
1

Distributed Traffic Engineering in Hybrid
Software Defined Networks: A Multi-agent

Reinforcement Learning Framework
Yingya Guo, Qi Tang, Yulong Ma, Han Tian and Kai Chen

✦

Abstract—Traffic Engineering (TE) is an efficient technique to balance
network flows and thus improves the performance of a hybrid Software
Defined Network (SDN). Previous TE solutions mainly leverage heuristic
algorithms to centrally optimize link weight setting or traffic splitting ratios
under the static traffic demand. Note that as the network scale becomes
larger and network management gains more complexity, it is notably that
the centralized TE methods suffer from a high computation overhead
and a long reaction time to optimize routing of flows when the network
traffic demand dynamically fluctuates or network failures happen. To
enable adaptive and efficient routing in TE, we propose a Multi-agent
Reinforcement Learning method CMRL that divides the routing opti-
mization of a large network into multiple small-scale routing decision-
making problems. To coordinate the multiple agents for achieving a
global optimization goal, we construct an interactive environment for
training the routing agents that own partial link utilization observations.
To optimize credit assignment of multi-agent, we introduce the difference
reward assignment mechanism for encouraging agents to take better
action. Extensive simulations conducted on the real traffic traces demon-
strate the superiority of CMRL in improving TE performance, especially
when traffic demands change or network failures happen.

Index Terms—Traffic engineering, Software Defined Networks, Multi-
agent reinforcement learning

1 INTRODUCTION

Due to the explosive growth of Internet traffic, Traffic Engi-
neering (TE) has gained increasing attentions in achieving
traffic balancing and improving network performance [1].
Nowadays, the TE performance of traditional distributed
network is largely constrained by its adopted shortest-
path-routing protocols. Fortunately, with the emergence
of Software Defined Network (SDN) [2] architecture, the
decoupling of control plane and data plane enables TE
to design flexible solutions for better optimizing traffic
routing. However, the full-SDN enabled network, which
upgrades all legacy routers with SDN switches, encounters
economical and technical problems [3]. Therefore, hybrid
SDN, in which SDN switches are partially deployed in

• Yingya Guo, Qi Tang, Yulong Ma are with the College of Computer and
Data Science, Fuzhou University; the Fujian Provincial Key Laboratory
of Network Computing and Intelligent Information Processing, Fuzhou
University, and also with the Key Laboratory of Spatial Data Mining &
Information Sharing, Ministry of Education Fujian, P.R.China, 350003.

• Han Tian and Kai Chen are with the Department of Computer Science &
Engineering, Hong Kong University of Science & Technology.

the traditional distributed networks, is widely adopted by
Internet Service Providers (ISPs) as a practical solution to
realize a smarter TE. Many studies have shown that TE in
the hybrid SDN can achieve the network performance close
to the full-SDN enabled network [4].

Previous TE solutions for hybrid SDN mainly focused
on developing various heuristics [4]–[7]. These heuristics
are often human-designed and optimize routing policies
only on a single traffic demand. As a result, the routing
policies derived from these heuristics inevitably suffer a
performance degradation for the inability to adapt to the
dynamically-changing network environment, e.g. fluctuat-
ing traffic demands or network link failures. In addition,
due to the high computation and communication over-
head, it is impractical for these heuristics to promptly re-
calculate and deploy the appropriate routing strategy in a
dynamically-changing network environment.

As an essential branch of machine learning, Reinforce-
ment Learning (RL) has exhibited great potential in tack-
ling dynamic decision-making problems by enabling an
experience-driven and model-free control [8]. Instead of the
human-designed heuristics, RL learns an intelligent agent
to adaptively and rapidly derive optimal policies according
to different environments. Without any supervised informa-
tion, RL can automatically accumulate a large number of
valuable experience by repeatedly interacting with a virtual
environment in a trial and error manner. The accumulated
experience helps the intelligent agent to discover the hid-
den patterns in the historical data, and establish the direct
relationship between dynamic environments and optimal
policies.

Some pioneering studies have attempted to leverage RL
technique to address the TE problems in the hybrid SDN
[9], [10]. However, as the network scales increase, the action
space increases rapidly and it will be intractable to make
accurate online routing inference with a single agent [11].
Unlike these studies adopting the single-agent RL frame-
work to implement a centralized TE, this paper proposes
a multi-agent RL framework for achieving a distributed
TE in a hybrid SDN. As shown in Fig. 1, the workflow
of our proposed multi-agent RL framework exhibits two
main advantages: 1) the multi-agent RL framework needs
no additional communication overhead to exchange the
network information when deciding the routing strategy,

ar
X

iv
:2

30
7.

15
92

2v
1

 [
cs

.N
I]

 2
9

Ju
l 2

02
3

2

Fig. 1. The illustration of different workflows of single-agent RL frame-
work and multi-agent RL framework for achieving TE in hybrid SDN.

since it only needs the local network information rather than
the global network information, which makes the routing
inference more efficient; 2) the multi-agent RL framework
performs a higher potential to improve network perfor-
mance and exhibits better scalability, because it decreases
the problem complexity and improves the convergence by
decomposing a large-scale problem into several small-scale
sub-problems, each of which is solved by a relatively simple
and independent agent.

However, developing an efficient multi-agent RL frame-
work to achieve distributed TE in hybrid SDN still en-
counters the following challenges. First, the state, reward
and action functions should be carefully designed to enable
an efficient multi-agent training. Constructing an interac-
tive environment for enabling multi-agent to collaboratively
learn the map between the traffic demands and routing
policies poses a great challenge. Second, in a cooperative
setting, the global reward generated by the joint action
makes it hard to quantify the contribution of each agent and
the individual reward for each agent can hardly motivate it
for taking better action. Assigning reasonable credits for dif-
ferent agents and designing a difference reward assignment
mechanism to the agents for encouraging the better actions
of agents pose another challenge.

