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Abstract

Cellular Simultaneous Recurrent Neural Network (SRN) has been shown to be a function

approximator more powerful than the MLP. This means that the complexity of MLP would

be prohibitively large for some problems while SRN could realize the desired mapping with

acceptable computational constraints. The speed of training of complex recurrent net-

works is crucial to their successful application. Present work improves the previous results

by training the network with extended Kalman filter (EKF). We implemented a generic

Cellular SRN and applied it for solving two challenging problems: 2D maze navigation and

a subset of the connectedness problem. The speed of convergence has been improved by

several orders of magnitude in comparison with the earlier results in the case of maze nav-
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igation, and superior generalization has been demonstrated in the case of connectedness.

The implications of this improvements are discussed.
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1 Introduction

The artificial neural networks, inspired by the enormous capabilities of living brains, are

one of the cornerstones of today’s field of artificial intelligence. Their applicability to

real world engineering problems has become unquestionable in the recent decades, see for

example [1]. Yet most of the networks used in the real world applications use the feed-

forward architecture, which is a far cry from the massively recurrent architecture of the

biological brains. The widespread use of feed-forward architecture is facilitated by the

availability of numerous efficient training methods. However, the introduction of recurrent

elements makes training more difficult and even impractical for most non-trivial cases.

The SRN’s have been shown to be more powerful function approximators by several

researchers ( [2], [3]). It has been shown experimentally that an arbitrary function generated

by a MLP can always be learned by an SRN. However the opposite was not true, as not

all functions given by a SRN could be learned by a MLP. These results support the idea

that the recurrent networks are essential in harnessing the power of brain-like computing.

It is well known that MLPs and a variety of kernel-based networks (like RBF) are

universal function approximators, in some sense. Andrew Barron [4] proved that MLPs

are better than linear basis function systems like Taylor series in approximating smooth

functions; more precisely, as the number of inputs N to a learning system grows, the

required complexity for an MLP only grows as O(N), while the complexity for a linear basis

function approximator grows exponentially, for a given degree of accuracy in approximation.

However, when the function to be approximated does not live up to the usual concept of

smoothness, or when the number of inputs becomes even larger than what an MLP can

readily handle, it becomes ever more important to use a more general class of neural

network.

The area of intelligent control provides examples of very difficult functions to be tackled

by ANN’s. Such functions arise as solutions to multistage optimization problems, given by

the Bellman equation 8. The design of non-linear control systems, also known as ”Adap-

tive Critics”, presupposes the ability of the so called ”Critic network” to approximate the

solution of the Bellman equation. See [5] for overview of adaptive critic designs. Such prob-

lems also are classified as Approximate Dynamic Programming (ADP). A simple example

of such function is the 2D maze navigation problem, considered in this contribution. See [6]
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for in depth overview of the ADP and Maze navigation problem. The applications of EKF

for NN training have been developed by researchers in the field of control [7], [8], [5].

The classic challenge posed by Rosenblatt to perception theory is the recognition of

topological relations [9]. Minsky and Papert [10] have shown that such problems funda-

mentally cannot be solved by perceptrons because of their exponential complexity. The

multi-layer perceptrons are more powerful than Rosenblatt’s perceptron but they are also

claimed to be fundamentally limited in their ability to solve topological relation prob-

lems [11]. An example of such problem is the connectedness predicate. The task is to

determine whether the input pattern is connected regardless of its shape and size.

The two problems described above pose fundamental challenges to the new types of

neural networks, just like the XOR problem posed a fundamental challenge to the per-

ceptrons, which could be overcome only by the introduction of the hidden layer and thus

effectively moving to the new type of ANN.

In this contribution, we present the Cellular Simultaneous Neural Network (CSRN)

architecture. This is a case of more generic architecture called ObjectNet, see [12], chap-

ter 6, page 120. We use the Extended Kalman Filter (EKF) methodology for training

our networks and obtain very encouraging results. For the first time an efficient train-

ing methodology is applied to the complex recurrent network architecture. Extending the

preliminary result introduced in [13], the present study addresses not only learning but

also generalization of the network on two problem: maze and connectedness. Improve-

ment in speed of learning by several orders of magnitude as a result of using EKF is also

demonstrated. We consider the results introduced in this work as initial demonstration of

the proposed learning principle, which should be thoroughly studied and implemented in

various domains.

