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Abstract—The risk for severe illness and mortality from
COVID-19 significantly increases with age. As a result, age-
stratified modeling for COVID-19 dynamics is the key to study
how to reduce hospitalizations and mortality from COVID-
19. By taking advantage of network theory, we develop an
age-stratified epidemic model for COVID-19 in complex con-
tact networks. Specifically, we present an extension of stan-
dard SEIR (susceptible-exposed-infectious-removed) compart-
mental model, called age-stratified SEAHIR (susceptible-exposed-
asymptomatic-hospitalized-infectious-removed) model, to capture
the spread of COVID-19 over multitype random networks with
general degree distributions. We derive several key epidemio-
logical metrics and then propose an age-stratified vaccination
strategy to decrease the mortality and hospitalizations. Through
extensive study, we discover that the outcome of vaccination
prioritization depends on the reproduction number R0. Specifi-
cally, the elderly should be prioritized only when R0 is relatively
high. If ongoing intervention policies, such as universal masking,
could suppress R0 at a relatively low level, prioritizing the high-
transmission age group (i.e., adults aged 20-39) is most effective
to reduce both mortality and hospitalizations. These conclusions
provide useful recommendations for age-based vaccination pri-
oritization for COVID-19.

Index Terms—COVID-19, epidemic modeling, random net-
work, vaccination.

I. INTRODUCTION

Between January 2020 and November 30, 2020, about 1.47

million deaths from the novel coronavirus disease (COVID-19)

are reported worldwide [1]. On the one hand, COVID-19 is

much more deadly than most strains of flu. On the other hand,

many people infected with the coronavirus do not develop

symptoms, and hence they can transmit the virus to others

without being aware of it [2], which makes the pandemic

extremely difficult to contain.

To live with the COVID-19 pandemic, governments and

healthcare systems are always struggling to save lives and
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“flatten the curve”, i.e., reducing the mortality and the peak of

hospitalizations. Since severity and mortality rates of COVID-

19 greatly vary across age-groups and increase dramatically for

the elderly [3], [4], effective intervention policies to achieve

these two goals must prevent elderly, who are at high-risk for

severe clinical outcomes, from infections. For this reason, age-

stratified modeling for COVID-19 dynamics indeed serves as

the basis of accurately assessing the effectiveness of control

policies in decreasing illness severity and mortality. In this

respect, some age-stratified mathematical models have already

been proposed to analyze the spread of COVID-19 for different

purposes [5]–[8]. However, these models are based on an

oversimplified assumption that people are fully mixing, i.e.,

everyone contracting and spreading the virus to every other

with equal probability, within each age group, which clearly

fail to incorporate enough details in real-life contact networks.

In reality, people in the same age group still differ greatly in

the way of spreading the disease. As a consequence of this

heterogeneity, it is found that epidemic outcomes in complex

networks could deviate greatly from the results obtained from

fully mixing epidemiological models [9], [10].

Motivated by the aforementioned observations, in this pa-

per, we present a unified yet simple mathematical model

for COVID-19 spread analysis by accounting for both the

age-specific risk and the heterogeneity in contact patterns

within and across age groups. We take advantage of ran-

dom network theory to analyze the spread of COVID-

19 in contact networks with general degree distributions.

More specifically, we present an extension of standard

SEIR (susceptible-exposed-infectious-removed) compartmen-

tal model, called age-stratified SEAHIR (susceptible-exposed-

asymptomatic-hospitalized-infectious-removed) model to de-

scribe the disease progression for infected individuals, and

study the epidemic spreading process in multitype random

networks where each type of nodes is treated as an age group.

Some key epidemiological metrics, such as time-dependent

dynamics, steady-state epidemic size (which will be termed as

epidemic size throughout this paper), epidemic probability, and

reproduction number, are derived, allowing us to analyze the

epidemics and the impact of control policies in a thorough and

effective manner. Due to the consideration of stochasticity and

network structure, the proposed model is capable of offering

some useful epidemic results that the existing fully mixing

age-stratified models are unable to provide, like assessing the

impact of preferential isolation of nodes (e.g., immunizing

http://arxiv.org/abs/2103.10012v1
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Fig. 1: Mortality (the ultimate death toll over the whole popu-

lation) versus reproduction number R0 with 10% vaccination

coverage. Here, R0 denotes the reproduction number prior to

vaccination, where we control the level of NPIs to vary R0

(the details are given in Section V-A). “20-39 prioritized” or

“60+ prioritized” means that these vaccine doses (enough to

vaccinate 10% population) are uniformly given to the adults

aged 20-39 or aged 60+. The simulation is based on real-world

age-stratified contact matrix for the United States [12].

essential workers first). Given that many contagious diseases,

including influenza, also exhibit distinct characteristics for

different groups of people [11], the proposed model can be

easily generalized to modeling many other infectious diseases.

While non-pharmaceutical intervention (NPI) policies, such

as masking and social distancing, are effective in reducing

the transmissions and mitigating the healthcare burden, it has

become increasingly clear that vaccination is the only way

to eliminate the pandemic worldwide. Unfortunately, vaccine

availability will be highly constrained for general population

during at least the first several months of the vaccine distribu-

tion campaign. Therefore, vaccination prioritization decision

will play a pivotal role in reducing the effects of COVID-

19 during such a period [13], [14]. Under our proposed

framework, we present an age-stratified vaccination strategy

for the considered multitype network. In simulations, we focus

on answering the following question: with limited doses avail-

able, who should be vaccinated first to reduce mortality and

hospitalizations as much as possible? Our simulation results

show that the answer depends on the value of reproduction

number R0. The reason behind is that, the epidemic size (i.e.,

the fraction of population eventually getting infected) increases

slowly in large R0 region, while increasing steeply in small R0

region. As a result, vaccinating the high-transmission group

(adults aged 20-39) is highly effective in blocking COVID-

19 transmissions in small R0 region, which thus protects the

high-risk group (the elderly) indirectly. In contrast, in large

R0 region, even if high-transmission group is prioritized, it

will have little impact on epidemic size as long as the vaccine

supply is limited. Consequently, directly vaccinating the high-

risk group becomes the preferable strategy. We illustrate this

phenomenon in Fig. 1, where prioritizing young people aged

20-39 is preferable when R0 < 1.36, whereas prioritizing the

elderly is the better choice only when R0 > 1.36. Although

most studies estimate that R0 for COVID-19 is between 2-

3.5 under pre-intervention scenarios [15], it certainly can be

pushed to a relatively low level, e.g., below 1.36, via NPI

policies or even natural immunity (the latter only meaningful

for highly infected places [16]). Thus, our finding indicates

that vaccination prioritization should be customized for differ-

ent places by considering the ongoing NPI policies and other

effects that could suppress R0. The key contributions of this

paper are summarized as follows.

