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Abstract
We present a novel algorithm to accelerate feature based registration, and demonstrate the utility
of the algorithm for the alignment of large transmission electron microscopy (TEM) images to
create 3D images of neural ultrastructure. In contrast to the most similar algorithms, which
achieve small computation times by truncated search, our algorithm uses a novel randomized
projection to accelerate feature comparison and to enable global search. Further, we demonstrate
robust estimation of non-rigid transformations with a novel probabilistic correspondence
framework, that enables large TEM images to be rapidly brought into alignment, removing
characteristic distortions of the tissue fixation and imaging process. We analyze the impact of
randomized projections upon correspondence detection, and upon transformation accuracy, and
demonstrate that accuracy is maintained. We provide experimental results that demonstrate
significant reduction in computation time and successful alignment of TEM images.
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I. INTRODUCTION
Image registration is a fundamental process in medical imaging applications aimed at
establishing spatial correspondences between images [1]. The algorithm presented here was
developed in order to enable the rapid and accurate creation of 3D volumetric images of
neural ultrastructure by the alignment of transmission electron microscopy (TEM) serial
sections with very large fields of view at very high spatial resolution. Recent advances in
TEM imaging now provide the capability to image the ultrastructure of the brain at
unprecedented resolution with extremely large volumes of interest ([2], [3], [4], [5]).
Determining the detailed connections of brain circuits is an essential unsolved problem in
neuroscience. Analysis of volumetric TEM images will provide critical insight making it
possible to uncover the connectivity of brain circuits. However, the volumetric
reconstruction of neural circuitry from series of EM images pose several unique challenges,
posed by high spatial resolution (order of nanometers) which makes apparent the large
number of scales at which interesting biological structure exists, the very large size of the
data (terabytes to petabytes) which necessitates efficient algorithms, and the distortion of
tissue due to the section handling and imaging processes [6], [7], [8]. The volumetric
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construction of neural circuitry from TEM remains a substantial and challenging problem
[9]. 1

A. Electron Microscopy
The reconstruction of three-dimensional neural tissue with conventional serial electron
microscopy is not a new endeavor. Twenty five years ago, White et al. [10] imaged the
entire nervous system of the nematode C. elegans down to the last neuron, dendrite, and
synapse. Yet the technique classically was done by hand, with photographic techniques and
manual tracing. Currently, there are several types of serial section EM providing three
dimensional (3D) volumetric resolution over regions of up to a cubic millimeter. The
approaches differ mainly by the sectioning process, the image acquisition and their
alignment [3]. The first is SSTEM (Serial Section Transmission EM, [11], [12]) which
involves slicing the tissue to ultrathin (50nm) sections, where each section is cut from the
tissue block by a diamond knife, creating ribbons of thin sections. Following the embedding
sectioning and staining processes the sections are imaged with TEM where a broad beam of
electrons is directed at the thin sections allowing a substantial fraction of the electrons to
pass through the tissue and then be focused onto a detector. The second of these high-
throughput techniques is the Serial Block-Face Scanning EM (SBFSEM) [2]. In SBFSEM a
tissue block is processed in the manner typical for TEM; however, instead of slicing thin
sections for TEM imaging, the block is mounted in the vacuum chamber of a specially
modified scanning EM (SEM). Within the SEM, the top-most layer of tissue from the block
is successively sliced off after it is imaged, which is then simply discarded. The freshly
exposed blockface is scanned with an SEM electron beam and the backscattered electrons
are recorded. This way, 3D data set can be collected with no manual involvement. The
advantage of SBFSEM is that the backscattering from the solid block requires no slice
registration. However, the signal-to-noise ratio and the in-plane resolution are generally
lower than what can be obtained using SSTEM. SBFSEM can provide sections as thin as
20-30 nm, but is limited to 20-30 nm per pixel resolution insection ([11],[3]). Although
SSTEM lead to larger sections thickness (of ≈ 40 nm), it offers significantly better in plane
resolution (2-4 nm) and relatively higher signal-to-noise ratio [6]. A third alternative is
Serial Section Electron Tomography (SSET) which is based on reconstruction from 2D
projections taken at different angles [13], [14]. The in-plane resolution of this method is
similar to that of SSTEM and the axial resolution can be far better, but it has not proven a
practical method for large-scale reconstructions of neuronal circuits. Finally, Focused Ion
Beam Scanning EM (FIB-SEM) [15] offers excellent in-plane and axial resolution, but the
volumes that can currently be acquired with this method are too small for large-scale
reconstruction.

