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Pseudo-Bag Mixup Augmentation for Multiple
Instance Learning-Based Whole Slide Image

Classification
Pei Liu, Luping Ji Member, IEEE, Xinyu Zhang, and Feng Ye

Abstract—Given the special situation of modeling gigapixel
images, multiple instance learning (MIL) has become one of
the most important frameworks for Whole Slide Image (WSI)
classification. In current practice, most MIL networks often
face two unavoidable problems in training: i) insufficient WSI
data and ii) the sample memorization inclination inherent in
neural networks. These problems may hinder MIL models from
adequate and efficient training, suppressing the continuous per-
formance promotion of classification models on WSIs. Inspired
by the basic idea of Mixup, this paper proposes a new Pseudo-
bag Mixup (PseMix) data augmentation scheme to improve the
training of MIL models. This scheme generalizes the Mixup
strategy for general images to special WSIs via pseudo-bags so
as to be applied in MIL-based WSI classification. Cooperated by
pseudo-bags, our PseMix fulfills the critical size alignment and
semantic alignment in Mixup strategy. Moreover, it is designed
as an efficient and decoupled method, neither involving time-
consuming operations nor relying on MIL model predictions.
Comparative experiments and ablation studies are specially
designed to evaluate the effectiveness and advantages of our
PseMix. Experimental results show that PseMix could often assist
state-of-the-art MIL networks to refresh their classification per-
formance on WSIs. Besides, it could also boost the generalization
performance of MIL models in special test scenarios, and promote
their robustness to patch occlusion and label noise. Our source
code is available at https://github.com/liupei101/PseMix.

Index Terms—Computational Pathology, Data Augmentation,
Pseudo-Bag Mixup, Multiple Instance Learning, Whole Slide
Image Classification.

I. INTRODUCTION

Histological Whole-Slide Image (WSI) serves as the gold
standard of pathology diagnosis and plays a vital role in cancer
assessment and treatment [1]–[3]. Owing to the advances in
deep learning, many clinical tasks with WSIs, such as lymph
node metastasis detection, cancer subtyping, and cancer prog-
nosis, have been made automatic and precise by specialized
models [4]–[15]. These models show exciting progress towards
overcoming the long-standing drawbacks of manual inspection
[16], [17]. Across them, a weakly-supervised learning frame-
work called multiple instance learning (MIL) is widely used. It
treats a gigapixel WSI (e.g., 40,000 × 40,000 pixels) as a bag
of multiple instances, and learns a global feature representation
via instance embedding and aggregation [18]. This framework
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Fig. 1. Generalization gap of MIL models in training. It is measured by
the model performance gap between training and test sets, to assess the
generalization ability of models, following [20], [21]. Three state-of-the-art
MIL models are trained on TCGA-BRCA WSIs. Vanilla models often show
rapidly-growing gaps. The models trained with our PseMix could ease these
without introducing extra complicated techniques.

enables neural network (NN) models to handle gigapixel
images and no longer rely on fine-grained instance-level labels.
For those reasons, MIL has become a prevalent paradigm
for WSI classification, achieving considerable successes in
computational pathology (CPATH) [19].

Nonetheless, our empirical study, as presented in Figure 1,
reveals that some state-of-the-art MIL models [8], [9], [18]
often perform poorly in generalization, even worse in probable
small data scenarios. The literatures on learning theory and
NNs [22]–[24] point out that such kind of problem is the
consequence of data memorization, fundamentally caused by
the nature of NNs and existing even in the presence of strong
regularization. Due to internal data memorization character-
istics, MIL networks could merely memorize, rather than
efficiently learn or generalize from, given training samples,
thus limiting the model performance on unseen test data and
increasing generalization gaps. Besides, as an external cause,
insufficient samples may hinder models from inadequate train-
ing, further degrading generalization performance. In contrast
to a multitude of studies on classical image classification for
tackling the data memorization problem in models [20], [25],
the current works on WSI classification rarely investigate this
problem in MIL formally. Thereby, most modern MIL models
still carry the risk of inadequate and inefficient training,
suppressing their continuous performance promotion.

Mixup [26], as a special data augmentation method, shows
great promise in mitigating the inherent data memorization
behavior in NNs. Unlike most augmentation methods that
only manipulate single input, Mixup operates on two inputs
and generates the interpolation samples between them (x̃ =
λxi + (1 − λ)xj , ỹ = λyi + (1 − λ)yj). These samples are
also interpreted as neighbor or vicinity samples, leveraged
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Fig. 2. A conceptual framework of PseMix for MIL-based WSI classification.
Size alignment means that two input representations (e.g., feature vectors and
image matrices) are aligned in size at every dimension involving mixing. Xτ

A
and Xτ

B denote pseudo-bags. Mλ is a binary mask. R-mix means random
mixing. PseMix generalizes Mixup and fulfills its critical size alignment and
semantic alignment via pseudo-bags.

as augmented data for training. In this particular way, NNs
are never limited to memorizing finite training samples from
the original distribution; instead, they are encouraged to learn
from the vicinity distribution of training samples and obtain
a decision boundary with better generalization [26]. Such a
simple yet efficient method has been developed and witnessed
remarkable success in its application to heterogeneous data,
e.g., natural image [27]–[29], graph [30], 3D point cloud,
[31], visual-language [32], etc. Further adoption of Mixup
for histological WSIs is strongly anticipated. However, the
characteristic of WSIs poses several challenges to it. Unlike
other data sources, i) histological WSIs are usually cast as
bags for weakly-supervised MIL; ii) WSI bags are often
irregular and not well-aligned in their representation space for
interpolation (i.e., x̃ = λxi + (1− λ)xj); and iii) a single bag
may contain tens of thousands of instances, each with a high-
dimensional feature vector [7]. These characteristics suggest
that a practical and suitable Mixup method for WSIs should
be compatible with MIL, capable of mixing alignment, and
efficient.

For the purposes above, this paper proposes a new Pseudo-
bag Mixup (PseMix) data augmentation scheme, as illustrated
in Figure 2. We address the challenges aforementioned from
the following three aspects. (1) MIL compatibility: our scheme
takes WSI bags as input and outputs the mixed bags that
still could be processed by MIL. (2) Mixing alignment: we
divide each bag into n pseudo-bags for size alignment in bag
mixing, and leverage the proportion of pseudo-bag mixing as
λ to mix targets for semantic alignment. (3) Efficiency: our
pseudo-bag division is designed as an algorithm with linear
time and space complexity, and PseMix is decoupled from the
stage of MIL so as to be plugin-and-play. In addition, our
PseMix further introduces a random mixing mechanism (i.e.,
r-mix in Figure 2) for more data diversity and efficient learning
on vicinity samples. Comparative experiments confirm that our
PseMix could serve as an effective Mixup data augmentation
method. Apart from the improvements across three different
classification tasks, the models trained with our PseMix could

often surpass vanilla models by a large margin in various
generalization and robustness tests.

The main contributions of this paper are as follows. (1) This
paper proposes a new Pseudo-bag Mixup (PseMix) data aug-
mentation scheme for MIL-based WSI classification, to help
MIL models improve performance and obtain better general-
ization and robustness. It is an efficient and plugin-and-play
one, neither involving time-consuming operations nor relying
on the prediction of MIL models. (2) This paper generalizes
the Mixup strategy for common images to special WSIs by
pseudo-bag-based size and semantic alignment. Furthermore,
it introduces a random mixing mechanism into standard Mixup
for more data diversity and efficient learning on augmented
mixing samples. (3) Comparative experiments, ablation study,
and various scenarios, e.g., regular WSI classification, special
generalization tests, patch occlusion robustness, label noise
robustness, etc, are specially designed to demonstrate the
broad advantages of PseMix.