The rest of this paper is organized as follows. Section 2 describes the calculation of

derivatives in the recurrent network. Section 3 describes the CSRN architecture. Section 4

gives the EKF formulas. Section 5 describes the operation of a generic CSRN application.

Sections 6 and 7 describe the two problems addressed by this contribution and give the

simulation results. Section 8 is the discussion and conclusions.
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2 Backpropagation in complex networks

The backpropagation algorithm is the foundation of neural network applications [14], [15].

Backpropagation relies on the ability to calculate the exact derivatives of the network

outputs with respect to all the network parameters.

Real live applications often demand complex networks with large number of parameters.

In such cases, the use of the rule of ordered derivatives [14], [16] allows to obtain the

derivatives in systematic manner. This rule also allows to simplify the calculations by

breaking a complex network into simple building blocks, each characterized by its inputs,

outputs and parameters. If the derivatives of the outputs of a simple building block with

respect to all its internal parameters and inputs are known, then the derivatives of the

complete system can be easily obtained by backpropagating through each block.

Suppose that the network consists of N units, or subnetworks, which are updated in

order from 1 to N. We would like to know the derivatives of the network outputs with

respect to the parameters of each unit. In general case the final calculation for any network

output j is a simple summation:

∂+zj
∂α

=
N
∑

i=1

n
∑

k=1

δik
∂+zik
∂α

(1)

here α stands for any parameter, i is the unit number, k is the index of the output of

the current unit, δjk is the derivative with respect to the input of the unit that is connected

to the kthoutput of the ith unit. Note that the kth output of the current unit can feed into

several subsequent units and so the ”delta” will be a sum of the ”deltas” obtained from

each unit. Also δNk ’s are set externally as if the network were a part of a bigger system. If

we simply want the derivatives of the outputs, set δNk = 1. We provide an example of this

calculation in Appendix A.

Let’s denote the outputs of our network as zi. Ultimately we are interested in obtaining

the derivatives of these outputs w.r.t. all the internal parameters. This is equivalent to

calculating the Jacobian matrix of the system. For example, if we have two outputs and

three internal parameters a,b, and c, the Jacobian will be

C̄ =







∂+z1
∂a

∂+z1
∂b

∂+z1
∂c

∂+z2
∂a

∂+z2
∂b

∂+z2
∂c





 (2)
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This matrix can be used to adjust the system’s parameters using various methods such

as gradient descent or Extended Kalman Filter.

So far we considered multi-layered feed-forward networks. The methodology described

above can be extended to recurrent networks. Let us consider a feed-forward network with

recurrent connections that link some of its outputs to some of its inputs. Suppose that

the network is updated for N steps. We would like to calculate the derivatives of the final

network outputs w.r.t. the weights of the network. This calculation is a case of Eq. 1.

Suppose that the network has m inputs, and n outputs. We assume that the expressions for

the derivatives of all outputs w.r.t. each input and each network weight ∂zk/∂α, k = 1..n,

∂zk/∂xp, k = 1..n, p = 1..m are known and we will also denote the ordered derivatives

∂+zk/∂α by F k
α . Then the full derivatives calculation is given by the algorithm in Fig. 1.

Note that we omit the loop over all the weight parameters α to improve readability. The

result of this algorithm is the Jacobian matrix of the network after N iterations.

3 Cellular Simultaneous Recurrent Networks

SRN’s can be used for static functional mapping, similarly to the MLP’s. They differ from

more widely known time lagged recurrent networks (TLRN) because the input in SRN

is applied over many time steps and the output is read after the initial transitions have

disappeared and the network is in equilibrium state. The most critical difference between

TLRN and SRN is whether the network output is required at the same time step (TLRN)

or after the network settles to an equilibrium (SRN).