B. Related Work
A significant literature has developed addressing the special requirements of microscopy
images for alignment. Algorithms for 3D reconstruction from 2D images have extensively
utilized feature based approaches due to their superior performance, and have included the
block matching strategy proposed by [16], where the local displacements were utilized to
robustly estimate a global rigid transformation. Dauguet et al. [17] developed a solution for
3D reconstruction of a series of TEM images based on the finite support properties of the
cubic B-splines, where the initial estimate for the affine registration was based on the block
matching technique described in [16]. Koshevoy et al. [6] addressed the section to section
matching as part of a complete algorithm for assembling 3D volumes from EM data. Their
approach first identifies Scale Invariant Feature Transform (SIFT)[18] feature descriptors

1Personal use of this material is permitted. However, permission to use this material for any other purposes must be obtained from the
IEEE by sending a request to pubs-permissions@ieee.org.
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and then exploits these features to match adjacent slices, where the transformation is
parameterized by Legendre polynomials. Thus the algorithm relies on the assumption that
the tissue undergoes only smooth and continuous deformations, and does not account for
discontinuities such as tears or folding.

Kaying et al. [7] presented an automatic calibration and stitching approach that can correct
for non-linear distortions caused by the electromagnetic lenses. SIFT features [18] of local
image patches were used, and the correspondences were determined based on the Euclidean
distance of the features. However rather than estimating the transformation independently
for each pair of images, the approach maximizes the similarity between all overlapping pairs
jointly and therefore corrects only for electron microscope distortions that are shared by all
images.

The large size of the images requires extreme computational efficiency consideration.
Accordingly, there have been several attempts to automate and accelerate the collection of
three-dimensional EM data. Serial Block-Face Scanning EM (SBFSEM) was utilized by [2]
to study 3D tissue ultrastructure. However, the image resolution obtained was not sufficient
to enable identification of neurobiological structures, such as synaptic contacts and gap
junctions, which requires a minimum of 2 (nm/pixel) [12]. Therefore, although the SBFSEM
technique avoids the distortion caused by slicing tissue, it limits the achievable resolution to
lower than we need to achieve for reconstruction of three-dimensional neural ultrastructure.

C. Summary of Nonrigid Registration Methods
Bringing a pair of TEM images, I and J, into alignment requires the identification of a
nonrigid transformation. Let us denote a transformation by T , and define a dissimilarity
function D(I, J, T) that describes the differences between images I and J under the transform
T . Image I and J are aligned, by a transformation T, when D(I, J, T) is minimized.

Cachier et al. [19] developed a classification of nonrigid registration algorithms based on
two axes, the first consisting of the transformation model, and the second consisting of the
image features used to guide the search for the transformation that aligns the images. The
transformation model was categorized by identifying three ways in which transformations
were regularized: parametric models, competitive regularization, and incremental
regularization.

Parametric models referred to transformations T characterized by a small number of
parameters, which were estimated by minimizing the dissimilarity between images I and J
when aligned according to transform T:

(1)

The registration that results is intrinsically regularized by the small number of parameters
used to represent the transformation T .

Competitive regularization referred to algorithms based on the following minimization
problem:

(2)

In these approaches the minimization of the image dissimilarity function is explicitly
regularized by a function that depends on the transformation T.
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Incremental regularization algorithms differ from competitive regularization algorithms by
considering a sequence of transformation estimates, and carrying out regularization of a
function of the sequence of transformations (such as the change in transform from iteration
to iteration) rather than the transformation itself:

(3)

Cachier et al. [19] further described registration algorithms by identifying categories of
geometric feature based (GFB) registration, intensity based registration (IB), and introduced
a new category of iconic feature based (IFB) algorithms that utilize both geometric distance
and intensity information. Standard intensity based algorithms are based directly on the
image grey values measured at each voxel and utilize an intensity based similarity function
and an optimizer that finds a local optimum of the objective function ([20],[21],[22]). GFB
alignment approaches are commonly based on features such as salient points, surfaces or
segmented structures in the image. A fundamental algorithm in this context is the Iterative
Closest Point (ICP) [23] and its popular extensions ([24] [25]). The new category of IFB
algorithms seek to identify features that should be aligned, search for correspondences based
on their intensity similarity measure and find an optimal geometric transformation that
brings the corresponding features into alignment.

