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Abstract—To achieve seamless multimedia streaming services
over wireless networks, it is important to overcome inter-cell
interference (ICI), particularly, in cell border regions. In this
regard scalable video coding (SVC) has been actively studied
due to its advantage of channel adaptation. We explore an
optimal solution for maximizing the expected visual entropy
over an orthogonal frequency division multiplexing (OFDM) -
based broadband network from the perspective of cross-layer
optimization. An optimization problem is parameterized by a
set of source and channel parameters that are acquired along
the user location over a multi-cell environment. A sub-optimal
solution is suggested using a greedy algorithm that allocates the
radio resources to the scalable bitstreams as a function of their
visual importance. The simulation results show that the greedy
algorithm effectively resists ICI in the cell border region, while
conventional non-scalable coding suffers severely because of ICI.

Index Terms—Cross-layer optimization, scalable video coding
(SVC), human visual system (HVS), visual entropy, unequal
error protection (UEP), inter-cell interference (ICI), OFDM-
based System.

I. I NTRODUCTION

As they migrate toward4th generation (4G) systems, seam-
less multimedia services are expected to emerge using owing
to the availability of wider bandwidths with greatly improved
spectral efficiency. In order to improve the overall link capacity
needed to accommodate such seamless services, standards
such as the world inter-operability for microwave access
(WiMax) and the 3rd Generation Partnership Project (3GPP)
long term evolution (LTE) system employ frequency reuse
factors (FRF) of 1, i.e., each cell utilizes an entire bandwidth
without the use of band division among neighboring cells.
However, full usage of the bandwidth significantly increases
inter-cell interference (ICI), particularly at cell borders. Thus,
system performance is degraded at cell boundaries so that
seamlessness may not be guaranteed due to severe ICI. In
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an effort to ameliorate ICI, several ICI mitigation strategies
have been discussed in [1]-[2]. Nevertheless, there exists a
trade-off between gain in throughput and decrease in outage
probability, so that such non-uniform channel quality over the
cell coverage region is inevitable. To provide more consistent
visual quality over abrupt wireless channel environments,
cross-layer optimization has been introduced to more effi-
ciently utilize source and channel resources. An overview of
cross-layer design approaches was described in [3], where
system performance was improved via information exchange
across protocol layers or via cooperation of application layer
with lower protocol layers. Meanwhile, scalable extension
of the H.264/AVC standard has been finalized, including
the network adaptive coding method. Scalable video coding
(SVC) divides the video sequences into multiple layers: a
base layer and several enhancement layers [4][5]. Since the
base layer contains visually important data, it has been shown
that unequal error protection (UEP) schemes using SVC can
achieve better quality by more heavily protecting the base layer
as compared to the enhancement layer [6]. In [7]-[8], several
joint source channel coding and cross-layer design approaches
were analyzed by utilizing UEP on the scalable bit-streams.
However, even if a high potential to obtain a performance
gain exists, most approaches rely on heuristic adaptive source-
channel coding techniques. These have the following three
major drawbacks:

1) Lack of quality criteria: From the perspective of source
modeling, there is a lack of criteria for characterizing quality
as perceived by the human visual system (HVS) although
significant gains have recently been made in full-reference
image quality [9]. Most optimization schemes seek to min-
imize distortion relative to rate-distortion or to maximize the
peak signal-to-noise ratio (PSNR). However, since it is well
known that the mean square error (MSE) and the PSNR
correlate poorly with perceived quality, the measurement of
the performance gain using traditional image quality criteria
is suspect [10].

2) Coding redundancy of SVC:Although SVC presents
definite advantages, coding efficiency is worse than for con-
ventional non-scalable H.264/AVC. However, in [5], the per-
formance of SVC is analyzed. It is found that an optimized
encoder control can provide quality scalability at the cost
of a bit rate increase of only10% relative to non-scalable
H.264/AVC coding.

3) Severe ICI near the cell border:In multi-cell environ-
ments, an FRF of 1 is considered to be a reasonable option,
since the increase in total channel capacity is accompanied by
ease of deployment. However, since full power is assigned to
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each base station (BS) over the total bandwidth, severe ICI
can occur, which in turn may lead to outages near the cell
border [11].

Here we present a framework for cross-layer optimiza-
tion that seeks to maximize visual quality considering the
aforementioned issues. To unite the heterogeneous source
and channel resources, visual entropy is employed in the
objective function of the optimization problem. Visual entropy
is a useful tool for quantifying the visual quality of the bit
unit relative to visual perception [12]. In order to maximize
the delivered visual entropy at the receiver, the cross-layer
optimization scheme is performed between the application and
medium access control / physical (MAC/PHY) layers in the
protocol stack. The simulation results suggest a break-even
point between the performance of scalable and non-scalable
videos over a multi-cell environment. Although scalable video
does not exhibit efficient performance in the inner region,
it can effectively overcome ICI in cell border regions and
provide acceptable quality at the receiver, while conventional
non-scalable video suffers severely from ICI.