II. RELATED WORK

A. Multiple instance learning for WSI classification

Multiple instance learning (MIL) [18] nowadays has been
increasingly used in computational pathology for weakly-
supervised WSI classification [4]–[15]. Its regular procedure
[19] on gigapixel WSIs could be decomposed into two main
stages: i) WSI preprocessing, each digital slide is transformed
into a bag of instances through patching and patch feature ex-
tracting; and ii) weakly-supervised MIL, a bag is compressed
into a global vector for slide-level prediction by a MIL network
[18]. The first stage is computationally intensive because of
the transformation from gigapixel images to massive feature
vectors. Thus, this stage is usually fixed for saving computa-
tional costs, not involved in regular training [35], [36].

B. Mixup data augmentation

The basic idea of Mixup [26] could be formulated as
follows:

x̃ = λxi + (1− λ)xj , ỹ = λyi + (1− λ)yj , (1)

where the two samples (xi, yi) and (xj , yj) are drawn from
training data, and λ ∈ [0, 1] follows a Beta distribution with
a parameter α ∈ [0,+∞]. Despite its simplicity, Mixup has
been proven, empirically and theoretically, to be an effective
and practical data augmentation strategy across many different
fields for improving the generalization and robustness of deep
learning models [21], [27]–[32], [37].

From an alignment perspective, we could observe the two
critical factors in the Mixup formulation given by Equation
1. (1) Size alignment, i.e., xi and xj must be aligned in
size at every dimension involving mixing (e.g., height and
width dimensions for two input gray images). (2) Semantic
alignment, i.e., the mixed input x̃ is derived from xi and xj ,
and its content is controlled by λ, so its corresponding label
ỹ should be associated with yi and yj , and its value should
be determined by the same λ. Based on this perspective, the
state-of-the-art Mixup variants for different data sources could
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TABLE I
RELATED DATA AUGMENTATION METHODS. THE MIX MANNER, R-MIX, MEANS RANDOM MIXING.

Method Data type Input Target
Mix Size alignment Mix manner Mix Semantic alignment

Mixup (2018) [26] data-agnostic ✓ aligned by default interpolate ✓ input interpolation scale
TransMix (2022) [29] natural image ✓ scaling or cropping mask & mix ✓ target attention weights
G-Mixup (2022) [30] graph ✓ graphon estimation interpolate ✓ graphon interpolation scale
PointPatchMix (2023) [31] point cloud ✓ point patch mask & mix ✓ patch attention scores

Pseudo-bag (2021) [6] WSI ✗ — — ✗ —
ReMix (2022) [33] WSI ✓ bag prototype mask & mix ✗ —
RankMix (2023) [34] WSI ✓ ranking and dropping interpolate ✓ bag interpolation scale
PseMix (ours) WSI ✓ pseudo-bag mask & r-mix ✓ pseudo-bag mixing ratio

be summarized in a unified form, as exhibited in the top half
of Table I.

Apart from interpolation, masking is also one of the most
important means for input mixing implementation. In the do-
main of image classification, it is reported [29] that masking-
based Mixup variants often perform better than interpolation-
based ones because interpolation operation treats background
and foreground equally and often yield meaningless samples.
However, these leading Mixup methods could not be directly
or efficiently applied to gigapixel WSIs, as WSIs are yet
another kind of heterogeneous data, usually cast as irregular
bags containing many high-dimensional instances [7], [19].

C. Data augmentation for multiple instance learning

Traditional image-level data augmentation methods [38],
such as flipping, rotation, blurring, etc, have been adopted in
WSI analysis [39], [40]. They are utilized in the stage of WSI
preprocessing to generate different instance features for the
same patch image, aiming to increase the diversity of instance-
level features. However, this manner is computationally expen-
sive to be adopted in MIL training, because there are usually
tens of thousands of patch images and each one needs multiple
feature extraction for a single WSI [35], [36].

The other methods, specially designed for MIL-based WSI
classification, could be roughly divided into two categories:
i) embedding-level data augmentation and ii) instance-level or
bag-level data augmentation. The former focuses on augment-
ing instance embeddings with bag prototypes [33], generative
adversarial networks [35], or diffusion models [41]. The latter
mainly generates new subsets from bags via hierarchical [6],
[42] or random sampling [11]. However, these methods have
not yet explored the basic idea of Mixup.

As shown in the bottom half of Table I, although ReMix
[33] proposes to mix two bag inputs, it restricts the mix within
the same class, not falling into the range of Mixup [26]. Most
recently, RankMix [34], as a Mixup variant, studies the basic
idea of Mixup for WSI classification. It strictly follows the
original interpolation way for bag mixing. However, it heavily
relies on MIL networks to obtain instance attention scores
for importance ranking and instance alignment. Unfortunately,
there are often potential biases between attention scores and
instance importance, as highlighted in [43]. Accordingly, there
is still room for exploring Mixup on WSI data.

III. METHOD

In this section, we elaborate on how Mixup can be gen-
eralized to WSI classification via pseudo-bags, and introduce
our random mixing mechanism. In the design of PseMix, we
consider algorithm efficiency to make it practical and efficient
to apply. Moreover, our PseMix is decoupled from the stage
of MIL, so it is a plugin-and-play method for MIL models.

A. Preliminary

1) Notation and convention: As shown in Figure 3(a), a
single digital slide is sliced into image patches, and then is
preprocessed into high-dimensional vectors by a parameter-
fixed feature extractor. These preprocessed feature vectors are
taken as a bag of multiple instances. Given N slides, we denote
their processed data by

D = {(Xi ∈ Rmi×d, yi)}Ni=1, (2)

where Xi is the i-th bag, mi is instance number, d means the
dimension of each feature vector, and yi is a slide-level label.
Let xi,j ∈ Rd denote the j-th instance of the i-th bag, hence
Xi = {xi,j}mi

j=1. Let {Xτ
i }nτ=1 represent the n pseudo-bags

of Xi, where τ denotes the index of pseudo-bag.
2) Multiple instance learning: In the absence of instance-

level labels, most MIL framework usually takes WSI bags
as input and leverages a neural network to learn bag-level
representations by aggregating multiple instance embeddings,
followed by an MLP (multi-layer perceptron) to output slide-
level predictions, ŷ1, ..., ŷN , as illustrated in Figure 3(a). This
framework is also called embedding-level MIL [18].

State-of-the-art MIL networks contain ABMIL [18], DSMIL
[8], and TransMIL [9]. They are frequently adopted in weakly-
supervised WSI classification. This paper will mainly employ
them as MIL networks for experiments. Note that the param-
eters of feature extractor are fixed and not updated with MIL
training. For the feature extractor, we simply follow CLAM
[7] to utilize a truncated ResNet-50 model [44] pre-trained on
ImageNet [45]; and d = 1024.

B. Pseudo-bag Mixup augmentation

As shown in Figure 3(b), our scheme has three necessary
steps: i) phenotype and pseudo-bag dividing, ii) bag-level
mixing, and iii) target-level mixing. Next, we will describe
their implementation details one by one.
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Fig. 3. PseMix data augmentation for MIL-based WSI classification. (a) Classical MIL paradigm for weakly-supervised WSI analysis. (b) Illustration of
PseMix. Two WSI bags A and B are taken as examples. Solid rectangular boxes give the t-SNE visualization of instances, where scatter points represents
instances and each color indicates a specific phenotype. A1, A2, ..., B3 are pseudo-bag notations. R-mix means random mixing.

