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A Deep Attentive Convolutional Neural Network for

Automatic Cortical Plate Segmentation in Fetal MRI
Haoran Dou, Davood Karimi, Caitlin K. Rollins, Cynthia M. Ortinau, Lana Vasung, Clemente Velasco-Annis,

Abdelhakim Ouaalam, Xin Yang, Dong Ni, Ali Gholipour, Senior Member, IEEE

Abstract—Fetal cortical plate segmentation is essential in quan-
titative analysis of fetal brain maturation and cortical folding.
Manual segmentation of the cortical plate, or manual refinement
of automatic segmentations is tedious and time-consuming. Au-
tomatic segmentation of the cortical plate, on the other hand, is
challenged by the relatively low resolution of the reconstructed
fetal brain MRI scans compared to the thin structure of the
cortical plate, partial voluming, and the wide range of variations
in the morphology of the cortical plate as the brain matures
during gestation. To reduce the burden of manual refinement
of segmentations, we have developed a new and powerful deep
learning segmentation method. Our method exploits new deep
attentive modules with mixed kernel convolutions within a fully
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convolutional neural network architecture that utilizes deep
supervision and residual connections. We evaluated our method
quantitatively based on several performance measures and expert
evaluations. Results show that our method outperforms several
state-of-the-art deep models for segmentation, as well as a
state-of-the-art multi-atlas segmentation technique. We achieved
average Dice similarity coefficient of 0.87, average Hausdorff
distance of 0.96 mm, and average symmetric surface difference
of 0.28 mm on reconstructed fetal brain MRI scans of fetuses
scanned in the gestational age range of 16 to 39 weeks (28.6±5.3).
With a computation time of less than 1 minute per fetal brain,
our method can facilitate and accelerate large-scale studies on
normal and altered fetal brain cortical maturation and folding.

Index Terms—Cortical plate, Automatic segmentation, Fetal
MRI, Deep learning, Convolutional neural network, Attention

I. INTRODUCTION

FETAL magnetic resonance imaging (MRI) has been es-

tablished as a reliable method for quantitative evaluation

of cortical development in the fetus, and for the diagnosis

and analysis of congenital neurological disorders [1]. It is a

safe technique that provides much better soft tissue contrast

than ultrasound. It also provides advanced mechanisms to

image the micro-structure and function of the fetal brain

in-utero [2]. Hence, it provides information that cannot be

obtained by any other imaging technique. Fetal MRI has

enabled in-vivo mapping and quantitative analysis of cortical

maturation in the fetus [3]–[9], and has shed light on patterns

and forces that govern cortical folding and expansion [10]–

[13]. It has also enabled studies that have quantified altered

cortical development in fetuses with congenital disorders of

the brain and heart [14]–[18]. These studies require accurate

segmentation of the developing fetal brain tissue, in particular

the cortical plate, on fetal MRI.

Fetal brain tissue segmentation on MRI has been historically

challenged due to the limitations of imaging the fetal brain

in-utero by MRI. In particular, fetal movements disrupt the

spatial encoding that is necessary to acquire real 3D images of

the fetal brain. Therefore, fetal MRI is performed through 2D

stack-of-slice acquisitions that do not make 3D images with

coherent anatomic boundaries in 3D. Additionally, there are

technical challenges in acquiring 3D fetal brain MRI scans.

Hence, there has been a lack of carefully-labeled 3D (and

more importantly spatiotemporal or 4D) images of the fetal

brain MRI that can be used as atlases for multi-atlas automatic

segmentation, or as training data for learning-based segmenta-

tion methods. These issues, however, have been addressed in
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the recent years through the development of super-resolution

fetal brain MRI reconstruction methods, e.g. [19]–[24]. These

methods, in-turn, led to the construction of carefully labelled,

spatiotemporal atlases of fetal brain MRI [25]. These devel-

opments allowed automatic segmentation of fetal brain tissue,

mainly through multi-atlas segmentation methods [25]–[27].

Nonetheless, accurate segmentation of the fetal brain tissue, in

particular segmentation of thin structures such as the cortical

plate (CP), remains challenging due to several outstanding

issues that we discuss next.

A. Fetal Cortical Plate Segmentation

The CP was manually or semi-automatically segmented on

MRI in early studies on quantitative analysis of fetal cortical

maturation [3], [14], [15]. Manual segmentation of the super-

resolved reconstructed fetal brain MRI scans, however, is

laborious and time consuming [25]. Therefore, more recent

studies relied upon careful manual refinement of automatic

(multi-atlas based) fetal brain MRI segmentations [8], [18].

Nonetheless, manual refinement of automatic segmentations

is also tedious and difficult on super-resolved 3D images.

Cortical plate segmentation on fetal MRI is particularly

challenging as the fetal CP is a very thin ribbon with a

thickness that is comparable to the best achievable resolution

on fetal MRI scans. As a result, partial voluming effects cause

major issues in fetal CP segmentation on MRI. Furthermore,

because the tissues are immature, the contrast of the devel-

oping white matter (WM) and gray matter (GM) for the fetal

(and newborn) brain on MRI is the reverse of the contrast of

the WM and GM on MRI of mature brains [28], [29]. This

exacerbates the partial voluming effect as partial voluming in

the CP and the cerebrospinal fluid (CSF) interface generates

a WM-like intensity that confuses automatic segmentation

algorithms. This can cause registration errors and inaccurate

segmentations that appear as holes and topological errors in

thin or highly-folded areas of the fetal cortex. This issue can

be seen in Fig. 1, which shows T2-weighted MRI images of

the brain of two fetuses scanned at 23 weeks and 35 weeks

gestational age as well as T2-weighted brain MRI images of a

newborn and an adult. Compared to the adult brain, in which

the GM intensity falls between the range of the intensities of

the WM and CSF, in the fetal and newborn brains the WM

appears brighter than the CP. This is problematic as the partial

voluming between CP and CSF resembles WM, which may

then result in topological errors in segmentation.