Many real live problems require to process patterns that form a 2D grid. For instance,

such problems arise in image processing or in playing a game of chess. In those cases the

structure of the neural network should also become a 2D grid. If we make all the elements

of the grid identical, the resulting cellular neural network benefits from greatly reduced

number of independent parameters.

The combination of cellular structure with SRN creates very powerful function approx-

imators. We developed a CSRN package that can be easily adopted to various problems.

The architecture of the network is given in Fig. 2. The input is always a 2D grid. The

number of cells in the network equals to the size of the input. The number of outputs also

equals to the size of the input. Since most of the problems require only few outputs, we
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add an arbitrary output transformation to the network. It has to be differentiable, but it

does not have to have adjustable parameters. The training in our applications occurs only

in the SRN. The cells of the network are connected through neighbor links. Each cell has

four neighbors and the edges of the network wrap around.

The cell of CSRN in our implementation is a generalized MLP [17], shown in Fig. 3.

Each non-input node of the GMLP is linked to all the subsequent nodes thus generalizing

the idea of multi-layered network. The recurrent connections come from the output nodes

of this cell and from its neighboring cells. It is an important feature of the used architecture

that each cell has the same weights, which allows to build arbitrary large networks without

increasing the number of weight parameters.

4 Extended Kalman Filter for Network Training

Kalman filters (KF) originated in signal processing. They present a computational tech-

nique which allows to estimate the hidden state of a system based on observable measure-

ments. See [18], [19] for derivation of the classical Kalman filter formulas based on the

theory of multivariate normal distribution.

In the case of neural network training, we are faced with the problem of determining

the parameter weights in such a way that the measured outputs of the network are as close

to the target values as possible. The network can be described as a dynamical system with

its hidden state vector ~W formed by all the values of network weights, and the observable

measurements vector formed by the values of network outputs ~Y . It is sometimes convenient

to form a full state vector ~S that consists of both hidden and observable parts. Such

formulation can be used in the derivation of Kalman filter [18]. In this paper we follow

the convention in the literature which refer to ~W as the state vector [20]. Note that the

outputs of the network can be expressed in terms of the weights as

~Y = C̄ ~W (3)

where C̄ is the Jacobian matrix of the network evaluated around the current output

vector ~Y . We assume that the state ~S is normally distributed and we are interested in the

estimate of ~W based on the knowledge of ~Y and the underlying dynamical model of the

system, which is simply ~Y (i + 1) = ~t and ~W (i + 1) = ~W (i), where ~t is the target output
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of the network. Suppose the covariance matrix of ~W is given by K̄, and the measurement

noise covariance matrix by R̄. R̄ is assumed to be normally distributed with zero mean.

Then the Kalman update is given by the following formulas.

~W (i+ 1) = ~W (i) +
K̄(i)C̄(i)T

C̄(i)K̄(i)C̄(i)T + R̄(i)
(~t− ~Y (i)) (4)

K̄(i+ 1) = K̄(i)−
K̄(i)C̄(i)T C̄(i)K̄(i)

C̄(i)K̄(i)C̄(i)T + R̄(i)
+ Q̄(i) (5)

We introduced the index i to denote current training step. The matrix Q̄(i) is the

process noise covariance matrix. It represents our assumptions about the distribution of

the true values of ~W . The formulas 4 and 5 are the celebrated Extended Kalman filter

formulas which can be found in numerous literature, see for example [21], [20] , [8]. If

we look closely at 4, we can see the similarity between the EKF update and the regular

gradient descend update. In both cases we have some matrix coefficient multiplied by

the difference (~t − ~Y (i)). In the case of gradient descend , the coefficient is simply C̄(i)

multiplied by some learning rate. In the case of EKF, the coefficient is more complex as it

involves the covariance matrix K̄, which is the key to the efficiency of EKF.