• We employ multitype random network theory to develop

an age-stratified epidemic model for COVID-19. We de-

rive the time-dependent epidemic dynamics, where each

individual could belong to one of six compartments, i.e.,

susceptible, exposed, asymptomatic, hospitalized, infec-

tious and removed.

• To analyze the stochastic property and final state of

the epidemic, we derive other critical epidemiological

metrics, such as epidemic size, epidemic probability, and

reproduction number for the considered networks.

• We present an age-stratified vaccination strategy based

on the proposed model. The simulation results indicate

that high-risk age group should be vaccinated first to

diminish mortality and hospitalizations in large R0 re-

gion. Conversely, when R0 is suppressed at a low level,

prioritizing the high-transmission age group becomes the

most effective strategy.

The reminder of this paper is organized as follows. In

Section II, we describe the related work. In Section III, we

introduce the network model, and derive the time-dependent

epidemic dynamics and other key epidemiological metrics.

In Section IV, we devise an vaccination strategy for the

considered networks. In Section V, we conduct simulations

to compare different age-specific vaccination prioritization

strategies. In Section VI, we draw our conclusions.

II. RELATED WORK

Some mathematical models for COVID-19 have been pre-

sented to account for the age-varying risks for mortality

and severe illness. In [5], Singh et al. use an age-stratified

SIR (susceptible-infective-removed) model to study the im-

pact of social distancing measures, including workplace non-

attendance, school closure, and lockdown, on the course of

the COVID-19 pandemic. In [6], Balabdaoui et al. propose

an age-stratified discrete compartmental model to describe the

day-by-day progression of an infected individual in modern

healthcare systems, e.g., in intensive care unit (ICU), with

the objective of precisely projecting the occupancy of health

care resources. In [7], Tuite et al. develop an age-stratified

COVID-19 model to identify intervention strategies that keep

the number of projected severe cases lower than the capacity

of local health care systems. The aforementioned models make

full-mixing assumption within each age group, which hence

fail to capture enough details of population heterogeneity. In

[17], Chang et al. propose an agent-based model to predict the

infected number in Australia by considering the age-dependent

effects. While agent-based models incorporate more realistic

factors, they demand computationally intensive simulations,

and generally offer limited insights into epidemic outcomes.
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Random network theory allows us to model epidemics by

taking heterogeneous contact network structure into account

while bypassing computationally complicated simulations.

Epidemic propagation in networks can be exactly interpreted

as a bond percolation process, which hence can be analyzed

by well-understood physics models, such as percolation [18].

Although several works have applied percolation theory to

analyze the spread of COVID-19 [10], [19], [20], they have not

taken the age-varying effects into consideration. On the other

hand, given that an age-stratified population can be character-

ized as a multitype random network in which each type of

vertices correspond to an age group, one possible direction

is to directly map the epidemic spread to bond percolation in

multitype random graphs [21], [22]. Unfortunately, percolation

theory is mostly limited to analysis of final state of networks,

and cannot predict time-dependent transient dynamics. In

[23], Miller et al. propose an edge-based SIR compartmental

model to describe the time-dependent epidemic dynamics in

complex networks. Inspired by their approach, we solve the

time-dependent dynamics for COVID-19 in multitype random

networks, and then derive the expressions for epidemic size,

epidemic probability, and reproduction number by performing

analysis on the final state of the considered networks.

The design of vaccination prioritization strategies for

COVID-19 has also attracted some research attention.

Nonetheless, most of works draw the conclusion that vacci-

nating the older groups first is the robust strategy to mini-

mize mortality or hospitalizations during a vaccine shortage

[24]–[26]. This perhaps is because they fail to identify the

underlying relationship between the priority population and

the reproduction number R0. Our finding coincides with these

works only when R0 is great. Recently, Jentsch et al. show that

prioritizing the high-transmission group will reduce the death

toll from COVID-19 most if vaccines become available late

next year for Ontario, because high level of natural immunity

may be already achieved in Ontario at that time [8]. Their

conclusion essentially shares the same observation with ours

as higher natural immunity leads to a lower R0. Different from

their work, by taking advantage of our epidemic model, we

also study the impact of vaccination prioritization strategies on

hospitalizations, and the effectiveness of immunizing people

with high activity, i.e., the essential workers. Furthermore,

our simulation results show that vaccinating high-transmission

group is highly effective as long as R0 is small, which applies

to areas that are either hit hard as in [8] or only have few

infections but with relatively strict NPI policies, e.g., masking

mandate.

III. EPIDEMIC ANALYSIS

A. Network and compartmental model

Let us consider a multitype network which consists of M

types of nodes, each corresponding to an age group in a

population. We use wi to represent the fraction of the nodes

of type i ∈ [1,M ]. The contact from a type-i node to

others follows degree distribution pi(k1, k2, ..., kM ) , pi(k),
describing the joint probability for type-i node to be connected

with k1 type-1 node, k2 type-2 node, ..., and kM type-M node,
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Fig. 2: SEAHIR compartmental model for nodes of type i.

where k = (k1, k2, . . . , kM ). The considered network can be

generated by the following procedure: 1) generate stubs for

every node following degree distribution pi(k), where each

stub contains the information about which type of node it

reaches. 2) randomly wire two matching stubs together to

create an edge and repeat this process until no stubs left.

Susceptible-Infected-Removed (SIR) and Susceptible-

Exposed-Infected-Removed (SEIR) compartmental models are

widely used for epidemic modeling. In SEIR compartmental

model, each individual can be in one of the four states,

i.e., Susceptible, Exposed, Infected, or Removed. Here, to

capture the salient features of COVID-19, we present a

novel compartmental model, i.e., SEAHIR model, which

adds two additional compartments, i.e., asymptomatic and

hospitalized, to the classic SEIR model. In SEAHIR model,

each individual can be in one of the six states: susceptible (S),

exposed (E), symptomatic and infectious (I), asymptomatic

and infectious (A), hospitalized (H), and removed (R). Both

new compartments are paramount to describe the dynamics

of COVID-19: the number of people in H state indicates

the hospitalizations, which must be kept lower than health

care capacity; patients in A state have different level of

infectivity compared with symptomatic ones [27]. We assume

that individuals in E state is not infectious because of low

virus load, and individuals in H state are properly isolated.

Individuals in I and A states are assumed to be infectious to

others, where the infection rate from a type-i source node to

a type-j node is λI
i,j or λA

i,j given the source node belongs to

I or A state. For conciseness, we do not distinguish recovery

and death in R state, but assume that an age-dependent

fraction of infected people will die. Furthermore, given the

fact that the cases of reinfection with COVID-19 are still

extremely rare, we do not consider the transition from R

state to S state. For type-i nodes, the transitions among the

compartments are illustrated in Fig. 2, where the symbols on

the arrows denote the corresponding transition rates from one

to another, which are all dependent on node type i to account

for the age-dependent effects.

