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Abstract—We are interested in unicast traffic over wireless
networks that employ constructive inter-session network coding,
including single-hop and multi-hop schemes. In this setting,
TCP flows do not fully exploit the network coding opportunities
due to their bursty behavior and due to the fact that TCP is
agnostic to the underlying network coding. In order to improve
the performance of TCP flows over coded wireless networks,
we take the following steps. First, we formulate the problem
as network utility maximization and we present a distributed
solution. Second, mimicking the structure of the optimal solution,
we propose a network-coding aware queue management scheme
(NCAQM) at intermediate nodes; we make no changes to TCP or
to the MAC protocol (802.11). We demonstrate, via simulation,
that NCAQM significantly improves TCP performance compared
to TCP over baseline schemes.

Index Terms—Network coding, wireless networks, congestion
control, transport protocol design, queue management.

I. I NTRODUCTION

Wireless environments naturally lend themselves to network
coding, thanks to the inherent broadcast and overhearing
capabilities of the wireless medium. We are particularly in-
terested in wireless mesh networks that employ constructive
network coding schemes (such as COPE [1] and BFLY [6]), to
mention some concrete examples). We consider unicast flows
(particularly TCP, which is the dominant traffic type today)
transmitted over such coded wireless networks.

In this setting, it has been demonstrated that network coding
can significantly increase throughput [1], [2]. However, it
has also been observed [1] that TCP does not exploit the
full potential of the underlying network coding, mainly due
to its bursty behavior. Rate mismatch between flows can
significantly reduce the coding opportunities, as there maynot
be enough packets from different flows at intermediate nodes
to code together. One possible solution is to artificially delay
packets at intermediate nodes [3], until more packets arrive and
can be coded together. However, the throughput increases with
small delay (due to more coding opportunities), but decreases
with large delay (which reduces the TCP rate); the optimal
delay depends on the network topology and the background
traffic and also may change over time. Thus, in many practical
networking scenarios, introducing delay at intermediate nodes
is not practical.

We consider the same problem but we propose a different
approach. Our main observation is that the mismatch between
flow rates is due to the dynamic/bursty nature of TCP. There-
fore, the problem can be eliminated by making modifications
to congestion control mechanisms (at the end-points) and/or to

queue management schemes (at intermediate nodes) to make
them network coding-aware (in the sense that they can match
the rates of flows coded together). Based on this observation,
we take the following steps.

First, we formulate congestion control for unicast flows over
wireless networks with inter-session network coding within the
network utility maximization (NUM) framework [4], [5]. We
assume that a known constructive network coding scheme is
deployed in a wireless mesh network; examples include COPE
[1] for one-hop network coding and BFLY [6] for two-hop
network coding. The optimal solution of the NUM problem
decomposes into several parts, each of which has an intuitive
interpretation, such as rate control, queue management, and
scheduling.

Second, motivated by the analysis, we propose modifica-
tions to congestion control mechanisms, so as to mimic the op-
timal solution of the NUM problem and to fully exploit the po-
tential of network coding. It turns out that the optimal solution
dictates minimal and intuitive implementation changes. We
propose a network coding-aware queue management scheme
at intermediate nodes (NCAQM), which stores coded packets
and drops packets based on both congestion state and network
coding. We note that the queues at intermediate nodes, which
are already used for network coding, are a natural place to
implement such changes with minimal implementation cost.
In contrast, we do not propose any practical modifications to
TCP or MAC (802.11) protocols, which significantly simplifies
practical deployment of our proposal. Finally, we evaluate
our proposal via simulation in GloMoSim [23] and we show
that TCP over NCAQM significantly outperforms TCP over
baseline schemes (e.g.,doubles the throughput improvement
in some scenarios), and achieves near-optimal performance.

The rest of the paper is organized as follows. Section II
discusses related work. Sections III-VI focus on wireless
networks with one-hop network coding: Section III presents
the system model; Section IV presents the optimization prob-
lem and solution; Section V presents the design of our
network coding-aware queue management scheme (NCAQM);
Section VI presents simulation results. Section VII extends
our framework to multi-hop network coding. Section VIII
concludes the paper. Appendix A presents numerical results
for the convergence of the solution.

II. RELATED WORK

This paper builds on top of constructive network coding
schemes in wireless mesh networks. We rely on such a given
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scheme to provide the available coded and uncoded flows to
higher layers. We then seek to optimize the treatment of these
flows at the end-points and/or at intermediate nodes so as to
maximize network coding opportunities.

COPE and follow-up work.COPE [1] is a constructive
network coding scheme for one-hop network coding across
unicast sessions. Our framework can also consider any other
constructive scheme for inter-session NC, such as BFLY [6]
or tiling approaches [7]. COPE has generated a lot of interest
in the research community. Some researchers tried to model
and analyze COPE [13], [15], [17]. Some others proposed
new coded wireless systems, based on the idea of COPE [16],
[6]. Zhao and Medard tried to explain and improve COPE’s
performance by looking at its interaction with MAC fairness
[14]. We note that the authors of COPE had noticed the
problem with TCP performance over COPE. As discussed in
the introduction, [3] addressed the problem of rate mismatch
between flows that are coded together, by delaying packets.
Here, we take a different approach and we create coding
opportunities via queue management and congestion control.
More specifically, we aim at improving TCP performance
over COPE by complementing it with a network coding-aware
queue management scheme (NCAQM).

NUM in coded systems.Our analysis falls within the classic
framework of network utility maximization (NUM) [5]. A
significant body of work has looked at the joint optimization
of intra- or inter-session NC of unicast flows. For example,
in [8], minimum cost multicast over network coded wireline
and wireless networks was studied. This work was extended
for rate control in [9] for wireline networks. The rate region
of multicast flows when network coding is used is studied
in [10], [11]. The most closely related to this paper are re-
source allocation problems for unicast flows. For example, rate
control, routing, and scheduling for generation-based intra-
session network coding over wireless networks is considered
in [12]. Optimal scheduling and optimal routing for COPE
are considered in [13] and [17], respectively. Network utility
maximization is used in [18] for end-to-end pairwise inter-
session network coding. Energy efficient opportunistic inter-
session network coding over wireless are proposed in [19],
following a node-based NUM formulation and its solution
based on back-pressure. A linear optimization framework for
packing butterflies is proposed in [20].

Compared to prior NUM problems in coded networks, we
focus on the congestion control problem for multiple unicast
flows over wireless with a given inter-session network coding
scheme. The most similar formulation is [9], but for intra-
session network coding.

Protocol design.To the best of our knowledge, our work
is the first, to take the step from theory (optimization) to
practice (protocol design), specifically for the problem of
congestion control over inter-session network coding. We
propose implementation changes, which have a number of
desired features: they are justified and motivated by analysis,
they perform well (double the throughput in simulations), and
they are minimal (only queue management is affected, while
TCP and MAC remain intact).

Comparison to our prior work.This paper is an improved

and extended version of our conference paper that was pre-
sented in NetCod 2010 [25]. It includes significantly extended
sections on simulations of performance (Sections VI and VII)
as well as new numerical results on the convergence (Appendix
A) of our schemes. It also extends the framework from one-
hop to multi-hop network coding (Section VII).