The process noise Q̄ can be safely assumed to be 0, even though setting it to a non-zero

value helps prevent K̄ from becoming negative definite and destabilizing the filter. The

measurement noise R̄ also plays an important role in fine tuning the EKF by accelerating

the speed of learning. The proper functioning of EKF depends on the assumption that

the state vector ~S is normally distributed. This assumption usually does not hold in

practice. However, adding the normally distributed noise described by R̄ helps overcome

this difficulty. ~R is usually chosen to be a random diagonal matrix. The values on the

diagonal are annealed as the network training progresses, so that by the end of training,

noise is insignificant. It turned out that the way R is annealed has significant effect on

the rate of convergence. After experimenting with different functional forms we used the

following formula:

R(i) = alog(b~δ(i)2 + 1)I (6)

where δ(i)2 is the squared error, δ(i) = ~t− ~Y (i). The constants a and b were determined

experimentally. We used a = b = 0.001, which gave reasonably good results presented in
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the next sections. This functional form works better than linear annealing. Making the

measurement noise a function of the error results in fast and reliable learning.

The algorithm described above is suitable for learning one pattern. Learning multiple

patterns creates additional challenges. The patterns can be learned one by one or in a

batch. In the present work we used the batch mode which results in efficient learning but

is computationally demanding. To explain this method, we write Eq. 4 more compactly as

~δW = Ḡ~δ (7)

where Ḡ = K̄C̄T/(C̄K̄C̄T + R̄) and the time step index is omitted for clarity. The

matrix Ḡ is called Kalman gain.

Suppose that the network has s outputs and p weights. The size of matrix C̄ is s by

p, and the size of Ḡ is p by s. Suppose we have M patterns in a batch. If the network is

duplicated M times, the resulting network will have M × s outputs. The size of C̄ becomes

M × s by p. Note that we simply concatenate M matrices together. Matrix Ḡ can still be

computed from Eq. 4 and its size becomes p by M × s. The weight update can be done

just like in the case of one pattern, except now the matrix Ḡ encodes information about

all patterns.

This method is called multi-streaming [22], [23]. Increasing number of input patterns

will result in large sizes of C̄ and Ḡ. This will make batch update inefficient because of

the need to invert large matrices. Therefore, larger problems will require more advanced

numerical techniques already used by practitioners of EKF training [24], [22].

5 CSRN training algorithm

The network architecture given in Fig. 2 is very generic and with proper implementation

can be easily adopted to different problems. The algorithm given in Fig. 8 describes

the training of CSRN. The main loop calculates the Jacobian matrix C̄, which is used in

the Kalman weight update. We perform testing during each training period and make a

decision to stop training based on testing results. Output transformation is the part of the

network that has to be customized for each problem. Other network parameters include

network size, cell size, number of internal steps of SRN, EKF parameters K̄, R̄, and Q̄.

The number of internal steps is selected large enough to allow the typical network to settle
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to an equilibrium state. In the process of training the network dynamics changes and

sometimes it no longer settles. Currently we do not terminate training even if equilibrium

is not reached as such networks still achieve good levels of generalization. The Matlab

implementation is available from the authors.

6 Application of EKF Learning to Generalized Maze

Navigation Problem

6.1 Problem Description

The generalized maze navigation consists of finding the optimal path from any initial

position to the goal in a 2D grid world. An example of such a world is illustrated in Fig. 4.

One version of an algorithm for solving this problem will take a representation of the maze

as its input and return the length of path from each clear cell to the goal. For example,

for a 5 by 5 maze the output will consist of 25 numbers. Once we know the numbers it is

very easy to find the optimal path from any cell by simply following the minimum among

the neighbors. Examples of such outputs are given in Fig. 5.

2D Maze Navigation is a very simple representative of a broad class of problems solved

using the techniques of Dynamic Programming, which means finding the J cost-to-go func-

tion using the Bellman’s equation (see for example [21]). Dynamic Programming gives the

exact solution to multistage decision problems. More precisely, given a Markovian decision

process with N possible states and the immediate expected cost of transition between any

two states i and j denoted by c(i, j), the optimal cost-to-go function for each state satisfies

the following Bellman’s optimality equation.