B. Time-dependent dynamics

Disease propagates from infectious nodes to its neighbors,

leading to an epidemic if the epidemic size is comparable to

the whole population. We employ the edge-based compartmen-

tal method to solve the equations of dynamics governing the

epidemic spread over random graph [23]. The core idea of the

edge-based method is to shift our attention from an individual

node to the status of its neighbor reached by an edge. To study
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the impact of vaccination or natural immunity, we consider

that a fraction of population may be already immune at the

beginning of analysis: Si(k, 0) represents the fraction of type-

i nodes with degree k that are initially susceptible. Besides,

we use θji(t) to denote the probability that a type-j neighbor

has not transmitted the disease to a type-i node by time t

given that the type-i node is susceptible at time 0. θji(t) can

be interpreted as a state of a type-j neighbor of an initially

susceptible type-i node. It is noted that θji(0) = 1 according to

the definition. Based on Fig. 2, we can construct the following

equations to characterize the time-dependent epidemic process.

Si(t) =
∑

k

Si(k, 0)pi(k)

M
∏

l=1

θkl

li (t), (1)

Ȧi(t) = βiEi(t)− γA
i Ai(t), (2)

İi(t) = δiEi(t)− ηiIi(t)− γI
i Ii(t), (3)

Ḣi(t) = ηiIi(t)− γH
i Hi(t), (4)

Ṙi(t) = γA
i Ai(t) + γI

i Ii(t) + γH
i Hi(t), (5)

Ei(t) = 1− Si(t)−Ai(t)− Ii(t)−Hi(t)−Ri(t), (6)

where Si(t), Ai(t), Ii(t), Hi(t), Ri(t), and Ei(t) represent the

proportions of type-i nodes in the corresponding states at time

t, respectively. From Markov chain theory, when the network

size is sufficiently large, the fraction of nodes in Ai, Ii, Hi, and

Ri states can be described well by the differential equations

(2)-(5) due to the flow diagram in Fig. 2. Moreover, (6) is

obtained from Si(t)+Ai(t)+Ii(t)+Hi(t)+Ri(t)+Ei(t) = 1.

For the initial conditions, we assume Ai(0) = Ii(0) =
Hi(0) = Ei(0) = 0 and Ri(0) = 1−Si(0). Obviously, one can

solve the above equations as long as the key probability, i.e.,

θji(t), is derived. To calculate θji(t), following the approach in

[23], we break it into six parts, i.e., ξSji(t), ξ
E
ji(t), ξ

A
ji(t), ξ

I
ji(t),

ξHji (t), and ξRji(t). Specifically, ξSji(t), ξEji(t), ξAji(t), ξIji(t),
ξHji (t), or ξRji(t) represents the probability that the considered

type-j neighbor is in S, E, A, I , H , or R state, respectively,

and has not transmitted the disease to the initially susceptible

type-i node by time t, satisfying

θji(t) = ξSji(t) + ξEji(t) + ξAji(t) + ξHji (t) + ξIji(t) + ξRji(t).
(7)

A type-j neighbor in S state cannot infect the type-i node,

and hence ξSji(t) is simply equal to the probability that the

considered type-j neighbor is susceptible. The degree distri-

bution of the considered type-j neighbor is given by
kipj(k)

kji
,

where kji =
∑

k
kipj(k) is the average degree leaving from

type-j node to type-i node, which normalizes the probability

distribution. This quantity is proportional to kipj(k) because

type-j nodes with more edges incident to type-i nodes are

more likely to become the neighbors of type-i nodes [21]. We

can obtain ξSji(t) by computing the probability that the type-j

neighbor is initially susceptible and has not been infected by

any of its neighbors, except the considered type-i node, by

time t, i.e.,

ξSji(t) =
∑

k

kiSj(k, 0)pj(k)

kji

M
∏

l=1

θkl−δil
lj (t), (8)

where δil is the Kronecker delta operator, with δil = 1 only

when i = l, and δil = 0 otherwise.

As mentioned before, two states in our compartmental

model, i.e., I and A states, are infectious. Thus, the decrease

in θji comes from two joint events: 1) the type-j neighbor is

A or I state, and 2) it transmits the disease to the type-i node

with infection rate λA
ji or λI

ji, i.e.,

−θ̇ji(t) =
(

λA
jiξ

A
ji(t) + λI

jiξ
I
ji(t)

)

. (9)

One can also interpret (9) in this way: there is a state

1− θji(t) (which corresponds to that the type-j neighbor has

transmitted the disease to the initially susceptible type-i node

by time t) receiving the flows from both ξAji(t) and ξIji(t).
If staying in A, I or H state, the type-j neighbor transits

to R state with rate γA
i , γI

i or γH
i , which means

ξ̇Rji(t) = γA
j ξ

A
ji(t) + γI

j ξ
I
ji(t) + γH

j ξHji (t). (10)

The type-j neighbor progresses from I state to H state with

rate ηj , leading to

ξ̇Hji (t) = ηjξ
I
ji(t)− γH

j ξHji (t). (11)

States ξAji(t) and ξIji(t) receive the flows from state ξEji(t).
Besides, ξAji(t) progresses to state 1− θji(t) and ξRji(t), while

ξIji(t) progresses to state 1−θji(t), ξ
R
ji(t), and ξHji (t), yielding

ξ̇Aji(t) = βjξ
E
ji(t)− γA

j ξ
A
ji(t)− λA

jiξ
A
ji(t), (12)

ξ̇Iji(t) = δjξ
E
ji(t)− γI

j ξ
I
ji(t)− ηjξ

I
ji(t)− λI

jiξ
I
ji(t). (13)

In summary, one can solve θji(t) from the following equa-

tions.















































































ξSji(t) =
∑

k

kiSj(k, 0)pj(k)

kji

M
∏

l=1

θkl−δil
lj (t),

θ̇ji(t) = −
(

λA
jiξ

A
ji(t) + λI

jiξ
I
ji(t)

)

,

ξ̇Aji(t) = βjξ
E
ji(t)− γA

j ξ
A
ji(t)− λA

jiξ
A
ji(t),

ξ̇Iji(t) = δjξ
E
ji(t)− γI

j ξ
I
ji(t)− ηjξ

I
ji(t)− λI

jiξ
I
ji(t),

ξ̇Hji (t) = ηjξ
I
ji(t)− γH

j ξHji (t),

ξ̇Rji(t) = γA
j ξ

A
ji(t) + γI

j ξ
I
ji(t) + γH

j ξHji (t),

ξEji(t) = θji(t)− ξSji(t)− ξAji(t)− ξHji (t)− ξIji(t)

− ξRji(t),

(14)

where ξRji(0) = 1 −
∑

k

kiSj(k,0)pj(k)

kji
, θji(0) = 1, and

ξAji(0) = ξIji(0) = ξHji (0) = 0. By plugging θji(t) into

(1), we can obtain the fraction of type-i nodes in each com-

partment at given time from (1)-(6). As a result, the desired

age-stratified epidemic dynamics can be obtained by solving

O(M2) equations, where M is the number of age groups.