Another factor that makes automatic segmentation of the

fetal CP challenging is the substantial variations in fetal

brain morphology due to the rapid development of the brain

throughout gestation. As Fig. 1 shows, the CP of the fetal brain

in the second trimester (e.g. at 23 weeks) has a smooth shape

and does not have many sulci. With the rapid growth of the

fetus, sulci form and the CP folds, ultimately forming an adult-

like, highly-folded area just before birth, which then continues

to mature after birth. The large variations in morphology,

appearance, and scale of the fetal CP, along with the challenges

discussed earlier, make it difficult to develop effective and

robust solutions for automatic CP segmentation in fetal MRI.

Fetus

3D Visualization

GW: 23 weeks

GW: 35 weeks

Newborn

Adult

2D Slice

Fig. 1. Comparing the appearance of the fetal brain (in the second and third
trimesters) with the brain of a newborn and an adult on T2-weighted MRI.
The first column shows an axial slice of brain MRI where the blue line shows
the boundary of the cortical plate. The second column is the 3D surface
mesh visualization of the CP. Compared to the newborn and adult brains, the
fetal brain exhibits wide variations in size and morphology. In addition, the
relatively low spatial resolution of fetal MRI, the thin size of the CP, and
the reversed contrast of the GM and WM that causes WM-like intensities
in the CP-CSF interface (due to partial voluming) (shown by arrows), pose
significant challenges for automatic CP segmentation. GW: Gestational Weeks.

B. Related Works

For a review of automatic fetal and neonatal brain MRI

segmentation techniques we refer to [27]. In our review of the

related works here we focus on techniques that segment the

fetal brain tissue on 3D reconstructed fetal brain MRI images.

Therefore, we do not review techniques that only segment (i.e.,

extract) the entire fetal brain on the original (stack-of-slice)

fetal MRI scans. Those techniques that extract and segment the

entire fetal brain on slices of the original MRI scans are useful

as a pre-processing step for slice-by-slice motion correction

and 3D super-resolution reconstruction of fetal brain MRI. Our

work, on the other hand, is focused on post-reconstruction

analysis of fetal brain cortical development.
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The early works on 3D fetal brain MRI tissue segmentation

were based on deformable atlas-to-image registration and

propagation of labels from MRI atlases to MRI scans of

query subjects. Habas et al. [30] first proposed an atlas-based

solution to segment the fetal brain tissue with a focus on

the germinal matrix. Inspired by [30], they incorporated a

depth-based geometric representation model into the conven-

tional atlas segmentation strategy [30] by providing additional

anatomical constraints [31]. In their follow-up work, Habas et

al. constructed 3D statistical MRI atlases of fetal brain tissue

distribution [32] and used them to segment fetal brain tissue

on 3D reconstructed fetal brain MRI images [26].

Serag et al. [33] built a spatiotemporal atlas of the fetal

brain from reconstructed fetal brain MRI scans of 80 fetuses

scanned in the gestational age (GA) range of 23 to 37 weeks.1

They used the atlas in a multi-atlas deformable registration

and label propagation framework to segment fetal brain tissue

on reconstructed fetal brain MRI images. With their atlas and

segmentation technique they reported average Dice similarity

coefficient (DSC) of 0.84 for automatic CP segmentation.

Gholipour et al. [34] developed a multi-atlas multi-shape

segmentation technique based on a combination of label fusion

from multiple age-group atlases and shape priors. They used

their atlas to segment lateral ventricles in fetuses at different

ages with different levels of ventriculomegaly. Gholipour et

al. [25], [35] then developed and distributed fully labeled

spatiotemporal (4D) MRI atlases of normal fetal brain growth

at 1mm isotropic resolution in the gestational age range of

19-39 weeks.2 They used reconstructed images of 81 normal

fetuses to construct the atlas and used it for multi-atlas tissue

segmentation where they achieved average DSC of 0.9 and

0.84 for CP segmentation (using a leave-one-out strategy) for

fetuses scanned at ≤ 34 weeks and > 34 weeks, respectively.

Khalili et al. [36] developed a fully convolutional neural

network based on the U-Net architecture to segment fetal brain

tissue on 3D reconstructed fetal brain MRI scans of 12 fetuses

in the 23-35 weeks GA range. They reported average test

DSC of 0.835 for CP segmentation, which compared favorably

against the average DSCs of 0.82 and 0.84 reported for the

different test sets in [26] and [33], respectively. Although, as

noted in [36], these values should not be compared directly

because they were calculated on different test sets.