Cachier et al. [19] demonstrated that it was valuable to consider correspondences, denoted
C, identified between two images, separately from the transformation T that brings the two
images into alignment. Representing C and T by vector fields, [19] proposed a registration
energy function using competitive regularization:

(4)

where σ and λ are scalar parameters, and demonstrated an iterative alternating minimization
strategy in which correspondences were first identified by solving:

(5)

and then the transformation was estimated by minimizing:

(6)

This was further extended to a mixed competitive and incremental regularization function of
the form:

(7)

where w ∈ [0, 1] determines the balance between the competitive and incremental
regularization schemes. Experiments demonstrated alternated minimization was an effective
and robust strategy for achieving registration of the images I and J.

D. Similarity measures
A broad range of image similarity or dissimilarity measures have been investigated in the
literature. Three of the most commonly used are sum of squared differences (SSD), cross-
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correlation (CC) and mutual information (MI), each of which can be computed either
globally or locally.

Hermosillo et al. [26] investigated dissimilarity measures of images I and J at scale σ, with
the following SSD measure as an example of the type:

(8)

and demonstrated that minimization of dissimilarity measures of this type through calculus
of variations leads to iterative minimization by gradient descent. This leads to update
equations with terms of the form [26], [27]:

(9)

We can immediately notice that only regions of image J (the image undergoing
transformation) with a significant gradient magnitude drive changes through the iterative
minimization procedure. Homogeneous regions, away from regions with large gradient
magnitude, do not contribute to the energy function, and do not influence the minimization.
Symmetric similarity and inverse consistent registration techniques aim to ensure that the
role of image I and image J is equivalent in estimating the transformation [28], but maintain
the property that regions with large gradient magnitude are primarily important to the
registration that is achieved. Hermosillo et al. [26] demonstrate this is also the case for
dissimilarity functions of the form of local and global cross-correlation, and local and global
mutual information. These observations provide further motivation for the use of
regularization in order to constrain the transformation in regions away from large signal
intensity gradients, and demonstrate that the force driving the minimization may be
distributed sparsely across the image even when a dense transformation is being estimated.

It has been argued that local dissimilarity measures have a number of advantages over global
dissimilarity measures ([16], [19], [26], [29], [30], [31]). Global dissimilarity measures,
including mutual information, assume that the link between images I and J is the same over
the entire image. That is, that the image statistics are stationary, whereas local similarity
measures are effective even in the presence of non-stationarity. Further, it has been
demonstrated that global computation of mutual information actually reduces the quality of
image alignment achieved in comparison to computation of image statistics only in the
regions closest to edges [30], due to a combination of non-stationarity of image statistics and
a reduction in the quality of mutual information estimates from including voxels away from
regions of significant gradient magnitude that do not drive the minimization.

While SSD is appropriate for single-modality images, and mutual information can be
challenging to compute from local regions due to the smaller number of samples available to
estimate the required probability density functions [32], local cross-correlation is effective
for both single-modality and multi-modality image registration. As demonstrated first by
[31] and confirmed by [29],[16], local cross-correlation is effective for multi-modality
registration because it exploits the affine relationship between signal intensities of the local
regions of the images, a relationship which is most apparent in regions of significant
gradient magnitude.

E. Search for Correspondences
Both GFB and IFB registration methods proceed to search for correspondences between
features. For IFB algorithms, the search problem is usually solved by assuming a best
corresponding feature will be within a certain search range, and then brute force evaluation
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of all potential correspondences within the search region. Recent examples such as [33] have
shown the efficacy of local cross correlation for such truncated searches, but can fail to
identify the best correspondences due to the truncated search region, become slower as the
local region size must scale with the biological features of interest, and are driven by a
single best correspondence pair at each voxel. For GFB algorithms, such as ICP [23], a
brute-force approach which involves computing the distances between the query point and
all the points in the neighboring image can be used.