II. SYSTEM OVERVIEW

Figure 1 shows the signal flow for the proposed cross-layer
design. In the application layer of a multimedia source, the
H.264/AVC based SVC makes it possible to generate scalable
bitstreams as a function of the importance of each scalable
bitstream. In the MAC/PHY layers of the BS and the MS,
orthogonal frequency-division multiplexing (OFDM), which is
generally adequate for multimedia transmission, is adopted.
Owing to the characteristics of multicarrier modulation, it
is possible to load scalable bitstreams into subcarriers dy-
namically. In order to make the channel adaptation scheme
smoothly available, it is necessary to exchange information
across the protocol stacks. The real-time transport protocol
(RTP) and the real-time transport control protocol (RTCP) are
used to deliver multimedia transmission and feedback in real-
time video services [13].

A procedure for exchanging information between network
nodes and across protocol stacks is depicted in Fig. 1. The
channel condition is fed back from the PHY layer of the MS
to the BS via a channel quality information (CQI) report in
procedure(1). For example, in WiMax, the MS periodically
reports CQI to the BS via the CQI channel (CQICH). At the
same time, the PHY layer of the MS delivers the CQI report to
the application layer via cross-layer management in procedure
(1)′. In the BS, the MAC layer shares the CQI report from the
PHY layer, for radio resource allocation in procedure(2). The
application layer of the MS sends the RTCP feedback message
(containing the CQI) to the multimedia source in procedure
(2)′. It is possible to choose the application-specific message
to be of the RTCP message type from among the five RTCP
types. By receiving the CQI from the RTCP message, the
multimedia source can estimate the expected visual entropy
delivered over the wireless channel, so that a criterion can
be provided to select a proper encoding method between the
SVC and the non-SVC for a given channel status. Moreover,
using the CQI, the multimedia source then estimates the

target bit rate and performs rate control to select an optimal
quantization step size. Although the transport control protocol
(TCP) friendly rate control can be utilized to avoid congestion
collapse, it cannot deal with effects caused by bit errors in
the error prone wireless channel. Thus, the CQI is a crucial
element of rate control. The encoded video data is organized
into network abstraction layer (NAL) units that form the
basic structure of an SVC bit stream. The multimedia source
forwards the NAL units encapsulated in the RTP packet to the
radio link buffer [6] at the BS in procedure(3). Here the MS
plays the role of a media-aware network element (MANE) that
can be aware of the information that is identified in the RTP
and NAL unit header [14]. The encoding method is identified
by the payload type (PT) in the RTP header, which indicates
the media coding types for the RTP session. When SVC is
determined to be the encoding method, the priority information
for each layer is identified by the priority ID in the NAL unit
header. Based on this information, the BS manages the radio
link buffer to achieve channel adaptation, and transmits video
data to the MS through the MAC/PHY layers. The radio link
control (RLC) is a link-layer protocol that is responsible for
error recovery and flow control.

III. SOURCEMODELING FORQUALITY CRITERION

A. Rate and distortion Modelling

In [15], the classical rate distortion model is modified to
yield rateh(∆) and distortiond(∆) models expressed in terms
of the quantization step size∆. In the H.264/AVC codec, the
relationship between the quantization step size∆ and the QPq
is expressed as∆ = 2q/6. The classical model is decomposed
into two separate models ash(σ2, ∆) = 1

2 log2

(
ε2cσ2

∆2

)
and

d(∆) = ∆2

c where σ2 denotes variance,c is 12 andε2 is
about 1 assuming a uniform distribution, 1.4 for a Gaussian
distribution, and 1.2 for a Laplacian distribution. The empirical
rate of the original frame is defined by linearly scaling the
classical rate model asr(σ2, ∆) = αh(σ2,∆) + β.

Suppose thatZ is a random variable representing the sample
points h(σ2,∆). The random variableR associated with
r(σ2,∆) can then be expressed asR = αZ +β, whereα and
β are constants. The expected value and variance ofR are
E[R] = αE[Z]+β and V AR[R] = α2V AR[Z]. Therefore,
α =

√
V AR[R]/V AR[Z] and β = E[R]− αE[Z].