1) Phenotype and pseudo-bag division: To align bag inputs
in size for mixing, we cluster the instances of each bag into
l different phenotypes, and then adopt phenotype-stratified
sampling to obtain n instance-disjoint pseudo-bags. Pseudo-
bag division consists of two major steps. Their details are
provided in Algorithm 1.

(1) Phenotype clustering. In this step, i) we first obtain
l initial instance clusters, following a bag-prototype-based
clustering method [42]; ii) then we fine-tune these clusters
for k times, using an iterative cluster updating algorithm
similar to that used in K-means. Specifically, for each WSI
bag, its prototype is calculated using the mean of its instance
features, as shown in Algorithm 1. Then cosine similarity is
measured between each instance and bag prototype. Based on
these similarity metrics, all instances are grouped into l initial
clusters, where the c-th cluster contains the instances whose
similarity scores are in [−1+ 2(c−1)

l ,−1+ 2c
l ). However, these

initial clusters could not be desirable, as shown in Figure 3(b).
One possible reason is that mean-feature-based calculation
only approximately estimates the prototype of WSI bag and
it thus may lead to the potential bias of instance similarity
measurement. Therefore, we fine-tune those initial clusters
to further improve the quality of instance clustering. Each
instance cluster could be interpreted as a specific pathology
phenotype [6].

We note that the attention-based prototype proposed in
[42] may mitigate the bias of similarity measurement and
obtain better results. However, it relies on the attention score
produced by MIL models. This would increase computation
costs and make our PseMix dependent on attention-based
models and tightly coupled with MIL training. Thus, it is not
used herein to calculate initial instance clusters. Besides, the
clustering algorithm we adopt here could be taken as a simple
variant of classical K-means. Compared with K-means, this

Algorithm 1: Pseudo-bag division (for a single bag).
Input: a WSI bag Xi = {xi,j}mi

j=1, pseudo-bag number
n, phenotype number l, fine-tuning times k.

Output: pseudo-bags {Xτ
i }nτ=1.

// Prototype-based clustering
1 pi ← 1

mi

∑
j xi,j // bag prototype

2 initialize phenotype indicator Ci = {ci,j}mi
j=1

3 for j ← 1 to mi do
4 si,j ← cos(pi, xi,j) // cosine similarity
5 let c ∈ {1, 2, · · · , l}
6 ci,j ← find a c s.t. si,j ∈ [−1 + 2(c−1)

l ,−1 + 2c
l )

7 end
// Phenotype fine-tuning

8 for t← 1 to k do
9 initialize phenotype centroids {fi,c ∈ Rd}lc=1

10 for c← 1 to l do
11 Ic ← {j | ci,j = c}
12 fi,c ← 1

|Ic|
∑

j∈Ic
xi,j

13 end
14 for j ← 1 to mi do
15 ci,j ← argmin

c
cos(fi,c, xi,j)

16 end
17 end
// Phenotype-stratified sampling

18 initialize n empty pseudo-bags {Xτ
i = ∅}nτ=1

19 for c← 1 to l do
20 Ic ← {j | ci,j = c}
21 randomly and uniformly split Ic into n parts
22 fetch the instances w.r.t. the n parts of Ic
23 append the instances to X1

i , ..., X
n
i , respectively

24 end
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variant calculates initial clusters by a different method and
updates clusters by a same iterative mechanism but with a
different stopping condition. We empirically find that it could
often run faster and obtain better overall results than classical
K-means. Please refer to Section IV-E for more comparisons
and discussions.

(2) Phenotype-stratified sampling. We randomly sample
instances without replacement from each phenotype stratum,
obtaining n pseudo-bags (each with roughly the same instance
numbers) from each bag. As a result, the time and space
complexity of Algorithm 1 are O(lkmi) and O(mi), respec-
tively. Given that l and k are usually set in [100, 101], the
procedure of pseudo-bag division can be executed in a linear
time and space complexity w.r.t. instance number for each bag.
Its actual computational cost is measured through experiments
and presented in Section IV-E.

(3) More discussions. Previous studies of pseudo-bags [6],
[11], [42] assume that pseudo-bags could inherit labels from
their parent bag. This paper also follows this basic assump-
tion. However, this assumption is an ideal case because the
inconsistent distribution between pseudo-bags and their parent
bag may incur noises to pseudo-bag labels. Accordingly,
in pseudo-bag dividing, we especially fine-tune phenotype
clusters and adopt the way of phenotype-stratified sampling,
to i) preserve the original phenotype distribution as much as
possible in those divided pseudo-bags and ii) make pseudo-
bags consistent with their parent bag in semantics. These
strategies could make the basic assumption of pseudo-bag
more reasonable and feasible, contributing to the semantic
alignment in target mixing (introduced in Section III-B3). We
will further evaluate and discuss different pseudo-bag division
methods through comparative experiments.

2) Bag-level mixing: As illustrated in Figure 3(b), we
augment WSI bags in this step by masking and random mixing
(r-mix) on two input bags. Without loss of generality, let
(A,B) denote any bag pair from original training samples,
where A,B ∈ {1, 2, ..., N} and A ̸= B. We further denote
their respective pseudo-bags by {Xτ

A}nτ=1 and {Xτ
B}nτ=1,

where pseudo-bags could be arranged in arbitrary orders.
(1) Masking. We randomly mask 1− λ and λ pseudo-bags

in A and B, respectively. Similar to Mixup [26], λ ∈ [0, 1] is
drawn from a Beta distribution, i.e., λ ∼ Beta(α, α), where α
is non-negative. We write two masked bags as follows:

X ′
A = (1−Mλ)⊙ {Xτ

A}nτ=1, X ′
B = Mλ ⊙ {Xτ

B}nτ=1, (3)

where Mλ ∈ {0, 1}n is a binary mask indicating which
pseudo-bag to mask and keep,

∑
Mλ = ⌊λ(n + 1)⌋, and

⊙ represents element-wise product.
(2) Random mixing. As depicted in Figure 3(b), our r-

mix operation could output two kinds of augmented bags,
i.e., mixed or masked bags. Specifically, in r-mix, we let the
masked bag X ′

B join with X ′
A or not join but directly output.

For the first case, the output is a mixed bag:

X̃ = (1−Mλ)⊙ {Xτ
A}nτ=1 ∪ Mλ ⊙ {Xτ

B}nτ=1. (4)

It also contains n pseudo-bags. In Equation 4, both of A and B
are cast as n pseudo-bags and pseudo-bags are the minimum
unit in mixing. All of these are the necessary prerequisites

for size alignment and subsequent complementary masking
operations (i.e., Mλ and 1 −Mλ). For the second case, i.e.,
not joining, the output is a masked bag:

X ′ = Mλ ⊙ {Xτ
B}nτ=1. (5)

It is utilized as the other kind of augmented bags for training.
(3) Motivation behind random mixing. We introduce a

simple random mixing mechanism into standard Mixup for
two purposes: i) enhancing the diversity of training samples
and ii) making models efficiently learn from vicinity samples
(mixed bags). Pseudo-bag-masked bags could be viewed as
the intermediate samples between original training data and
synthetic mixed data. They could smooth the transition from
original distribution to vicinity distribution, thereby helping
models to efficiently learn from synthetic vicinity samples.
We will evaluate and discuss our r-mix in ablation study.

From Equation 3, 4, and 5, we can see that our bag-level
mixing is decoupled from the stage of MIL. Consequently, our
scheme could serve as a plugin-and-play data augmentation
method for MIL, different from the RankMix [34] that relies
on MIL model predictions for bag alignment.