One can see that (1)-(6) and (14) account for considerably

more population structure than a fully mixing model by only

introducing marginally more complexity.

C. Epidemic size and epidemic probability

Epidemic size measures the fraction of people eventually

getting infected, and epidemic probability is defined as the
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likelihood that the first infected patient sparks an epidemic [9].

SEAHIR model contains more compartments than traditional

SIR or SEIR models, which complicates the derivations of

these two key metrics. Fortunately, both metrics only depend

on final state of networks. From Fig. 2, it is intuitive to see that

the network progresses to an equilibrium when t → ∞, where

Ei(∞) = Ai(∞) = Ii(∞) = Hi(∞) = 0. By using this fact,

we use a single compartment I to replace all the infected states,

i.e., E, A, I, H states in the original SEAHIR compartmental

model. Here is our trick: although SIR model cannot be used

to capture the temporal dynamics of SEAHIR model, it can be

calibrated appropriately to share the same final network state,

i.e., Si(∞) and Ri(∞), with SEAHIR model. Let Tji ∈ [0, 1]
denote the probability that an infected type-j node ultimately

transmits the disease to an initially susceptible adjacent type-i

node. We assume that the SIR model is with infection rate λ̂ji

from type-j node to type-i node and transition rate γ̂ji from I

state to R state for a type-j neighbor of a type-i node. Since

Tji for the SIR model is
λ̂ji

λ̂ji+γ̂ji

, the SIR model has exactly

the same final network state as the SEAHIR model as long as
λ̂ji

λ̂ji+γ̂ji
is set to the Tji in the SEAHIR model.

Let us first calculate Tji in the SEAHIR model, and then

derive the desired metrics based on the SIR model. An infected

type-j node may enter one of two infectious states, i.e., I state

or A state, with probability
δj

βj+δj
or

βj

βj+δj
. Given that the

type-j node in I or A state, suppose that there are two stages

that it will progress to, i.e., “infecting the adjacent type-i node”

and “leaving current state”, with rates λI
ji (or λA

ji) and ηj+γI
j

(or γA
j ), respectively. Tji is the probability that the considered

node enters the first stage, which equals
λI
ji

λI
ji+(ηj+γI

j )
if the

type-j node is in I state, and equals
λA
ji

λA
ji+γA

j

if it is in A state,

yielding

Tji =
δj

βj + δj

λI
ji

λI
ji + (ηj + γI

j )
+

βj

βj + δj

λA
ji

λA
ji + γA

j

. (15)

In SIR model, we use ξ̂Sji(t), ξ̂
I

ji(t), or ξ̂Rji(t) to represent

the probability that a type-j neighbor of an initially susceptible

type-i node is in S, I, or R state and meanwhile has not

infected this type-i node by time t, and use θ̂ji(t) to denote

the probability that the type-j neighbor has not infected the

initially susceptible type-i node by time t, satisfying θ̂ji(t) =
ξ̂Sji(t) + ξ̂Iji(t) + ξ̂Rji(t). Notice that θ̂ji(t) = θji(t) only when

t = ∞, because SEAHIR and SIR model share the same final

network state while having different temporal dynamics. By

analogy with the preceding subsection, we can obtain

ξ̂Sji(t) =
∑

k

Sj(k, 0)
kipj(k)

kji

M
∏

l=1

θ̂kl−δil
lj (t), (16)

ξ̂Rji(t) =
(1 − θ̂ji(t))γ̂ji

λ̂ji

+ ξ̂Rji(0), (17)

˙̂
θji(t) =− λ̂ji ξ̂

I

ji(t), (18)

ξ̂Iji(t) =θ̂ji(t)− ξ̂Sji(t)− ξ̂Rji(t)

=θ̂ji(t)−
∑

k

Sj(k, 0)
kipj(k)

kji

M
∏

l=1

θ̂kl−δil
lj (t)

−
(1− θ̂ji(t))γ̂ji

λ̂ji

− ξ̂Rji(0), (19)

where ξ̂Rji(0) = 1−
∑

k

kiSj(k,0)pj(k)

kji
is the probability that the

type-j neighbor is initially removed (immune), and θ̂ji(0) = 1.

The derivation of (16) and (18) is similar to that of (8) and (9).

Analogous to the preceding subsection, probability 1− θ̂ji(t)
corresponds to that the type-j neighbor has transmitted the

disease to the initially susceptible type-i node by time t. State

ξ̂Iji(t) transits to state 1− θ̂ji(t) with rate λ̂ji while transiting

to state ξ̂Rji(t) with rate γ̂ji, leading to the relationship between

ξ̂Rji(t) and 1− θ̂ji(t) in (17).

Clearly, the epidemic dynamics can be governed by (18)

and (19). By taking (19) into (18), we have

˙̂
θji(t) =λ̂ji ξ̂

R
ji(0) + λ̂ji

∑

k

Sj(k, 0)
kipj(k)

kji

M
∏

l=1

θ̂kl−δil
lj (t)

+ (1 − θ̂ji(t))γ̂ji − λ̂jiθ̂ji(t). (20)

Now the advantage of using SIR compartmental model

becomes clearer: we arrive at (20) which is only related

to θ̂ji(t). Since the population is closed, the epidemic will

eventually go extinct, implying ξ̂Iji(∞) = 0. Given that
˙̂
θji(∞) = −λ̂jiξ̂

I

ji(∞) = 0 and θji(∞) = θ̂ji(∞), and recall

that
λ̂ji

λ̂ji+γ̂ji

= Tji, we can go back to the original SEAHIR

model and obtain

θji(∞) =Tji

(

1−
∑

k

Sj(k, 0)
kipj(k)

kji

(

1−

M
∏

l=1

θkl−δil
lj (∞)

)

)

+ 1− Tji, (21)

where Tji can be calculated from (15). One can solve θji(∞)
from the above equation. In fact, (21) can be explained in an

intuitive way: a type-i node has not been infected by a type-j

neighbor since t = 0 either because it cannot be reached from

its neighbor with probability 1 − Tji, or it can be reached

from its neighbor with probability Tji but the neighbor has

not been infected since t = 0. Thus, as t → ∞, the fraction

of type-i nodes that have been infected since t = 0 is given

by Ri(∞)−Ri(0), i.e.,

Ri(∞)− Ri(0) =
(

1−
∑

k

Si(k, 0)pi(k)

M
∏

l=1

θkl

li (∞)
)

−

(

1−
∑

k

Si(k, 0)pi(k)
)

=
∑

k

Si(k, 0)pi(k)
(

1−
M
∏

l=1

θkl

li (∞)
)

.