By inserting σ2 and ∆ into the classical rate model
h(σ2,∆), for each traffic measurement unit, the samples of
Z can be obtained. Each macro block (MB) is used as a
measurement unit. The samples ofR are obtained from the
SVC codec by counting the number of bits in each MB. The
varianceσ2 is modified byωc. Thus the empirical rate model
for each layer can be expressed as

rb(ωc, ∆b) = αbh(σ2(ωc), ∆b) + βb (1)

re(ωc, ∆e) = αeh(σ2(ωc), ∆e) + βe

where rb (re) is the empirical rate of the base layer (en-
hancement layer),ωc = 2πfc (fc is the cutoff frequency),
∆b (∆e) is the quantization step size of the base layer
(enhancement layer), andαb andβb (αe andβe) are the base
layer (enhancement layer) constants, respectively.
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Fig. 1. Signal flows though network nodes and protocol stacks for the cross-layer design

B. Visual entropy and distortion

Many approaches to video compression and communication
have sought to incorporate the CSF [16]-[19]. We utilize
the CSF model developed in [16], owing to its relevance
and simplicity, to construct visual weights in the discrete
cosine transform (DCT)-domain, which is divided into two
layers. In [16], the contrast threshold model was given by
CT (f, ec) = CT0 exp

(
λf ec+e2

e2

)
. Parameter values that fit

human experimental data were introduced by [18]. As there
we useλ = 0.106, e2 = 2.3, and CT0 = 1/64 [18]. The
contrast sensitivity is taken to be the inverse of the contrast
threshold asCS(f, ec) = 1/CT (f, ec).

The visual angle between the fovea and a point on the
retina with respect to the nodal point of the optics in the
human eye is eccentricity. The eccentricity of each block
is zero under the assumption that all regions are uniformly
focused by the human eye. Then the CSF is written by
CS(f1, f2) = 1

CT0
exp

(
−λκ

√
f2
1 + f2

2

)
wheref1 andf2 are

vertical and horizontal DCT frequencies andκ is a conversion
constant (from DCT frequency to cycle/degree) [19]. When
a frame is divided into two layers, the frequency range is
split into 0 ∼ fc and fc ∼ fmax. To represent the visual
weight of each layer, the expectation of the CSF is calculated
as a function of frequency. We model the probability density
function (PDF) of the DCT coefficients using an exponential
form asp(f1, f2) = µ exp

(
−ν

√
f2
1 + f2

2

)
.

Since the DC component is an average value,µ is the
average value of the block coefficients.ν is a decay factor
determined in order that the integral of PDF is unity. Using
the CSF and the PDF, the expectation of the CSF (i.e. the
visual weight) over the frequency domain is calculated as

φmax =
∫ fmax

0

∫ fmax

0

p(f1, f2) CS(f1, f2) df1df2

=
∫ fmax

0

∫ fmax

0

A exp(−B
√

f2
1 + f2

2 ) df1df2

=
∫ π

2

0

∫ fmax

0

A exp(−Br) rdrdθ

=
Aπ

2

(
1

B2
−

(
fmax

B
+

1
B2

)
e−Bfmax

)
(2)

where A = µ
CT0

and B = λκ + ν. A change of variables
from Cartesian to polar coordinate is made to rewrite the
integral. Although it is somewhat awkward to use the discrete
variablesf1 andf2 as variables of integration, we treat them
as continuous variables for convenience of expression. Using
φmax, the normalized weight of each layer is given by

φb(fc) =

∫ fc

0

∫ fc

0
p(f1, f2) CS(f1, f2) df1df2

φmax

=
Aπ
2

(
1

B2 −
(

fc

B + 1
B2

)
e−Bfc

)

φmax
, (3)

for the base layer, and

φe(fc) =

∫ fmax

fc

∫ fmax

fc
p(f1, f2) CS(f1, f2) df1df2

φmax

=
Aπ
2

((
fc

B + 1
B2

)
e−Bfc −

(
fmax

B + 1
B2

)
e−Bfmax

)

φmax
, (4)

for the enhancement layer. The visual entropy is again defined
as the expected number of bits required to visually perceive
a macroblock (MB). Multiplying the empirical rate model of
each layer (1) by the visual weight of the base layerφb and
the enhancement layerφe, the visual entropy is defined as

hw
b (ωc, ∆b) = φb(fc) · rb(ωc, ∆b)

hw
e (ωc,∆e) = φe(fc) · re(ωc,∆e) (5)

for the base layerhw
b and enhancement layershw

e , respec-
tively. In addition, the visual distortion is similarly defined by



4

applying the visual weight to the classical distortion function,
d(∆), for the base layerdb and the enhancement layerde:

dw
b (ωc, ∆b) = φb(fc) · db(∆b)

dw
e (ωc,∆e) = φe(fc) · de(∆e) (6)

for the base layerdw
b and enhancement layerdw

e , respectively.