F. Our Contribution
We propose a new registration algorithm in the category of iconic feature based registration
algorithms [19]. As with previously described such algorithms, our algorithm identifies
correspondences between pairs of images at scale σ, and computes a nonrigid transformation
from the correspondences. The algorithm is suitable for any model of alignment
transformation, and transformations may be regularized with competitive and/or incremental
regularization.

The first algorithmic contribution is a novel and efficient search strategy that dramatically
accelerates feature based registration. We recast the conventional search for corresponding
iconic features as a near neighbor search. As the dimensionality of the search space is very
high, this has not previously been regarded as tractable. We demonstrate the search can be
made extremely efficient while preserving accuracy by projecting to a low-dimensional
search space using randomized projections, and then using efficient low-dimensional search.
The key result enabling this is the seminal result of Johnson and Lindenstrauss (JL) [34]
demonstrating the remarkable distance preserving property of this type of projection, which
shows that points close together in high dimensional space are almost certainly very close
together when projected into low dimensional space. This enables us to achieve a dramatic
acceleration of the identification of correspondences. Our second contribution is a novel
algorithm for efficient and robust estimation of the alignment transformation from a set of
exact or probabilistic correspondences.

An early version of this work has appeared in [35], in which efficacy of randomized
projections for correspondence detection was examined. This paper extends that previous
work to iconic feature based registration with arbitrary transformation models, utilizes a
multiscale pyramid, provides a detailed analysis of the impact of dimensionality reduction
on the transformation estimation, and has an extensive experimental evaluation with larger
TEM images.

The remainder of the paper is organized as follows. Section 2 introduces the main steps of
our registration algorithm. Section 3 provides a set experiments and results evaluating the
registration algorithm on TEM images and the conclusions are presented in Section 4.

II. MATERIAL AND METHODS
A. Theory

In this section we outline the main components of the proposed registration algorithm.
Volumetric images of neural ultrastructure are constructed by pairwise alignment of
consecutive images of thin slices of tissue. The key registration challenge to solve is the
alignment of consecutive 2D images. We describe the alignment algorithm in this context,
but the algorithm is independent of the spatial dimension of the data, and can be used for 3D
and 4D registration as well.

Given a fixed image and a moving image, our aim is to find the transformation T aligning
the moving image with the fixed image.
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The algorithm can be decomposed into three main steps. In the first step, a scale containing
key biological features is selected and each image is divided into multiple image patches.
The patches, of size d pixels, may be circular, square or rectangular subregions (or of
arbitrary shape), may overlap each other, and may be taken from the original image or an
intensity transformation of the image (such as the image after Gaussian convolution, or the
image after convolution with a derivative of a Gaussian). Each patch is normalized to have
zero mean and unit magnitude. A low dimensional representation of each patch is then
computed, by projection of the patch through a random matrix that meets the requirements
of the Johnson-Lindenstrauss Lemma [34] for distance preservation.

In the second step the projected patches are compared. We measure the dissimilarity
between projected patches of the moving and fixed images, using Euclidean distance. This is
equivalent to local normalized cross correlation [36].

Finally, we construct two sets of geometric points based on the center coordinates of the
projected patches. A regularized nonrigid transformation is then estimated to bring the
images into alignment, by estimating the correspondences of the patches and the
transformation that is most consistent with the estimated correspondences. Table 1 presents
an outline of the algorithm.

B. Similarity measure
We consider two images Iσ = I* Gσ and Jσ = J* Gσ , resulting from the convolution of each
image with a Gaussian kernel of standard deviation σ. We select the dissimilarity measure of
Euclidean distance of the zero mean unit magnitude image patches:

(10)

where  represents a patch of image Iσ centered at i, from which the image intensity
mean has been subtracted, and normalized to unit length, and similarly for J. D(Iσ, Jσ, Cn,i,j)
represents the dissimilarity between the images Iσ, Jσ, at patch locations i and j where the
sum is over a local neighborhood x defined by the patch geometry.

C. Distance Preserving Random Projections to a Low Dimensional Space
The Johnson-Lindenstrauss Lemma [34] asserts that any set of n feature points in d-
dimensional Euclidean space can be projected down to k-dimensional Euclidean space,
where k = O(∈−2 log n), while maintaining pairwise distances with a bounded distortion (of
at most ∈). Recent work has identified very efficient projection operators, such as the
projection proposed by [37].

