion of 60% for training
and 40% for testing (Table 1). SinceF1-score is used for performance metric, we perform
FS∆multi for F1-score, namely FSF1

multi as well as other state-of-the-art feature selection
methods. As mentioned above, FGM and FShamming

multi have similar performances, we will
not report the results of FGM here. FShamming

multi and FS∆multi use the fixedC = 10 × n.
For other methods, we use the previous settings. The testingF1 values of all methods on
each category are reported in Figure 5.

From Figure 5, we observe that FSF1

multi and FShamming
multi achieve significantly improved

performance overl1-SVM in term ofF1-score especially when choosing less than100 fea-
tures. Moreover, SVM-RFE also outperformsl1-SVM on three categories out of five. This
verifies thatℓ1 penalty does not perform as well asℓ0 methods like FSF1

multi and FShamming
multi

on dense and high-dimensional datasets. It is possibly becauseℓ1-norm penalty is very
sensitive to dense and noisy features. We also observe that FSF1

multi performs better than
FShamming

multi and SVM-RFE on four over five categories.l1-bmrm-F1 performs competi-
tively but it is unstable and time-consuming as shown in Section 8.2. All these facts imply
that directly optimizingF1 measure is useful to boostF1 performance measure, and our
proposed FSF1

multi is efficient and effective.

8.5. Multivariate Performance Measures for Document Retrieval. In this subsection,
we focus on feature selection for different multivariate performance measures on imbal-
anced text data shown in Table 1. For multiclass classification problems, one vs. rest
strategy is used. The comparing model is SVMperf 5. Following [11], we use the same
notation SVM∆

multi for different multivariate performance measures. The command used
for training SVMperf can work for different measures by -l option6. In our experiments,
we search theCperf in the same range[2−6, . . . , 26] as in [11]. We choose the one which

5www.cs.cornell.edu/People/tj/svmlight/svm perf.html
6 svm perf learn -cCperf -w 3 –b 0 trainfile train model
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FIGURE 6. The average performance improvement of FS∆
multi with

varyingB on different datasets.

demonstrates the best performance of SVM∆
multi to each multivariate performance mea-

sure for comparison. FS∆multi and FShamming
multi fix CFGMmulti

= 0.1 × n for News20
except5.0×n for Sector. ForRec@k, we usek as twice the number of positive examples,
namelyRec@2p. The evaluation for this measure uses the same strategy to label twice the
number of positive examples as positive in the test datasets, and then calculateRec@2p.

Table 2 shows the macro-average of the performance over all classes in a collection in
which both FS∆multi and FShamming

multi atB = 250 are listed. The improvement of FS∆
multi

over FShamming
multi and SVM∆

multi with respect to differentB values are reported in Fig-
ure 6. From Table 2, FS∆multi is consistently better than FShamming

multi on all multivariate
performance measures and two multiclass datasets. Similarresults can be obtained com-
paring with SVM∆

multi, while the only exception is the measureRec@2ponNews20where
SVM∆

multi is a little better than FS∆multi. The largest gains are observed forF1 score on
all two text classification tasks. This implies that a small number of features selected by
FS∆multi is enough to obtain comparable or even better performances for different measures
than SVM∆

multi using all features.
From Figure 6, FS∆multi consistently performs better than FShamming

multi for all of the mul-
tivariate performance measures from the figures in the left-hand side. Moreover, the figures
in the right-hand side show that the small number of featuresare good forF1 measures,
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FIGURE 7. TestingF1 in terms of the average number of selected fea-
tures on Sector and News20.

but poor for other measures. As the number of features increases,Rec@2p andPRBEP
can approach to the results of SVM∆multi and all curves become flat. The performance of
PRBEP andRec@2p is relatively stable when sufficient features are selected,but our
method can choose very few features for fast prediction. ForF1 measure, our method is
consistently better than SVM∆multi, and the results show significant improvement over all
range ofB. This improvement may be due to the reduction of noisy or non-informative
features. Furthermore, FS∆multi can achieve better performance measures than FShamming

multi .
We also compared different feature selection algorithms such as SVM-RFE andl1-SVM

onSectorandNews20in the same setting as the previous sections. The results in terms of
F1 measure are reported in Figure 7. We clearly observe that FS∆

multi outperformsl1-SVM
on both datasets, and comparable or even better than SVM-RFE. For a small number of
features, FS∆multi can still demonstrate very good F1 measure.