3) Target-level mixing: For the mixed bag X̃ , we adopt the
same λ as that used in Equation 4 for target mixing, i.e.,

ỹ = λyA + (1− λ)yB . (6)

Intuitively, there are λ and 1 − λ pseudo-bags from A and
B, in X̃ . Given the basic assumption that pseudo-bags share
the same label as their parent bag, the interpolation scale of
yA and yB could be set to λ (based on pseudo-bag mixing
ratio) for semantic alignment. For the masked bag X ′, we set
y′ = yB , also following that basic assumption.

Let Daug denote the final training data augmented by our
PseMix. It thus contains (X̃, ỹ) and (X ′, y′). In our imple-
mentation, we adjust their proportion in Daug by adopting a
hyper-parameter p ∈ [0, 1] to set the probability of mixing in
r-mix. Therefore, for any sample Ds

aug ∈ Daug, it is written as
follows:

Ds
aug =

{
(X̃, ỹ) with a probability of p,
(X ′, y′) with a probability of 1− p.

(7)

IV. EXPERIMENTS

In this section, we mainly evaluate the effectiveness and
advantages of PseMix through comparative experiments and
ablation studies. We describe experimental settings in Section
IV-A. Then we validate PseMix using three different WSI
datasets and compare it with other mixing data augmentation
methods in Section IV-B. In Section IV-C and IV-D, we further
show the advantages of PseMix in generalization and robust-
ness. Finally, ablation studies and hyper-parameter sensitivity
analysis are presented in Section IV-E and IV-F, respectively.

A. Experimental settings

1) Datasets and tasks: We use the following pathology
datasets in this study: i) TCGA-BRCA, the subtyping of In-
vasive Ductal Carcinoma and Invasive Lobular Carcinoma for
invasive breast carcinoma, ii) TCGA-LUNG, the recognition
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of Lung Adenocarcinoma and Lung Squamous Cell Carcinoma
in Non-Small Cell Lung Carcinoma, and iii) TCGA-RCC, the
classification of Clear Cell, Papillary, and Chromophobe for
Renal Cell Carcinoma. These three datasets are often adopted
to evaluate MIL models [9], [19]. They are publicly-available
at TCGA (https://portal.gdc.cancer.gov). As shown in Table
II, a total of 2,740 slides are collected. They are preprocessed
with the tools developed by CLAM [7].

TABLE II
STATISTICAL DETAILS OF THREE WSI DATASETS.

Item TCGA-BRCA TCGA-LUNG TCGA-RCC

# Patients 898 947 895
# Slides 953 1,044 937
# Patches 2,961,552 3,235,064 3,317,384
# Patches per slide 3,107.6 3098.7 3,540.4

2) Performance evaluation: Due to the relatively small
size of WSI datasets, we follow the study design of other
MIL-based WSI classification works by using 4-fold cross-
validation (cv) to evaluate model performance more accurately
and reliably. In each of 4 training sessions, a validation set
is randomly split from training data for early stopping and
model selection, resulting in a ratio of 65:10:25 for the size
of training, validation, and test sets on the patient level. The
two classification metrics, Area Under the Curve (AUC) and
accuracy (ACC), are used. And we report their mean and
standard deviation across 4 folds. For ACC calculation, the
class with the largest probability is taken as classification
prediction. In addition, we further assess the generalization
ability of models by measuring the AUC and loss gap between
training and test set, following [20], [21].

3) Implementation details: We set α to 1 by default, which
means that λ is distributed uniformly over [0, 1]. For the
hyper-parameters of pseudo-bag division, we empirically set
n = 30 and l = k = 8 by default across all used datasets
and networks. We will analyze important hyper-parameters in
Section IV-F. All experiments are run on a machine with two
NVIDIA GeForce RTX 3090 GPUs. Please refer to our codes
(https://github.com/liupei101/PseMix) for more details.

B. Basic classification performance
We first verify whether PseMix could help improve the

classification performance of MIL models. The models trained
without any data augmentation, i.e., vanilla models, are taken
as the baseline for comparison. Moreover, we run other input
mixing methods (see Table I) for further comparisons:

• ReMix [33], which mixes the prototypes of two bags but
only processes the bags within the same class;

• Mixup [26], the original interpolation-based Mixup, in
which two bags are aligned in instance number before
interpolation by random dropping instances from the bag
with larger instance number;

• RankMix [34], an improved interpolation-based one, in
which the instances of each bag are first ranked in order
according to their attention scores, and then two bags are
aligned in number by dropping the instances with lower
score from the bag with larger instance number;

• InstanceMix, an instance-level Mixup baseline, in which
each bag is not divided into pseudo-bags and two input
bags are mixed after randomly masking some instances,
rather than pseudo-bags, according to the λ with Beta
distribution, specially designed for the comparison to our
pseudo-bag-level scheme.

Besides data augmentation, other regular training settings are
shared for all baselines and networks.

There are two findings in Table III. (1) PseMix almost
always helps improve the performance of MIL models in WSI
classification. Its average improvements over vanilla models
are consistently positive across three MIL networks, ranging
from 0.93% to 1.75%. (2) PseMix could often surpass other
related input mixing methods in average ACC and AUC. More-
over, the maximum gap in average ACC between PseMix and
others is 1.01% (when it is on DSMIL); as in average AUC,
the maximum is 0.90% (when it is on ABMIL). These results
suggest that our pseudo-bag Mixup scheme is an effective and
superior Mixup variant for improving the performance of MIL
models in WSI classification.

As described in Section III, our PseMix is a masking-
based mixing, pseudo-bag-level Mixup scheme. It outper-
forms two interpolation-based variants and a masking-based
instance-level variant in most cases. Moreover, it is superior
to them in average metrics for three MIL networks. (1) For
two interpolation-based variants, i.e., original Mixup and its
improved RankMix, both of them often need to drop instances
from the bag with more instances, to align two irregular
bags for interpolation. This operation may result in artificial
information loss, especially when there is a big gap in instance
numbers. Furthermore, interpolation-based Mixup often per-
forms worse than masking-based ones in image classification,
since interpolation operations equally treat the background and
foreground in images, as demonstrated in [29]. By contrast, our
PseMix does not rely on interpolation but masks pseudo-bags
for bag mixing. (2) For InstanceMix, it is based on masking
like PseMix but operates at the instance level. And it treats
all instances equally, without the critical semantic alignment
for Mixup. Our PseMix tackles this by manipulating pseudo-
bags. For those reasons, PseMix could often perform better
than previous Mixup variants in WSI classification.

C. Special generalization tests

Most previous works of WSI classification usually focus on
promoting classification performance, rarely concerned with
more aspects of model generalization. Here we demonstrate
more advantages of PseMix in generalization by using gener-
alization gap metrics and out-of-distribution data.

1) Generalization gap: Following [20], [21], we measure
the generalization gap between training and test sets to show
the other metrics of generalization performance. We have
the following observations from Figure 4. (1) Vanilla models
always perform better on training set but worse on test set
in training. (2) By contrast, their PseMix-based counterparts
often have lower test losses and higher test AUCs, showing
smaller generalization gaps. An intuitive, possible explanation
is that PseMix enables MIL models to learn from the new

https://portal.gdc.cancer.gov
https://github.com/liupei101/PseMix
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TABLE III
CLASSIFICATION PERFORMANCE OF VANILLA MIL MODELS AND PSEMIX-BASED ONES ON THREE WSI DATASETS.