To address the above challenges, we innovatively pro-
pose a Counterfactual-based Multi-agent Reinforcement
Learning method CMRL for improving TE performance in
a hybrid SDN. Specifically, we first construct an interac-
tive environment with carefully designed state, action and
reward functions. Then, we propose a Deep Deterministic
Policy Gradient (DDPG)-based multi-agent reinforcement
learning method with difference reward assignment for
training the routing agents in the constructed environment.
For the agent credit assignment, we introduce difference
reward for agents and adopt a counterfactual-inspired inde-
pendent reward assignment mechanism inspired by [12] for
achieving a high TE performance. Finally, the learned agents
intelligently and timely generate the adaptive routing poli-
cies to control the forwarding behaviors of SDN switches
in the highly dynamic environment. Through extensive
experimental results and evaluations, we demonstrate that
our proposed method has a superior performance compared
with the previous TE solutions.

In a nutshell, the main contributions of this paper can be
summarized as follows:

• We propose a multi-agent reinforcement learning
based approach CMRL to efficiently solve the TE

problem in the dynamic hybrid SDN, especially
when the network scale or network complexity in-
creases. Specifically, an interactive environment is
first constructed for offline agent training. Next, the
routing agents are trained offline in the constructed
environment for collaboratively learning the map
between the traffic demands and routing policies of
SDN switches. Finally, the trained agents are de-
ployed to enable a timely and intelligent routing
policy inference when traffic demands change or
network failures happen.

• We integrate difference reward assignment among
agents into offline agent training in order to solve
the multi-agent credit assignment problem. Specif-
ically, each agent is given a reward that computes
the estimated return for the current joint action to a
baseline that marginalises out the agent’s action and
with the other agents’ actions unchanged. The differ-
ence reward assignment encourages different agents
to sacrifice for the better actions in the cooperative
setting.

• We conduct extensive experiments on real network
topologies and traffic traces to evaluate the perfor-
mance of CMRL. The experimental results demon-
strate the superior performance of our proposed
method CMRL in improving TE performance of the
hybrid SDN when traffic demands change or net-
work failures happen.

The rest of the paper is organized as follows. Section 2
presents the related work on TE solutions. Section 3 pro-
vides the problem definition. In Section 4, we describe our
proposed method CMRL, including the offline training part
and online inference part. Section 5 shows the experimental
results of different algorithms on real network topologies
and traffic traces when traffic demands change or network
failures happen. Finally, we make the conclusion and give
possible future research direction in section 6.

2 RELATED WORK

In this section, we present the related work on the TE
solutions in traditional distributed network and Software
Defined Networks, respectively.

2.1 TE Solutions in Traditional Distributed Network

In the traditional distributed network, distributed routing
protocols dominate and the traffic is constrained to route on
the shortest paths between the source and destination ac-
cording to link weight setting under the distributed routing
protocols, such as Open Shortest Path First (OSPF) protocol
[13], Intermediate System to Intermediate System (IS-IS)
protocol [14]. The link weight setting under the distributed
routing protocols determines the available shortest paths
for routing and many related works focus on optimizing
distributed link weight setting using heuristic algorithms
[15]–[17] or machine learning approach based on gradient
descent [18]. However, for traditional distributed networks,
flow routing lacks of flexibility with the shortest-path-
routing constraint, which greatly limits the TE performance.

3

2.2 TE Solutions in Software Defined Networks

With the prevailing of SDN architecture, the routing gains
more flexibility. The SDN controller can centrally control
the forwarding behavior of SDN switches through dispatch-
ing flow entries and traffic can be routed on all available
paths between a source-destination pair, regardless of short-
est paths constraint. Microsoft [19] and Google [20] have
already built the SDN-enabled datacenter networks and
have boosted the network utilization to near 100% through
flexible flow routing. However, fully deploying the SDN
switches to replace the legacy router is a non-trivial task
and encounters various challenges. To incrementally deploy
the SDN switches into traditional network, Agarwal et al. [4]
propose a greedy approach to determine the placement of
SDN switches. To improve the TE performance of the hybrid
SDN, a Fully Polynomial Time Approximation Scheme is
also introduced in [4] to optimize the traffic splitting ratio
at SDN switches. To further reduce the MLU of the hybrid
SDN, Guo et al. [5], [6] propose heuristic algorithms that
jointly optimize the OSPF link weight setting and traffic
splitting ratio at SDN switches under static and dynamic en-
vironments. To maximize the network throughput in hybrid
SDN, Xu et al. [21] introduce an approximation algorithm
to optimize flow routing on h available paths between a
source-destination pair.

With the significant advances of reinforcement learning
in various fields, more researchers begin to apply them in
solving TE problems. Noting that the modern communica-
tion networks are becoming more complicated and highly
dynamic, Xu et al. [22] and Chen et al. [23] propose novel
experience-driven model-free Deep Reinforcement Learning
(DRL) methods for solving TE problem. To mitigate the
impact of network disturbance, Zhang et al. [24] introduce
a reinforcement learning method CFR-RL for selecting and
rerouting the critical flows to balance the network link
utilization. To better optimize the link weight setting under
OSPF protocol in a hybrid SRv6 network, Tian et al. [9]
propose a DRL-based method for learning the optimal OSPF
link weight setting under the given traffic demands in a trail
and error manner.

To efficiently react to dynamic environment and obtain
the routing policy in an online manner, Guo et al. [10] adopt
a DRL method ROAR for learning the mapping between
the traffic demands and routing polices. The trained agent
can promptly infer the optimal routing policy when traffic
demands change or network failures happen. To solve the
TE problem in a multi-region scenario, Geng et al. [25],
[26] propose a distributed TE framework based on DRL for
optimizing route selection under highly dynamic traffic. To
optimize route selection of traffic flows under QoS require-
ments, Liu et al. [27] propose an online routing algorithm
DRL-OR based on DRL for computing the optimal next hop
at each router and further introduce safe learning mecha-
nism to facilitate the online learning process.

Previous TE works in a hybrid SDN either leverage
heuristic algorithms or single-agent reinforcement learning
for optimizing network performance. As with the rapid
increasing of network scales and network complexity, pre-
vious TE solutions suffer a performance degradation when
traffic demands fluctuate or network failures happen be-

cause of high delay in computing routing policies. In this
paper, we innovatively leverage the multi-agent reinforce-
ment learning with a combination of difference reward
assignment mechanism to improve the TE performance in
a dynamic hybrid SDN environment.