J∗(i) = minµ(c(i, µ(i)) + γ
N
∑

j=1

pij(µ)J
∗(j)) (8)

J(i) is the total expected cost from the initial state i, and γ is the discount factor. The

cost J depends on the policy µ, which is the mapping between the states and actions causing

state transitions. The optimal expected cost results from the optimal policy µ∗. Finding

such policy directly from Eq. 8 is possible using recursive techniques but computationally

expensive as the number of states of the problem grows. In the case of 2D maze, the

immediate cost c(i, j) is always 1, and the probabilities pij can only take values of 0 or 1.
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The J surface resulting from the 2D maze is a challenging function to be approximated

by a neural network. It has been shown that an MLP cannot solve the generalized problem

[2]. Therefore, this is a great problem to demonstrate the power of the Cellular SRN’s. It

has been shown that CSRN is capable of solving this problem by designing its weights in

a certain way [25]. However the challenge is to train the network to do the same.

The Cellular SRN to solve the m by m maze problem consists of m+2 by m+2 grid of

identical units. The extra row and column on each side result from introducing the walls

around the maze which prevent the agent from running away. Each unit receives input

from the corresponding cell of the maze and returns the value of the J function for this cell.

There are two inputs for each cell, one indicates whether this is a clear cell or an obstacle

and the other supplies the values of the goal. As shown in Fig. 2, the number of outputs

of the cellular part of the network equals to the number of cells. In the maze application

the final output is the values of J function for each input cell and therefore there is no need

for the output transformation.

6.2 Results of 2D Maze Navigation

Previous results of training the Cellular SRN’s showed slow convergence [2]. Those ex-

periments used back-propagation with adaptive learning rate (ALR) [1]. The network

consisted of 5 recurrent nodes in each cell and was trained on up to 6 mazes. The initial

results demonstrated the ability of the network to learn the mazes [13].

The introduction of EKF significantly sped up the training of the Cellular SRN. In

the case of single maze, the network reliably converges within 10-20 training cycles (see

fig. 8). In comparison, back-propagation through time with adaptive learning rate (ALR)

takes between 500 and 1000 training cycles and is more dependent on the initial network

weights [2].

We discovered that increasing the number of recurrent nodes from 5 to 15 allows to

speed up both EKF and ALR training in case of multiple mazes. Nevertheless the EKF

has a clear advantage. For more realistic learning assignment we use 30 training mazes and

test the network with 10 previously unseen mazes. The training targets where computed

using dynamic programming algorithm. Fig. 7A shows the sum squared error as function of

the training step. We can see that EKF reaches the reasonable level in 150 training cycles.
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For comparison the back-propagation through time with adaptive learning rate training is

shown on the same graph.

The true solution consists of integer values with the difference of one between the

neighboring cells. We suppose that the approximation is reasonable if the maximum error

per cell is less than 0.5, since in this case the correct differences will be preserved. This

means that for a 7 by 7 network corresponding to 5 by 5 maze, the sum squared error has

to fall below 49 ∗ 0.52 = 12.25. In Fig. 7A the EKF drops below the 12.25 level within

150 steps while ALR testing saturates at the level close to 50. We use 20 internal steps

within each training cycle. In practical training scenarios the error is obviously not the

same for each cell. Detailed statistical analysis can reveal the true nature of the expected

distributions. In the present exploratory study we don’t go into the details of statistics.

Rather we introduce an empirical measure of the goodness of learnt navigation task in

the following way. We count how many gradients point in the correct direction. The

ratio of the number of correct gradients to the total number of gradients is our goodness

ratio G that can vary from 0 to 100 percent. The gradient of the J function gives the

direction of the next move. As an example, Fig. 5 shows the J function computed by a

network and the true J function. Fig. 5 demonstrates 2 erroneous gradient directions. The

goodness G is illustrated in Fig. 7B. We can see that EKF reaches testing performance of

75-80 percent after 150 training cycles averaged over 10 testing mazes. On the other hand

BP/ALR testing performance lingers around 50 percent chance level for several hundred

training cycles. Even after 500 training cycles it is close to the chance level. This shows

the potential of EKF for training CSRN’s.