In another piece of recent work [24], we studied a related but
orthogonal aspect: we added intra-session redundancy to inter-
session network coding in order to deal with wireless losses
and to eliminate the need to know the state of the neighbors. In
contrast, in this paper we consider only inter-session coding
and we focus on the interaction between local (coding and
queue management) and end-to-end (TCP) schemes, which
was out of the scope of [24].

III. SYSTEM MODEL

Sources/Flows.Let S be the set of unicast flows between
some source-destination pairs. Each flows ∈ S is associated
with a ratexs and a utility functionUs(xs), which we assume
to be a strictly concave function ofxs. The goal is to maximize
the total utility functionUt =

∑

s∈S Us(xs).
Wireless Network. A hyperarc (i,J ) is a collection of

links from nodei ∈ N to a non-empty set of next-hop nodes
J ⊆ N that are interested in receiving the same network
code through a broadcast transmission fromi. A hypergraph
H = (N ,A) represents a wireless mesh network, whereN is
the set of nodes andA is the set of hyperarcs. For simplicity,
h = (i,J ) denotes a hyperarc,h(i) denotes nodei andh(J )
denotes nodeJ , i.e., h(i) = i andh(J ) = J . We use these
terms interchangeably in the rest of the paper.

Due to the shared nature of the wireless media, transmission
over different hyperarcs may interfere with each other. We
consider the protocol model of interference [21], according
to which, each node can either transmit or receive at the
same time and all transmissions in the range of the receiver
are considered as interfering. Given a hypergraphH, we can
construct the conflict graphC = (A, I), whose vertices are
the hyperarcs ofH and edges indicate interference between
hyperarcs. A cliqueCq ⊆ A consists of several hyperarcs,
at most one of which can transmit at the same time without
interference.

Network Coding: We assume that intermediate nodes use
COPE [1] for one-hop opportunistic network coding1. Each
node i listens all transmissions in its neighborhood, stores
the overheard packets in its decoding buffer, and periodically
advertises the content of its decoding buffer to its neighbors.
Then, when a nodei wants to transmit a packet, it checks or
estimates the contents of the decoding buffer of its neighbors.
If there is a network coding opportunity, the node combines
the relevant packets using simple coding operations (XOR) and
broadcasts the combination toJ . Note that it is possible to
construct more than one network code over a hyperarc(i,J ).
Let Ki,J be the set of network codes over a hyperarc(i,J ).
Let Sk ⊆ S be the set of flows, whose packets are coded
together using codek ∈ Ki,J and broadcast over(i,J ).

Routing: We consider that each flows ∈ S follows a single
pathPs ⊆ N from the source to the destination. This path is

1Note that we present the multi-hop extension in Section VII.
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Fig. 1. “X topology”. SourceS1 transmits a flow with ratex1 to receiver
R1 and sourceS2 transmits a flow with ratex2 to receiverR2, over the
intermediate nodeI. A1 and B1 transmit their packetsa and b, in two
time slots, and nodeI receives them. Furthermore,A2 overhearsb andB2

overhearsa, becauseA1 − B2 andB1 − A2 are in the same transmission
range and they can overhear each other. In the next time slot,I broadcasts the
network coded packet,a⊕ b over hyperarc(I, {A2, B2}). SinceA2 andB2

have overheardb anda, they can decode their packetsa andb, respectively.

pre-determined by a routing protocol,e.g., OLSR or AODV,
and given as input to our problem. However, note that several
different hyperarcs may connect two consecutive nodes along
the path. We set an indicator functionHs,k

i,J = 1 if flow s is
transmitted through hyperarc(i,J ) using network codek ∈
Ki,J . Otherwise,Hs,k

i,J = 0.
Example 1:The example shown in Fig. 1 illustrates the

problem we consider. SinceI can transmita ⊕ b in one
time slot, instead ofa, b in two time-slots, network coding
has the potential to improve throughput. However, if there is
mismatch between the ratesx1, x2 of the two flows,I may
not have packets from the two flows to code together at all
times, and thus does not exploit the full potential of network
coding. We confirmed this intuition through simulations in this
example topology. When the buffer size was set to10 packets
at each node and the bandwidth was1Mbps for each link, we
observed that50% of the time, there were no packets from
the two flows at the same time at nodeI to code together.
For smaller queue sizes and larger transmission rates, there
were even fewer coding opportunities. This means that there
is potential for improvement by updating the protocols so as
to mitigate the rate mismatch between TCP flows. This is the
observation that motivates this paper. �

IV. OPTIMAL CONGESTIONCONTROL

A. Problem Formulation

The objective is to maximize the total utility function, by
appropriately selecting: the flow ratesxs at sourcess ∈ S;
their traffic splitting parameterαs,k

h (following the terminology
of [9]) into network codesk ∈ Kh over hyperarch at inter-
mediate nodes; and the percentage of timeτh each hyperarc
is used:

max
x,α,τ

∑

s∈S

Us(xs)

s.t.
∑

k∈Kh

max
s∈Sk

{Hs,k
h α

s,k
h xs} ≤ Rhτh, ∀h ∈ A

∑

h(J )|h∈A

∑

k∈Kh|s∈Sk

α
s,k
h = 1, ∀s ∈ S, i ∈ Ps

∑

h∈Cq

τh ≤ τ, ∀Cq ⊆ A (1)

The first constraint is the capacity constraint.H
s,k
h α

s,k
h xs

indicates the part of flow ratexs allocated to thek-th network
code over hyperarch. The rate of thek-th network code is
the maximum rate among flowss ∈ Sk coded together in
codek: maxs∈Sk

{Hs,k
h α

s,k
h xs} [8]. Different network codes

k ∈ Kh over h share the available capacityRhτh, whereRh

is the transmission capacity ofh; sinceh is a set of links,
Rh is the minimum:Rh = minj∈h(J ){Ri,jξi,j} whereRi,j

is the capacity of link(i, j), and ξi,j is the probability of
successful transmission over link(i, j). The second constraint
is the flow conservation constraint: at every nodei on the path
Ps of sources, the sum ofαs,k

h over all network codes and
hyperarcs should be equal to1. Indeed, when a flow enters
a particular nodei, it can be transmitted to its next hopj
as part of different network coded and uncoded flows. The
third constraint is due to interference. As mentioned,τh is the
percentage of timeh is used. Its sum over all hyperarcs in a
clique should be less than an over-provisioning factor,γ ≤ 1,
because all hypearcs in a clique interferes, and should time
share the medium.

B. Solution

By relaxing the capacity constraint in Eq. (1), we get the
Lagrangian:

L(x,α, τ , q) =

∑

s∈S

Us(xs)−
∑

h∈A

qh

(

∑

k∈Kh

max
s∈Sk

{Hs,k
h α

s,k
h xs} −Rhτh

)

(2)

whereqh is the Lagrange multiplier, which can be interpreted
as the queue size at hyperarch, as discussed later. To decom-
pose the Lagrangian, we rewritemaxs∈Sk

{Hs,k
h α

s,k
h xs} as

max
m

s,k

h

∑

s∈Sk
H

s,k
h α

s,k
h xsm

s,k
h s.t.