Network Method TCGA-BRCA TCGA-LUNG TCGA-RCC Average (%)
ACC (%) AUC (%) ACC (%) AUC (%) ACC (%) AUC (%) ACC AUC

ABMIL [18]

vanilla 86.34 ± 1.97 87.05 ± 2.97 83.88 ± 4.94 92.23 ± 2.81 88.90 ± 1.20 97.36 ± 1.10 86.37 92.21
w/ ReMix 86.46 ± 1.67 87.74 ± 3.97 84.48 ± 3.99 91.66 ± 2.04 88.24 ± 1.99 96.93 ± 0.90 86.39 92.11
w/ Mixup 85.91 ± 2.09 87.31 ± 3.54 86.02 ± 2.67 92.75 ± 2.47 90.39 ± 2.05 97.78 ± 0.76 87.44 92.61
w/ RankMix 85.62 ± 1.34 87.48 ± 3.97 84.73 ± 1.70 91.76 ± 2.07 89.44 ± 2.00 97.37 ± 0.68 86.60 92.20
w/ InstanceMix 86.24 ± 1.94 87.98 ± 3.18 84.83 ± 2.76 91.74 ± 2.22 88.73 ± 1.96 97.60 ± 0.41 86.60 92.44
w/ PseMix (ours) 86.64 ± 3.11 89.49 ± 3.69 86.45 ± 3.28 93.01 ± 2.06 90.50 ± 1.66 98.02 ± 0.55 87.86 93.51
∆ over vanilla + 0.30 + 2.44 + 2.57 + 0.78 + 1.60 + 0.66 + 1.49 + 1.30

DSMIL [8]

vanilla 86.75 ± 1.48 87.73 ± 2.04 85.70 ± 3.18 92.99 ± 2.94 89.81 ± 3.29 97.65 ± 0.81 87.42 92.79
w/ ReMix 85.74 ± 2.38 87.98 ± 3.59 83.30 ± 3.71 91.59 ± 2.06 87.49 ± 1.30 96.54 ± 1.74 85.51 92.04
w/ Mixup 86.35 ± 2.26 88.30 ± 3.10 87.52 ± 3.12 94.22 ± 2.39 90.60 ± 2.29 97.77 ± 0.85 88.16 93.43
w/ RankMix 84.80 ± 1.73 86.49 ± 2.58 86.39 ± 3.33 93.51 ± 2.69 90.27 ± 1.25 97.38 ± 0.87 87.15 92.46
w/ InstanceMix 85.39 ± 3.23 87.94 ± 3.48 86.45 ± 3.39 92.40 ± 2.09 89.48 ± 2.28 97.54 ± 0.55 87.11 92.63
w/ PseMix (ours) 88.22 ± 2.65 89.65 ± 3.19 88.68 ± 2.19 93.92 ± 2.19 90.62 ± 1.20 97.89 ± 0.44 89.17 93.82
∆ over vanilla + 1.47 + 1.92 + 2.98 + 0.93 + 0.81 + 0.24 + 1.75 + 1.03

TransMIL [9]

vanilla 85.31 ± 0.65 88.83 ± 1.37 85.31 ± 4.01 92.14 ± 2.56 90.61 ± 1.62 97.88 ± 0.80 87.08 92.95
w/ ReMix 79.88 ± 2.12 78.76 ± 4.17 83.27 ± 3.05 90.67 ± 3.02 87.52 ± 2.53 96.60 ± 1.04 83.56 88.68
w/ Mixup 81.52 ± 2.39 88.41 ± 3.07 87.62 ± 3.76 94.52 ± 2.49 91.03 ± 1.60 97.88 ± 0.64 86.72 93.60
w/ RankMix 84.69 ± 1.13 87.73 ± 1.31 86.45 ± 2.66 93.75 ± 2.54 90.63 ± 1.92 97.97 ± 0.51 87.26 93.15
w/ InstanceMix 86.77 ± 2.35 89.44 ± 3.01 86.74 ± 2.25 92.72 ± 2.34 91.04 ± 1.57 97.84 ± 0.31 88.18 93.33
w/ PseMix (ours) 86.98 ± 1.47 90.40 ± 2.29 87.67 ± 2.80 93.47 ± 1.91 91.14 ± 1.94 97.76 ± 0.69 88.60 93.88
∆ over vanilla + 1.67 + 1.57 + 2.36 + 1.33 + 0.53 – 0.12 + 1.52 + 0.93
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Fig. 4. Generalization gap (AUC and cross-entropy loss) between training and test set. Three MIL networks are trained on TCGA-BRCA.

training samples drawn from vicinity distribution and these
new vicinity samples could help models to expand generaliza-
tion boundary, leading to the better performance of PseMix-
based models on unseen data.
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Fig. 5. Cross-entropy loss of in-between training data and their corresponding
soft-labels.

2) Test on in-between training data: We further examine
the model performance on out-of-distribution in-between data,

following Mixup [26]. Specifically, we synthesize new in-
between data for testing by applying Equation 4 to training
samples, and obtain their soft labels by the target mixing
of Equation 6. Then, we get the predictions of in-between
data through the models trained before, i.e., those presented
in Table III, and calculate a prediction loss by measuring the
cross-entropy loss between those predictions and soft labels.
From the test results shown in Figure 5, we could see that
i) the cross-entropy loss on mixed data would become higher
when the mix ratio λ approaches 0.5, i.e., when making mixed
bags far from both of two input bags; ii) it is clear that the
models trained with PseMix often show lower test losses on
out-of-distribution data points (i.e., 0.0 < λ < 1.0). The
second observation is consistent with our intuitive explanation
to PseMix, i.e., PseMix-based models often perform better on
mixed in-between data, suggesting that they have learned from
new vicinity samples.
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TABLE IV
ROBUSTNESS AGAINST PATCH OCCLUSION.

Patch masking Method ABMIL DSMIL TransMIL Average (%)
ACC (%) AUC (%) ACC (%) AUC (%) ACC (%) AUC (%) ACC AUC

20% vanilla 85.60 ± 2.14 87.13 ± 2.65 85.11 ± 1.87 86.94 ± 2.99 81.93 ± 2.44 87.51 ± 1.49 84.21 87.19
w/ PseMix 87.27 ± 3.01 89.91 ± 3.05 86.96 ± 2.32 89.12 ± 3.90 87.07 ± 1.78 90.25 ± 2.53 87.10 89.76

40% vanilla 84.65 ± 3.02 86.86 ± 2.56 85.95 ± 2.03 87.07 ± 3.41 80.57 ± 4.20 86.28 ± 1.98 83.72 86.74
w/ PseMix 86.65 ± 2.63 89.87 ± 2.99 85.50 ± 2.77 88.77 ± 3.94 84.77 ± 3.63 89.61 ± 2.02 85.64 89.42

60% vanilla 85.17 ± 3.44 87.05 ± 2.57 84.57 ± 2.25 86.94 ± 3.65 76.43 ± 10.16 84.26 ± 2.85 82.06 86.08
w/ PseMix 86.65 ± 2.63 89.64 ± 3.04 84.77 ± 2.58 88.85 ± 4.07 82.27 ± 6.11 88.02 ± 2.27 84.56 88.84

80% vanilla 84.44 ± 2.85 87.05 ± 1.88 84.26 ± 2.51 86.43 ± 3.27 64.44 ± 19.91 76.82 ± 4.90 77.71 83.43
w/ PseMix 85.06 ± 5.09 88.88 ± 3.43 80.71 ± 4.31 87.28 ± 4.71 78.92 ± 5.80 84.43 ± 6.18 81.56 86.86

TABLE V
ROBUSTNESS AGAINST LABEL CORRUPTION.