(22)

The epidemic size is therefore expressed as

R =

M
∑

i=1

wi

(

∑

k

Si(k, 0)pi(k)
(

1−

M
∏

l=1

θkl

li (∞)
)

)

. (23)

It is noted that when the population is fully susceptible, i.e.,

Si(k, 0) = 1 for all j and k, R solved from (21) and (23) is
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the size of giant component in multitype networks obtained

by percolation theory [21], [22]. We can compute epidemic

probability in a similar way. Let µij(∞) denote the probability

that a type-i node (which is assumed to be infected) does not

spark an epidemic via a type-j neighbor. Analogous to (21),

the following argument is true: a type-i node does not ignite

an epidemic via a type-j node either because it cannot infect

its type-j neighbor, or it can infect its type-j neighbor but the

latter cannot spark an epidemic, which means

µij(∞) =Tij

(

1−
∑

k

Sj(k, 0)
kipj(k)

kji

(

1−

M
∏

l=1

µkl−δil
jl (∞)

)

)

+ 1− Tij . (24)

As a result, the probability that an infected type-i node

ignites an epidemic is given by

Pi = 1−
∑

k

pi(k)
M
∏

l=1

µkl

il (∞). (25)

By randomly choosing a susceptible node to infect, we

define the likelihood that it starts an epidemic as the epidemic

probability:

P =
M
∑

i=1

wiPi, (26)

where wi =
∑

k
wiSi(k,0)∑

i

∑
k
wiSi(k,0)

is the probability that the

randomly chosen susceptible node is of type i, which reduces

to wi in a fully susceptible population.

D. Reproduction number

One of the fundamental parameters for an epidemic is its
reproduction number, i.e., the average number of secondary
cases caused by an infected individual. Again, since this
metric is unrelated to temporal dynamics, we can derive it
from SIR model to simplify our calculation. According to
the seminal work [28], the reproduction number is equivalent
to the spectral radius of the next generation matrix FV −1,
where the (m,n) element of matrix F is the rate of new
infections entering infected state m caused by infected state
n, and (m,n) element of matrix V is the rate at which
infected state m transfers to infected state n, assuming that
the population remains near the disease-free equilibrium. In

our edge-based SIR model (18) and (19), ξ̂Iji can be treated

as the infected state. Therefore, we have M2 infected states

in total. Recall that there should be
λ̂ji

λ̂ji+γ̂ji

= Tji, where Tji

is calculated from (15). To simplify the derivations below, we

further assume that λ̂ji+ γ̂ji = 1 (one can derive the same R0
in (30) without this assumption, because R0 is only related to

λ̂ji

λ̂ji+γ̂ji

). By differentiating (19) and taking (18) into it, we

have

˙̂
ξ
I

ji(t) = −ξ̂
I

ji(t)+
M∑

l=1

∑

k

Sj(k, 0)
ki(kl − δil)pj(k)

kji

Tlj ξ̂
I

lj(t)
∏

x∈[1,M]

θ̂
kx−δix−δxl
xj (t).

(27)

Then, to obtain the linearized subsystem for infected states

about the disease-free equilibrium, we linearize (27) at the

origin (ξ̂Iji(t) = 0 and θ̂ji(t) = 1):

˙̂
ξIji(t) = −ξ̂Iji(t) +

M
∑

l=1

∑

k

Sj(k, 0)
ki(kl − δil)pj(k)

kji
Tlj ξ̂

I

lj(t).

(28)

Then, we can construct F as an M2 × M2 matrix, with
(

(i− 1)M + j, (j − 1)M + l
)

element equal to

∑

k

Sj(k, 0)
ki(kl − δil)pj(k)

kji
Tlj , ∀i, j, l ∈ [1,M ], (29)

and construct V as an M2×M2 identity matrix. Reproduction

number R0 is therefore given by

R0 = ρ(FV −1) = ρ(F ), (30)

where ρ(·) represents spectral radius. From Theorem 2 in [28],

R0 = 1 marks the epidemic threshold in the sense that the

disease-free equilibrium is asymptotically stable if R0 < 1,

and is unstable if R0 > 1. In particular, in the case of

Sj(k, 0) = 1 for all j and k, R0 becomes the basic repro-

duction number, i.e., the average number of secondary cases

caused by an infected individual in a completely susceptible

population. In this special case, the epidemic threshold R0 = 1
is also in agreement with the threshold for multitype random

network obtained by percolation theory [21], [22].

IV. AGE-STRATIFIED VACCINATION

Under our proposed analytical framework, in this section,

we present an age-stratified vaccination scheme and study its

impact on epidemic outcomes. Considering a network with N

nodes of type i, we use the following function to characterize

the immunization strategy for type-i nodes [29], [30]:

Φi(k̃n) =
k̃αn

∑N
n=1 k̃

α
n

,−∞ < α < +∞, (31)

where Φi(k̃n) is the probability that a susceptible node n of

type i with k̃n-degree is chosen to be immunized, and α is

an exponent quantifying the immunization preference towards

nodes with high degree. We use the tilde operator on k to

represent the total degree of a node. A greater α indicates

that nodes with higher degree (e.g., essential workers) are

more likely to be immunized. In particular, α = ∞ represents

a node immunization process in an entire descending order,

i.e., from the highest degree to the lowest degree. In contrast,

when α = 0, we have Φi(k̃n) = 1
N

, implying a uniform

immunization strategy for nodes of type i. Notice that since the

full knowledge of a contact network is generally unavailable,

immunizing nodes in a descending order is rather unrealistic.

The value of α depends on the strategy and knowledge of a

vaccine distributor.