C. Contributions

To reduce the burden of manual refinement of segmentation

and topology correction, and to improve quantitative analysis

of fetal cortical plate development, we aimed to significantly

improve automatic segmentation of the cortical plate in fetal

MRI. We aimed to address the outstanding issues that were

mentioned above, in particular to deal with the substantial

variability in the size, shape, and complexity of the thin fetal

brain CP. To this end, in this investigation we developed a new

network architecture with novel attention modules using mixed

kernel convolutions. The attention modules helped our network

extract and learn important multi-scale information from the

1http://brain-development.org/brain-atlases/fetal-brain-atlases/
2http://crl.med.harvard.edu/research/fetal brain atlas/

feature maps in a stage-wise manner. We compared our trained

model with several state-of-the-art models including: the 3D

U-Net [37] used in fetal brain MRI segmentation [36], the

Plane Aggregated U-Net (PAUNet) [38], the Attention U-

Net [39], and the Squeeze & Excitation Fully Convolutional

Network (SE-FCN) [40]. We compared methods quantitatively

based on several performance metrics on held-out test sets. We

also compared the results of our method against a multi-atlas

segmentation technique based on blind expert evaluations. The

results indicate significant improvement in CP segmentation in

fetal MRI using our proposed network with attentive learning.

The paper is organized as follows: Section II involves

the materials and methods including the details of the fetal

MRI dataset, our proposed network architecture, the attention

refinement module, loss function, and training. Section III

describes the experimental results; Section IV includes a

discussion; and Section V includes our concluding remarks.

II. MATERIALS AND METHODS

A. Fetal MRI data

The fetal MRI dataset used in this study consisted of super-

resolution reconstructed volumes of 57 fetuses scanned at a

gestational age (GA) between 16 and 39 weeks (29.5±5.5).

The scans were performed on 3T Siemens Skyra scanners with

body matrix and spine coils. These images were reconstructed

from slices of T2-weighted single shot fast spin echo scans of

each fetus, repeated 3-4 times in each of the axial, coronal, and

sagittal planes with respect to the fetal head. The protocol and

the research imaging was approved by the institutional review

board committee. Written informed consent was obtained from

all pregnant women volunteers who participated in the study.

The in-plane resolution of the original scans was 1 mm, the

slice thickness was 2-3 mm, and the repetition time and echo

time were 1500 and 120 ms, respectively.

Approximate fetal brain masks were automatically extracted

on the original scans using the model in [41]. They were used

along with slice-to-volume registration (for inter-slice motion

correction) to reconstruct a super-resolved 3D volumes of the

fetal brain using the algorithm described in [22] at an isotropic

resolution of 0.8 mm3. Final 3D brain masks were generated

on the reconstructed images using the Auto-Net [42], and

were manually corrected in ITK-SNAP [43] as needed. Brain-

extracted reconstructed volumes were then registered to a

spatiotemporal fetal brain MRI atlas and the brain tissue and

cortical plate were segmented using the procedure described

in [25]. To generate reference (ground truth) segmentation

data, this procedure involved manual segmentation and refine-

ment of the cortical plate in several rounds in different planes.

This procedure took anywhere between 2 to 8 hours depending

on the age of the fetus and the quality of the reconstructions.

B. Model Architecture

Figure 2 shows a schematic representation of our proposed

deep attentive fully convolutional neural network (CNN) archi-

tecture for CP segmentation in fetal MRI. Our model consists

of a backbone network with an encoder-decoder architecture

with forward skip connections from the encoder stages to the
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corresponding decoder stages. This is followed by a stage-

wise attention refinement module that leverages mixed kernel

convolutions to capture multi-scale contextual information. In

this section and the following subsections, we explain the

details of our model and its attentive learning that enables

learning to segment the complex and variable structure of the

cortical plate in fetuses scanned at different ages.

As shown in Fig. 2, our network works on 3D patches

of size 643. This patch size was chosen in a trade-off to

enable learning multi-scale features while limiting memory

requirements. For each 3D input patch, the network out-

puts a CP probability map of the same size in an end-to-

end manner. The network first extracts a series of feature

maps with different resolutions. The shallower feature maps

(Stage 1) contain high-resolution details needed for accurate

delineation of the CP boundary. The deeper features maps

contain coarse and high-level information that help predict

the overall outline of the CP. Our backbone network uses

forward skip connections [37] and convolutions with residual

connections [44]. The input of each stage is first processed

by two 3 × 3 × 3 convolutional layers followed by batch

normalization (BN) [45] and parametric rectified linear unit

(PReLU) for activation [46].

A shortcut (i.e., residual) connection is added between the

input and the output of every convolutional block in this

network. The numbers of feature maps in the encoder part of

the network are 16, 32, 64, 128, 128, increasing the number

of features as their size shrinks. We limited the number of

feature maps at the last encoder stage to 128 to accommodate

training on a graphical processing unit (GPU) with 8GB

of memory. Every feature map computed by the backbone

network is then upsampled using trilinear interpolation to

the size of the input patch. Then a convolutional operation

with a kernel size of 1 × 1 × 1 is applied to every feature

map to create 16 features in each of the feature maps. The

feature maps then go through deep supervision modules [47]

that improve the gradient flow and encourage learning more

useful representations. Similar deep supervision modules are

also used on the outputs of the attention modules and merge

the resulting feature maps via concatenation. These feature

maps go through two convolutional layers followed by BN

and PReLU to produce the CP probability map.

C. Stage-wise Attentive Refinement

The goal of our attention modules is to increase the net-

work’s ability to capture the multi-scale details of the brain

CP. We expect that these modules increase the richness of

the information of the multi-scale feature maps learned by

the backbone network. Figure 3 shows the architecture of our

proposed attention module as it is used in each of the stages

of our stage-wise attentional refinement network in Fig. 2. We

explain the details of the attention module here.