Checkpoint Label
corruption Method ABMIL DSMIL TransMIL Average (%)

ACC (%) AUC (%) ACC (%) AUC (%) ACC (%) AUC (%) ACC AUC

Best
epoch

20% vanilla 84.55 ± 2.84 83.81 ± 4.83 83.51 ± 2.00 83.84 ± 4.20 81.96 ± 1.16 82.32 ± 2.74 83.34 83.32
w/ PseMix 84.54 ± 3.25 83.67 ± 4.66 85.80 ± 3.55 85.27 ± 4.93 84.87 ± 1.91 86.41 ± 3.98 85.07 85.12

50% vanilla 80.82 ± 1.77 76.77 ± 4.15 79.96 ± 1.57 75.71 ± 3.95 79.85 ± 0.15 74.54 ± 5.60 80.21 75.67
w/ PseMix 81.35 ± 2.75 78.72 ± 2.33 83.62 ± 1.96 79.94 ± 4.89 81.95 ± 0.46 81.61 ± 2.75 82.31 80.09

80% vanilla 78.28 ± 0.99 62.81 ± 7.83 79.02 ± 1.10 59.40 ± 2.86 74.99 ± 3.98 53.92 ± 4.25 77.43 58.71
w/ PseMix 78.28 ± 0.83 61.13 ± 8.78 79.75 ± 1.19 64.81 ± 2.77 77.53 ± 2.89 59.76 ± 6.02 78.52 61.90

Last
epoch

20% vanilla 77.61 ± 4.23 77.07 ± 5.42 82.05 ± 1.17 80.91 ± 4.12 76.58 ± 2.20 77.31 ± 2.68 78.75 78.43
w/ PseMix 81.20 ± 2.29 80.53 ± 7.14 83.74 ± 4.66 82.71 ± 7.41 82.05 ± 1.31 82.52 ± 5.29 82.33 81.92

50% vanilla 75.34 ± 3.05 70.01 ± 5.81 75.43 ± 3.48 73.04 ± 4.11 70.35 ± 3.77 68.94 ± 3.37 73.71 70.66
w/ PseMix 79.05 ± 5.08 75.14 ± 4.12 82.78 ± 0.90 78.08 ± 4.07 78.82 ± 2.11 75.51 ± 3.72 80.22 76.24

80% vanilla 58.03 ± 10.23 60.34 ± 5.37 55.75 ± 14.53 58.63 ± 9.27 53.67 ± 7.72 51.20 ± 3.45 55.82 56.72
w/ PseMix 57.53 ± 9.73 60.16 ± 7.76 65.99 ± 11.58 63.82 ± 3.65 73.81 ± 6.00 57.82 ± 9.21 65.78 60.60

D. Special robustness tests

Here we further demonstrate yet another benefit of our
PseMix data augmentation scheme. TCGA-BRCA is used in
this test.

1) Robustness against patch occlusion: We randomly mask
the instances of bags of test set samples and then use them for
testing. From Table IV, we observe that PseMix-based models
almost always obtain clear improvements over vanilla ones
in various masking ratios. These improvements range from
1.92% to 3.85% and 2.57% to 3.43% in average ACC and
AUC, apparently larger than those gains shown in Table III.
These facts suggest that our PseMix also could help models
in the robustness to patch occlusion.

2) Robustness against label corruption: To evaluate the
model’s robustness to label noise, we use label-corrupted train-
ing samples to train MIL models. Specifically, some training
samples are randomly selected and then tagged with any one
random class label, following [26]. Results are reported on
original test sets using the best (at the epoch with minimum
validation loss) and the last models (at the last epoch). We
specially report performance for both the best model and the
last one to assess the performance gap between them, so as
to study the negative effect of label-corrupted training data on
model performance. By comparing that gap between a vanilla
model and its PseMix-based counterpart, we could infer that
the model with a smaller gap may be more resistant to label-

corrupted samples and has a more stable training process, i.e.,
it is more robust to label-corrupted training samples.

As shown in Table V, (1) we find that the models trained
with our PseMix often show great performance gains, 7 out
of 9 cases for the best epoch and 8 out of 9 cases for the last
one. Moreover, in average performance, PseMix-based models
consistently exceed vanilla ones by large margins (1.80% ∼
5.58% in AUC and 1.09% ∼ 9.96% in ACC). Furthermore,
(2) we notice that vanilla models often suffer from greater
performance drops than PseMix-based ones, when changing
the epoch from best to last. For instance, a vanilla ABMIL
model drops by 6.94% in accuracy when turning to use the
last model, for a 20% corruption ratio; whereas its PseMix-
based counterpart only drops by 3.34% in the same case. These
observations tell us that our PseMix could often make model
training more stable and help MIL models to be more robust
to label noise in training.

E. Ablation study
1) Study on different pseudo-bag division methods: As

described in Section III-B, different methods could be adopted
to generate pseudo-bags, such as random and phenotype-
stratified sampling. Here we compare our adopted method,
i.e., bag-prototype-based clustering + phenotype fine-tuning
(prototype + FT), with the other three, random sampling, K-
means-based and bag-prototype-based stratified sampling. We
set p = 1 for this study. Test results are presented in Table VI.
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TABLE VI
DIFFERENT METHODS OF PSEUDO-BAG DIVISION. FT INDICATES FINE-TUNING. T IS THE AVERAGE TIME COST PER SLIDE FOR DIVISION.

Network Division method TCGA-BRCA TCGA-LUNG TCGA-RCC Average (%) T
ACC (%) AUC (%) ACC (%) AUC (%) ACC (%) AUC (%) ACC AUC (×10−2s)

ABMIL

random 88.01 ± 2.53 89.30 ± 3.26 86.06 ± 2.71 91.77 ± 2.16 89.55 ± 1.82 97.68 ± 0.46 87.87 92.92 0.016
K-means 86.97 ± 1.82 88.47 ± 2.35 85.21 ± 2.49 91.87 ± 1.92 89.95 ± 1.77 97.77 ± 0.46 87.38 92.70 154.329
prototype 86.33 ± 3.30 89.18 ± 3.36 86.06 ± 2.35 91.86 ± 2.20 89.66 ± 2.32 97.74 ± 0.46 87.35 92.93 0.129
prototype + FT 87.50 ± 2.37 89.00 ± 3.74 86.32 ± 2.76 91.81 ± 2.40 90.08 ± 2.11 97.73 ± 0.47 87.97 92.85 0.382

DSMIL

random 86.45 ± 1.76 89.33 ± 3.50 85.80 ± 3.19 93.12 ± 1.93 88.93 ± 1.26 97.60 ± 0.37 87.06 93.35 0.016
K-means 84.45 ± 2.97 87.53 ± 4.11 86.85 ± 2.31 92.91 ± 1.26 88.92 ± 1.26 97.50 ± 0.54 86.74 92.65 154.329
prototype 86.25 ± 2.33 89.57 ± 3.50 86.06 ± 3.79 92.65 ± 1.95 88.62 ± 2.18 97.41 ± 0.61 86.98 93.21 0.129
prototype + FT 87.28 ± 1.83 89.72 ± 3.65 85.91 ± 2.77 92.89 ± 1.60 89.56 ± 2.38 97.64 ± 0.54 87.58 93.42 0.382

TransMIL

random 86.67 ± 1.93 88.40 ± 2.37 84.31 ± 2.53 91.90 ± 1.74 90.53 ± 1.97 97.82 ± 0.19 87.17 92.71 0.016
K-means 87.31 ± 1.80 89.18 ± 2.48 85.71 ± 2.41 92.65 ± 2.24 89.89 ± 1.89 97.78 ± 0.33 87.64 93.20 154.329
prototype 86.24 ± 2.32 88.78 ± 2.02 85.72 ± 1.54 92.09 ± 0.80 89.86 ± 2.81 97.75 ± 0.27 87.27 92.87 0.129
prototype + FT 86.65 ± 2.26 88.50 ± 3.52 86.22 ± 1.47 92.63 ± 1.63 90.83 ± 1.08 97.78 ± 0.23 87.90 92.97 0.382

TABLE VII
DIFFERENT TARGET MIXING STRATEGIES. MR MEANS MIXING RATIO.