3 PROBLEM DEFINITION

In our hybrid SDN network environment, the network
topology is denoted as an undirected graph G = (V,E).
Here, V represents the set of forwarding devices, which
is composed of SDN switches Vs and legacy routers Vl.
E refers to the set of links, where the capacity of each
link e ∈ E is represented as C(e). Here, the link capacity
refers to the maximum traffic volume that the link can
accommodate. The Traffic Matrix (TM) is represented by
D, which is a set of total traffic demands that need to be
delivered from the source to the destination. The element
D (u, v) in TM D represents the total traffic demand from
source node u to destination node v. The traffic routing in
TE is to distribute the traffic demands onto the available
candidate paths between the source and the destination
to optimize maximum link utilization, network cost, or
network throughput, etc. Specifically, at the legacy routers,
the traffic is routed to the next hops on the shortest paths.
At the SDN switches, the traffic can be flexibly routed on
the multiple next hops to the destination. We refer to the
common goal of TE, i.e., minimizing the Maximum Link
Utilization (MLU) of a hybrid SDN without violating the
link capacity constraints, as our TE optimization goal in this
paper. Here, link utilization refers to the ratio of the link
load to link capacity (bandwidth) and MLU indicates the
largest link utilization of all links. Our approach can also be
easily extended and adopted to optimize other TE goals in
a hybrid SDN.

4 PROPOSED METHOD CMRL

In this section, we first provide an overview of the proposed
method CMRL. Then, we exhibit the offline agents training
phase of CMRL for learning the hidden patterns between
the traffic demands and routing policy. Finally, with the
trained agents deployed, the online routing inference phase
of CMRL is elaborated on to exhibit the routing policy
generation process when new traffic demands arrive.

4.1 An overview of CMRL

Our proposed method CMRL consists of two phases: offline
agents training and online routing inference. An overview
of CMRL is presented in Fig. 2.

In the offline agents training, to train these agents,
which are denoted by Deep Neural Networks (DNNs), an
interactive environment should be first constructed for the
interaction with the multiple agents. Then, given the traffic
and topology information, multiple routing agents collabo-
ratively learn the mapping between the traffic demands and
routing policies through the interaction with the interactive
environment. The well trained agents are deployed at SDN
switches for online routing inference.

4

Traffic and
Topology

Information

Multiple Routing
Agents Training

New Traffic
Demand Routing Policies

Offline Agents Training

Online Routing Inference

Multiple
Trained Agents

Trained
Agents

Interactive
Environment

Fig. 2. An overview of CMRL.

In the online routing inference, given the new arrival
traffic demands and partial observed adjacent link utiliza-
tion information, the distributedly deployed trained agents
can infer the routing policy promptly with the trained
DNNs. In the following, we will introduce the two phases
in details.

4.2 Offline Agents Training
To enable routing agents intelligently and efficiently learn
the mapping between the traffic demands and routing pol-
icy, we adopt to Deep Deterministic Policy Gradient (DDPG)
[8], which is an off-policy, model-free, actor-critic DRL algo-
rithm, for training the agents through the interaction with
environment. Compared to other DRL algorithms, DDPG
can handle the continuous high-dimension action space and
state space, which is suitable for learning the continuous
splitting ratios of traffic at SDN switches. In this part, we
first elaborate on the interactive environment construction
for training the multiple DRL agents offline. Then, given
the interactive environment, we introduce the DDPG-based
offline multi-agent training process.

4.2.1 Interactive Environment
In the offline training phase, the multiple agents collabora-
tively learn the routing policy through interacting with the
environment. Therefore, the interactive environment should
be constructed first. As shown in Fig. 3 (a), in each time
step t, each agent h has a partial observation of the network
status oht and chooses corresponding action aht according
to the partial observed environment state oht . After agents
taking the action, the environment provides a reward rt for
the joint action ut = {aht }Hh=1 and the centralized controller
receives the reward rt that indicates the performance of the
joint action ut. Here, H denotes the total number of agents.
To make the agents learn the better action and achieve the
global TE goal, we introduce the difference reward assign-
ment for each agent. The difference reward assignment,
denoted as Ah

t (st,u), is computed by the controller for
specifying the contribution of each agent and participates
in the actor network update. Then, the environment transits
from st to the new state st+1. The past experiences, with a
form of ({oh0}Hh=1,ut, st, rt, st+1), are restored in the replay
buffer for agent learning. An optimal policy {π∗

h}, which
maps the partial observed network state to a probability dis-
tribution over actions, maximizes the expected cumulative
discounted reward E{π∗

h}[
∑

t γ
trt]. Here, the term γ ∈ [0, 1]

is the discount factor which prevents an infinite sum of

accumulated rewards. To be specific, the state, action and
reward functions are designed as follows.

State: The state is the input to the agents and should be
carefully designed. The link utilization, which is determined
by both the traffic demands and routing policy, can well
reflect the network status. To better describe the network
status and minimize the MLU in a hybrid SDN, we define
the entire environment state st at time t based on the
utilization of each link set , i.e., st = {set , e ∈ E}. The link
utilization set can be easily computed by the link load and
the link capacity shown in Eq. (1).

set =

∑
q∈V

fq
e,Dt

C(e)
(1)

Here, fq
e,Dt

is the splitting traffic on link e destined to q
under TM Dt.

∑
q∈V

fq
e,Dt

calculates the total traffic volume

on link e under TM Dt.
In a practical SDN-TE system, each SDN switch can

obtain the utilization of all links through the information
flooded regularly by other switches. However, leveraging
the utilization information of all links leads to the slow
convergence of the method. To improve the convergence
speed of CMRL and better guide the training of DNNs
in agents, we exploit the partial observation of each SDN
switch instead of the entire link utilization in offline agents
training. Here, the partial observation of the SDN switch
refers to the adjacent link utilization of the switch and we
use oht to denote the partial observation of the SDN switch
with the deployed agent h at time t, h ∈ [1, H].