∑

s∈Sk
m

s,k
h = 1, where

m
s,k
h is a new variable, which we call the thedominance

indicator. It indicates whether the sources has the maximum
rate among all flows coded together in thek-th network code,
or not. In the next section, we will see that only the dominant
flow in a network code needs to back-off during congestion.

The Lagrange function in Eq. (2) is not strictly concave in
m

s,k
h and this causes oscillation in its solution. We use the

proximal method [22] to eliminate oscillations;

max
m

∑

s∈Sk

(Hs,k
h α

s,k
h xsm

s,k
h − c(ms,k

h − µ
s,k
h )2)

s.t.
∑

s∈Sk

m
s,k
h = 1, (3)

wherec is a constant andµs,k
h is an artificial variable of the

proximal method [22]. Its value is set toms,k
h periodically.

Let (ms,k
h )∗ be the solution to this problem.

By rewriting the summation
∑

k∈Kh

∑

s∈Sk
as

∑

s∈S

∑

k∈Kh|s∈Sk
, the Lagrange function in Eq. (2)

can be expressed as:L(x,α, τ , q) =
∑

h∈A qhRhτh +
∑

s∈S

(

Us(xs)− xs

∑

h∈A

∑

k∈Kh|s∈Sk
qhH

s,k
h α

s,k
h (ms,k

h )∗
)

.
Now, we can decompose the Lagrangian into the following
intuitive problems: rate control, traffic splitting, scheduling,
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and parameter update (queue management).
Rate Control. First, we solve the Lagrangian w.r.txs:

xs = (U ′
s)

−1





∑

h∈A

∑

k∈Kh|s∈Sk

qhH
s,k
h α

s,k
h (ms,k

h )∗



 , (4)

where (U ′
s)

−1 is the inverse function of the derivative of
Us. If we definews

h =
∑

k∈Kh|s∈Sk
H

s,k
h α

s,k
h (ms,k

h )∗ and
qsh(i) =

∑

h(J )|h∈A qhw
s
h, the ratexs can be expressed as

xs = (U ′
s)

−1(
∑

i∈Ps
qsi ), noting thati = h(i).

In the special case where proportional fairness is desired,
Us(xs) = log(xs), ∀s ∈ S, leading toxs =

(
∑

i∈Ps
qsi
)−1

,
i.e., xs is inversely proportional to the total network coded
queue sizes over the path of flowss, which we will be
explained later.

Traffic Splitting. Second, we solve the Lagrangian forα
s,k
h :

at each nodei along the path (i.e., i ∈ Ps), the traffic splitting
problem can be expressed as

min
α

∑

h(J)|h∈A

∑

k∈Kh|s∈Sk

qhH
s,k
h (ms,k

h )∗αs,k
h

s.t.
∑

h(J)|h∈A

∑

k∈Kh|s∈Sk

α
s,k
h = 1, ∀i ∈ Ps (5)

Similarly to Eq. (3), we also use the proximal method [22] to
solve the optimization problem in Eq. (5).

Scheduling. Third, we solve the Lagrangian forτh. This
problem is solved for every hyperarc and every clique in the
conflict graph in the hypergraph.

max
τ

∑

h∈A

qhRhτh

s.t.
∑

h∈Cq

τh ≤ τ, ∀Cq ⊆ A. (6)

Parameter (Queue Size) Update.We find qh, using
a gradient descent algorithm:qh(t + 1) = {qh(t) +
ct[
∑

k∈Kh

∑

s∈Sk
H

s,k
h α

s,k
h (ms,k

h )∗xs − Rhτh]}+. Equiva-
lently;

qh(t+ 1) = {qh(t) + ct[
∑

k∈Kh

max
s∈Sk

{Hs,k
h α

s,k
h xs} −Rhτh]}

+

(7)

wheret is the iteration number,ct is a small constant, and the
+ operator makes the Lagrange multipliers positive.qh can be
interpreted as the queue size at hyperarc∀h ∈ A. Indeed,
in Eq. (7), qh is updated with the difference between the
incoming

∑

k∈Kh
maxs∈Sk

{Hs,k
h α

s,k
h xs} and outgoingRhτh

traffic at h. Therefore, we callqh the hyperarc-queue, or h-
queue for brevity. We confirmed the convergence ofqh’s via
numerical calculations as seen in Appendix A.

V. NETWORK CODING-AWARE IMPLEMENTATION

In the previous section, we saw that the NUM problem
decomposed into Eq. (4), Eq. (5), Eq. (6), Eq. (7), each of
which has an intuitive interpretation. In this section, we mimic
the properties of the optimal solutions to these problems and
propose modifications to the corresponding protocols to make
them network coding-aware. It turns out that only changes to

queue management at intermediate nodes are crucial, while
TCP and scheduling can remain intact. This makes our pro-
posal amenable to practical deployment.

A. Queue Management at Intermediate Nodes (NCAQM)

1) Summary of Proposed Scheme:We refer to ourNet-
work Coding-Aware Queue Managementscheme as NCAQM.
NCAQM builds on and extends COPE [1]. Its goal is to
interact with TCP congestion control in such a way that
it matches the rates of TCP flows coded together and thus
increases network coding opportunities. It achieves this goal
through the following minimal changes at intermediate nodes.
First, NCAQM stores coded packets in the output queueQi,
as opposed to COPE that stores uncoded packets. Second,
NCAQM maintains state per hyperarc queueqh and per
network code transmitted over each hyperarck ∈ Kh; this is
feasible in the setting of wireless mesh with limited numberof
flows. Third, during congestion, packets are dropped from the
flow that has the largest number of packets, where this number
is computed only over h-queues where the flow is dominant.
Consider several flows coded together in the same code: the
rate of the dominant flow is the rate of the code; and dropping
from the dominant flow matches the rates, as desired. We note
that intermediate nodes do already network coding operations
and can be naturally extended to implement these changes.

2) Detailed Description of Proposed Scheme:
Maintaining Queues: In [1], a wireless nodei stores

all packets uncoded in a single output queueQi and takes
decisions at every transmission opportunity about whetherto
code some of these packets together or not. In contrast, we
propose to network code packets, if an opportunity exists,
at the time we store them in the queue. Motivated by the
fact that Lagrange multiplier (h-queue)qh in Eq. (7) can be
interpreted as the queue size at hyperarch, we maintain h-
queue virtually2 for each hyperarc at every node, which keeps
track of packets that are network coded and broadcast over
h. The size of an h-queue isQh and how it is determined in
practice will be explained later. Each nodei maintains a single
physical output queue,Qi, which stores all packets (coded and
uncoded depending on the opportunities) passing through it.

Network Coding (Alg. 1): Motivated by the fact that the
incoming traffic in Eq. (7) is the sum of the network coded
flows overh, we code packets when they are inserted to output
queues. If a network coding opportunity does not exist when
the packet arrives at nodei, we just store it inQi in a FIFO
way. Periodically, Alg. 1 runs to check all packets in the queue
for network coding.