7 Application of EKF to Connectedness Problem

7.1 A Simple Connectedness Problem

The description of connectedness problem can be found in [10]. The problem consists of

answering the question ”is the input pattern connected?”. Such question is fundamental to

our ability to segment visual images into separate objects which is the first preprocessing

step before trying to recognize and classify the objects. We work with a subset of the con-

nectedness problem, where we consider a square image and ask the following question: ”are
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the top left and the bottom right corners connected?”. Note that the diagonal connections

do not count in our case, each pixel of a connected pattern has to have a neighbor on the

left, right, top or bottom. Examples of such images are given in Fig. 6. This subset is still

a difficult problem which could not be solved by the feedforward network [26]. The reason

why connectedness is a difficult problem lies it its sequential nature. Human eye has to

follow the borders of an image sequentially in order to classify it. This explains the need

for recursion.

The network architecture for the connectedness problem is that of Fig. 2. The output

transformation is a GMLP with one output. The weights of this GMLP are randomly

generated and fixed. The target outputs are +0.5 for connected pattern and -0.5 for

disconnected pattern.

7.2 Results of Connectedness Problem

Here we present the results of solving the subset of connectedness problem. We applied the

network to image sizes 5, 6, and 7. In each case we generated sets of 30 random connected

and 30 disconnected patterns for training, and 10 connected and 10 disconnected patterns

for testing. We used 20 internal iterations and the training took between 100 and 200

training cycles. We used the same EKF parameters as in the case of maze navigation.

After training on 30 patterns we tested the network and calculated the percent of correctly

classified patterns. We applied the same set of patterns to a feed-forward network with one

hidden layer. The size of the hidden layer was varied to obtain the best results. The results

are summarized in the following table, where each number is averaged over 10 experiments

and the standard deviation is also given.
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Table I. Generalization with EKF learning for Connectedness problem

Input Size Correctly Classified with CSRN Correctly Classified with MLP

5x5 80 ± 6 % 66 ± 10 %

6x6 82 ± 6 % 65 ± 12 %

7x7 88.5 ± 6 % 63 ± 12 %

We can see that the performance of MLP is just slightly above chance level whereas

the CSRN produces correct answers in 80-90% of test cases on previously unseen patterns.

This performance is likely to improve by fine tuning network parameters.

8 Discussion and Conclusions

In this contribution we presented the advantages of using the Cellular SRN’s as a more

general topology compared to conventional MLP. We extended the previous results [27]

by applying the CSRN to the connectedness problem. We applied an efficient learning

methodology - EKF - to the SRN and obtained very encouraging results in terms of speed

of convergence. The unit of our network is a generalized MLP. It can be easily substituted by

any other feed-forward computation suitable for problem at hand, without any changes to

the Cellular SRN. Now it becomes practical to use the proposed combination of architecture

and the training method to any data that has 2D grid structure. The network size does

not grow exponentially with the input size because of the weight sharing. The 100 by

100 input pattern could potentially be processed by the CSRN with 15 units in each cell.

However large networks still involve massive computations, which can be possibly addressed

by efficient hardware implementations [28].

One example of such application is image processing. Detecting connectedness is a

fundamental challenge in this field. We applied our CSRN to a subset of connectedness

problem with minimal changes to the code. The results showed that CRSN is much better

at recognizing connectedness compared to feed-forward architecture.

Another example of such data is the board games. The games of chess and checkers
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have long been used as testing problems for AI. Recently, neural networks coupled with

evolutionary training methods have been successfully applied to the checkers [29] and chess

[30]. The neural network architecture used in those works is the case of Object Net [12],

mentioned in the introduction. The input pattern (the chess board) is divided into spacial

components and the network is built with separate sub-units receiving input from their

corresponding components. The interconnections between the sub-units of the network

encode the spacial relationships between different parts of the board. The outputs of the

Object Net feed into another multilayered network using to evaluate the overall ”fitness”

of the current situation on the board.

From the above description we can see that the CSRN network is a simplified case of the

Object Net. The Chess Object Net belongs to the same class of multistage optimization

problems, even though it does not presently use recurrent units. The biggest difference

however, is the training method. The evolutionary computation has proven to be able

to solve the problem, however at high computational cost. The architecture used in this

contribution provides an efficient training method for the Object Net type of networks

with more biologically plausible training using local derivatives information. The improved

efficiency allows the use of SRN’s, which are proven to be more powerful in function ap-

proximation than the MLP’s. Therefore, the Cellular SRN/EKF can be applicable to many

interesting problems.