IV. ICI ON THE OFDM BASED SYSTEM

In OFDM downlink transmission, the degree of ICI depends
on the relative position and shadowing factors from surround-
ing BSs. Due to increases in multimedia service rates over the
internet, more consistent visual quality is expected. Therefore,
effective strategies are needed for providing more reliable
high quality visual services over the entire cell coverage.
We develop a fundamental cross-layer optimization approach,
where the bandwidth allocated to each user is divided into two
parts. We present the development for the case of two scalable
layers, although it is extensible. In the general case of more
layers than two, the bandwidth may be further sub-divided.
One part of the bandwidth is assigned to the base layer, while
the other part is assigned to the enhancement layers. When
monitoring channel quality over the cell, the bandwidth of
each layer is adapted to effectively deliver visual information
by controlling the channel bit error rate (BER). To measure
system performance, a multi-carrier system is analyzed over a
multi-cell environment with an FRF of 1. AnEb/No formula
is then derived in terms of bandwidth, path loss, the user bit
rate and the allocated power. Using this formula, the BER
is obtained at each position.BWT is the total bandwidth
of the system (Hz),BWs is the bandwidth of a subcarrier
(Hz), and BWb and BWe are the bandwidths allocated to
the base layer and enhancement layers, respectively. Also,
NT

sc is the total number of sub-carriers, andN b
sc and Ne

sc

are the number of sub-carriers allocated to the base and
enhancement layers, respectively. For brevity, the superscript
or subscript ‘l’ indicates “of the lth layer” throughout the
paper. In an OFDM based system, the bandwidth is given
by BWl = (N l

sc + 1) · BWs/2 and N l
sc ≤ NT

sc. The
spectral efficiency is improved by overlapping the sidebands
of the subcarriers, and by arranging the subcarriers to preserve
orthgonality [20].
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Fig. 2. The delivered and corrupted MBs when a transmission error occurs
at themth MB

Let an MS be located in positionx of the ith BS (i.e.,
the home BS). Then, the path loss between the MS of the
ith BS and an adjacent BS (here, thejth BS) is given by
L(i,x:j) = r−p

(i,x:j)10ξ(i,x:j)/10 = r−p
(i,x:j)χ(i,x:j) where p is

a path-loss exponent (typically three to four),r(i,x:j) is the
distance betweenx in the ith BS and thejth BS, ξ(i,x:j)

is a Gaussian distributed random variable with zero mean
and standard deviation representing shadowing, andχ(i,x:j)

is a lognormally distributed random variable. Typically, the
standard deviation ofξ is in the range of 6-10 dB for signals
from adjacent BSs and 2-2.5 dB for signals from the home
BS [11][20]. Here, it is assumed thatp=4. In the multi-carrier
system, a hexagonal cellular pattern is assumed and a number
of neighbor cells (Noc=6) is assumed in the1st tiers for
calculation of the ICI.

Therefore, the ICI (Ioc) and the intra cell interference (Isc)
with respect to theith home cell (herei= 0) are given by
Ioc =

∑Noc

j=1 S · L(i,x:j) and Isc = θ · S(1 − εi,x) · L(i,x:i)

whereS is the total power of each BS,εi,x is the normalized
power of the MS located at positionx in the ith BS, andθ is
an orthogonality parameter.

In general, the signal to interference plus noise ratio (SINR)
of the system at positionx in the ith cell over the cellular
system is given bySINRi,x = L(i,x:i) · S · εi,x/(Ioc +
Isc + N0BWT ) where N0 is the power spectral density
of additive white Gaussian noise (AWGN). Therefore, if
Ioc+Isc À N0BWT , then the SINR formula isSINRi,x =

L(i,x:i) ·S ·εi,x/




Noc∑

j=1

S · L(i,x:j) + θ · S(1− εi,x) · L(i,x:i)


 .

The formula(Eb/N0)i,x,l for the lth layer at positionx in
the ith cell is obtained by

(
Eb

N0

)

i,x,l

=
L(i,x:i) · S · εi,x · BWl

Rl
b

Noc∑

j=1

S · L(i,x:j) + θ · S(1− εi,x) · L(i,x:i)

(7)

whereBWl is the bandwidth andRl
b is the user bit rate.

Using this result, the relation between the instantaneous
BER andEb/N0 with the 4-QAM modulation for a Rayleigh

fading channel is given byPi,x,l = Q

(√
2|H|2

(
Eb

N0

)
i,x,l

)

where the channelH is a circularly symmetric complex
Gaussian random variable with mean 0 and variance 1. In the
sequel, the BER will be utilized to obtain the probability that
a MB contains bit errors in a video frame being transmitted
over the network.

V. OPTIMIZATION OF EXPECTEDV ISUAL ENTROPY

A. Expected Visual Entropy

When the video data is transmitted over a noisy/fading
channel, distortion is caused not only by quantization errors,
but also by bit errors. The H.264/AVC codec uses entropy
coding, so a bit error in the coded bit-stream is propagated
to the end of the data due to the loss of synchronization.
A synchronization unit consists of a slice, so the corrupted
synchronization can be refreshed with the start of new slice.
In our analysis, it is assumed that one bit error has influence
from the block that contains an erroneous bit to the end of the
slice.
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In Fig. 2, themth MB is corrupted due to a bit error. In such
a case, the rest of the MBs to the end of slice are assumed
to be lost, regardless of how many erroneous bits occur in
subsequent MBs. In the following we derive the expected
visual entropy for a given BER, where the unit of video data
is taken to be the MB. Optimization of the expected visual
entropy can then be formulated using several constraints.