Let Qi = {p1, p2, ..., pl} where p1 is the first andpl
is the last packet in the queue;l ≤ L, where L is the
buffer size, i.e., the maximum number of packets that can
be stored inQi. First, p1 is picked for network coding. Since

2We maintain a virtual, not a physical, h-queue, because the latter would
be difficult in practice: (i) the total buffer size is limitedand allocating it to
h-queues is another control parameter; (ii) h-queues may change over time
depending on changes in the topology and traffic scenario; (iii) storing packets
in h-queues may reduce network coding opportunities in a packet-based
system (although it is optimal in a flow-based system) due to opportunistic
network coding.
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Algorithm 1 Network coding in output queueQi at nodei
1: for m = 1...L do
2: if ∃pm ∈ Qi then
3: for n = (m + 1)...L do
4: if pm ⊕ pn is eligible then
5: pm ← pm ⊕ pn
6: end if
7: end for
8: end if
9: UpdateQi

10: end for

Algorithm 2 Packet dropping at nodei during congestion

1: Initialization: Φs

i
= 0, ∀s ∈ S, S

′

i
= ∅

2: if l > L then
3: for ∀s ∈ S do
4: CalculateΦs

i
=

∑
h(J )|h∈A Qhw̌

s

h

5: end for
6: S

′

i
= argmaxs∈S{Φ

s

i
}

7: Choose a flows′ ∈ S
′

i
randomly

8: if ∃pn ∈ Qi, n = 1..l, from flow s′ then
9: Drop pn

10: else
11: Droppl
12: end if

13: end if

Qi stores network coded packets,p1 may be already coded.
Independently of whetherp1 is network coded or not, it can be
further coded with other packets in the queue beginning from
p2, if the following two conditions are satisfied; (i) the packets
constructingp1 andp2 should be from different flows, and (ii)
p1⊕p2 should be decodable at the next hop of all packets that
construct the network code. If these conditions are satisfied,
we say that the network code is an eligible network code, and
p1 is replaced byp1⊕p2. Thenp1⊕p3 is checked for network
coding, etc. After all packets are checked for network coding,
the output queueQi is updated: (i) the final packetp1 is
stored in the first slot of the output queue, and (ii) the memory
allocated to other packets are freed. Then, the same algorithm
is run for packetp2, etc. When a transmission opportunity
arises, the first packet from the output queue is checked for
network coding again and broadcast over the hyperarc.

Let the number of packets from flows in nodei beQs
i . Q

s
i

captures the difference between the incoming and outgoing
traffic for flow s at nodei. Since an h-queue captures the
difference between the incoming and outgoing traffic over a
hyperarc, we calculate its size using the following heuristic:
Qh =

∑

k∈Kh
maxs∈Sk

{Hs,k
h α̌

s,k
h Qs

i}, where α̌
s,k
h is the

approximate traffic splitting, explained next.
The traffic splitting parametersαs,k

h are found through
the optimization problem in Eq. (5). Through numerical
calculations, we made the following observation: eachα

s,k
h

converges to the percentage of time that packets from flows

are transmitted with thek-th network code overh at nodei.
At each packet transmission, we calculate the probability that
a network codek over hyperarch can be used for flows, over
a time window. The average calculated over this window gives
a heuristic estimate of the traffic splitting parameter,α̌

s,k
h .

Packet Dropping (Alg. 2): When a node is congested,
it decides which packet to drop. In order to eliminate the

potential of rate mismatch between flows coded together, we
propose that the node compares the number of all (coded and
uncoded) packets of each flow, in queues where the flow is
dominant (ms,k

h = 1). This is motivated by the optimal rate
control in Eq. (4). More specifically, for each flows, we
calculateΦs

i =
∑

h(J )|h∈AQhw̌
s
h, wherew̌s

h =
∑

k∈Kh|s∈Sk

andH
s,k
h α̌

s,k
h m̌

s,k
h . Upon congestion, theΦs

i ’s are compared
and a packet from the flow with the largestΦs

i is dropped,
preferably the last uncoded packet. The choice of the last
packet is to make it similar to DropTail. The choice of uncoded
packet is so as to hurt only one flow, as opposed to several. If
there is a tie in theΦ’s between flows, one flow is randomly
picked to drop a packet. If all packets from the selected flow
are coded, a new coming packet(s) is dropped instead.

To estimate the dominance indicatorm̌
s,k
h needed in Alg. 2,

we compute heuristically an estimatěms,k
h as follows. If

H
s,k
h α̌

s,k
h Qs

i < H
s′,k
h α̌

s′,k
h Qs′

i s.t. ∃s′ ∈ Sk − {s}, then
m̌

s,k
h = 0. Otherwise,m̌s,k

h = (|Smax
k |)−1 whereSmax

k =

{s|s ∈ Sk ∧ H
s,k
h α̌

s,k
h Qs

i = max{Hs′,k
h α̌

s′,k
h Qs

i | s′ ∈ Sk}}.

B. Rate Control at the Sources

For logarithmic utility, we saw that the optimal rate control
in Eq. (4) isxs = (

∑

i∈Ps
qsi )

−1. qsi corresponds to the length
of the network coded queue size of flows at nodei. The
optimal ratexs is inversely proportional to the sum of these
queue sizesqsi across all nodesi on its pathPs. This is
essentially a generalization of standard optimal rate control
[4], to account for network coding in the calculation of queue
sizes.

When rate control is implemented, it is impractical to
feed back to the source the full information

∑

i∈Ps
qsi , as

required by the optimal control. Instead, when a queue is
congested, a packet is dropped or marked [4]. The source
uses this binary information as a signal to reduce its rate,
mimicking the inverse relationship in the optimal control.
The exact adaptation of the flow rate depends on the TCP
version used. In the simulations, we used TCP-SACK without
any modification. The only change we propose is the packet
dropping scheme at the queue (Alg. 2), to take into account
not only congestion but also network coding. Essentially, TCP
still reacts to drops but these drops are caused when the flow
is dominant in at least one network coded queue along the
path.

Example 2:Let us re-visit the example in Fig. 1. There is
only one network coded flow overh = (I, {A2, B2}) and
assume that link transmission rates are the same. Then the
two flows are always coded together and their traffic splitting
parameters approach to1. The network coded queue sizes are
Φ1

I = Qhm̌
1
h and Φ2

I = Qhm̌
2
h, whereQh is the size of

the h-queue forh = (I, {A2, B2}), andm̌1
h and m̌2

h are the
dominance indicators for the two flows. SinceQh is constant,
Φ1

I ,Φ
2
I depend onm̌1

h andm̌2
h, i.e., on which flow has more

packets in the output queue. Upon congestion, a packet from
the first is dropped if it has more packets in the queue. Then,
S1 will reduce its rate by transmitting less packets, while flow
S2 keeps increasing its rate, thus decreasing the probability
that there is no packet from the second flow for coding at node
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Fig. 3. Grid topology. Multiple unicast flowsS1 − R1, S2 − R2, etc.,
meeting at different intermediate points.