This contribution builds upon several concepts: Recurrent NN’s, Simultaneous Recur-

rent Networks, Cellular NN’s, Dynamic Programming, Kalman Filters. After reviewing

each of the concepts, we presented a versatile recurrent neural network architecture capa-

ble of efficient training based on EKF methodology. We demonstrate this novel application

of EKF on the examples of the maze navigation problem and connectedness problem. De-

tailed study of properties of EKF for CSRN training is in progress.
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Appendix A: Example of Calculating Ordered Deriva-

tives

The following example is an illustration of the principles mentioned in section 2. Consider

the network in Fig. 9 A. This network can be decomposed into 4 identical units as shown in

Fig. 9 B, where each unit is a mapping between its inputs, internal parameters and outputs.

This is a case of a simple recurrent cellular network with two cells and two iterations. We

unfold the recurrent steps to demonstrate the application of the rule of ordered derivatives.
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Each unit has 3 inputs x1,x3, and x3, and 3 parameters a, b, and c. The outputs of

each neuron are denoted by z1, z2, and z3. The first input neuron does not perform any

transformation, so z1 = x1. The second and third neurons use a nonlinear transformation

f . The forward calculation of an elementary unit is as follows.

z2 = x2 + f(cx1) (A-1)

z3 = x3 + f(ax1 + bz2) (A-2)

The order in which different quantities appear in the forward calculation is

x1, x2, x3, c, z2, a, b, z3. (A-3)

We would like to determine the derivatives of z2 and z3 w.r.t. the inputs and parameters.

To do so, we apply the rule of ordered derivatives [14] given by the following formula.

∂+TARGET

∂zi
=

∂TARGET

∂zi
+

N
∑

j=i+1

∂+TARGET

∂zj

∂zj
∂zi

(A-4)

where TARGET is the variable the derivative of which w.r.t. zi is sought, and the calcu-

lation of TARGET involves using zj ’s is order of their subscripts. The notation ∂+ is used

for the ordered derivative, which simply means the full derivative, as opposed to simple

partial derivative obtained by considering only the final equation involving TARGET .

In order to calculate the derivatives in our example, we have to use the equation A-4

in reverse order of A-3. Let φ denote the derivative of f .

∂+z3
∂b

=
∂z3
∂b

= z2φ(ax1 + bz2) (A-5)

∂+z3
∂a

=
∂z3
∂a

= x1φ(ax1 + bz2) (A-6)

∂+z3
∂z2

=
∂z3
∂z2

= bφ(ax1 + bz2) (A-7)

∂+z3
∂c

=
∂+z3
∂z2

∂+z2
∂c

= bφ(ax1 + bz2)x1φ(cx1) (A-8)

∂+z3
∂x3

=
∂z3
∂x3

= 1 (A-9)

∂+z3
∂x2

=
∂+z3
∂z2

∂z2
∂x2

= bφ(ax1 + bz2) (A-10)

∂+z3
∂x1

=
∂+z3
∂z2

∂z2
∂x1

= bφ(ax1 + bz2)cφ(cx1) (A-11)
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∂+z2
∂c

=
∂z2
∂c

= x1φ(cx1) (A-12)

∂+z2
∂x3

=
∂z2
∂x3

= 0 (A-13)

∂+z2
∂x2

=
∂z2
∂x2

= 0 (A-14)

∂+z2
∂x1

=
∂z2
∂x1

= cφ(cx1) (A-15)

(A-16)

Knowing these derivatives, what are the derivatives of the full network? Let’s add the

superscript to each variable indicating which unit of the network it belongs to. Note that

the outputs of the earlier unit become the inputs of the later unit. Consider unit 2, which

gets input from units 1 and 3. If we apply A-4 to obtain the derivative of, for example, z23

w.r.t. a, we will get, based on the topology of connections between the units, the following

result.