Let P l
B be the probability that a bit error occurs in a MB

when the number of bits of the MB is given torl
B . Suppose

that the MS is located at a position “x” of theith BS. Then,
the BER is given byPi,x,l. Using Pi,x,l, P l

B can be obtained

by P l
B =

rl
B∑

i=1

(1− Pi,x,l)i−1 Pi,x,l.

Since all bit information following the first bit error is
regarded as corrupted, all MBs following themth MB contain-
ing the first bit error in the slice are treated as lost. Using our
definition of visual entropy (5), the expected visual entropy in
a frame can be written

hw
l =

Nl∑
n=1

Ml∑
m=2

m−1∑

k=1

hw,l
n,k(ωl

c,∆l)(1− P l
B)m−1P l

B

+
Nl∑

n=1

Ml∑

k=1

hw,l
n,k(ωl

c,∆l)(1− P l
B)Ml (8)

whereNl is the number of slices in thelth layer andMl is the
number of MBs in a slice of thelth layer. The visual entropy
of the lth layer in (5) is divided into elementshw,l

n,k indexed by
slice n and by MBk. The former term is the expected visual
entropy when a first bit error occurs at themth MB, and the
latter term is the expected visual entropy when no bit errors
occur.

B. Optimization problem

The expected visual entropy can be represented by an
objective function of a cross-layer optimization problem, pa-
rameterized byωl

c, ql, N l
sc, andRl

b as

max
ωl

c,ql,N l
sc,Rl

b

L−1∑

l=0

hw
l (ωl

c, ql, N
l
sc, R

l
b) (9)

subject to
L−1∑

l=0

(N l
sc + 1)BWs

2
≤ BWT , Rl

b ≥ 0

0 ≤ ωl
c ≤

1
2
π, 1 ≤ ql ≤ qmax

whereL is the number of layers. Herel = 0 denotes a base
layer andl > 0 denotes one or several enhancement layers.
The number of sub-carriers is restricted by the bandwidth of
a subcarrier and by the total bandwidth. The maximum QP,
qmax, can take one of 52 values according to the H.264/AVC
standard.

The problem posed above is computationally intractable due
to the Q-function contained in the BER of the expected visual
entropy. Thus, a direct approach to solving it does not yield a
good algorithm. Therefore, we seek a close approximation to
the optimal expected visual entropy, wherein the optimization
problem is decomposed into distinct optimal rate control and
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Fig. 3. Optimal cutoff frequency minimizing the sum of traffic

wireless channel adaptation problems. However, the simul-
taneous solution of these closely related problems requires
a cooperative exchange of information. On the source side,
for a given the available bit rate from the wireless channel
the visually optimal bit rate is allocated by the Lagrangian
method to each layer, as described in detail in Section V-C.
On the channel side, for given priority information from the
source side, we propose a greedy algorithm wherein the radio
resources are preferentially allocated to the base layer, then
the remainders are allocated to the enhancement layer in the
manner of best effort, as described in detail in Section V-D. To
avoid confusion, the notation is listed in Table I. The following
is the overall framework for cross-layer optimization:The
first layer ( l=0) is the base layer, while subsequent layers
( 1 ≤ l ≤ L− 1) are enhancement layers.

Step 1. CQI feedback: The MS feeds back CQI information to
the multimedia source and to the BS

Step 2. Optimal rate control: For the multimedia source,
find wl∗

c for which the sum of traffic generated by the base and
enhancement layers is minimized, as shown in Fig. 3, but to make
the scalable video meaningful,wl∗

c ≥ w0
c . At a given instant, fixing

wl∗
c , find q∗l using the optimal rate control whereR∗b is estimated

from the reported CQI.

Step 3. Radio resource allocation: Givenwl∗
c andq∗l in step

2, determineRl
b andN l

sc. After sub-carrier allocation for the base
layer is guaranteed, the remaining sub-carriers (NT

sc − N l
sc) are

allocated to the subsequent enhancement layers

In Fig. 10, it is shown that the expected visual entropy
delivered to the MSs decreases with the normalized distance
due to ICI. Because of the coding efficiency, the expected
visual entropy of non-scalable video is better than that of
scalable video, when the channel state is reliable. However,
if the channel becomes unreliable due to ICI, there exists a
break-even point at which scalable video is better. The reason
is the following. When a bit error occurs in transmission, the
non-scalable video loses all visual entropy from the distorted
points onward through following bits. However, in the case of
scalable video, the base layer is guaranteed to be preserved.
Thus, an opportunistic switching scheme can be developed
using the break-even point in Fig. 10.
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TABLE I
NOTATION

Notation Description

source
side

ωl∗
c Optimal cutoff frequency that minimizes the sum of the generated traffic oflth and (l + 1)th layer.

q∗l Optimal QP of thelth layer minimizing the visual distortion given the attainable user bit rate.

r̃l(ω
l
c, q) Generated traffic per second in a frame of thelth layer, parameterized by cutoff frequency and QP.