I. More generally, the interaction of our queue management
(NCAQM) mechanism and TCP tends to eliminate the rate
mismatch of the flows coded together. �

C. Scheduling

The scheduling part in Eq. (6) has two parts: intra- and
inter-scheduling that determine which packet to transmit from
a node and which node should transmit, respectively. Both
have difficulties in practice. Intra-scheduling causes packet
reordering at TCP receivers. Inter-scheduling requires central-
ized knowledge and it is NP hard and hard to approximate [5].
Given these difficulties and our original goal to make minimal
changes to protocols related to congestion control, we limit our
proposed modifications to the queue management. We do not
propose new scheduling and we use FIFO scheme for packet
transmission and standard 802.11 as wireless MAC.

VI. PERFORMANCEEVALUATION

In this section, we evaluate the throughput of TCP over our
proposed scheme (NCAQM) in various topologies and traffic
scenarios. We compare it to TCP over the following baseline
schemes: no network coding (noNC), which uses FIFO without
network coding; COPE [1], which stores native packets in
a FIFO and decides which packets to code together at each
transmission opportunity; and the optimal control.

A. Simulation Setup

We used the GloMoSim simulator [23], which is well suited
for wireless. We implemented from scratch the modules for
one-hop network coding over wireless mesh networks (COPE)
as well as for our proposed scheme (NCAQM).

1) Topologies: We simulated four illustrative topologies
shown in Fig. 1, Fig. 2, and Fig. 3. In X and Alice-and-
Bob topologies, shown in Fig. 1 and Fig. 2(a), two unicast
flows S1 − R1 and S2 − R2 meet at intermediate nodeI.
In the cross topology, shown in Fig. 2(b), four unicast flows
S1−R1, S2−R2, S3−R3, andS4−R4 are transmitted via the
relay I. In the wheel topology, shown in Fig. 2(c), multiple
unicast flows such asS1 − R1, S2 − R2, S3 − R3, S4 − R4,
and etc. are combined at the intermediate nodeI. Note that the
wheel topology is the generalized version of the cross topology
shown in Fig. 2(b). In all these topologies nodeI; (i) performs
network coding, and (ii) is placed in the center of a circle with

90m radius over200m × 200m terrain and all other nodes
are placed around the circle. Finally, we considered the grid
topology shown in Fig. 3, in which nodes are distributed over
a 300m× 300m terrain, divided into9 cells of equal size.15
nodes are divided into sets consisting of1 or 2 nodes and each
set is assigned to a different cell. Nodes in a set are randomly
placed within their cell. If both the transmitter and the receiver
are in the same cell or in neighboring cells, there is a direct
transmission; otherwise, a node in a neighboring cell acts as
a relay. If there are more than one neighboring cells, one is
chosen at random. In all topologies, a single channel is used
for both uplink and downlink transmissions.

2) MAC: In the MAC layer, we simulated IEEE 802.11
with RTS/CTS enabled and with the following modifications
for network coding. First, we need a broadcast medium,
which is hidden by the 802.11 protocol. We used the pseudo-
broadcasting mechanism of [1]: packets are XOR-ed in a
single unicast packet, an XOR header is added for all nodes
that should receive that packet, and the MAC address is set to
the address of one of the receivers. A receiver knows whether
a packet is targeted to it from the MAC address or the XOR
header.

3) Wireless Channel:We used the two-ray path loss model
and Rayleigh fading in Glomosim. We set the average loss
rate to 15%. In our simulations 15% loss rate is medium loss
rate, and residual loss rate after MAC re-transmissions is less
than 1%.3

4) TCP Traffic: We consider FTP/TCP traffic on top of the
wireless network. In the Alice-and-Bob, X, cross, and wheel
topologies, TCP flows, between the pairs of nodes described
above, start at random times within the first5sec and live
until the end of the simulation. In the grid topology, TCP
flows arrive according to a Poisson distribution with average
6 flows per30sec. The sender and the receiver of a TCP flow
are chosen randomly. If the same node is chosen, the random
selection is repeated.

B. Simulation Results

In this section, we present simulation results for the Alice-
and-Bob, X, cross, wheel, and grid topologies. We compare
to: (i) TCP over NCAQM (TCP+NCAQM), (ii) TCP over
COPE (TCP+COPE), (iii) the optimal solution (optimal rate
control in Eq. (4) working together with the optimal queue
management in Eq. (7)). We report the average throughput
of each scheme as % improvement over the throughput of
the baseline TCP+noNC. In addition, we report transport level
throughput. All throughput results reported in this section are
averaged over1min simulation duration first, then over10
simulations with different seeds.

Table I presents the results for the following parameters: the

3When channel loss rate increases, there are two problems. First, the
residual loss rate after MAC re-transmissions increases. Therefore, TCP is
not able to utilize the medium effectively and benefit of network coding
reduces. Second, network coding decision at intermediate nodes becomes
erroneous, because intermediate nodes do not know which packets are
overheard correctly. These issues are out of scope of this paper, and we have
analyzed them separately in [24].



7

(a) Alice-and-Bob Topology (b) Cross Topology (c) Wheel Topology

Fig. 2. (a) Alice-and-Bob Topology. Two unicast flows,S1 − R1, andS2 − R2, meeting at intermediate nodeI. (b) Cross topology. Four unicast flows,
S1 −R1, S2 −R2, S3 −R3, andS4 −R4, meeting at intermediate nodeI. (c) Wheel topology. Multiple unicast flowsS1 −R1, S2 −R2, etc., meeting
at intermediate nodeI. I opportunistically combine the packets and broadcast.

buffer size at each intermediate node is10 packets4; the packet
size is500B; the channel capacity is1Mbps. In this scenario,
TCP+NCAQM has two advantages: (i) it stores network coded
packets instead of the uncoded ones, thus uses the buffer more
effectively, and (ii) it drops packets so that network coding
opportunities increase. Thus, our scheme (TCP+NCAQM)
significantly improves throughput as compared to TCP+COPE
in all four topologies. It is also seen from the table that
there is still a gap between our scheme and the optimal
improvement due to the very limited buffer size for multiple
flows at the relay. Yet, even in this challenging scenario,
TCP+NCAQM significantly improves over TCP+COPE: it
doubles the throughput improvement of TCP+COPE.

In Table I, the improvement of TCP+NCAQM and
TCP+COPE in Alice-and-Bob topology is slightly smaller
as compared to X topology, although Alice-and-Bob and X
topologies have the same optimal improvement (33%). In
Alice-and-Bob topology, source nodes are also receiver nodes,
i.e., S1 −R2 andS2 −R1 pairs are the same nodes;A1, A2,
respectively. Therefore, transport level data and ACK packets
share the same buffers at these source/receiver nodes. Due
to the limited buffer size, some packets are dropped at the
source/receiver nodes, and this reduces TCP throughput. Itis
also seen that the improvement in cross and grid topologies is
larger as compared to Alice-and-Bob and X topologies, for the
following reasons: (i) in cross topology, four flows (i.e., four
packets) are combined at the intermediate node (I) instead of
two flows, and (ii) in grid topology, we have observed that,
during a part of1min simulation duration, four or more flows
are combined at intermediate nodes.