As shown in Fig. 3, our attention module takes the feature

maps generated from each stage of the backbone network and

outputs a refined attentive feature map of the same size. The

operation of the attention module at stage i has the following

functional form:

F
′

i = fi(Fi; θ)⊗ Fi + Fi. (1)

where θ denotes the parameters of the module that include the

weights of the convolutional layers; Fi and F
′

i respectively

denote the input feature maps and the output refined attentive

feature maps at stage i; and ⊗ is element-wise multiplication.

In our attention module, the input feature map Fi is first

processed with group convolutional blocks. The sizes of the

kernels vary from 3× 3× 3 to 9× 9× 9, but the number of

feature maps in each group is fixed at 4. Each convolutional

operation is followed by BN and PReLU. This design not

only reduces the GPU memory footprint and computation, but

also increases the richness of the learned representations as

demonstrated by similar designs [48]. The generated feature

maps are concatenated and passed through a second, and

identical, group of convolutional blocks. A convolution layer

with a kernel size of 1 × 1 × 1 is used to merge these

multi-scale feature maps into a single feature map. Finally,

a sigmoid activation is applied to obtain the attentive map Ai.

The attentive map is multiplied element-wise with the input

feature map to encourage attention to the relevant locations in

the feature map. The refined attentive feature map is added

to the input feature map in the spirit of residual connections

to reduce the difficulty of learning the attentive map. Note

that we use BN on the feature maps from these two branches

before adding them together. This is necessary to ensure that

the values of the two feature maps are not very differently

distributed.

D. Loss Function

We trained our network with the weighted binary cross-

entropy loss, Lwbce:

Lwbce =
1

N

N∑

i=1

[αgi log pi + (1− gi) log (1− pi)]. (2)

In this equation, N is the number of voxels in the patch.

Moreover, pi and gi denote the predicted cortical plate prob-

ability map and the binary ground truth cortical plate map at

voxel i. Lastly, α is the weight hyperparameter, which is set

independently for each training mini-batch.

Our overall loss function is the weighted sum of the losses

at different points in the network involving supervision:

Ltotal =

n∑

i=1

wiLi
signal +

n∑

j=1

wjL
j
signal + wpL

p
signal. (3)

the above equation, wi and Li
signal denote the weight and

loss for the points of supervision at stage i of the backbone

network, as shown in Fig. 2. Similarly, wj and L
j
signal denote

the weight and loss for the point of supervision at stage j of the

attentive refinement network. The number of stages is denoted

with n, and wp and L
p
signal denote, respectively, the weight

and loss computed at the final network output. Using cross-

validation in this study, we set wi = 0.8, 0.7, 0.6, 0.5|i=1:4,

wj = 0.8, 0.7, 0.6, 0.5|j=1:4, and wp = 1.
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Fig. 2. Schematic illustration of our proposed CNN architecture, which consists of a backbone fully convolutional encoder-decoder network with stagewise
forward skip connections, and a stagewise attention refinement module. The network takes sliding, overlapping 3D patches of size 64 × 64 × 64 from the
input image, and using training data, learns to generate a 3D segmentation of the input image.

Fig. 3. Schematic illustration of the architecture of our attention module, which takes an input feature map and generates a refined attentive feature map of
the same size. The module includes two layers of group convolutional blocks followed by feature concatenation and 1× 1× 1 bottleneck convolution blocks.
The module uses a sigmoid activation function and a residual connection between its input and output to reduce the difficulty of learning attentive maps.

E. Implementation and Training

We implemented our network in PyTorch [49] and trained

it in an end-to-end manner using Adam optimizer [50] with a

weight decay of 1e-4. We used an initial learning rate of 1e-3

and reduced it by a factor of 0.1 after 3k and 4.5k training

iterations. Learning stopped after 6k iterations. We used ran-

dom 3D flip and 90 degree rotations for augmentation of input

patches during training. We also implemented and trained

alternative networks for comparison with the same training

data and with similar hyper-parameters for optimization and

data augmentation. We trained all models on an Nvidia GTX-

1080Ti GPU with a mini-batch size of 4. Training our network

with 6k iterations took approximately 24 hours.

III. EXPERIMENTS AND RESULTS

In this section, we first describe the alternative, state-of-

the-art deep learning models that we have compared and the

evaluation criteria that we used to compare the results. Then

we describe the results of the comparisons as well as expert

evaluations in comparing the results of our deep learning

technique with multi-atlas segmentation. We discuss the results

of the comparisons in detail in Section IV.



ACCEPTED BY IEEE TRANSACTIONS ON MEDICAL IMAGING 6

A. Alternative Techniques

To demonstrate the advantages of our proposed method

in fetal brain CP segmentation, we compared it with four

alternative deep learning models, including two non-attentive

models and two attentive models.

Non-attentive models:

• 3D UNet [37]: is based on the well-known U-Net archi-

tecture [51]. It has proven to be a powerful segmentation

CNN that has achieved success in multiple segmentation

tasks, e.g. [41], [52]–[55]. The 3D UNet leverages skip

connections to strengthen the fusion of multi-level fea-

tures to generate refined segmentation results.

• Plane Aggregated U-Net (PAUNet) [38]: segments the CP

with a 2D UNet with dense blocks [56] from each plane

and constructs a final prediction via plane aggregation.

We used the mean of predictions for plane aggregation.