A number of different random projections meet the requirements of the Johnson-
Lindenstrauss Lemma for distance preservation. One such projection can be constructed as
follows. Let R be a k × d random matrix with R(i, j) = rij, where the independent random
variables rij are from either one of the following two probability distributions:

(11)

(12)
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Consider the set of n patches of d pixels from image Iσ, in Rd, represented as an n × d
matrix, where each patch is represented by a row. The random projection can be performed
by constructing a k × d random matrix; by employing this approach, projection of each point
requires a matrix-vector multiply taking O(dk) operations. Recent theoretic work suggests
that even more efficient projections are possible, with [38] proposing an algorithm to project
from dimension d to dimension k with O(d) operations.

Each of these projections can be precomputed for each image. Computing and storing these
projections is time and memory efficient. The key point of carrying out this projection is that
evaluation of the image dissimilarity D(Iσ, Jσ, Cn,i,j) provides distances between the original
patches from Rd and the projected patches from Rk, that are almost unchanged by the
projection, but the evaluation is dramatically more efficient for k dimensional patches. The
image dissimilarity calculation is accelerated by a factor of d/k.

In contrast with JL projection, Principal Component Analysis (PCA) is aimed at finding an
orthogonal basis of vectors that accounts best for the variability in the data. Compression
based projections, such as PCA, do not put a bound on the distance between two patches
after projection [39]. In addition, in a data driven compression scheme such as PCA, it is
necessary also to communicate either the basis functions, or to agree ahead of time on what
the best basis functions are. The need to have the same basis function reduces the overall
efficiency of PCA and generating an adaptive basis function which relies on the data
information adds a significant computational cost in cases of large set of points and
dimensions.

D. Search for Correspondences
We consider first defining Cn,i,j ∈ [0, 1] as variables that indicate whether or not patch i and
j correspond. The most straightforward identification of correspondences Cn,i,j can be
obtained by directly minimizing the image dissimilarity function:

(13)

subject to the constraint , which leads to the correspondence solution of Cn,i,j
= 1 when patch i and patch j have the smallest dissimilarity, Cn,i,j = 0 otherwise. The usual
implementation of this type of search requires the evaluation of the dissimilarity between
each pair of patches, and we refer to this as brute-force search. We also consider an
acceleration of this search using a kd-tree data structure [40], [41], which can reduce the
number of comparisons that must be made to obtain the same result.

E. Transformation Estimation
While the transformation can be directly estimated from the correspondences computed
above, we have found it more effective to relax the requirement that Cn,i,j ∈ [0, 1] and to
consider probabilistic correspondences of the form Cn,i,j ∈ R while maintaining the

constraint that . We describe in this section how this is done.

Let si indicate the location of the patch i in the fixed image Iσ ∈ R2 and mj the location of
patch in the moving image Jσ ∈ R2, with ns and nm denoting the number of patches of each.
Let T denote the transformation from the fixed image to the moving image.

Akselrod-Ballin et al. Page 8

IEEE Trans Med Imaging. Author manuscript; available in PMC 2011 October 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



We consider the geometric alignment of patch pairs (si, mj) under the transformation T, and
define a probability based on the closeness of the patches. In the case of homogeneous
isotropic Gaussian measurement error the probability is given by:

(14)

where σn represents the uncertainty in the localization. With this model, considering each
pair of patches, we can compute the probability of observing a particular alignment of
patches under a given transform T.

Further, if we consider the pairwise correspondences of patches as a random variable Cn,i,j
and T as a parameter, then we can formulate the problem of estimating these using
Expectation-Maximization.

(15)

The optimization starts by initialization of the transformation T, and repeats until
convergence of the two EM steps. In the E-step, T is fixed and the probability of matches

 is computed as follows:

(16)

The prior probability of the matches is determined by the intensity dissimilarity of the
patches. Hence, the prior is based on the normalized dissimilarity:

(17)

The prior  is used to initialize the probabilistic correspondences C0, and thus to determine
an initial transformation T0.