Action: The action is the output of the agent which
indicates the routing policy of the deployed SDN switch.
The action aht of agent h at time t is a vector that consists
of traffic-splitting ratios χh

e,Dt
distributed to the adjacent

links e of SDN switch h under TM Dt as shown in Eq.
(2). It should be noted that the sum of the splitting ratios
of the traffic on all the adjacent links of each SDN node
should be equal to 1. Therefore, we adopt to a normalization
of the output to the actor networks for guaranteeing this
constraint. The joint actions ut of the multiple agents are
defined as ut = {aht }Hh=1.

aht = {χh
e,Dt
}pe=h (2)

pe denotes the head of the link e.
Reward: The agents work collaboratively for achieving a

global TE goal, which is to minimize the MLU of the hybrid
network. Therefore, we design a reward function which can
reflect the global TE performance of the hybrid SDN. The
reward function related to MLU is shown in Eq. (3):

rt =

−e2(1

α−1) if α > 1

0 if α = 1

e2(α−1) if α < 1

(3)

α =
Umax
i,0

Umax
i,t

(4)

Here, Umax
i,0 and Umax

i,t denotes the MLU of the network
under the TM Di at time 0 and t, respectively. We treat
Umax
i,0 as a baseline in minimizing MLU, which is computed

5

 Agent Agent

Environment

Q-valueAction

Input
layer

Hidden
layers

Output
layer

State

Action

State

Input
layer

Output
layer

(a) Centralized training and distributed
execution in the interactive environment (c) Critic network (b) Actor network for agent

𝐴𝑡
1(𝑠𝑡 ,𝒖)

ℎ

𝑎𝑡
1 𝑎𝑡

ℎ

𝑟𝑡

𝑜𝑡
1 𝑜𝑡

ℎ

𝑎𝑡
ℎ 𝑎𝑡

1

1 ℎ 𝑠𝑡

𝒖𝒕
𝑎𝑡
ℎ 𝑜𝑡

ℎ

Controller
𝐴𝑡
ℎ(𝑠𝑡 ,𝒖)

BN
layer

Hidden
layers

𝑠𝑡

Fig. 3. The architectures of multi-agent reinforcement learning, actor network and critic network. In (a), the red arrows and components are only
required in centralized training.

by routing all the flows to the next hops on the shortest
paths according to the OSPF protocol. The α value, which
is computed by Eq. (4), shows the improvement ratio of
the network performance when the new routing policies are
deployed at time t. As shown in Eq. (3), a higher positive
reward rt is given if the joint action taken by multiple agents
at time t generates a lower MLU which improves network
performance. Otherwise, a lower negative reward is given if
the action taken generates a higher MLU that degrades the
network performance.

4.2.2 Offline Training
Given the interactive environment, multiple routing agents
are trained offline with DDPG for learning the mapping
between the traffic demands and routing policy. Each agent
maintains actor networks for approximating the mapping
between the input network status to routing policy outputs.
There is also a critic network for evaluating the actions
taken by the agents and helping update the parameters of
actor networks. Specifically, the actor network of each agent
outputs an action aht based on its partially observed state
oht , and the critic network generates a reward rt given the
joint action ut and partially observed state oht of each agent
h. Both the actor network and the critic network have two
sub-networks, the online network and the target network,
respectively and the structures of the two sub-networks are
the same.

As shown in Fig. 3(b), the actor network consists of
input layer, hidden layer, Batch Normalization (BN) layer
and output layer. The two hidden layers are fully-connected
layers and each layer contains 1024 neurons. The activation
function is ReLU. The BN layer is added to the actor
network in order to speed up the training and convergence
of the neural network as well as to control the gradient
exploding and prevent the gradient vanishing. The output
layer refers to Softmax as its activation function to ensure
that the sum of the splitting ratios for a demand equals
1. For evaluating the joint action taken by agents, a critic
network is kept at the centralized controller to generate a
Q-value for the joint action. As shown in Fig. 3(c), the critic
network consists of an input layer, three hidden layers and
an output layer. Both three fully-connected hidden layers
have 1024 neurons and the activation function is also ReLU.
The historical data of actor network and critic network are
stored in the replay buffer B for training.

Algorithm 1 presents the offline training phase of mul-
tiple agents. The inputs in Algorithm 1 contain the hybrid

SDN environment G, the historical TMs D, the set of avail-
able links L for each traffic demand, and the number of
agents H.

Algorithm 1 Offline agents training

Input: G = (V,E), D, L, H
Output: µ = {µh(oh|θµh)}

H

h=1

1: Initialize action set u = {ah}Hh=1;
2: Initialize H online actor networks {µh(oh|θµh)}

H

h=1

and an online critic network Q(s,u|θQ) with random
{θµh}Hh=1 and θQ;

3: Initialize H target actor networks {µ′
h(oh|θµ

′

h)}Hh=1 and
a target critic network Q′(s,u|θQ′

) with {θµ
′

h }Hh=1 ←
{θµh}Hh=1, θQ

′ ← θQ;
4: Initialize replay buffer B ;
5: for Di in D do
6: Initialize OU process N = {N h}Hh=1;
7: ϵ = 1.0;
8: for episode n = 1 · · ·N do
9: Fi,0 =get_ospf_flows(G,Di);

10: ({oh0}Hh=1, s0, U
max
i,0) =get_state(Fi,0);

11: for step t = 0 · · · T − 1 do
12: for agent h = 1 · · ·H do
13: aht =µh(o

h
t |θ

µ
h) + ϵN h

(n−1)T+t, ϵ← ηϵ;
14: end for
15: ut = {aht }Hh=1;
16: P = get_policy(ut, L);
17: Fi,t+1 = get_flows(G,Di,P);
18: ({oht+1}Hh=1, st+1, U

max
i,t+1) =get_state(Fi,t+1);

19: rt =get_reward(Umax
i,t+1, U

max
i,0);

20: if t = T then
21: donet= 1;
22: else
23: donet= 0;
24: end if
25: B.store({oht }Hh=1,ut, st, rt, st+1, donet);
26: minibatch B′ = B.sample(M);
27: for ({ohj }Hh=1,uj , sj , rj , sj+1, donej) ∈ B′ do
28: yj = rj + γ(1 −

donej)Q
′(sj+1, {µ′

h(oj+1|θµ
′

h)}Hh=1| θQ
′
);

29: end for
30: Update online critic and actor with Eq. (5)-(7);
31: Update target critic and actor with Eq. (8)(9);

6

32: end for
33: end for
34: end for
35: return µ ;

In Algorithm 1, we start with initialization (lines 1-4).
The online actor networks {µh(oh|θµh)}

H

h=1 and online critic
network Q(s,u|θQ) are initialized using random {θµh}Hh=1

and θQ, respectively (line 1-2). The target actor networks
{µ′

h(oh|θµ
′

h)}Hh=1 and target critic network Q′(s,u|θQ′
) are

initialized with the same parameters as the online networks
(line 3). The replay buffer B is initialized as a circular array
with a fixed size for agent learning (line 4).