9. CONCLUSION

In this paper, we propose a generalized sparse regularizer for feature selection, and the
unified feature selection framework for general loss functions. We particularly study in
details for multivariate losses. To solve the resultant optimization problem, a two-layer
cutting plane algorithm was proposed. The convergence property of the proposed algo-
rithm is studied. Moreover, connections to a variety of state-of-the-art feature selection
methods are discussed in details. A variety of analyses by comparing with the various
feature selection methods show that the proposed method is superior to others. Experi-
mental results show that the proposed method is comparable with FGM and SVM-RFE
and better thanl1 models on feature selection task, and outperforms SVM for multivariate
performance measures on full set of features.
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Appendices

A. PROOF OFPROPOSITION1

Since the loss term∆(y′, y′) = 0 for all y′ ∈ Y, we can equivalently transform Problem

min
w1,...,wT ,ξ≥0

1

2

(
T∑

t=1

‖wt‖2
)2

+ Cξ

s.t. ξ ≥ by′ −
T∑

t=1

〈wt, aty′〉, ∀y′ ∈ Y\y,

into the following optimization problem

min
w1,...,wT ,ξ≥0

1

2

(
T∑

t=1

‖wt‖2
)2

+ Cξ

s.t. ξ ≥ by′ −
T∑

t=1

〈wt, aty′〉, ∀y′ ∈ Y.

By introducing a new variableu ∈ R and moving out summation operator from objective
to be a constraint, we can obtain the equivalent optimization problem as

min
w,ξ≥0

1

2
u2 + Cξ

s.t. ξ ≥ by′ −
T∑

t=1

〈wt, aty′〉, ∀y′ ∈ Y

T∑

t=1

‖wt‖ ≤ u.

We can further simplify above problem by introducing another variablesρ ∈ R
m such that

‖wt‖ ≤ ρt, ∀t = 1, . . . , T , to be

min
w,u,ρ,ξ≥0

1

2
u2 + Cξ

s.t. ξ ≥ by′ −
T∑

t=1

〈wt, at
y′〉, ∀y′ ∈ Y

T∑

t=1

ρt ≤ u

||wt|| ≤ ρt, ∀t = 1, . . . , T.

We know that for eacht, ‖wt‖ ≤ ρt is a second-order cone constraint. Following the
recipe of [5], the self-dual cone‖vt‖2 ≤ ηt, ∀t = 1, . . . , T can be introduced to form the
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Lagrangian function as follows

L(w, ξ, u, ρ;α, τ, γ, v, η)

=
1

2
u2 + Cξ −

∑

y′

αy′

(
ξ − by′ +

T∑

t=1

〈wt, at
y′〉
)

− τξ

+γ

(
T∑

t=1

ρt − u

)
−

T∑

t=1

(〈vt,wt〉+ ηtρt),

with dual variablesαt ∈ R+, τ ∈ R+, γ ∈ R+. The derivatives of the Lagrangian with
respect to the primal variables have to vanish which leads tothe following KKT conditions:

vt = −
∑

y′

αy′aty′ , ∀t = 1, . . . , T

C −
∑

y′

αy′ − τ = 0

u = γ

γ = ηt, ∀t = 1, . . . , T

By substituting all the primal variables with dual variables by above KKT conditions, we
can obtain the following dual problem,