In the M-step, Cn is fixed and the value of the parameter T is maximized:

(18)

Accordingly, the criterion optimized by the algorithm yields

(19)

subject to a constraint imposed by the form of the regularization of the transformation
represented by log P (T).
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F. Model of Transformation
The above procedure for estimation of a transformation is suitable for rigid, affine, or
nonrigid transformations. Some nonrigid transformations, such as thin plate spline
representations, can be computed directly in closed form due to the analytic form of their
derivatives [25], [42]. Arbitrary nonrigid transformations can also be modelled by a spatial
composition of local rigid or affine transformations [43].

In this section, we demonstrate how to achieve a local symmetric affine transformation that
brings a sub-region of the images into alignment, based on the approach presented in [44].

First a whitened version of the moving and fixed scene patch coordinates is formed, by

subtracting the mean (  respectively) and multiplying the result by the
covariance matrix raised to the −1/2. The whitening operators Ws, Wm applied to the fixed
and moving patch coordinates respectively, lead to a new set of points si′ = Ws* si, mj′ =
Wm* mj with zero mean and an identity covariance matrix. Then a rigid transformation is
applied to the new whitened set si′, mj′ together with unrolling the whitening
transformation. This sequence of operations is equivalent to computing an affine
transformation on the original patch sets si, mj and provides an efficient means of estimating
the desired affine transformation.

(20)

Further, it is valuable to note that the M-step transformation optimization with probabilistic
correspondences can be obtained by extension of the unit quaternion method [45] and by

simplifying Equation 19. By defining  as the barycenter of the mj weighted

by , the effective term maximized is equal to

(21)

Since the second term in Equation 21 is constant during the M-Step, the maximization to

obtain T̂ requires consideration only of the term .

A Block-Affine Nonrigid Transform—A nonrigid transformation that accounts for local
distortions, and discontinuities such as tears and folding, can be computed by spatial
decomposition of the images into multiple regions, and computing an optimal affine
transformation for each region. Such a block-affine transformation is based on the classical
approach of modelling a number N of affine transformations Ti, corresponding to local
regions with center position ci. A family of nonrigid transformations can be formed from the
set of local affine or rigid transformations [43], by associated a non-negative weight
function wi(x) with each image location x. Different weight functions can be defined, but a
common choice is a Gaussian wi(x) = G(μl, σl)(x) which determines the region of influence
based on the mean and standard deviation μl,σl.
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G. Multiscale Registration Scheme
Registration is achieved with a standard multiscale scheme to further improve the robustness
and reduce the computational time. A Gaussian pyramid is generated from the input images,
and registration is performed over the scale space from coarse to fine. Three pyramid levels
were used. The multiscale framework is designed to utilize the transformation computed in
the coarser scale to initialize the transformation estimation process at the next finer scale,
where the coarsest scale relies on the priors for initialization.

Brute-force Rotation Initialization—SSTEM images are imaged at an arbitrary
orientation, due to the process of section acquisition. Consecutive images can exhibit a large
rotational difference. At the coarsest scale of the multi-resolution pyramid, the patches are
rotated by multiple angles (10 different angles, equally distributed between 0 to 360 were
tested) and the patch correspondence is evaluated with these different starting conditions.
The angles which provide best pairwise matches in the coarse scale, determine the
orientation initialization. Additionally, to account for artifacts such as tears and folds which
commonly occur in TEM images, the coarse sections were divided to four subparts, and the
angles corresponding to the minimum dissimilarity after excluding the subparts with
artifacts manually, determined the initial orientation for each section.