Then, we begin to train the multiple agents under the
historical TM set D. To better explore the action space, the
Ornstein-Uhlenbeck (OU) process N is initialized for action
exploration and parameter ϵ is initialized to 1.0, which is
used to balance action exploration and exploitation (line
6-7). At the beginning of each episode, through function
get_ospf_flow and get_state, we calculate the initial state
s0 (line 9-10). Here, get_ospf_flow function derives the link
load distribution Fi,0 with flows are routed on the shortest
paths according to OSPF protocol and get_state function
calculates the state s0 according to Eq. (1) given the traffic
distribution Fi,0.

For each step t, the agent h computes its own action aht
based on the actor network µ(oht |θ

µ
h) with a local partial

observation oht and a discount OU noise ϵN h
(n−1)T+t (line

12-14). With the joint action ut = {aht }Hh=1, we can derive
the routing policy P through the get_policy function and
obtain the MLU of the hybrid SDN through get_state func-
tion (line 16-18). Then, reward rt can be computed by Eq.
(3) in get_reward function (line 19). Here, donet implies
whether the agent can get more reward in the rest of the
steps (line 20-24). Afterwards, transitions in the form of
({oht }Hh=1,ut, st, rt, st+1, donet) are deposited in the replay
buffer B (line 25). Finally, the critic and actor networks are
updated on the randomly sampled minibatch B′ with M
transitions from the replay buffer B (line 26-31).

Specifically, for the online critic network, the parameter
θQ is updated by minimizing the loss between the cumu-
lative reward ym and the estimated reward Q(sm,um|θQ)
shown as follows.

LQ(θ
Q) =

1

M

M∑
m=1

(ym −Q(sm,um|θQ))2 (5)

To encourage multiple agents to explore the good action,
we introduce the idea of difference reward assignment into
agent training. In actor-critic approaches, the reward of each
agent is denoted as Ah(st,u) shown in Eq. (6). In Eq. (6),
the first term on the right side Q(st,u) estimates the Q-
value for the joint action u taken on the state of agent h.
The advantage function Ah(st,u) is obtained by comparing
the Q-value of the current action aht to a counterfactual
baseline that marginalizes aht while keeping the actions of
other agents u−h fixed.

Ah(st,u) = Q(st,u)−
∫

Q(st,u
′ = (ut,u

−h
t−1))du

′ (6)

Because the second integral term on the right is difficult
to calculate, we adopt to Monte Carlo method [28] for
sampling different actions in action space and calculate the
Q value through the critic network.

Meanwhile, the parameter θµh of the online actor network
for agent h is updated by the sampled policy gradient as
follows.

∇Jµ(θµh) ≈
1

M

M∑
j=1

Ah(shj ,u)∇θµ
h
µh(om|θµh) (7)

For the target actor network and critic network, the
parameters θQ

′
and θµ

′

h will be softly updated as follows.

θQ
′
← τθQ + (1− τ)θQ

′
(8)

θµ
′

h ← τθµh + (1− τ)θµ
′

h (9)

When the offline training process terminates, the outputs
of Algorithm 1 are the trained actor networks µ, which are
the DNNs that have well learnt the mapping between the
traffic demands and the routing policy.

4.3 Online Routing Inference

When offline agents training finishes, we deploy the trained
routing agents on the SDN switches. When new traffic
demands arrive, each agent generates the corresponding
routing policy P in an online manner through the inference
from the trained actor network as shown in Algorithm 2.
The inputs to the algorithm are the network topology G, the
set of trained actor networks µ, the set of available links L,
the current TM Di, and the number of agents H . The learnt
agents can derive the routing policy P based on the input
information in T steps.

Algorithm 2 Online routing inference
Input: G = (V,E), µ, L, Di, H
Output: P, Umax

T−1

1: Fi,0 =get_ospf_flows(G,Di)
2: (s0, U

max
i,0) =get_state(Fi,0)

3: for step t = 0 to T − 1 do
4: ut = {µh(o

h
t |θ

µ
h)}Hh=1;

5: P = get_policy(ut, L);
6: Fi,t+1 = get_flows(G,Di,P) ;
7: (st+1, U

max
i,t+1) = get_state(Fi,t+1);

8: rt = get_reward(Umax
i,t+1, U

max
i,0);

9: end for
10: return P, Umax

T−1

5 EVALUATION

To demonstrate the superior performance of CMRL, we
conduct extensive experiments on different network topolo-
gies and traffic datasets. In this section, we first introduce
the environmental setup, including the dataset and baseline
methods in section 5.1. Then, we present the experimental
results and analysis of various methods on TE performance
under different traffic demands and network failure scenar-
ios in section 5.2.

7

5.1 Experimental Setup
The simulation experiments are executed on a workstation
with eight Intel cores of 2.4GHz, a RAM of 256 GB and
a NVIDIA GeForce RTX 3090 GPU. Our method is imple-
mented on tensorflow. During the offline learning, the size
of minibatch M and the discount factor γ are set to 32 and
0.9. The size of replay buffer B and the term τ are set to 8000
and 0.001. The learning rates of the online actor and critic
nets are set at 1× 10−3 and 2× 10−3. In addition, we set the
number of episodes N to 160.