Recall that Si(k, 0) denotes the fraction of type-i nodes

with degree k that are initially susceptible. In our model,

studying the impact of the immunization strategy in (31)

only requires solving new initial conditions S
f
i (k, 0), i.e., the

fraction of type-i nodes with degree k that are still susceptible

when only f fraction of type-i nodes remain susceptible after

implementing the immunization strategy, where f = Si(0)−v,
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with v being the fraction of type-i nodes immunized by

vaccination. Let Pi(k̃) be the probability that a type-i node

is with degree k̃, S
f
i (k̃, 0) and A

f
i (k̃) be the fraction and the

number of type-i nodes with k̃ degree that are still susceptible

when only f fraction of type-i nodes remain susceptible,

respectively. Due to the fact that (31) only depends on total

node degree k̃, the subsequent development is only related to

k̃ instead of the vector of node degree k. According to the

definitions, we have the relationship

Pi(k̃)S
f
i (k̃, 0) =

A
f
i (k̃)

N
. (32)

After one susceptible node is immunized according to (31),

A
f
i (k̃) becomes

A
f− 1

N

i (k̃) = A
f
i (k̃)−

Pi(k̃)S
f
i (k̃, 0)k̃

α

k̃α(f)
, (33)

where

k̃α(f) ≡
∑

k̃

Pi(k̃)S
f
i (k̃, 0)k̃

α. (34)

In the limit of N → ∞, (33) can be expressed as

dA
f
i (k̃)

df
= N

Pi(k̃)S
f
i (k̃, 0)k̃

α

k̃α(f)
. (35)

Differentiating (32) in terms of f and plugging it into (35),

we obtain

dS
f
i (k̃, 0)

df
=

S
f
i (k̃, 0)k̃

α

k̃α(f)
. (36)

In the spirit of [29], we define a new function Gα(x) =
∑

k̃ Pi(k̃)Si(k̃, 0)x
k̃α

and introduce a new variable t ≡

G−1
α (f) in order to solve (36), where Si(k̃, 0) in Gα(x) is

the fraction of type-i nodes with degree k̃ that are susceptible

before implementing the immunization strategy. One can find

that

S
f
i (k̃, 0) = tk̃

α

Si(k̃, 0), (37)

exactly satisfies (36), which hence is the solution to (36).

Equivalently, considering the vector of node degree k̃ with

k̃ as the total degree, we have

S
f
i (k̃, 0) = tk̃

α

Si(k̃, 0), (38)

By simply replacing Si(k̃, 0) with the new initial conditions

S
f
i (k̃, 0), we can obtain the various epidemic outcomes in the

preceding section by taking the age-stratified immunization

into account.

V. SIMULATIONS

A. Parameter settings

We now study the impact of control policies, particularly

age-specific vaccination strategies, for the COVID-19 pan-

demic. We use the estimated social contact data by age

groups for the United States to conduct our simulations, where

C = [cij ] represents the contact matrix by age, with cij
being the average number of contacts that a node of type
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Fig. 3: Epidemic size versus reproduction number R0.

i has with nodes of type j [12]. Notice, however, that the

conclusions drawn from our simulations are also generalizable

to many other countries, because age-stratified contact exhibits

similar patterns in most countries [12], [31]. The population is

partitioned into M = 6 age groups, i.e., populations of [0, 4],
[5, 19], [20, 39], [40, 49], [50, 59] and 60+ years old.

Following [32], we assume that the susceptibility to infec-

tion for adults over 20 years is identical, and the susceptibility

to infection for individuals under 20 years old is half of that

for adults over 20 years old. Specifically, we set transmission

rate λI
ij = λ for all i ∈ [1, 6] and j ∈ [3, 6], and λI

ij = 1
2λ

for all i ∈ [1, 6] and j ∈ [1, 2]. We set λA
ij = 2

3λ
I
ij

to account for the fact that asymptomatic people are less

infectious than symptomatic ones1. The course of an epidemic

is primarily governed by the basic reproduction number. Being

consistent with [15], we assume that the basic reproduction

number is R0 = 2.5, and derive the transmission rate λ from

(30) accordingly. Given that young people develop milder

symptoms or no symptoms more frequently than the elderly,

the symptomatic probabilities are set to 20%, 20%, 30%,

40%, 50%, and 60%, and the probabilities of needing to be

hospitalized for symptomatic cases are set to 0.10%, 0.23%,

2.19%, 4.90%, 10.20%, and 20.82% from young age groups to

old age groups [3]. Furthermore, the infection fatality ratios are

set to 0.003%, 0.01%, 0.06%, 0.16%, 0.60%, and 3.64% from

the young to the elderly, respectively [3]. We set the average

time from the exposure to the onset of being infected (i.e., A

or I states) to 5 days, the average infection period to 7 days if

not admitted to hospital, and the average time stay in hospitals

to 10 days [33]. To compare the effectiveness of vaccination

prioritization strategies, we consider a completely susceptible

population before vaccination. Later, this assumption is relaxed

in Fig. 8 to demonstrate the consistency of our conclusion by

considering a population with a high level of natural immunity.

1) Modeling of Universal Masking: At the early stage of

vaccine distribution campaign, masking and/or social distanc-

ing measures are still needed. Thus, assessing the effectiveness

of an vaccination prioritization strategy requires the consid-

erations of ongoing NPI policies. We denote the population

contact matrix as C = Ch +Cw +Cs +Co, where Ch, Cw,

1It is commonly recognized that symptomatic patients are more infectious
than asymptomatic ones because cough and sneeze could help spread the
virus.
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Cs and Co are the age-stratified contact matrices for home,

workplace, school, and other locations, respectively [12]. For

instance, the (i, j)-th element in Ch, denoted by chij , is the

average degree from a node of type i to nodes of type j at

home. By considering the NPIs, we modify the population

contact matrix C as follows.

C = Ch + g
(

Cw + Cs + Co
)

, (39)

where g ∈ [0, 1] is the scaling factor accounting for the

change in transmission rate per contact due to the presence of

NPIs. We assume that widespread face masking in public (i.e.,

workplace, school, and other locations) are recommended.

Since reducing the transmission rate for an edge (contact) by

1 − g is equivalent to removing this edge with probability

1 − g for the spread of epidemic [9], we directly scale the

contact matrices Cw, Cs, and Co to reflect the reduction

in transmission rates in these places. The value of g can

be estimated from mask coverage (the fraction of population

wearing masks) and mask efficacy (the fraction of effective

transmissions blocked by masking) [34]. In what follows, we

assume g = 0.3 for illustrative purpose. By this scaling,

reproduction number R0 is pushed from 2.5 to 1.16. We will

compare different vaccination prioritization strategies under

no-masking scenario with g = 1 and masking scenario with

g = 0.3. We remark that weaker mask use in conjunction with

other NPIs in public places (i.e., social distancing measures)

may have a similar effect on g. This is because social distanc-

ing also reduces the transmission opportunity between two

individuals, which has no difference with masking in terms of

mathematical modeling.

To demonstrate that our parameter g = 0.3 is realistic,

we refer the readers to the reference [34]. According to Ref.

[34], when the product of mask coverage and mask efficacy

is 0.6, e.g., mask coverage is 0.75 and mask efficacy is

0.8, the relative transmission rate of COVID-19 reduces to

0.3 compared with the no-masking case. In the real world,

the efficacy of surgical masks is estimated to be about 0.8
[34]. Therefore, three quarters of population wearing surgical

masks in the public places (i.e., workplace, school, and other

locations) may lead to g = 0.3.