Fig. 4 presents the cumulative distributed function (CDF)
of throughput improvement for the Alice-and-Bob, X, cross,
and grid topologies and the same setup. The CDFs are
calculated over30 seeds. One can see that the CDF of
TCP+NCAQM is shifted to significantly higher throughput
levels compared to TCP+COPE in all four topologies. For
example, TCP+NCAQM improves the throughput more than
20% and40% in more than60% of the realizations in Alice-

4Note that10 packet buffer size corresponds to bandwidth-delay product
(BDP) in our simulation scenario. We also present simulation results for larger
buffer sizes later in this section.

TABLE I
AVERAGE THROUGHPUT IMPROVEMENT COMPARED TO NONC.

Optimal TCP+NCAQM TCP+COPE

Alice-and-Bob Topology 33% 18% 8%

X Topology 33% 19% 9%

Cross Topology 60% 39% 21%

Grid Topology - 35% 18%

and Bob and cross topologies, respectively. In contrast to
Alice-and-Bob and cross topologies, we also observe that
the CDF of TCP+NCAQM is shifted to higher throughput
levels compared to the CDF of TCP+COPE in the cross
and grid topologies. In the cross and grid topologies, it is
possible to code more than two flows together, and when
the number of flows coded together increases, the way that
TCP+NCAQM uses buffers and balances the rates becomes
more important. Thus, we see larger improvement in the cross
and grid topologies.

Fig. 5 shows the average transport-level throughput versus
the buffer size, for the Alice-and-Bob, X, cross, and grid
topologies. Packet size is500B, and channel capacity is
1Mbps. Our observations from Fig. 5 are in the following.

The throughput improvement of TCP+noNC for different
buffer sizes is negligible in all topologies. The reason is
that 10 packet buffer size is already matched to bandwidth-
delay product (BDP) and TCP utilizes wireless medium ef-
fectively for almost all buffer sizes when network coding is
not used (TCP+noNC). However, for network coding schemes
(TCP+NCAQM and TCP+COPE), the throughput increases
significantly with increasing buffer size. This shows the im-
portance of active queue management in coded networks.

When buffer sizes are small, the improvement of
TCP+NCAQM over TCP+noNC is significantly larger than
that of TCP+COPE. This is for the same reason explained
earlier: TCP+NCAQM stores network coded, instead of un-
coded packets, thus using buffer more effectively, and it drops
packets so that network coding opportunities increase. Thus,
our scheme (TCP+NCAQM) significantly improves through-
put as compared to TCP+COPE in all four topologies.

The throughput of TCP+COPE increases when buffer sizes
increase, which is intuitively expected. The problem addressed
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(a) Alice-and-Bob topology
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0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Throughput Improvement(%)

C
um

ul
at

iv
e 

F
ra

ct
io

n

TCP+NCAQM
TCP+COPE

(c) Cross topology
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(d) Grid topology

Fig. 4. Cumulative distribution function (CDF) of throughput improvement for Alice-and-Bob (shown in Fig. 2(a)), X (shown in Fig. 1), cross (shown in
Fig. 2(b)), and grid (shown in Fig. 3) topologies. Buffer size is 10 packets, packet sizes are500B, and the channel capacity is1Mbps. The distributions are
generated over30 seeds.

in this paper was the mismatch between rates of flows coded
together, due to the bursty nature of TCP, which reduces
coding opportunities. However, when buffer sizes increase,
there are more packets available in queues for coding. Thus,
TCP+COPE exploits coding opportunities at larger buffers
and its throughput increases. However, even at the large
buffer sizes, TCP+NCAQM improves throughput more than
TCP+COPE. For example, TCP+NCAQM improves through-
put 7% more than TCP+COPE in X topology when buffer
size is 50 packets. Fig. 5 demonstrates that our scheme is
particularly beneficial in harsh buffer size conditions.

The improvement of TCP+NCAQM over TCP+noNC ex-
ceeds the optimal throughput at some buffer sizes.E.g., the
improvement of TCP+NCAQM over TCP+noNC is around
40% in the X topology when the buffer size is set to30 packets
(although the optimum improvement is 33%). The reason is
that since TCP+NCAQM uses the buffer more effectively by
storing network coded packets instead of uncoded packets,
TCP can utilize the medium more effectively, thus the TCP
rate increases beyond the network coding benefit.

Fig. 6 shows the average transport-level throughput versus
the number of flows in the wheel topology shown in Fig. 2(c).
The buffer size is30 packets, the packet size is500B, and
channel capacity is1Mbps. One can see from the figure that
the throughput of TCP+noNC reduces with increasing number
of flows. This is expected, because when the number of flows
increases, all flows share the same queue at the intermediate
nodeI. As a result, the round trip time of each flow increases,
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Fig. 6. Average throughput (averaged in1min simulation first, then over
10 seeds) versus the number of flows in wheel topology shown in Fig. 2(c).
Buffer size is30 packets, packet size is500B, and the channel capacity is
1Mbps.

and thus the TCP rate decreases. On the other hand, the
throughput of TCP+NCAQM and TCP+COPE increases with
the number of flows, because when the number of flows
increases, there are more network coding opportunities and
more packets can be combined together (i.e., it is possible
to combine 8 packets when the number of flows is 8).
TCP+NCAQM significantly improves over TCP+COPE for all
number of flows, especially when the number of flows is large.
This is intuitive, because when the number of flows increases,
network coding opportunities increases, and TCP+NCAQM
exploits these opportunities effectively.

Fig. 7 presents the average transport-level throughput versus
channel capacity for the Alice-and-Bob, X, cross, and grid
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(a) Alice-and-Bob topology
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(b) X topology
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(c) Cross topology
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Fig. 5. Average throughput (averaged in1min simulation first, then over10 seeds) versus buffer size for Alice-and-Bob (shown in Fig. 2(a)), X (shown in
Fig. 1), cross (shown in Fig. 2(b)), and grid (shown in Fig. 3)topologies. Packet size is500B, and channel capacity is1Mbps.

topologies. The buffer size is30 packets, and the packet
size is 500B. One can see from the figure that when the
channel capacity increases, the gap between TCP+NCAQM
and TCP+COPE increases. Therefore, while the improvement
of TCP+NCAQM over TCP+noNC increases with increasing
channel capacity, it decreases for TCP+COPE. Namely, the
improvement of TCP+NCAQM increases from 40% to 42%,
while the improvement of TCP+COPE decreases from 27% to
16% in X the topology. The improvement of TCP+NCAQM
is quite significant; more than double the improvement of
TCP+COPE at11Mbps channel capacity. The reason is that
when the channel capacity increases, more packets share
buffer at intermediate node. TCP+NCAQM can improve the
throughput by using the shared buffers more effectively, and
by dropping packets so as to increase network coding oppor-
tunities.

VII. M ULTI -HOP NETWORK CODING

In this section, we extend our framework from one-hop to
multi-hop network coding. We note that our framework can
accommodate any given multi-hop network coding scheme,
but we use BFLY [6] in our simulations, as an example.