5.1.1 Dataset
The experimental evaluation is carried out on three different
network topologies: Abilene (12 nodes, 30 links), CERNET
(14 nodes, 32 links) and GÉANT (23 nodes, 74 links), which
are the research and education networks of America, China
and European, respectively. The traffic demands datasets
of Abilene and CERNET are provided by TOTEM [29] and
Zhang [30], which are measured every 5 minutes. The traffic
demands dataset of GÉANT is provided by Uhlig [31],
which are measured every 15 minutes. In our experiments,
1024 (80%) TMs are used for offline training and 256 (20%)
TMs are used for online inference.

5.1.2 Baseline
To exhibit the superiority of the proposed CMRL method,
we conduct the comparative experiments with the following
methods.

• OSPF [32]: This method routes the network traffic
according to the OSPF protocol. The traffic is routed
on the shortest paths between source and destination
node pair.

• ROAR [10]: This method is a single-agent reinforce-
ment learning approach that trains an intelligent
routing agent with DDPG for minimizing the MLU
of the hybrid SDN.

• MARL [25]: This method adopts to a general multi-
agent reinforcement learning solution that learns the
routing policy of each SDN switch without difference
reward assignment for multiple agents.

5.2 Experimental Results
5.2.1 Parameter analysis
The number of iteration times T is an important param-
eter in online routing inference. We conduct experiments
to evaluate the average MLU under different T values as
shown in Fig. 4. As shown in Fig. 4, we can observe that with
the increasing of T , the average MLU first decreases, then
increases and finally becomes flat. When T = 2, the average
MLU is the minimum. The reason is larger T influences
trained agent for finding the optimal routing policy. We set
T to 2 in the following experiments.

5.2.2 Convergence analysis
To demonstrate our proposed method CMRL converges, we
plot the curve of training loss varies with the increasing
of training episode in Fig. 5. As shown in Fig. 5, the
training loss curves fluctuate with the increasing of training
episodes. For the loss curve of CMRL, when the iteration

Fig. 4. The average MLU under different values of T .

time is smaller than 1000, the loss value of CMRL fluctu-
ates violently. When the iteration time is larger than 1000,
the loss curve becomes relatively flat and stays at a low
value. The CMRL method converges when the iteration
time reaches 1000. For the loss curve of MARL, the loss
value fluctuates drastically at first. When the iteration time
is larger than 3000, the loss curve becomes relatively flat and
stays at a low value. The MARL method converges when the
iteration time reaches 3000. The experiment demonstrates
that our proposed method CMRL converges faster than the
general MARL method.

Fig. 5. The training loss varies with the increasing of iteration times.

5.2.3 Network performance under dynamic traffic demands
To comprehensively evaluate the TE performance of various
methods under dynamic traffic demands, we plot the Cu-
mulative Distribution Function (CDF) curves of MLU under
different SDN deployment ratios and different network
topologies in Fig. 6, Fig. 7 and Fig. 8. As shown in Figs.
6-8, we can observe that the CDF curves of CMRL stay
above the CDF curves of OSPF, ROAR and MARL under
Abilene, CERNET and GEANT network topologies with
SDN deployment ratios set to 0.2, 0.3 and 0.4, respectively.
This demonstrates that compared to the MLU derived in
other methods, our proposed method CMRL can obtain a
lower MLU under different network topologies and SDN
deployment ratios. In addition, with the increasing of net-
work scale, the gap between CMFL and the other methods
becomes larger. This is because in large network topologies,
there are more adjacent links for each switch and the agents
have more flexibility in optimizing the distribution of flows
through the SDN switch.

The reason why CMRL outperforms OSPF in minimizing
MLU is that the traffic is constrained to routed on the
shortest paths between the source-destination node pair in

8

(a) 0.2 (b) 0.3 (c) 0.4

Fig. 6. The CDF curves of MLU under different SDN deployment ratios in Abilene.

(a) 0.2 (b) 0.3 (c) 0.4
Fig. 7. The CDF curves of MLU under different SDN deployment ratios in CERNET.

(a) 0.2 (b) 0.3 (c) 0.4

Fig. 8. The CDF curves of MLU under different SDN deployment ratios in GÉANT.

(a) Abilene (b) CERNET (c) GÉANT

Fig. 9. The MLU under different time periods. We evaluate the performance under 288TMs (1 day), 576TMs (2 days) and 864TMs (3 days) for
Abilene and CERNET topologies. We evaluate the performance under 96TMs (1 day), 192TMs (2 days) and 288TMs (3 days) for GÉANT topology.

OSPF, while in our method CMFL, traffic can be split on
multiple available paths from the source to the destination,
thus achieving better link load balance. Meanwhile, com-
pared to single-agent RL method ROAR, our method has
superior performance. The reason is the collaboration of
multiple agents can better learn the mapping between traffic
demands and routing policies. When new traffic demands

arrive, the trained agents can better infer the routing policies
with a higher TE performance. Additionally, compared to
general MARL, the TE performance of CMRL can be greatly
improved with the introduction of difference reward as-
signments, which encourages multiple agents to take better
actions.

To exhibit the concrete performance improvement ratio

9

(a) Abilene (b) CERNET (c) GÉANT

Fig. 10. The MLU of network failure scenarios in different network topologies.

TABLE 1
Average MLU under different traffic demands

Method Abilene CERNET GÉANT
OSPF 0.124(32.50%) 0.108(19.35%) 0.182 (41.21%)
ROAR 0.0848(1.29%) 0.0973(10.48%) 0.146 (26.71%)
MARL 0.0847(1.18%) 0.0989(11.93%) 0.140 (23.57%)
CMRL 0.0837 0.0871 0.107

of CMRL, we compute the average MLU of different al-
gorithms under different network topologies in TABLE 1.
As shown in TABLE 1, we can observe that compared to
OSPF, our proposed method CMFL improves the network
performance up to 41.21% under different network topolo-
gies; compared to ROAR, our proposed method improves
the network performance up to 26.71% under different net-
work topologies; compared to MARL, our proposed method
improves the network performance up to 23.57% under
different network topologies.