2) Impact of Population Structure Heterogeneity: Even

with the same R0 and contact matrix C (containing average

contact number cij across age groups), the epidemic may

still spread differently in networks because of the assumption

on degree distributions. Fig. 3 sheds light on the effects

of structural heterogeneity on epidemic outcome. Based on

the same contact matrix, we examine two types of degree

distributions: Poisson distribution and power law distribution

with the law’s exponent equal to 2.5 [9]. From the estimates

in [12], the contact numbers cij are assumed to follow Poisson

distributions. Compared with Poisson distributions, power law

distributions have a quite “heterogeneous” structure: it con-

tains not only many nodes with few contacts, but also a handful

of “superspreaders” with very high degree. As illustrated in

Fig. 3, power law network shrinks the epidemic size compared

with Poisson network, which clearly reveals that the same R0

and matrix of average contact number are still not enough to
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Fig. 4: Epidemic size versus different immunization prioriti-

zation strategies.
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Fig. 5: Mortality versus different immunization prioritization

strategies.

accurately forecast epidemic dynamics. In fact, the assumption

that contact networks follow Poisson distributions is rather

ideal, as it fails to capture the superspreader events that may

greatly drive the transmissions of COVID-19 [16]. An estimate

of degree distributions of real-world contact networks is still

needed in the future research to improve the precision of

projected epidemic results. However, noting that our mission

in this section is to seek the effective vaccination prioritization

policies rather than providing the exact or even best estimate

of epidemic dynamics, we assume that the contact network

follows Poisson distributions without loss of generality.

B. Effectiveness of Vaccination Prioritization Strategies

We intend to compare the effectiveness of age-specfic

vaccination prioritization strategies under two scenarios: no-

masking scenario and masking scenario. Unless specified

otherwise, we consider uniform vaccination within the same

age group by setting α = 0 in (38). Although we conduct

simulations by assuming the basic reproduction number R0 =
2.5, our conclusions below also hold for other reasonable

estimated R0 values for COVID-19, such as from 2 to 3.5.

We assume that the vaccine efficacy for individuals below

65 years old is 95.6%, and for individuals over 65 years

old is 86.4% according to the Moderna’s clinical trial data

[35]. In fact, our findings below also hold for Pfizer’s vaccine

efficacy, which is about 95% for all age groups [36]. Since the

elderly aged 60+ has the lowest average contact number but

the highest mortality and illness severity, while the adults aged

20−39 have a high average contact rate and low mortality and
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illness severity, we call the adults aged 20 − 39 as the high-

transmission group, and the elderly aged 60+ as the high-risk

group. We remark that, even though the children aged 5-19

have the highest average contact number among the population

[12], they are assumed to be less susceptible to the infection

as mentioned before, thus contributing less to the COVID-19

transmissions than the adults aged 20− 39.

In Fig. 4, we compare the epidemic size under different

vaccination prioritization strategies by varying the fraction of

the whole population being vaccinated. In the figure, we use

“20-39 prioritized” (or other age ranges) to represent that the

vaccine doses are all given to the population aged 20-39.

In particular, since the children aged 0 − 4 only constitute

about 6% of the whole population, the remaining vaccines, if

all the children aged 0 − 4 get vaccinated (i.e., in the case

where 8% or 10% population is vaccinated in the figure),

are uniformly allocated to other age groups. As shown in the

figure, prioritization of the adults aged 20-39 is most effective

in blocking the transmissions and reducing the infections under

both no-masking and masking scenarios. However, we should

notice the difference: the reduction in epidemic size achieved

by prioritization of the high-transmission group under masking

scenario is much more significant than that of no-masking

scenario. As illustrated in Fig. 3, when around R0 = 2.5, i.e.,

under no-masking scenario, epidemic size decreases slowly

with R0. As a result, no matter which vaccination strategy

is implemented, it will not affect the epidemic size much, as

observed from Fig. 4(a). In contrast, under masking scenario

with R0 = 1.16, epidemic size shrinks fast as R0 reduces. For

this reason, prioritizing the high-transmission group reduces

the epidemic size significantly as shown in Fig. 4(b).

In Fig. 5, we investigate which age-specific vaccination

prioritization strategy reduces the mortality (the death toll

over the whole population) most. This metric is calculated

from the epidemic size and the age-dependent mortality ratios.

As shown in Fig. 5(a), prioritizing the elderly achieves the

lowest mortality under no-masking scenario. This is due

to two facts: 1) no matter which prioritization strategy is

implemented, limited vaccine doses will not decrease the

epidemic size much when R0 is great. 2) The elderly people

have remarkably higher mortality risk than the remaining

population. Consequently, protecting the elderly directly is

a wise method in such a case. Nonetheless, under masking

scenario, inoculating the adults aged 20 − 39 becomes the

most effective strategy to reduce the mortality as illustrated in

Fig. 5(b). This is because prioritization of high-transmission

groups substantially blocks COVID-19 transmissions in small

R0 region as aforementioned, thereby in turn protecting the

elderly even though they have not been vaccinated. There

exist some related simulation studies in the literature. It is

shown in [8] that vaccinating high-transmission group is the

best strategy to minimize the death from COVID-19 when

the NPIs (for Ontario) is combined with high level of natural

immunity. Our results further illustrate that relatively strong

NPI strategies, even without natural immunity, could lead

to the same conclusion. In [24], the researchers show that

high-transmission group should be prioritized to minimize

death only when the vaccination covers a large proportion

50 100 150 200 250 300
Time (days)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

H
os

pi
ta

liz
ed

 (
%

)

0-4 prioritized
5-19 prioritized
20-39 prioritized
40-49 prioritized
50-59 prioritized
60+ prioritized

(a) 5% population vaccinated un-
der no-masking scenario (g = 1).

100 200 300 400 500 600 700 800
Time (days)

0

0.01

0.02

0.03

0.04

0.05

H
os

pi
ta

liz
ed

 (
%

)

0-4 prioritized
5-19 prioritized
20-39 prioritized
40-49 prioritized
50-59 prioritized
60+ prioritized

(b) 5% population vaccinated un-
der masking scenario (g = 0.3).

Fig. 6: Hospitalizations versus different immunization priori-

tization strategies.

0 2 4 6 8 10
Vaccinated population (%)

0.3

0.4

0.5

0.6

0.7

M
or

ta
lit

y 
(%

)

20-39 prioritized, =0
20-39 prioritized, =5
60+ prioritized, =0
60+ prioritized, =5

(a) No-masking scenario (g = 1).

0 2 4 6 8 10
Vaccinated population (%)

0

0.05

0.1

0.15

0.2

M
or

ta
lit

y 
(%

)

20-39 prioritized, =0
20-39 prioritized, =5
60+ prioritized, =0
60+ prioritized, =5

(b) Masking scenario (g = 0.3).