Network λ of target mixing TCGA-BRCA TCGA-LUNG TCGA-RCC Average (%)
ACC (%) AUC (%) ACC (%) AUC (%) ACC (%) AUC (%) ACC AUC

ABMIL instance MR 86.76 ± 1.85 87.99 ± 2.31 85.00 ± 2.75 91.67 ± 2.14 90.18 ± 1.32 97.68 ± 0.42 87.31 92.45
pseudo-bag MR 87.50 ± 2.37 89.00 ± 3.74 86.32 ± 2.76 91.81 ± 2.40 90.08 ± 2.11 97.73 ± 0.47 87.97 92.85

DSMIL instance MR 85.83 ± 2.07 88.49 ± 3.39 86.57 ± 2.97 92.83 ± 2.10 89.99 ± 2.70 97.46 ± 0.67 87.46 92.93
pseudo-bag MR 87.28 ± 1.83 89.72 ± 3.65 85.91 ± 2.77 92.89 ± 1.60 89.56 ± 2.38 97.64 ± 0.54 87.58 93.42

TransMIL instance MR 87.28 ± 1.88 89.05 ± 2.97 85.62 ± 2.06 92.94 ± 2.26 90.17 ± 2.09 97.68 ± 0.33 87.69 93.23
pseudo-bag MR 86.65 ± 2.26 88.50 ± 3.52 86.22 ± 1.47 92.63 ± 1.63 90.83 ± 1.08 97.78 ± 0.23 87.90 92.97

These test results indicate that our prototype + FT is com-
petitive in four pseudo-bag division methods. Our evidences
have three-fold. (1) prototype + FT could often obtain better
overall performances than the other three, especially in average
ACC. (2) It takes three orders of magnitude less time than
the K-means-based one that also utilizes stratified sampling.
(3) Compared to random and bag-prototype-based division, it
merely introduces moderate time costs for phenotype cluster-
ing or fine-tuning but performs better in most cases.

From the results of Table VI, we notice that compared
with our prototype + FT, a K-means-based method often
shows a negative influence on PseMix data augmentation.
One possible reason behind this is that the initial clusters
obtained by bag-prototype-based clustering could help to yield
a clearer phenotype hierarchy than those obtained by K-means.
A clearer phenotype hierarchy could lead to the pseudo-bags
that are more consistent with their parent bag in phenotype
distribution, contributing to the semantic alignment in target
mixing and thus improving the end performance of PseMix,
as discussed in Section III-B1. Specifically, our initial clusters
are determined based on the similarity measurement between
instances and bag prototype, and this similarity measurement
is often helpful for differentiating instance phenotype [42].
By contrast, classical K-means ignores the characteristic of
pathology WSIs to select initial cluster centers by random
sampling. Moreover, its performance is known to be sensitive
to initial clusters. As a result, it often takes a significantly
longer time for convergence and yields a phenotype hierarchy
worse than prototype + FT.

2) Study on different target mixing strategies: Apart from
the semantic alignment strategy based on pseudo-bag mixing
ratio (called pseudo-bag MR), another strategy based on
instance mixing ratio (called instance MR) could also be used
for target mixing. Specifically, in ỹ = λyA + (1 − λ)yB , λ
could be determined according to the ratio of the number of
instances from A and B in a mixed bag X̃ , instead of the ratio
of the number of pseudo-bags. We set p = 1 in this experiment
to avoid the potential influence of random mixing.

From the comparative results of Table VII, we could see
that the strategy of pseudo-bag MR leads to better overall
performance than its instance MR-based counterpart, in 5 of
6 comparisons. These empirical results suggest that using a
pseudo-bag MR as the parameter of target mixing (λ) could
be better for semantic alignment than using an instance MR.
This is largely caused by the characteristic of pseudo-bags,
namely, pseudo-bags could inherit labels from their parent bag,
which is the basic assumption of pseudo-bag. Due to this basic
assumption, pseudo-bag is more likely to be aligned with its
parent bag in semantics, compared with instance. Accordingly,
utilizing the pseudo-bag MR for target mixing could often
result in a better alignment of X̃ with ỹ in semantics.

3) Study on our PseMix: On the basis of prior pseudo-bag-
based methods, PseMix could be decomposed into these new
components: a phenotype fine-tuning technique for pseudo-
bag division (termed FT), pseudo-bag Mixup (termed Mixup),
and a random mixing mechanism (termed R-mix). To elucidate
the influence of each new component on end performance, we
conduct an ablation study on PseMix. The baseline of this
ablation study is a pseudo-bag augmentation method (termed
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TABLE VIII
ABLATION STUDY ON OUR PSEMIX. PB INDICATES ONLY USING PSEUDO-BAGS FOR DATA AUGMENTATION. FT, MIXUP, AND R-MIX MEANS OUR

PHENOTYPE FINE-TUNING, PSEUDO-BAG-BASED MIXUP, AND RANDOM MIXING, RESPECTIVELY.

Method PB Component TCGA-BRCA TCGA-LUNG TCGA-RCC Average (%)
FT Mixup R-mix ACC (%) AUC (%) ACC (%) AUC (%) ACC (%) AUC (%) ACC AUC

- ABMIL network

Baseline ✓ 86.43 ± 2.70 87.23 ± 2.04 85.20 ± 2.82 92.84 ± 1.94 91.36 ± 0.81 97.82 ± 0.62 87.66 92.63

PseMix

✓ ✓ 85.71 ± 2.25 87.39 ± 2.38 85.11 ± 2.60 92.19 ± 1.87 90.38 ± 0.84 97.94 ± 0.74 87.07 92.51
✓ ✓ 86.33 ± 3.30 89.18 ± 3.36 86.06 ± 2.35 91.86 ± 2.20 89.66 ± 2.32 97.74 ± 0.46 87.35 92.93
✓ ✓ ✓ 87.50 ± 2.37 89.00 ± 3.74 86.32 ± 2.76 91.81 ± 2.40 90.08 ± 2.11 97.73 ± 0.47 87.97 92.85
✓ ✓ ✓ ✓ 86.64 ± 3.11 89.49 ± 3.69 86.45 ± 3.28 93.01 ± 2.06 90.50 ± 1.66 98.02 ± 0.55 87.86 93.51

- DSMIL network

Baseline ✓ 86.13 ± 2.56 87.97 ± 3.12 87.16 ± 3.00 94.07 ± 2.74 89.95 ± 2.08 97.76 ± 0.77 87.75 93.27

PseMix

✓ ✓ 85.72 ± 1.63 89.31 ± 2.83 86.96 ± 2.91 93.57 ± 2.49 90.50 ± 1.79 97.93 ± 0.48 87.73 93.60
✓ ✓ 86.25 ± 2.33 89.57 ± 3.50 86.06 ± 3.79 92.65 ± 1.95 88.62 ± 2.18 97.41 ± 0.61 86.98 93.21
✓ ✓ ✓ 87.28 ± 1.83 89.72 ± 3.64 85.91 ± 2.77 92.89 ± 1.60 89.56 ± 2.38 97.64 ± 0.54 87.58 93.42
✓ ✓ ✓ ✓ 88.22 ± 2.65 89.65 ± 3.19 88.68 ± 2.19 93.92 ± 2.19 90.62 ± 1.20 97.89 ± 0.44 89.17 93.82