In addition, we conduct extensive experiments to com-
prehensively evaluate the TE performance under differ-
ent number of TMs in Fig. 9. Each box contains the 5%-
quantile, 25%-quantile, median value, 75%-quantile and
the outliers. As shown in Fig. 9(a), we can observe that
compared to other methods, our proposed method CMRL
obtains a smaller 5%-quantile, 25%-quantile, median value,
75% MLU value under TMs of different time periods in
Abilene topology. The results are similar in CERNET and
GÉANT topologies. Through the extensive experiments, we
can conclude that CMRL can efficiently learn the routing
policies through the collaboration of multiple agents and
the network performance can be better enhanced in CMRL,
compared with other TE methods.

5.2.4 TE performance under network failures

TABLE 2
Average MLU under link failure scenarios

Method Abilene CERNET GÉANT
OSPF 0.0790(14.94%) 0.460(7.83%) 0.173(32.95%)
ROAR 0.0689(24.67%) 0.442(4.07%) 0.170(31.76%)
MARL 0.0687(2.18%) 0.430(1.40%) 0.125(7.20%)
CMRL 0.0672 0.424 0.116

Network failures, especially single link failures, happen
frequently in large networks and can lead to severe network
congestion and packet loss [33]. To validate the superior
performance of CMRL in handling network failures, we
evaluate the MLU of the hybrid SDN under different single
link failures and draw the box diagrams in Fig. 10. As
shown in Fig. 10(a), we can observe that under different link
failures, our proposed method CMRL can obtain a smaller
MLU compared to the MLU derived from the other methods
in Abilene. In CERNET and GÉANT shown in Fig. 10(b)
and 10(c), we obtain the similar results. In particular, the
gap between our method CMFL and other baseline methods
becomes larger in the GÉANT network. In summary, our
proposed method CMFL exhibits superior performance in
minimizing MLU of the hybrid SDN. As shown in TABLE
2, our proposed method can reduce the average MLU up to
32.95%, 31.76% and 7.20% compared to OSPF, ROAR and
MARL, respectively, under different network topologies.
This demonstrates that CMRL is robust to network failures
and can infer an efficient routing policy when link failures
happen.

5.2.5 Online inference time

Finally, we record the online inference time of different
methods in TABLE 3. As shown in TABLE 3, we can observe
that CMRL has a shorter online inference time compared to
ROAR and the inference time of CMRL approximates that
of MARL. This demonstrates that compared to ROAR, the
computation time can be reduced in CMRL by dividing a
large-scale inference problem into multiple small-scale infer-
ence problems. The trained agents in CMRL can promptly
react to the dynamic changing environment in an online
manner when traffic demands change or network failures
happen.

TABLE 3
The online inference time

Method Abilene CERNET GÉANT
ROAR 0.878ms 0.891ms 1.203ms
MARL 0.534ms 0.547ms 0.996ms
CMRL 0.531ms 0.545ms 0.996ms

6 CONCLUSION

In this paper, we innovatively propose a multi-agent rein-
forcement learning framework CMRL for improving the TE

10

performance in a dynamic hybrid SDN environment. Specif-
ically, an interactive environment is first constructed and the
multiple agents are trained offline for collaboratively learn-
ing the map between traffic demands and routing policies.
To solve the credit assignment of multi-agent, difference
reward assignment is introduced for encouraging the agents
to sacrifice for the good actions. Then, the trained agents
are deployed for online routing policy inference. The ex-
tensive experiments demonstrate the superior performance
of CMRL in reducing MLU of hybrid SDN when traffic
demands change or network failures happen.

7 ACKNOWLEDGEMENTS

This work is partially supported by National Natural Sci-
ence Foundation of China under Grant No.62002064, and
the Natural Science Foundation of Fujian Province under
Grant 2020J05110.

REFERENCES

[1] Y. Xiao, J. Liu, J. Wu, and N. Ansari, “Leveraging deep reinforce-
ment learning for traffic engineering: A survey,” IEEE Communica-
tions Surveys & Tutorials, vol. 23, no. 4, pp. 2064–2097, 2021.

[2] W. Xia, Y. Wen, C. H. Foh, D. Niyato, and H. Xie, “A survey
on software-defined networking,” IEEE Communications Surveys &
Tutorials, vol. 17, no. 1, pp. 27–51, 2014.

[3] S. Vissicchio, L. Vanbever, and O. Bonaventure, “Opportunities
and research challenges of hybrid software defined networks,” in
Proceedings of ACM SIGCOMM. ACM, 2014, pp. 70–75.

[4] S. Agarwal, M. Kodialam, and T. Lakshman, “Traffic engineering
in software defined networks,” in 2013 Proceedings IEEE INFO-
COM. IEEE, 2013, pp. 2211–2219.

[5] Y. Guo, Z. Wang, X. Yin, X. Shi, and J. Wu, “Traffic engineering
in sdn/ospf hybrid network,” in 2014 IEEE 22nd International
Conference on Network Protocols. IEEE, 2014, pp. 563–568.

[6] Y. Guo, Z. Wang, Z. Liu, X. Yin, X. Shi, J. Wu, Y. Xu, and H. J. Chao,
“Sote: Traffic engineering in hybrid software defined networks,”
Computer Networks, vol. 154, pp. 60–72, 2019.

[7] Z. Guo, W. Chen, Y.-F. Liu, Y. Xu, and Z.-L. Zhang, “Joint switch
upgrade and controller deployment in hybrid software-defined
networks,” IEEE Journal on Selected Areas in Communications,
vol. 37, no. 5, pp. 1012–1028, 2019.

[8] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep rein-
forcement learning,” arXiv preprint arXiv:1509.02971, 2015.

[9] Y. Tian, Z. Wang, X. Yin, X. Shi, Y. Guo, H. Geng, and J. Yang, “Traf-
fic engineering in partially deployed segment routing over ipv6
network with deep reinforcement learning,” IEEE/ACM Transac-
tions on Networking, vol. 28, no. 4, pp. 1573–1586, 2020.

[10] Y. Guo, W. Wang, H. Zhang, W. Guo, Z. Wang, Y. Tian, X. Yin,
and J. Wu, “Traffic engineering in hybrid software defined net-
work via reinforcement learning,” Journal of Network and Computer
Applications, p. 103116, 2021.