A. System Model

We consider the same system model as in Section III, with
the difference of multi-hop, as opposed to one-hop, network
coding. A flow s can be network coded and decoded several
times over its pathPs. The network coded flow may be

transmitted over multiple (M ) hops, which we callM -hop
network coding.M -hop network coding is implemented by
COPE [1] for M = 1, BFLY [6] for M = 2, or other
network coding schemes forM > 2. We assume that a flow
s cannot be network coded if it (or a part of it) is already
coded. This assumption allows us to divide the pathPs to Fs

intermediate paths which we callnetwork coding paths. Over
its f -th network coding path, wheref ∈ {1, . . . , Fs}, flow s

can be network coded withΓs
f ∈ {0, 1, . . . , |S − {s}|} other

flows. Without loss of generality, we can assume that a flow
may be transmitted over thef -th network coding path without
network coding;i.e., Γs

f = 0. A flow s can be divided into
network coded and non-network coded parts over a network
coding pathf , whereZf

s is the set of partitions of flows
over its f -th network coding path. Each partitionz ∈ Zf

s

transmitted over hyperarch has one-to-one mapping with the
k-th network code overh such thatk ∈ Kh, i.e., z = η(k)
overh whereη is an injective function.

Example 3:The example shown in Fig. 8 illustrates the
problem with 2-hop network coding. The flow from sourceS1

is transmitted over the linkA1 − I1 without network coding
and it is network coded over the linksI1−I2 andI2−A2. Over
the network coding path, including the set of nodesI1, I2, A2,
the flow ratex1 is partitioned into a network coded and a non-
network coded part. The network coded part is combined with
the corresponding part of the flow from sourceS2, transmitted
over I1 − I2, and broadcast over(I2, {A2, B2}). The other
part is transmitted overI1 − I2 andI2 −A2 without network
coding. Similar to the one-hop network coding in Example 1,
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(b) X topology
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(c) Cross topology
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Fig. 7. Average throughput (averaged in1min simulation first, then over10 seeds) versus channel capacity for Alice-and-Bob (shown inFig. 2(a)), X
(shown in Fig. 1), cross (shown in Fig. 2(b)), and grid (shownin Fig. 3) topologies. Buffer size is30 packets, and packet size is500B.

Fig. 8. “Butterfly topology”. SourceS1 transmits a flow with ratex1 to
receiverR1 and sourceS2 transmits a flow with ratex2 to receiverR2, over
the intermediate nodesI1 and I2. NodesA1 andB1 transmit their packets
a and b, in two time slots, and nodeI1 receives them. NodeB2 overhears
a and A2 overhearsb, becauseA1 − B2 and B1 − A2 are in the same
transmission range and they can overhear each other. In the next time slot,I1
transmits the network coded packeta ⊕ b to nodeI2. Finally, I2 broadcast
a⊕ b over hyperarc(I2, {A2, B2}). SinceA2 andB2 have overheardb and
a, they can decode their packetsa andb, respectively.

if there is a mismatch between the ratesx1, x2 of the two
flows, network coding benefit is not fully exploited. The goal
is to solve this problem, assuming a given multi-hop network
coding scheme. �

B. Problem Formulation

We consider the following NUM problem;

max
x,α,τ

∑

s∈S

Us(xs)

s.t.
∑

k∈Kh

max
s∈Sk

{Hs,k
h α

s,k
h xs} ≤ Rhτh, ∀ h ∈ A

∑

z∈Zf
s

β
s,z
f = 1, ∀ s ∈ S, f = 1, ..., Fs

α
s,k
h =

{

β
s,z
f , ∃ z = η(k), z ∈ Zf

s , f = 1, ..., Fs

0, otherwise.
∑

h∈Cq

τh ≤ τ, ∀ Cq ⊆ A (8)

The NUM problem in Eq. (8) is similar to the one in Eq. (1),
in terms of the objective functions, capacity and interference
constraints. We only need to update the flow conservation
constraint (the second constraint) and add the third constraint,
as explained below.

We introduce a new traffic splitting parameterβ
s,z
f which

represents the percentage of the flow ratexs allocated to the
z-th partition of flows over itsf -th network coding path. The
traffic splitting parameters should sum up to1 according to the
flow conservation constraint over each network coding path
(the second constraint). Since there is a one-to-one mapping
between thez-th partition and thek-th network code over
h, the traffic splitting parameters,αs,k

h and β
s,z
f should be

equal (the third constraint). This also implies the following
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equalities;Hs,k
h = H

s,z
h , ms,k

h = m
s,z
h .

C. Solution

We use Lagrangian relaxation to solve the optimization
problem in Eq. (8) by relaxing the capacity constraint with
Lagrange multipliersqh. We obtain the same Lagrange func-
tion in Eq. (2). The Lagrange function is decomposed into the
same subproblems as in Eq. (3), Eq. (4), Eq. (6) and Eq. (7).
The only different subproblem is the traffic splitting problem,
which can be expressed as

min
α

∑

h∈A

∑

k∈Kh|s∈Sk

qhH
s,k
h α

s,k
h (ms,k

h )∗

s.t.
∑

z∈Zf
s

β
s,z
f = 1, ∀ s ∈ S, f = 1, ..., Fs

α
s,k
h =

{

β
s,z
f , ∃ z = η(k), z ∈ Zf

s , f = 1, ..., Fs

0, otherwise.
(9)

The objective function in Eq. (9) can be expanded to be
∑Fs

f=1

∑

h∈Af

∑

k∈Kh|s∈Sk
qhH

s,k
h α

s,k
h (ms,k

h )∗, whereAf is
the set of hyperarcs that originate from the nodes in thef -th
network coding path of flows. The two objective functions are
equivalent considering the fact that the objective function in
Eq. (9) is equal to zero for hyperarcs which are not originated
from the nodes over the flow’s network coding paths, because
the indicator functions (Hs,k

h ) are zero for those hyperarcs.
Now, let Zf,h

s represent the set of partitions of the flows
over h in its f -th network coding path. Then,

∑

k∈Kh|s∈Sk

and
∑

z∈Zf,h
s

are equivalent, due to the one-to-one mapping
between thez-th partition andk-the network code overh. Us-
age of

∑

z∈Zf,h
s

instead of
∑

k∈Kh|s∈Sk
implies the following

changes;αs,k
h = β

s,z
f , Hs,k

h = H
s,z
h , andms,k

h = m
s,z
h . Then,

the problem reduces to

min
β

Fs
∑

f=1

∑

h∈Af

∑

z∈Zf,h
s

qhH
s,z
h β

s,z
f (ms,z

h )∗

s.t.
∑

z∈Zf
s

β
s,z
f = 1, ∀ s ∈ S, f = 1, ..., Fs (10)

The objective function in Eq. (10) can be expressed
as
∑Fs

f=1

∑

z∈Zf
s

∑

h∈Af,z qhH
s,z
h β

s,z
f (ms,z

h )∗ where Af,z

which is the subset ofAf contains the hyperarcs over which
the z-th partition of thef -th network coding path of flow
s is transmitted. The two objective functions are equivalent,
because the indicator functions (H

s,k
h ) are zero forh 6∈ Af,z.

Finally, the traffic splitting problem fors ∈ S, f = 1, ..., Fs

is expressed as

min
β

∑

z∈Zf
s

β
s,z
f





∑

h∈Af,z

qhH
s,z
h (ms,z

h )∗





s.t.
∑

z∈Zf
s

β
s,z
f = 1, ∀ s ∈ S, f = 1, ..., Fs (11)

Similar to what we have done to solve Eq. (5), we use the
proximal method [22] to solve this problem.