- TransMIL network

Baseline ✓ 86.66 ± 1.10 89.51 ± 1.29 87.50 ± 2.88 93.90 ± 1.79 89.34 ± 1.71 97.65 ± 1.05 87.83 93.69

PseMix

✓ ✓ 86.56 ± 0.91 89.31 ± 1.22 87.13 ± 3.37 93.33 ± 1.61 90.16 ± 1.82 97.69 ± 0.94 87.95 93.44
✓ ✓ 86.24 ± 2.32 88.78 ± 2.02 85.72 ± 1.54 92.09 ± 0.80 89.86 ± 2.81 97.75 ± 0.27 87.27 92.87
✓ ✓ ✓ 86.65 ± 2.26 88.50 ± 3.52 86.22 ± 1.47 92.63 ± 1.63 90.83 ± 1.08 97.78 ± 0.23 87.90 92.97
✓ ✓ ✓ ✓ 86.98 ± 1.47 90.40 ± 2.29 87.67 ± 2.80 93.47 ± 1.91 91.14 ± 1.94 97.76 ± 0.69 88.60 93.88

TABLE IX
DIFFERENT PATCH FEATURE EXTRACTORS.

SSL-based
feature extractor Method ABMIL DSMIL TransMIL Average (%)

ACC (%) AUC (%) ACC (%) AUC (%) ACC (%) AUC (%) ACC AUC

HIPT vanilla 84.89 ± 2.44 86.21 ± 2.22 82.50 ± 2.04 83.31 ± 2.88 82.80 ± 2.48 83.88 ± 3.55 83.40 84.47
w/ PseMix 85.09 ± 2.39 86.39 ± 2.85 85.50 ± 2.82 87.00 ± 2.92 84.89 ± 2.06 84.94 ± 3.44 85.16 86.11

CTransPath vanilla 90.02 ± 1.99 92.83 ± 1.75 88.77 ± 1.74 92.58 ± 1.59 90.44 ± 1.46 92.97 ± 1.42 89.74 92.79
w/ PseMix 90.85 ± 1.56 93.66 ± 2.11 89.28 ± 1.44 92.62 ± 2.18 91.38 ± 1.59 93.54 ± 2.02 90.50 93.27

PB). It generates pseudo-bags by prototype-based clustering
and stratified sampling, without FT and Mixup.

From the ablation study results in Table VIII, we have
three empirical findings as follows. (1) For FT, it has no
obvious positive effects on pseudo-bag augmentation in terms
of overall performance. However, its effectiveness on pseudo-
bag Mixup is observed in 5 of 6 comparisons. These results
show that pseudo-bag Mixup augmentation is more likely to
benefit from phenotype fine-tuning than pseudo-bag augmenta-
tion. (2) For pseudo-bag Mixup augmentation, it is comparable
with or slightly better than pseudo-bag augmentation (when
using ABMIL) in presence of FT, seen from the comparison
between PB + FT + Mixup and PB + FT. A significant
performance improvement is not often observed. This result
indicates that a simple and direct mixing of pseudo-bags could
not often lead to better performance, reflecting the challenge
of applying Mixup to heterogeneous WSI bags. (3) For our
R-mix, we find that it obtains the best overall performance in
5 of 6 comparisons. This result suggests that utilizing both
mixed and masked bags for data augmentation could often be
more effective for MIL training than only using mixed bags
(i.e., pseudo-bag Mixup augmentation) or masked bags (i.e.,
pseudo-bag augmentation). This result also demonstrates that

our random mixing plays a critical role in PseMix. There
are two possible reasons for this. The one is that random
mixing brings more data diversity because it produces two
kinds of augmented bags for training, i.e., mixing and masked
bags, as described in Section III-B2. The other one is that
the involvement of masked bags could make models learn
from mixed bags (vicinity samples) more efficiently. Because
pseudo-bag-masked bags could be cast as the intermediate
samples between original training data and synthetic mixed
data. These intermediate samples may enable models to learn
from vicinity samples more efficiently, by smoothing the
transition from original distribution to vicinity distribution.

F. Further analysis

Here we examine more experimental settings to understand
their sensitivity to model performance. We mainly present the
experimental results measured on TCGA-BRCA.

1) Other feature extractors: Apart from the classical
ResNet-50 model adopted in [7], we also try two more ad-
vanced feature extractors. They are HIPT [19] and CTransPath
[46], pre-trained with self-supervised learning on WSIs. We
directly use their released model weights for feature extraction.
The test results of Table IX reveal that PseMix still consistently
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improves the performance of vanilla models across three MIL
networks, even for different feature extractors. This result
suggests the adaptability of PseMix.

2) Hyper-parameter analysis: We test the two most impor-
tant hyper-parameters in PseMix, n (the pseudo-bag number
of each WSI bag) and p (the probability of our random
mixing). Test results are shown in Figure 6. For n, a value
near our default setting (n = 30) tends to obtain better overall
performance. All the hyper-parameters of pseudo-bag division
are set by default across all datasets and networks without
tuning. For p, a larger value is likely to result in better test
performances. We set p to 0.8, 0.9, and 0.4 for ABMIL,
DSMIL, and TransMIL, respectively, based on their respective
losses on validation sets; the other values of p could obtain
better results on test sets.
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Fig. 6. Study on the two important hyper-parameters of PseMix, pseudo-bag
number (n) and mix probability (p).

3) Combining with basic data augmentation: Since some
basic image augmentation methods could also be adopted
for WSI data, we combine our PseMix with them to further
examine its adaptability. Specifically, we follow [36] to adopt
two basic image augmentation methods, vertical flip and stain
augmentation, for WSI patches. In MIL training, the patch
features of each WSI are augmented by them with a probability
of 50%, in which each basic method is chosen with an equal
probability. The model trained with basic augmentation meth-
ods is the baseline used for comparison. From the results of
Table X, we find that our PseMix augmentation still improves
the performance of MIL models in the presence of basic
image augmentation. This experiment could further verify the
adaptability of PseMix.

V. CONCLUSION

This paper proposes a Pseudo-bag Mixup (PseMix) data
augmentation scheme for MIL-based WSI classification. It
utilizes a pseudo-bag concept to fulfill Mixup alignment,
thereby generalizing the basic idea of Mixup from common
images to special WSIs. This scheme is compatible with
most prevalent MIL networks. Moreover, it is efficient and
plugin-and-play, neither involving time-consuming operations

TABLE X
COMBINING PSEMIX WITH BASIC DATA AUGMENTATION METHODS.

Network Data augmentation ACC (%) AUC (%)

ABMIL baseline 85.70 ± 2.20 88.35 ± 2.80

baseline + PseMix 87.49 ± 2.32 89.34 ± 3.27

DSMIL baseline 87.92 ± 1.01 90.02 ± 2.09

baseline + PseMix 88.86 ± 2.12 90.04 ± 3.39

TransMIL baseline 85.09 ± 1.94 89.15 ± 2.78

baseline + PseMix 86.97 ± 1.77 89.56 ± 3.32

nor relying on the prediction of MIL models. Comparative
experiments and ablation studies confirm that PseMix is an
effective Mixup variant for WSI classification. It could often
improve the performance of MIL models and obtain better
overall performance than other related mixing strategies. Other
than that, it is observed that MIL models could often benefit
more from PseMix in many other notable aspects, such as
generalization gap, in-between data generalization, patch oc-
clusion robustness, and label noise robustness. In the future,
our PseMix could serve as a promising data augmentation
method to help develop the WSI classification models with
better generalization and robustness for clinical pathology
diagnosis.
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