[11] Q. Xu, Y. Zhang, K. Wu, J. Wang, and K. Lu, “Evaluating and
boosting reinforcement learning for intra-domain routing,” in 2019
IEEE 16th International Conference on Mobile Ad Hoc and Sensor
Systems (MASS). IEEE, 2019, pp. 265–273.

[12] J. Foerster, G. Farquhar, T. Afouras, N. Nardelli, and S. Whiteson,
“Counterfactual multi-agent policy gradients,” in Proceedings of the
AAAI conference on artificial intelligence, vol. 32, no. 1, 2018.

[13] J. Moy et al., “Ospf version 2,” 1998.
[14] D. Oran, “Rfc1142: Osi is-is intra-domain routing protocol,” 1990.
[15] B. Fortz, J. Rexford, and M. Thorup, “Traffic engineering with

traditional ip routing protocols,” IEEE communications Magazine,
vol. 40, no. 10, pp. 118–124, 2002.

[16] M. Ericsson, M. G. C. Resende, and P. M. Pardalos, “A genetic
algorithm for the weight setting problem in ospf routing,” Journal
of combinatorial optimization, vol. 6, no. 3, pp. 299–333, 2002.

[17] N. Wang, K. H. Ho, G. Pavlou, and M. Howarth, “An overview
of routing optimization for internet traffic engineering,” IEEE
Communications Surveys & Tutorials, vol. 10, no. 1, pp. 36–56, 2008.

[18] M. Kodialam and T. Lakshman, “Network link weight setting:
A machine learning based approach,” in IEEE INFOCOM 2022.
IEEE, 2022, pp. 2048–2057.

[19] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nan-
duri, and R. Wattenhofer, “Achieving high utilization with
software-driven wan,” in In Proceedings of the ACM SIGCOMM.
ACM, 2013, pp. 15–26.

[20] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu et al., “B4: Experience
with a globally-deployed software defined wan,” in In Proceedings
of the ACM SIGCOMM. ACM, 2013, pp. 3–14.

[21] H. Xu, X.-Y. Li, L. Huang, H. Deng, H. Huang, and H. Wang,
“Incremental deployment and throughput maximization routing
for a hybrid sdn,” IEEE/ACM Transactions on Networking, vol. 25,
no. 3, pp. 1861–1875, 2017.

[22] Z. Xu, J. Tang, J. Meng, W. Zhang, Y. Wang, C. H. Liu, and D. Yang,
“Experience-driven networking: A deep reinforcement learning
based approach,” in IEEE INFOCOM 2018. IEEE, 2018, pp. 1871–
1879.

[23] Y.-R. Chen, A. Rezapour, W.-G. Tzeng, and S.-C. Tsai, “Rl-routing:
An sdn routing algorithm based on deep reinforcement learning,”
IEEE Transactions on Network Science and Engineering, vol. 7, no. 4,
pp. 3185–3199, 2020.

[24] J. Zhang, M. Ye, Z. Guo, C.-Y. Yen, and H. J. Chao, “Cfr-rl: Traffic
engineering with reinforcement learning in sdn,” IEEE Journal on
Selected Areas in Communications, vol. 38, no. 10, pp. 2249–2259,
2020.

[25] N. Geng, T. Lan, V. Aggarwal, Y. Yang, and M. Xu, “A multi-
agent reinforcement learning perspective on distributed traffic
engineering,” in 2020 IEEE 28th International Conference on Network
Protocols (ICNP). IEEE, 2020, pp. 1–11.

[26] N. Geng, M. Xu, Y. Yang, C. Liu, J. Yang, Q. Li, and S. Zhang,
“Distributed and adaptive traffic engineering with deep reinforce-
ment learning,” in 2021 IEEE/ACM 29th International Symposium on
Quality of Service (IWQOS). IEEE, 2021, pp. 1–10.

[27] C. Liu, M. Xu, Y. Yang, and N. Geng, “Drl-or: Deep reinforce-
ment learning-based online routing for multi-type service require-
ments,” in IEEE INFOCOM 2021-IEEE Conference on Computer
Communications. IEEE, 2021, pp. 1–10.

[28] A. Shapiro, “Monte carlo sampling methods,” Handbooks in opera-
tions research and management science, vol. 10, pp. 353–425, 2003.

[29] S. Balon and G. Monfort, “The traffic matrices and topology of the
abilene network,” 2019.

[30] B. Zhang, J. Bi, J. Wu, and F. Baker, “Cte: cost-effective intra-
domain traffic engineering,” in Proceedings of the ACM SIGCOMM,
vol. 44, no. 4. ACM, 2014, pp. 115–116.

[31] S. Uhlig, B. Quoitin, J. Lepropre, and S. Balon, “Providing public
intradomain traffic matrices to the research community,” in Pro-
ceedings of the ACM SIGCOMM, vol. 36, no. 1, pp. 83–86, 2006.

[32] B. Fortz and M. Thorup, “Internet traffic engineering by op-
timizing ospf weights,” in Proceedings IEEE INFOCOM 2000.
Conference on Computer Communications. Nineteenth Annual Joint
Conference of the IEEE Computer and Communications Societies (Cat.
No.00CH37064), vol. 2, 2000, pp. 519–528 vol.2.

[33] H. H. Liu, S. Kandula, R. Mahajan, M. Zhang, and D. Gelernter,
“Traffic engineering with forward fault correction,” in Proceedings
of the ACM SIGCOMM, 2014, pp. 527–538.

	Introduction
	Related Work
	TE Solutions in Traditional Distributed Network
	TE Solutions in Software Defined Networks

	Problem Definition
	Proposed Method CMRL
	An overview of CMRL
	Offline Agents Training
	Interactive Environment
	Offline Training

	Online Routing Inference

	Evaluation
	Experimental Setup
	Dataset
	Baseline

	Experimental Results
	Parameter analysis
	Convergence analysis
	Network performance under dynamic traffic demands
	TE performance under network failures
	Online inference time

	Conclusion
	Acknowledgements
	References