Attentive models:

• Attention UNet [39]: integrates a self-attention gating

module into the U-Net model, which allows attention

coefficients to be more specific to local regions.

• Squeeze & Excitation Fully Convolutional Network (SE-

FCN) [40]: uses spatial and channel-wise squeeze and ex-

citation attention to improve segmentation performance.

In the ablation studies, we investigated the impact of our

proposed attentive module and deep supervision mechanisms.

First, to demonstrate the advantages of our stage-wise attentive

refinement module, we compared our framework with a model

in which we removed the attention module and concatenated

all feature maps from the backbone network with different

resolutions to form the final prediction. We refer to this model

as 3D Deeply Supervised Residual Network (DSRNet). Then,

to investigate the efficacy of deep supervision, we trained

our model with different supervision strategies. Specifically,

we compared training with supervision at: 1) only the final

network output, 2) both the final output and the multi-scale

features, and 3) the attentive maps instead of attentive features

in an approach similar to [57].

We also compared the results of our deep learning model

with a state-of-the-art multi-atlas segmentation (MAS) tech-

nique as described in [25]. This technique uses diffeomorphic

deformable registration [58] between each atlas and the query

image to propagate labels from the atlas to the query image and

then fuses the label maps using probabilistic STAPLE [59].

B. Evaluation Criteria

To compare segmentation results quantitatively on the test

set, we used three evaluation metrics: 1) the Dice similarity co-

efficient (Dice), 2) the 95 percent Hausdorff Distance (95HD),

and 3) the Average symmetric Surface Distance (ASD) [60]–

[62]. The Dice is used to estimate the spatial overlap between

the prediction and ground truth, 95HD is an outlier-robust

measure based on the Hausdorff distance between two bound-

aries, and ASD is the average of all distances from points in

the surface of the prediction to the ground truth.

MAS was used to obtain the very initial segmentations for

our fetal MRI datasets that experts used as guidance in seg-

mentations [25]. Even after significant time-consuming manual

segmentations and refinements, we were unable to ensure that

the quantitative comparison of our method with MAS based

on the overlap and distance metrics was unbiased. Therefore,

for comparing our method with MAS, we performed blind

expert evaluations. For this purpose, on a set of 15 fetal MRI

scans from the test set, three experts independently compared

segmentation results of our method and MAS. This was done

in a randomized and blind fashion. Specifically, the experts

visually compared the two segmentation results overlaid on the

grayscale anatomical image of each fetus in different planes.

They indicated if either of the segmentations A or B was better

or if there were about the same quality.

C. Evaluation Results

As summarized in Table I, our method outperformed other

methods based on almost all evaluation metrics. Our method

achieved mean Dice of 0.87, 95HD of 0.96, and ASD of

0.28. The best value of each performance measure has been

highlighted by boldface text in the table. According to these

results our method generated better segmentations than both

3D UNet and DSRNet according to both Dice and ASD,

and it outperformed PAUNet based on Dice. Our method

showed an average of 5% and 0.12 mm improvement in Dice

and 95HD over PAUNet, respectively. Moreover, our method

achieved superior segmentation accuracy compared with the

two competing attentive models (Attention U-Net and SE-

FCN) in terms of Dice, 95HD, and ASD. Comparing the

results of the DSRNet with those of the 3D UNet shows the

improvement achieved by our backbone network (DSRNet)

that exploited residual learning with deep supervision. Com-

paring our method with DSRNet shows the contribution of our

attentive refinement to the improvement in performance.

In Table I, we have also reported the number of parameters

and running time for all compared models. We observe that

by adding 2.6% extra parameters, our attention module could

improve the performance by 3% (from 0.84 by DSRNet

to 0.87 by Ours) in terms of Dice. Although our method

takes longer than the other methods in inference, all the test

times are reasonable for the segmentation of post-acquisition

reconstructed images, as these run times are an order of

magnitude smaller than the time it takes to reconstruct images.

To investigate if the differences between methods were

statistically significant, we conducted paired t-tests between

the results of our method and those of 3D UNet, PAUNet,

Attention UNet, SE-FCN and DSRNet. This test was carried

out for all performance measures (Dice, 95HD, and ASD).

In our paired t-tests, the significance level was set as 0.05.

The p-values for the paired t-tests is summarized in Table II.

Overall, the results of the comparisons and tests in Tables I

and II indicate that our method performed best among all the

techniques that we implemented and examined.

Table III shows the results of our experiments to investigate

the effectiveness of our deep supervision strategy. In these

experiments, we compared our deep supervision strategy with

alternative training strategies that apply supervision at different

network layers, as explained above. We can observe from Ta-

ble III that our deep supervision strategy (backbone + attentive
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TABLE I
COMPARING SEGMENTATION RESULTS OF DIFFERENT METHODS (3D UNET, PAUNET, ATTENTION UNET, SE-FCN, DSRNET, AND OUR METHOD)

BASED ON QUANTITATIVE PERFORMANCE MEASURES (DICE, 95HD, AND ASD) AND COMPUTATIONAL COST (NUM OF PARAMS, AND RUN TIME). THE

BEST VALUE FOR EACH EVALUATION MEASURE HAS BEEN SHOWN IN BOLDFACE TEXT.