max
α,γ

−1

2
γ2 +

∑

y′

αy′by′

s.t.
∥∥∥
∑

y′

αy′aty′

∥∥∥ ≤ γ, ∀t = 1, . . . , T

∑

y′

αy′ ≤ C, αy′ ≥ 0, ∀y′ ∈ Y

By settingθ = 1
2γ

2 andA = {∑y′ αy′ ≤ C,αy′ ≥ 0, ∀y′ ∈ Y}, we can reformulate
above problem as

max
θ,α∈A

−θ +
∑

y′

αy′by′

s.t.
1

2
αTQtα ≤ θ, ∀t = 1, . . . , T

whereQt
y′,y′′ = 〈at

y′ , aty′′〉. According to the property of self-dual cone [3], we can obtain
the primal solution from its dual aswt = −µtvt = µt

∑
y′ αy′at

y′ whereµj is the dual
variable of thejth quadratic constraint such that

∑m
j=1 µj = 1, µj ∈ R+, ∀j = 1, . . . ,m.

By constructing Lagrangian with dual variablesµ with respect toθ, we can recover Prob-
lem

(29) max
α∈A

min
µ∈MT

−1

2

∑

y′

∑

y′′

αy′αy′′

(
T∑

t=1

µtQ
dt

y′,y′′

)
+
∑

y′

αy′by′ ,

whereMT = {∑T
t=1 µt = 1, µt ≥ 0, ∀t = 1, . . . , T }. This completes the proof.
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B. PROOF OFTHEOREM 2

Given the Problem

min
α∈A

max
d∈D

Fd(α) or min
α∈A,γ

γ : γ ≥ Fd(α), ∀d ∈ D,(30)

we have the equivalent optimization problem as

max
α∈A,γ

−γ

s.t. γ ≥ Fd(α), ∀d ∈ D.

The outer layer of Algorithm 2 can generate a sequence of configurations ofd as{d1, . . . ,dk}
afterk iterations. In thekth iteration, the most violated constraintdk+1 is found in terms of
αk, so thatFdk+1(αk) = maxd∈D Fd(α) according to Problemdt = argmaxd∈D Fd(α

t).
Hence, we can construct two sequences{γ

k
} and{γk} such that

γ
k

= max
1≤t≤k

Fdt(αt)(31)

γk = min
1≤t≤k

Fdt+1(αt) = min
1≤t≤k

max
d∈D

Fd(αt)(32)

Suppose that we can solveminα∈A max1≤t≤k Fdt(α) exactly. Due to the equivalence to
Problem (29), it means that we can obtain the exact solution of the problem (29). Based on
this assumption, equation (31) can be further reformed as

γ
k
= max

1≤t≤k
Fdt(αt) = min

α∈A
max
1≤t≤k

Fdt(αt).(33)

This turns out to be the same problem of FGM [26]. For self-completeness, we give the
theorem as follows,

Theorem 3 ([26]). Let (α∗, γ∗) be the globally optimal solution pair of Problem (30),
sequences{γ

k
} and{γk} have the following property

(34) γ
k
≤ γk ≤ γk.

Ask increases,{γ
k
} is monotonically increasing and{γk} is monotonically decreasing.

Based on above theorem, global optimal solution can be obtained after a finite number of
iterations. However, the assumption of the accurate solution for (29) usually has no formal
guarantee. We have already proven in Theorem 1 that the innerproblem of Algorithm 2 can
reach the desired precisionǫ after a finite number of iterations by Algorithm 1. Therefore,
according to Algorithm 2, we can construct the following sequence

γ′
k
= max

1≤t≤k
Fdt(αt) ≤ min

α∈A
max
1≤t≤k

Fdt(αt) + ǫ.(35)

By combining inequalities (34) and (35), we obtain the following inequalities

(36) γ′
k
− ǫ ≤ γ

k
≤ γk ≤ γk.

After a finite number of iterations, the global optimal solution is γ∗ = γ
k
= γk = γk.

Hence, the solution of the Algorithm 2 may be not less than thelower boundγ′
k

by ǫ. It is
complete for Theorem 2.