ω0
c Minimal cutoff frequency that is meaningful.

channel
side

R∗b Maximal user bit rate, using total number of sub-carriers and satisfying the target BER.

Rl∗
b User bit rate assigned for thelth layer.

NT
sc Total number of remaining sub-carriers.

N l∗
sc Optimal number of sub-carriers forlth layer to support the user bit rate.

P t Target BER.

Pi,x(Nsc, Rb) BER parameterized byNsc andRb at a positionx in the ith cell.

Ntmp1
sc , Ntmp2

sc Temporary variables for the number of sub-carriers

C. Visually optimal rate control

A rate control algorithm dynamically adjusts the QP to
achieve a target bit rate. It allocates a budget of bits to divided
groups in the video sequence. Here we deploy a frame level
rate control algorithm using the Lagrangian method to allocate
a visually optimal bit rate to each layer. This process is
conducted in Step 2 of the cross-layer optimization framework.
After determining the quantization step size∆, the QP is
calculated using the relation∆ = 2q/6. The rate control process
consists of the following two major components.

1) Target bit rate estimation:The target bit rateR should
be obtained for the current video frame of each layer in prior
to calculating the optimal QP. A fluid flow traffic model can be
used to compute the target bit rate, as in [21]. This approach
considers the buffer status and the available bit rate, which
can be estimated from the CQI. Assuming that the target bit
rate mainly depends on the available bit rate, the former is a
function of the latter. Then, we takeR = R(R∗b ), whereR(·)
is the target bit rate estimation function derived from the fluid
flow traffic model in [21].

2) Lagrangian method for optimal QP:Using the empirical
rate r(σ2, ∆), the target bit rate should be appropriately
distributed to each layer by determining the quantization step
sizes to minimize distortion. Here the Lagrangian method is
used to minimize the visual distortion (6) using the bit rate
constraintR and (1):

L(∆k, γ) =

L−1∑

l=0

MlNl−1∑

m=0

dw
l (ωl∗

c , ∆l)

+γ




L−1∑

l=0

MlNl−1∑

m=0

rl(ω
l∗
c , ∆l)−R


 (10)

≈
L−1∑

l=0

MlNlφl
∆2

l

c

+γ

(
L−1∑

l=0

MlNl

(
αl

2
log2

(
ε2cσ2

l

∆2
l

)
+ βl

)
−R

)
(11)

where σ2
l = 1

MlNl

∑MlNl−1
m=0 σ2

m(ωl∗
c ) and γ is the Lagrange

multiplier. In this optimization problem, the visual distortion
serves as a utility function.

Differentiating it with respect to∆l and γ, the following
Karush-Khun-Tucker (KKT) condition is obtained:

2MlNlφl
∆l

c
− γMlNlαl

∆l ln 2
= 0, (12)

γ

(
L−1∑

l=0

MlNl

(
αl

2
log2

(
ε2cσ2

l

∆2
l

)
+ βl

)
−R

)
= 0, (13)

γ ≥ 0. (14)

From (12), the optimal quantization step size for thelth

layer ∆∗l is obtained as∆∗l =
√

αlγc
2φl ln 2 . Inserting∆∗l into the

complementary slackness condition (CSC) (13) and arranging
it with respect toγ, the optimal Lagrange multiplierγ∗ is
obtained asγ∗ = 2Π where

Π =

∑L−1
l=0 MlNl

(
αl
2 log2

(
2ε2φlσ

2
l ln 2

αl

)
+ βl

)
−R

∑L−1
l=0

MlNlαl
2

. (15)

The empirical rate model(1) of each layer is used here to
determine the optimal QP for rate control. However, to obtain
samples ofZ andR, a specific QP should be determined first.
This is similar to the chicken-and-egg dilemma complicates
rate control of H.264/AVC [21]. In [21], the dilemma is solved
by predicting information, which is used in the rate distortion
model, from the previous frame. Similarly, we can solve the
dilemma by predictingR andZ from the previous frame.

D. Radio resource allocation

In OFDM based systems, channel estimation is critical to
achieve performance enhancement. Most OFDM techniques
use a pilot signal to measure the channel state. Using the
pilot, the available bit rate can be estimated, and the estimate
fed back to the multimedia source to achieve rate control.
Although optimal rate control is achieved, wireless channel
adaptation using priority information forwarded from the mul-
timedia source is essential in a mobile network. This is true
since, the closer the mobile node is to the cell boundary, the
more susceptible the wireless channel condition is to ICI.