Method Dice↑ 95HD(mm)↓ ASD(mm)↓ Num of Params Run time(s)

3D UNet 0.81±0.06 1.30±0.55 0.54±0.18 2.51M 5.70

PAUNet [38] 0.82±0.09 1.08±0.51 0.28±0.13 0.76M 5.03

Attention U-Net [39] 0.85±0.08 1.00±0.58 0.45±0.32 3.01M 8.63

SE-FCN [40] 0.82±0.07 1.31±0.82 0.45±0.26 2.59M 8.70

DSRNet 0.84±0.06 1.12±0.48 0.40±0.17 2.68M 12.89

Ours 0.87±0.06 0.96±0.38 0.28±0.14 2.75M 45.14

features + output) achieved the highest segmentation accuracy.

The results suggest that supervision at the attentive features

level (SAF) achieves slightly better segmentation accuracy

than supervision at the attention map level (SAM). Feature

maps at different channels contain different representations

and require different attention maps. SAM imposes the same

attention coefficients on feature maps of different channels,

which is not as accurate as SAF for different channels.

TABLE II
p-VALUES OF PAIRED t-TESTS BETWEEN THE RESULTS OF EACH METHOD

AND OUR METHOD FOR THE THREE SEGMENTATION PERFORMANCE

MEASURES USED IN THIS STUDY (DICE, 95HD, AND ASD).

Metrics Dice 95HD ASD

3D U-Net vs. Ours 10
−5

10
−3

10
−10

PAUNet vs. Ours 10
−3 0.21 0.92

Attention UNet vs. Ours 0.12 0.70 10
−3

SE-FCN vs. Ours 10
−3 0.01 10

−4

DSRNet vs. Ours 0.02 0.09 10
−3

Figure 4 illustrates the feature maps before and after at-

tentive refinement and the corresponding attentive map. The

attentive maps highlight the regions that are important for

the task (i.e cortical plate). Figure 5 shows axial slices of

two representative cases with CP segmentation overlaid on

the grayscale image using different methods, compared to the

ground truth. In terms of the topology of CP segmentations,

these results show that 1) the PAUNet and the UNet under-

and over-segmented different regions of the CP depending on

contrast and partial voluming; 2) the Attention U-Net under-

segmented the CP; 3) the SE-FCN over-segmented the CP;

and 4) our attentive model generated segmentations that were

better than our DSRNet and were the most similar (among all

models) to the ground truth. Visual comparison of the DSRNet

results and the results of our method shows the extents of the

differences in CP segmentation associated with the differences

in quantitative measures reported in Tables I and II.

Figure 6 shows 3D surface error maps of the CP segmen-

tation generated by each method with reference to the ground

truth for a representative test subject. The average values of the

performance metrics (Dice, 95HD, and ASD) for this case have

also been shown for each method. This shows how the extents

of the differences in these values correspond to 3D surface map

and topological errors in CP segmentation. We can observe

that our method achieved the most accurate segmentation

results among all the compared methods. Our method gen-

erated topologically more accurate CP segmentations than the

other methods. In particular, there exist many holes in the

segmentation results of UNet, PAUNet, DSRNet, and Attention

U-Net in areas with significant partial voluming. This occurred

due to the inability of those techniques in leveraging the useful

information of multi-scale features. The PAUNet generated

low surface errors in many areas, but completely failed in

other areas. The SE-FCN generated high surface errors in

many areas. Our DSRNet, overall, performed much better than

the other competing methods and its performance significantly

improved through deep attentive learning as can be seen in the

results of our method in the lower right side of Fig. 6.

D. Expert Evaluation Results

Table IV shows the expert evaluation results of CP segmen-

tation using our method against MAS (multi-atlas segmenta-

tion) for 15 test subjects. We separated the test subjects to 9

and 6 based on the original reconstructed image quality. This

was done because we expected the segmentation to be more

challenging in low-quality reconstructions due to the effects of

residual motion artifacts and partial voluming. The last row of

the table shows the results of majority voting among the three

experts, where a three-way tie went to equal. This evaluation

shows that our method was chosen most often as the more

accurate segmentation method by each expert and also based

on majority voting. Our method outperformed MAS regardless

of the quality of the input reconstructed image, which shows

its robust and accurate performance. It should also be noted

that our method generated the CP segmentation for every test

subject in less than 1 minute. MAS, on the other hand, took

approximately 20 minutes because of the need for deformable

registration between each atlas and the subject.

IV. DISCUSSION

In this paper we presented a deep attentive convolutional

neural network for cortical plate segmentation on fetal MRI.

Fetal cortical plate segmentation in MRI is very challenging

due to the rapid changes and variations in the microstructure

and shape of the transient fetal brain compartments. The rela-

tively low spatial resolution of fetal MRI compared to the thin

structure of the CP makes the task more challenging. Due to

the large variations in CP structure and severe partial voluming

effects, automatic segmentation methods struggle to extract

multi-scale contextual information from images. To alleviate

those issues, our proposed network is equipped with stage-wise

attentive refinement modules with mixed kernel convolutions
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TABLE III
SUPERVISED LEARNING BASED ON DIFFERENT FEATURES.

Supervision
Backbone Attentive Feature Attention Map Output Dice↑ 95HD(mm)↓ ASD(mm)↓

X 0.85±0.06 1.14±0.57 0.49±0.18

X X 0.86±0.06 1.12±0.43 0.46±0.38

X X X 0.86±0.05 1.07±0.34 0.32±0.12

X X X 0.87±0.06 0.96±0.38 0.28±0.14

Stage1

After Attention

Attentive Map

Before Attention

Stage2 Stage3 Stage4

Fetal MRI

Prediction

Ground Truth

Fig. 4. The illustration of the feature maps in the attention module. The first column shows an original 3D reconstructed fetal brain MRI image. The second
to the fifth columns show the feature maps in the attention module from stage1 to stage4. The first row to the third row shows the input features, the attentive
maps, and the output features of the attention module, respectively. The third column shows the prediction of the network and the ground truth.