∂+z23
∂a

=
∂+z23
∂a2

+
∂+z23
∂z33

∂+z33
∂a3

+
∂+z23
∂z12

∂+z12
∂a2

(A-17)

Obviously a2 = a3 = a as we use identical units. The quantities
∂+z1

2

∂a2
and

∂+z3
3

∂a3
are already

obtained for each unit. Since z12 = x2
3 and z33 = x2

2, the quantities
∂+z2

3

∂z1
2

and
∂+z2

3

∂z3
3

are

equivalent to
∂+z2

3

∂x2
3

and
∂+z2

3

∂x2
2

, which are also already calculated for each individual unit. They

are the input ”deltas”, or the output derivatives ”propagated” through the unit backwards.

In other words, when all the quantities of each individual unit are calculated, then the

total derivatives of the outputs of the full network w.r.t. any parameter are obtained by

summing the individual unit’s derivative multiplied by the corresponding ”delta”. The

correspondence is determined by the topology of connections - knowing which output is

connected to which input. Every time we backpropagate through a unit, we also set the

values of the ”deltas” of preceding units. In our example:

δ22 =
∂+z23
∂z12

=
∂+z23
∂x2

3

(A-18)

δ23 =
∂+z23
∂z33

=
∂+z23
∂x2

2

(A-19)

(A-20)

And
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∂+z23
∂a

=
∂+z23
∂a2

+ δ23
∂+z33
∂a3

+ δ22
∂+z12
∂a2

(A-21)

Likewise, in general case, the final calculation for any network output j is a simple

summation given by Eq. 1.
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10 Figure Captions

• Figure 1: Algorithm for calculating ordered derivatives in recurrent neural network.

See section 2 for explanations.

• Figure 2: Generic Cellular SRN architecture.

• Figure 3: Cell of CSRN is a generalized MLP with m inputs and n outputs. The

solid lines are adjustable weights and the dashed lines are unit weights. Note that

the output of the cell is scaled by the output weight.

• Figure 4: Example of 5 by 5 maze world. Black squares are obstacles. X is the

location of the goal. The agent needs to find the shortest path from any white square

to the goal.

• Figure 5: Comparison of the solution given by the network and the true solution. A -

approximate solution, black arrows point in the wrong direction. B - exact solution.

• Figure 6: Examples of input patterns for Connectedness problem for 7 by 7 image.

• Figure 7: A. Average sum squared error for training on 30 mazes and testing on 10.

Solid - EKF training error, dotted - EKF testing error, dashed - ALR training error,

dash-dot - ALR testing error. The 12.25 threshold for sum squared error is shown

by solid line. B. Average Goodness of Navigation G for training on 30 mazes and

testing on 10. Solid - EKF training , dotted - EKF testing, dashed - ALR training,

dash-dot - ALR testing. The 50 percent solid line is the chance level network.

• Figure 8: Pseudo-code for the training cycle of the CSRN.

• Figure 9: Simple feedforward network (A) which can be divided into 4 blocks (B).
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11 Figures

Calculation of derivatives in recurrent network

δNk = 1, k = 1..n Initialize deltas

F k
α = ∂zNk /∂α, k = 1..n Initialize ordered derivatives

For t=N-1 down to 1 for each time step

For k=1 to n for each network output

δtk =
∑

p∈fan−in(k) ∂z
t+1
k /∂xt

p find deltas

F k
α = F k

α + δtk∂z
t
k/∂α update derivatives

Figure 1:
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Input Pattern

Cell of CSRN 

Output Transformation

Network Output

Figure 2:
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Training Cycle of CSRN with EKF weight update

Initialize network weights

Initialize EKF parameters Q, R, K

Repeat Until Training is Completed

Set Jacobian C to empty matrix

For each Training Pattern

Run forward update of CSRN

Calculate Network Output(s) and Error

Back propagate Error though Output Transformation

Backpropagate Deltas from Output Transformation through CSRN

Augment the Jacobian matrix C

Calculate weight adjustments using EKF algorithm

For each Testing Pattern (Stopping Criteria)

Run forward update CSRN

Calculate Network Output

Determine whether training is completed

Figure 8:
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