27

REFERENCES

[1] S. Andrews, I. Tsochantaridis, and T. Hofmann. Support vector machines for multiple-instance learning. In
NIPS, 2003.

[2] F. Bach, R. Jenatton, J. Mairal, and G. Obozinski. Optimization with sparsity-inducing penalties.Founda-
tions and Trends in Machine Learning, 4:1–106, 2012.

[3] F. R. Bach, G. R. G. Lanckriet, and M. I. Jordan. Multiple kernel learning, conic duality, and the SMO
algorithm. InICML, 2004.

[4] J. M. Borwein and A. S. Lewis.Convex Analysis and Nonlinear Optimization. Springer, 2000.
[5] S. Boyd and L. Vandenberghe.Convex Optimization. Cambridge University Press, Cambridge, UK., 2004.
[6] Y. Chen, J. Bi, and J. Z. Wang. MILES: Multiple-instance learning via embedded instance selection.TPAMI,

28:1931–1947, 2006.
[7] T. G. Dietterich, R. H. Lathrop, and T. Lozano-Perez. Solving the multiple instance problem with axis-

parallel rectangles.Artificial Intelligence, 89:31–71, 1997.
[8] G. M. Fung and O. L. Mangasarian. A feature selection newton method for support vector machine classifi-

cation.Computational Optimization and Applications, 28:185–202, 2004.
[9] I. Guyou, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for cancer classification using support vector

machines.Machine Learning, 46:389–422, 2002.
[10] J. B. Hiriart-Urruty and C. Lemarechal.Convex Analysis and Minimization Algorithms. Springer-Verlag,

1993.
[11] T. Joachims. A support vector method for multivariate performance measures. InICML, 2005.
[12] T. Joachims. Training linear SVMs in linear time. InSIGKDD, 2006.
[13] T. Joachims, T. Finley, and C. J. Yu. Cutting-plane training of structural SVMs.Machine Learning, 77:27–

59, 2009.
[14] J. E. Kelley. The cutting plane algorithm for solving convex programs.Journal of the Society for Industrial

and Applied Mathematics, 8(4):703–712, 1960.
[15] T. N. Lal, O. Chapelle, J. Weston, and A. Elisseeff. Embedded methods. In I. Guyon, S. Gunn, M. Nikravesh,

and L. A. Zadeh, editors,Feature Extraction: Foundations and Applications, Studies in Fuzziness and Soft
Computing, number 207, pages 137–165. Springer, 2006.

[16] Q. V. Le and A. Smola. Direct optimization of ranking measures.JMLR, 1:1–48, 2007.
[17] D. Lin, D. P. Foster, and L. H. Ungar. A risk ratio comparison ofl0 andl1 penalized regressions. Technical

report, University of Pennsylvania, 2010.
[18] Z. Liu, F. Jiang, G. Tian, S. Wang, F. Sato, S. J. Meltzer,and M. Tan. Sparse logistic regression with

lp penalty for biomarker identification.Statistical Applications in Genetics and Molecular Biology, 6(1),
2007.

[19] Q. Mao and I. W. Tsang. Optimizing performance measuresfor feature selection. InICDM, 2011.
[20] O. Maron and A. L. Ratan. Multiple-instance learning for natural scene classification. InICML, 1998.
[21] D. R. Musicant, V. Kumar, and A. Ozgur. Optimizing f-measure with support vector machines. InProceed-

ings of the 16th International Florida Artificial Intelligence Research Society Conference, 2003.
[22] A. Mutapcic and S. Boyd. Cutting-set methods for robustconvex optimization with pessimizing oracles.

Optimization Methods & Software, 24(3):381406, 2009.
[23] A. Y. Ng. Feature selection,ℓ1 vs.ℓ2 regularization, and rotational invariance. InICML, 2004.
[24] A. Rakotomamonjy, F. R. Bach, Y. Grandvalet, and S. Canu. SimpleMKL. JMLR, 3:1439–1461, 2008.
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