The computed visual weight of the base layer will be much
larger than that of the enhancement layer in most cases. There-
fore, the greedy scheme is proposed to allocate the sub-carriers
of the OFDM-based system to the base layer in advance, with
the remainder being allocated to the enhancement layers:
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A greedy algorithm for radio resource allocation
for each layer l = 0 : L-1, do

Rl∗
b = r̃l(ωl∗

c , q∗)
N tmp1

sc = arg min0≤Nsc≤NT
sc

∣∣Pi,x(Nsc, R
l∗
b )− P t

∣∣
N tmp2

sc = NT
sc −N tmp1

sc

if N tmp2
sc ≥ 0 , do

N l∗
sc = N tmp1

sc , NT
sc = N tmp2

sc

end if

else ifNT
sc > 0 , do

N l∗
sc = NT

sc, NT
sc = 0

end else if

else, do

N l∗
sc = 0, Rl∗

b = 0
end else

end for

E. Opportunistic switching of encoding mode

Figure 4 depicts the criterion for opportunistic encoding
when switching the coding mode over a cell. The break-even
point of the expected visual entropy is used as a reference
point, to determine which encoding method is proper for a
given channel state. The numbers ‘1’, ‘2’ and ‘3’ indicate
distinct switching as a function of the difference of the
expected visual entropies between SVC and non-SVC. In
region 1,HS ≤ ηHN , so the proper encoding method is non-
SVC, whereη is an adjustment parameter(0 < η < 1), HN

is the expected visual entropy of non-SVC andHS is the
expected visual entropy of SVC. In region 3,HN ≤ HS ,
so the proper encoding method is SVC. Region 2, where
ηHN < HS < HN , is an intermediate interval whose range is
determined byη. In this interval, the difference of the expected
visual entropy is not so large, and approaches a cross-point.
Meanwhile, near the break-even point, the BER may be larger
than the target BER owing to channel fluctuation, so that
severe distortion may occur using non-SVC. Conversely, since
the channel adaptation of SVC can overcome severe distortion
from bit errors, using SVC prior to the break-even point in the
region 2 is a more reliable choice. As can seen in Fig. 4, the
greater the distance from the BS, the wider the cell area. Letδ

be the radius of the cell andρ be the normalized distance of the
break-even point. The area of the inner and outer regions are
π(ρδ)2 andπ(1−ρ2)δ2. If ρ = 0.7, the area of the inner region
is almost the same that of the outer region, so the opportunistic
switching method becomes useful.

VI. SIMULATION RESULTS

In our simulations, we utilized the empirical traffic model
in (1) to measure the performance of our methods. The CIF
sequences ‘Akiyo’ and ‘Coastguard’ were the test videos.
Figure 4 and Fig. 5 compare the traffic for the empirical
model and for the real encoded data, for each layer (1). In
Fig. 5, the1st sequence of ’Akiyo’ was used withq = 10 and

1
2

3

Fig. 4. Switching the encoding mode as a function of expected visual entropy
comparison over a cell

wc = 0.16π, which optimally minimizes the traffic sum. In
Fig. 6, the11th frame of ‘Coastguard’ was used withq = 10

and wc = 0.16π which is also the optimal choice ofwc. The
modeling parametersα and β are obtained from (4) and (5).
For the base layer (enhancement layer) of the1st ‘Akiyo’
sequence, the values obtained areα = 93.34 and β = −18.27

(α = 39.82 and β = 65.94). For the base layer (enhancement
layer) of the11th ‘Coastguard’ sequence, the values obtained
are α = 124.64 and β = −96.51 (α = 84.08 and β = −14.44).
It may be seen that the statistical behavior of the simulated
traffic traces the real traffic relatively well, thus validating the
empirical model relative to real traffic.

Figure 7 compares the average visual distortion of the pro-
posed visually optimal rate control scheme with the encoder
control used in JSVM [22], given a target bit rate. In JSVM
the QP for the enhancement layer is set equal to the QP for
the base layer plus 4 [22]. However it is not optimal relative
to visual distortion as shown in (7). JSVM strictly allocates
bit rate by lowering the QP of the base layer by 4. However, it
does improve performance when it flexibly allocates bit rates
to each layer using perceptual principles.
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Fig. 5. Comparison of traffic between the empirical model and the real
encoded traffic for base layer (a) and enhancement layer (b) of the1st

sequence of ‘Akiyo’

In order to find an optimal cutoff frequency, the total traffic
volume is measured as a function of cutoff frequency. The
optimal cutoff frequency is determined when the total traffic