Image Ground Truth Ours DSRNet PAUNet UNet

Case1

Case2

MAS Attention-UNet SE-FCN

Fig. 5. Visual comparison of the segmentation results obtained from different methods (ours, DSRNet, MAS, PAUNet, and 3D UNet) compared to the ground
truth for two representative test cases. As supported by the results in Table I, our method generated segmentations that were most similar to the ground truth.

to capture multi-scale information. Besides, the patch-wise

input provides sufficient training data in comparison to the

image-wise input, which alleviates the risk of over-fitting [63].

The 3D UNet and PAUNet are powerful models. However,

they do not have specific multi-scale architecture design and

only use single scale kernels to generate feature maps. As

shown in Figure 5 and 6, the subtle and highly variable

boundaries of the fetal CP were much more effectively learned

and predicted through the multi-scale attentive modules that

exploited different kernel widths in our network. Compared

with the 3D UNet and PAUNet, our ablation study method

(DSRNet) achieved better segmentation of the cortical regions

by concatenating multi-scale feature maps. However DSRNet

still lost some details in the subtle boundary of the fetal CP.
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UNet

DSRN Our Proposed

PAU

Dice:0.87  95HD:0.8  ASD:0.255Dice:0.84  95HD:1.13  ASD:0.332

Dice:0.83  95HD:1.13  ASD:0.443

SE-FCN

Dice:0.84  95HD:0.8  ASD:0.364

Dice:0.84  95HD:0.8  ASD:0.262

Attention-UNet  

Dice:0.82  95HD:1.6  ASD:0.846

Fig. 6. Visualization of the cortical surface error maps on a representative test case along with the values of the performance measures for different methods
(3D UNet, PAUnet, SE-FCN, Attention U-Net, DSRNet, and our method). Our method generated the lowest average error, whereas other methods generated
holes in the CP surface.

TABLE IV
EXPERT EVALUATION RESULTS OF COMPARING CP SEGMENTATIONS

USING OUR METHOD AGAINST MULTI-ATLAS SEGMENTATION (MAS).

Voter
Good Reconstruction Bad Reconstruction

Ours MAS Equal Ours MAS Equal

Expert1 9/9 0/9 0/9 6/6 0/6 0/6

Expert2 5/9 1/9 3/9 3/6 1/6 2/6

Expert3 9/9 0/9 0/9 4/6 2/6 0/6

Majority 9/9 0/9 0/9 4/6 0/6 2/6

Our method exploited group convolutional blocks with multi-

ple kernel sizes to extract multi-scale information and generate

attentive maps that refined the feature maps at different scales.

Using the residual spatial attention mechanism, our attentive

network efficiently and effectively aggregated complementary

multi-scale information for accurate representation of the fetal

CP regions. Given the multi-scale information selected by the

stage-wise attentive refinement module, features of highly-

variable anatomy were captured accurately and represented

effectively during the learning process.

Prior studies have proposed a number of different attention

mechanisms for such applications as image classification [64]

and image segmentation [65]. Those attention mechanisms

have different forms, such as spatial attention [66], channel-

wise attention [64], and self-attention [67]. However, none of

the existing attention mechanisms was suitable for our appli-

cation. Specifically, channel-wise attention lacks the spatial

attention, and self-attention is not suitable for 3D images

due to its excessive memory requirements. Our comparisons

also showed that our proposed model was superior to prior

attentive models for medical image segmentation [39], [40].

We attribute this to the superior ability of our model to learn

multi-scale representations of the cortical plate compared to

those other models. Our spatial attention mechanism effec-

tively refined the feature maps from input 3D image patches

at different scales to improve segmentation performance.

The idea of using convolutional operations with multiple

kernel sizes has been promoted by various network archi-

tectures, including Inception [68], MixNet [69], and PSPNet

[70]. All of these architectures extract multi-scale feature maps

using multi-branch convolutional operations with different

kernel sizes. These convolutional operations are interlaced

with pooling operations to increase the richness of the learned

representations. Our attention module is based on similar

principles. It consists of multiple convolutional blocks with

different kernel sizes to generate multi-scale attention maps.

We used 3D convolutional kernels to build our 3D CNN.

3D CNNs are demanding in terms of GPU memory usage. A

common practice to reduce memory requirements in 3D CNNs

is to use large 3D patches as inputs. However, if the patches

are too small compared to the image structures, models may

not learn global context information. In our setting, we were

able to use a large input patch size of 64 × 64 × 64 to fit

our model on a GPU with 11GB of memory. This patch size

covered about 50×50×50 mm3 physical volume size, which

was sufficiently large compared to the size of the fetal brain.