D. Simulation Results

In this section, we evaluate the throughput of TCP over
NCAQM compared to TCP over the following baseline
schemes: no network coding (noNC), which uses FIFO without
network coding; BFLY [6], which utilizes knowledge of the
local topologies by exchanging periodic messages that in-
cludes neighbors of nodes and source route information in the
packet headers to exploit butterfly structures in wireless mesh
networks. Similarly to COPE, BFLY stores native packets in
a FIFO and decides which packets to code together at each
transmission opportunity. We used the GloMoSim simulator
[23] to implement the modules for two-hop network coding
over wireless mesh networks (BFLY) as well as for our
proposed scheme (NCAQM).

We simulate the butterfly topology shown in Fig. 8 in which
two unicast flowsS1, R1 andS2, R2 meet at intermediate node
I1. In this topology, nodes are placed over300m× 300m in
butterfly like structure and a single channel is used for both
uplink and downlink transmissions. We consider the same
MAC update and wireless channel model as in Section VI.
We consider FTP/TCP traffic over the wireless network. TCP
flows, between the pairs of nodes described above, start at
random times within the first5sec and live until the end of
the simulation.

Fig. 9(a) presents the average transport-level throughput
vs. buffer size. Similarly to the simulation results in Sec-
tion VI, TCP+NCAQM improves throughput much more than
TCP+BFLY. Specifically, when buffer size is10 packets,
the improvement of TCP+BFLY over TCP+noNC is 13%,
the improvement of TCP+NCAQM over TCP+noNC is 30%,
while the optimum improvement is 50%. When buffer size
increases, we see that TCP+NCAQM approaches and exceeds
the optimum;e.g., the improvement of TCP+NCAQM is 65%
when buffer size is30 packets, while it is 45% for TCP+BFLY.
This shows that the advantages of TCP+NCAQM also apply
to two-hop network coded wireless mesh networks.

Fig. 9(a) presents the average transport-level throughput
vs. channel capacity. We can see that the improvement of
TCP+NCAQM is larger than TCP+BFLY for all channel
capacities and it is especially significant for large channel ca-
pacities, since TCP+NCAQM uses buffer more effectively and
drops packets so that network coding opportunities increase.

VIII. C ONCLUSION

In this paper, we showed how to improve the performance
of TCP over wireless networks with inter-session network
coding. The key intuition was to eliminate the rate mismatch
between flows that are coded together through a synergy of
rate control and queue management. First, we formulated
congestion control as a NUM problem and derived a dis-
tributed solution. Motivated by the structure of the solution,
we proposed minimal modifications to queue management to
make it network coding-aware, while TCP and MAC protocols
remained intact. Simulation results show that the proposed
NCAQM scheme doubles TCP performance compared to
baseline schemes and achieves near-optimal performance. We
plan to make the simulator modules publicly available to
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Fig. 9. Average throughput (averaged in1min simulation first, then over10 seeds) in butterfly topology shown in Fig. 8. (a) Buffer size:packet size is
500B, and the channel capacity is1Mbps. (b) Channel capacity: buffer size is30 packets, and packet size500B.

the research community. We have also extended the NUM
formulation and solution to multi-hop network coding and we
have confirmed convergence through numerical calculations.
The main ideas of this paper can potentially be extended from
wireless mesh networks to wired networks with constructive
inter-session network coding.
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APPENDIX A: NUMERICAL RESULTS

In this section, we present numerical results that demon-
strate the convergence of the solutions of NUM problems for
one-hop and multi-hop network coding.

A. One-hop Network Coding

First, we consider the Alice-and-Bob topology presented
in Fig. 2(a). We consider two cases for wireless channel
capacities: (i)C1 = C2 = 1 units/transmission5, and (ii)
C1 = 1, C2 = 4. For the first case, the convergence of rates
x1, x2, andx1+x2 is presented in Fig. 10(a). One can see that
the total ratex1 + x2 converges to0.66 which is the optimal
achievable rate when network coding is used for this scenario.
Note that total achieved throughput is0.50 for this scenario
when network coding is not used. For the second case, it is
seen in seen in Fig. 11(a) that the total throughput approaches
to the optimal achievable rate of0.88 when network coding is
used. Note that the total achievable throughput is0.80 when
network coding is not used. We also present the convergence of

5We omit the units in the rest of the paper for brevity.

http://pcl.cs.ucla.edu/projects/glomosim/
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Fig. 10. Convergence results for the Alice-and-Bob topology presented in Fig. 2(a). The total achieved rate approachesthe optimum throughput 0.66. The
optimum throughput is 0.50 when there is no network coding.C1 = C2 = 1.
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Fig. 11. Convergence results for the Alice-and-Bob topology presented in Fig. 2(a). The total achieved rate approachesthe optimum throughput 0.88. The
optimum throughput is 0.80 when there is no network coding.C1 = 1, C2 = 4.
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Fig. 12. Convergence results for the X topology presented inFig. 1. The total achieved rate approaches to the optimum throughput 0.66. The optimum
throughput is 0.50 when there is no network coding.C1 = C2 = C3 = C4 = 1.

Lagrange multipliers;qA1,I , qA2,I , qI,A2
, qI,A1

, andqI,{A1,A2}

for both cases in Fig. 10(b) and Fig. 11(b), respectively.

Second, we consider the X topology presented in Fig. 1.
We consider two cases for wireless channel capacities: (i)
C1 = C2 = C3 = C4 = 1, and (ii) C1 = C4 = 1,
C2 = C3 = 4. In both cases the total ratex1 + x2 approaches
to the optimum achievable rates;0.66 and 1.3 as seen in
Fig. 12(a) and Fig. 13(a). We also show results for the
convergence of the Lagrange multipliers for both cases in
Fig. 12(b) and Fig. 13(b).

B. Multi-Hop Network Coding

We consider the butterfly topology presented in Fig. 8. We
consider two scenarios for the wireless channel capacities; (i)
C1 = C2 = C3 = C4 = C5 = 1 and (ii) C1 = C2 =
C4 = C5 = 4, C3 = 1. The total rate approaches the optimal
achievable rate in both scenarios:0.5 for the first case as
shown in Fig. 14(a), and1.14 for the second case as shown
in Fig. 15(a). In both scenarios, we show the convergence of
the Lagrange multipliers, Fig. 14(b) and Fig. 15(b).
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Fig. 13. Convergence results for the X topology presented inFig. 1. The total achieved rate approaches the optimum throughput 1.3. The optimum throughput
is 0.80 when there is no network coding.C1 = C4 = 1, C2 = C3 = 4.
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Fig. 14. Convergence results for the butterfly topology presented in Fig. 8. The total achieved rate approaches the optimum throughput 0.50. The optimum
throughput is 0.33 when there is no network coding.C1 = C2 = C3 = C4 = C5 = 1.
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Fig. 15. Convergence results for the butterfly topology presented in Fig. 8. The total achieved rate approaches the optimum throughput 1.14. The optimum
throughput is 0.66 when there is no network coding.C1 = C2 = C4 = C5 = 4, C3 = 1.
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