8

0 10 20 30 40 50 60 70 80 90 100
0

200

400

600

Index of MBs

T
r
a
f
f
i
c

Base layer

 

 

0 50 100 150 200 250 300 350 400
0

100

200

300

Index of MBs

T
r
a
f
f
i
c

Enhancement layer

 

 

Empirical Modeling

Real Traffic

Real Traffic

Empirical Modeling

(a)

(b)

Fig. 6. Comparison of traffic between the empirical model and the real
encoded traffic for base layer (a) and enhancement layer (b) of the11th

sequence of ’Coastguard’
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Fig. 7. Average visual distortion as a function of target bit rate

is at a minimum. Figure 8 shows the total traffic obtained by
taking the sum of the two layers of traffic as a function of the
cutoff frequency. Note that the traffic volume exhibits non-
linear variation as a function of cutoff frequency for a given
QP. Although the cutoff frequency changes the traffic volume,
it does not directly induce distortion as quantization distortion
does. Thus the cutoff frequency yielding the minimum sum
of traffics is the optimal cutoff frequency. Using Step 2 of
the optimal algorithm, an optimal cutoff frequency and an
adequate QP can be determined.

To simulate the channel side, the parameter set in Table
II is used. Figure 9 shows the ratioEb/N0 of the system
model described in Section IV as a function of the normalized

TABLE II
THE SIMULATION PARAMETERS.

Parameters

Number of users 100

Number of cells 7 (the1st tier is considered)

Number of carriers 1024

Total Bandwidth 10 MHz

Orthogonality parameter 0.05

distance, for several different orthogonal parameters. It can be
seen thatEb/N0 rapidly drops near the cell boundary due to
ICI, even if a smaller orthogonal parameter is used. However,
the radio resources can be allocated to each layer as a function
of visual weight, and the UEP algorithm can be conducted.
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Fig. 8. The total traffic of the layered coding scheme as a function of cutoff
frequency
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Fig. 10. The expected visual entropy as a function of normalized distance
for the intra-frame

Figure 10 compares the delivered visual entropy between
the conventional non-scalable and scalable video schemes as
a function of normalized distance for the first intra-frame.
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Using non-scalable video, more visual entropy is delivered
relative to scalable video when the channel state is reliable.
In the normalized distance range 0 to 0.62, the video bit
stream is delivered to the user without any transmission errors.
Therefore the difference in the visual entropy depends on the
amount of coding redundancy.

However, if the channel becomes unreliable due to ICI as
shown in Fig.9, a crossing point of the expected visual entropy
occurs around a normalized distance of 0.7 as shown in Fig.10.
At this distance the channel quality starts to rapidly drop, and
so visually important low frequency information in a non-
layered coding approach can be lost. At a normalized distance
of 0.8, the visual entropy is nearly zero. At this distance,
the amount of generated traffic is much higher than the link
capacity even if a maximum QP is used. Thus, more visual
information is lost due to the limited link budget. Conversely,
in scalable video the throughput of the base layer can be
preserved due to being preferentially guaranteed. Much higher
throughput of visual entropy can be maintained at the cell
boundary by using the optimal approach. In order to achieve
the best performance, it is advisable to employ an adaptive
coding scheme that depends on the channel status, by using
non-scalable video for the reliable channel and vice versa.

In Fig. 11 and Fig. 12, the reconstructed picture quality
is demonstrated as a function of normalized distance. The
quality of the non-scalable video is improved by using a lower
QP when the channel state is reliable. On the other hand,
when the channel state become unreliable, the non-scalable
video traffic can exceed the channel link capacity, and severe
quality degradation can be observed at normalized distances
of 0.82. In SVC, the channel throughput of the base layer
can be maintained even at the cell boundary, owing to the
reduced traffic volume relative to the enhancement layer. The

reconstructed picture is distorted (blurred) by delivering the
bitstream of the base layer.

VII. C ONCLUSION

We have developed a cross-layer optimization framework
that operates between the application and MAC/PHY layers.
On the source side we utilized the SVC coder, which is suitable
for deriving perceptual weights. The visual entropy is defined
by applying the perceptual weights to the empirical rate model
of the SVC. On the channel side, the ratioEb/No of the
OFDM-based system is modeled as a function of normalized
distance, in terms of the number of sub-carriers and the user
bit rate. By deploying the expected visual entropy as an
objective function, an optimization problem can be formulated.
However, since the optimization problem is computationally
intractable, sub-optimal values of the expected visual entropy
can be found by using a greedy algorithm. In the simulations,
it was observed that the performance of non-scalable video is
better than that of scalable video within the inner region. In the
outer region, however, non-scalable video is almost destroyed
by ICI, whereas scalable video provides at least an acceptable
quality. The criteria that makes it possible to determine which
coding method is more effective for a given channel status is
therefore quite useful for achieving seamless real-time video
service.
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