Fig. 7: Mortality versus different immunization prioritization

strategies with different α.

of the population (e.g., over 40% coverage when the vaccine

efficacy is 100%). This finding may be due to that they

have not combined vaccination with NPIs. As a consequence

of this difference, our results instead indicate that the high-

transmission group should be prioritized under the presence

of relatively strong NPIs, even if the vaccine coverage is very

limited, say, 2%, as shown in Fig. 5(b).

In Fig. 6, we evaluate how different vaccination prioriti-

zation strategies affect hospitalizations. Similar to the results

for mortality, vaccinating high-transmission group first is still

more effective under masking scenario, as shown in Fig. 6(b).

On the other hand, while both severity and mortality risks

increase with age, the disparity in severity ratio between the

elderly and younger groups is not as significant as the disparity

in the mortality ratio. As a result, under no-masking scenario,

vaccinating the adults aged 20 − 39 or 50 − 59 first even

slightly outperforms vaccinating the elderly first in terms of

reducing hospitalizations from COVID-19 as depicted in Fig.

6(a), because the former age groups have much higher average

contact rates than the elderly people.

Fig. 7 evaluates the performance of different age-specific

vaccination strategies versus α. (38) with α > 0 corresponds to

a vaccine plan targeting at people with high activity level (e.g.,

essential workers) in that age group. Thus, it is not surprising

to see that the vaccination strategies with α = 5 outperform

the corresponding vaccination strategies with α = 0 in both

no-masking and masking scenarios. The effect of changing α

is more significant in Fig. 7(b) than Fig. 7(a), as the epidemic

results in small R0 region are more sensitive to the limited
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Fig. 8: Mortality versus different immunization prioritization

strategies with 20% population naturally immune before vac-

cination.
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Fig. 9: Epidemic probability versus transmission rate λ under

either no-masking or masking case. The vertical line marks

the value of λ corresponding to R0 = 2.5 under no-masking

scenario.

vaccination. In real world, α reflects the vaccine allocation

plan and the knowledge of the vaccine distributor towards the

population structure, which must be taken into account to fore-

cast the effectiveness of certain immunization strategies. This

preferential immunization for human networks with general

degree distributions, however, cannot be evaluated based on

traditional age-stratified homogeneous-mixing models.

Fig. 8 examines the consistency of our conclusions under a

hard-hitting scenario with 20% population naturally immune

before vaccination. To obtain the initial conditions Si(k, 0)
for this case, we simulate the disease spread according to the

time-dependent dynamics in (1)-(6) until when around 20%
people get infected. Due to the natural immunity, R0 reduces

from 2.5 to 1.78 under the no-masking scenario. To sustain

R0 above 1, we set g = 0.5, which corresponds to a looser

masking measure, resulting in R0 = 1.1 under the masking

scenario. As can be observed from Fig. 8, vaccinating the

elderly still reduces the mortality from COVID-19 most in the

no-masking case, and vaccinating adults aged 20 − 39 still

decreases the mortality most in the masking scenario. This

phenomenon demonstrates that our conclusion still holds when

a high level of natural immunity has already been achieved.

C. Epidemic Probability

The proposed epidemic model is capable of capturing the

stochastic property of epidemics. For countries or areas that

have no active cases inside, it is useful to estimate the probabil-

ity that a new import case, if not quarantined properly, sparks

an epidemic. In Fig. 9, we study how universal masking could

suppress the epidemic probability under both no-masking and

masking scenarios. Recall that the epidemic probability is

the likelihood that a zero patient randomly chosen from the

population starts an epidemic. Under the no-masking scenario,

it is shown that the epidemic probability is about 0.8 when

R0 = 2.5, implying that most new cases, if not isolated,

will give rise to an epidemic. Conversely, face mask wearing

effectively suppresses the epidemic probability to about 0.25.

As reported in China, import cold-chain food contamination

is even a source for COVID-19 resurgence, and therefore

it is nearly impossible to isolate all new (or import) case

properly. Consequently, taking some low-cost control policies,

such as universal masking, is still important for disease-free

areas to reduce or eliminate the risk of COVID-19 outbreak

or resurgence.

VI. CONCLUSION

To combat the COVID-19 pandemic, one of the most im-

portant research tasks is to find out how to effectively decrease

mortality and severe illness from COVID-19. To achieve this

goal, we present a unified analytical framework for COVID-

19 by considering both age-dependent risks and heterogeneity

in contact networks within and across age groups. Under this

framework, we use a novel age-stratified SEAHIR compart-

mental model to account for the distinct dynamics in a micro-

state level, and employ the multitype random network ap-

proach to characterize the spread of epidemics. Several critical

epidemiological metrics, including time-dependent dynamics,

epidemic size, epidemic probability, and reproduction number

are rigorously derived to capture essential features to be used

to manage the pandemic.

Based on our proposed epidemic model, we have also stud-

ied the vaccination problem. It turns out that what is the best

vaccination prioritization strategy to decrease mortality and

hospitalizations depends on the reproduction number R0. In

other words, the effective strategies may vary across different

areas, and heavily depends on the level of local NPI policies,

such as masking, that suppress COVID-19 transmissions.

We conclude that vaccinating the high-risk group is only

effective in reducing mortality when R0 is relatively high,

e.g., under the no-masking scenario, whereas vaccinating the

high-transmission group turns out to be the wise strategy if

intervention policies have already suppressed R0 at a low level.

Although there are many social and ethical considerations

in vaccination allocation, our results provide the rationale

for vaccination prioritization at early stage of vaccination

campaign.

There are several promising directions for future research.

First, the COVID-19 reinfection can be incorporated into the

epidemic model. In this paper, we assume that once a person

becomes immune (either via getting infected or vaccinated),

the person will never contract the disease. In a relatively

short term (e.g., several months), this assumption may be

reasonable given the rare reports of reinfection and the current
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understanding of the vaccination. However, how long the

protective antibodies last remains an open problem. To take

the possible reinfection into account, we need to break the

state R into recovery, vaccinated and death states, and consider

the transition from the recovery and vaccinated states to state

S. Under this case, we can still obtain the time-dependent

epidemic dynamics by using the proposed approach in Section

III-B. Nevertheless, since the final state of the network may

not be disease-free due to the existence of reinfection, other

fundamental epidemic metrics, such as epidemic size and

reproduction number, cannot be calculated via the proposed

approach, which is worth studying in the future. Second, it is

useful to evaluate many other NPIs based on our proposed

model. For instance, what is the impact of limiting some

gatherings or events, such as mass gatherings in bars, gyms,

and churches, on the epidemic spread? To answer these kinds

of questions, one can simulate a realistic contact network (e.g.,

with households, schools, bars, gyms, and churches), as in

[9], to discover the impact of different gatherings or events on

the network structure, and then perform the epidemic analysis

using our mathematical framework by removing the edges

contributed by these gatherings.
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