Atlas-based segmentation techniques are also challenged

by the same issues that make learning-based segmentation

of the fetal CP challenging. By using age-matched atlases

to segment a test subject, these techniques may handle the

variability in cortical folding and maturation levels relatively

well. However, they are more sensitive to artifacts and partial

voluming effects. These techniques rely on deformable reg-

istration between each atlas and the test image to propagate

the CP label from the atlas to the test subject image. The

registration may fail or may be inaccurate in thin and folded

areas of the CP where partial voluming disrupts the normal

range of the intensity values and features that are used to

inform deformable registration. In MAS, registration errors

translate into segmentation errors. Another issue with MAS

methods is their computational cost and time, which is high

due to the required optimization-based deformable registration

between multiple atlases and the subject at test time. Once
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our model is trained, it generates CP segmentation of a test

case in less than 1 minute which is an order of magnitude

faster than MAS. More importantly, our method generated

more accurate segmentations than MAS according to expert

evaluations (Table IV). We attribute this to the superior ability

of our model in capturing multi-scale information and learning

the context from training samples.

Cortical plate segmentation on reconstructed fetal MRI is a

fundamental first step in quantitative analysis of fetal cortical

maturation. To evaluate the generalization ability of our model

with respect to the fetal MRI image reconstruction algorithms,

we reconstructed five fetal MRI scans with NiftyMIC [24], and

tested them with our model which was trained with images

reconstructed using the algorithm by Kainz et al. [22]. The

results have been shown in the Supplementary Figure S1

and Table S1. For this comparison, because our ground truth

segmentations were made on images reconstructed using [22],

we had to register and resample the NiftyMIC reconstructions

to the reconstructions by [22] for each subject. We note that

resampling degrades image quality. Moreover, any registration

errors would lead to reduced Dice and increased ASD com-

putations due to misalignment between the ground truth and

the test CP segmentations. Despite these factors, the results

of this experiment show that our model performed well in the

new (NiftyMIC reconstruction) domain.

V. CONCLUSION

In this study, we developed a deep attentive neural network

with mixed kernel convolutions for automatic cortical plate

segmentation in fetal MRI. The key feature of our technique

is to leverage a residual spatial attention mechanism to capture

multi-scale information. We used two group convolutional

blocks with mixed kernels to generate attentive maps to

adaptively select and learn important information through the

attention mechanism in a deep learning model that leveraged

multi-stage deep supervision in both feature extraction and

attention modules. Through this novel architecture and the

attention mechanism we developed the first 3D fully convolu-

tional deep neural network model for automatic cortical plate

segmentation in fetal MRI. Our model outperformed several

state-of-the-art deep learning models as well as a multi-atlas

segmentation method.
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Supplementary Material
A Deep Attentive Convolutional Neural Network for Automatic Cortical

Plate Segmentation in Fetal MRI

Haoran Dou, Davood Karimi, Caitlin K. Rollins, Cynthia M. Ortinau, Lana Vasung, Clemente Velasco-Annis,

Abdelhakim Ouaalam, Xin Yang, Dong Ni, Ali Gholipour

I. EFFECT OF DOMAIN SHIFT DUE TO DIFFERENT RECONSTRUCTION ALGORITHMS ON SEGMENTATION.

We investigated the effect of domain shift due to different reconstruction algorithms on the performance of our segmentation

model. Given our model trained on fetal MRI images reconstructed with the method by Kainz et al. [22], we evaluated the

performance of our model on images reconstructed with 1) Kainz et al.’s method [22], and 2) the NiftyMIC method [24].

Images from five subjects were included in this experiment. Because our ground truth (manual) segmentations were in the

original domain (i.e., reconstructions with [22]), we had to register NiftyMIC reconstructions to Kainz et al.’s reconstructions

and resample them. The segmentation results with the two reconstruction methods are shown in Fig. S1 for two representative

test cases. Despite the domain shift, as shown in Table S1, our model performed very well, achieving average Dice of 0.838

and ASD of 0.338 mm. This experiment shows that our model performed robustly in the presence of domain shift due to the

use of different reconstruction algorithms.

Fig. S1. Visualization of the segmentations obtained from our model trained and tested with ground truth data on reconstructions from [22] (Kainz et al.) on
reconstructions obtained from NiftyMIC, for two representative test cases. Since the ground truth was in the original domain (i.e., on Kainz reconstructions),
we registered and resampled the NiftyMIC reconstructions to Kainz reconstructions prior to segmenting them.

TABLE S1
SEGMENTATION ACCURACY OF THE PROPOSED DEEP LEARNING MODEL WHEN THE DOMAIN WAS SHIFTED DUE TO THE USE OF A DIFFERENT

RECONSTRUCTION ALGORITHM: NIFTYMIC WAS USED TO RECONSTRUCT IMAGES AS OPPOSED TO THE ALGORITHM BY KAINZ ET AL. [22] WHICH WAS

USED IN THE TRAINING DATA. BECAUSE THE GROUND TRUTH SEGMENTATIONS WERE IN THE ORIGINAL DOMAIN (KAINZ ET AL. RECONSTRUCTIONS),
WE HAD TO REGISTER AND RESAMPLE THE NIFTYMIC RECONSTRUCTIONS TO THE KAINZ RECONSTRUCTIONS. WE NOTE THAT ANY INACCURACY IN

REGISTRATION RESULTS IN REDUCED DICE AND INCREASED ASD FOR THE NIFTYMIC METHOD. DESPITE THESE ISSUES, THE RESULTS SHOW THAT

OUR MODEL GENERALIZED WELL TO NIFTYMIC RECONSTRUCTIONS.

Reconstruction method Dice↑ ASD(mm)↓

Kainz 0.887±0.002 0.226±0.008

NiftyMIC 0.838±0.012 0.338±0.027
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