H. Data Acquisition
The algorithm was evaluated on TEM images of the lateral geniculate nucleus of a ferret. A
young adult ferret was transcardially perfused using a 2% paraformaldehyde, 2.5%
glutaraldehyde fixative mixture. Brain sections 300 micrometers thick were cut using a
vibratome and immersed in 2.5% glutaraldehyde overnight at 4°. They were then washed
with Sorenson's buffer and incubated for at 4° in a 1% osmium tetroxide/ 1.5% potassium
ferrocyanide solution. The sections were then washed in maleate buffer and incubated in 1%
uranyl acetate solution. Then they were washed in maleate buffer again and dyhydrated by
immersion in a series of increasingly concentrated ethanol solutions. The sections were then
incubated in a series of 100% propylene oxide, 50%/50% propylene oxide/ Eponate 812
resin mixture, and 100% Eponate. Finally resin-embedded sections were cured for 2 days in
a 60° oven. The polymerized blocks were sectioned using an EMS-Diasum diamond knife
and a Leica ultramicrotome. Sections were picked up on pioloform-coated slot grids and
imaged at 80 kV in an FEI T12 BioTwin electron microscope. The algorithm was tested on a
set of 160 sections, where each image is about 10000 × 10000 pixels in size with a pixel
resolution of 3nm and a slice thickness of 60nm. ”Blendmont”, a utility that is part of the
IMOD package (http://bio3d.colorado.edu/imod/) was used to reconstruct the large field of
view image from the 5 × 5 mosaics of smaller images coming from the camera.

Reference standard alignments of these images were obtained by manual alignment. Manual
alignment is a time consuming and difficult process, which generates a reference standard
3D volume in which some registration artifacts may remain. The manual registration
denoted as (T*), was performed by manually selecting corresponding points in a pair of
consecutive images and computing an optimal pairwise transformation based on Horn's
method [45].

III. EXPERIMENTS AND RESULTS
A. Effectiveness of the Dissimilarity Measure

To evaluate the effectiveness of our proposed patch definition and dissimilarity measure for
identifying correspondences for various types of neurobiological objects, patch dissimilarity
was measured for different neural ultrastructure including myelinated white matter,
dendrites, synapses, and microtubules. The dissimilarity function was computed between the
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features visible in the image, with patches within the same image and with patches in a
successive image. Figure 2 provides an illustration of the result, showing the inverse of the
dissimilarity function, demonstrating that the feature is a local maxima of the function on
both the original slices from where the patch was extracted and in the consecutive slice. This
demonstrates that the dissimilarity measure is effective in identifying correct matches
throughout the slices.

B. Impact of the Dimensionality Reduction on the Transformation Accuracy
Figure 3 (a) shows how the average error in Euclidean distance between patch pairs
increases as the projection dimension k decreases. This increase in distance distortion leads
to an increase in the number of poor correspondence estimates as k decreases. Despite the
increasing number of poor matches, the transformation estimation procedure maintains
robustness and is able to accurately estimate the transformation despite the increasing
number of poor correspondence estimates. Figure 3(b) illustrates that the algorithm can
identify the accurate transformation even for small dimensionality projections (e.g. k = 30).

C. Transform Estimation
We further examined the ability of our proposed registration algorithm to accurately
estimate an alignment transformation T. We sought to compare the accuracy achieved using
randomized projection with that achieved using the full dimensionality features.

The search for correspondences in both cases was done using both a brute force approach
and a kd-tree data structure, and the computation time needed to achieve registration was
recorded. The kd-tree data structure retrieved the three closest neighbors with the smallest
Euclidean distance for each query patch and the transformation estimation was based on the
1000 patch pairs that obtained the minimal Euclidean distance. Figure 4, illustrates the
volume constructed with and without the randomized projection, compared to the manual
registration. The three manual reconstruction presented were obtained based on Horn's
method [45] with a different manually selected set of points. The Frobenius norm of the
difference between the transformations obtained by the registration algorithm in both and
the manual reference standard alignment (T*) was computed. Table I presents these norms
and shows that both the full patch information and projected patches provide accurate
transformation estimates. We conclude that the projection to low dimensional space does not
reduce the ability to recognize sufficient corresponding patches. The Frobenius norm is
shown averaged across 160 slices of the data, except for the brute-force approach on the full
dimensional data, where we tested the approach on only 16 slices, due to the large
computation time required.

The non-rigid approach was tested with N = 4 blocks on images of size ≈ 1000 × 1000
voxels. The Gaussian standard deviation parameter was set to σl = 40 equally for all regions.
The results show that the due to non-rigid distortions in the images, the sections cannot be
matched with an affine transformation alone. The checkerboard composite and the overlap
of the edges demonstrate that the proposed non-rigid transformation with a Gaussian
regularization obtains finer local alignment especially in cases of distortions.

D. Speed and Computational Complexity
The computational complexity of the entire process is determined by the number of images
in the data set, the image size n and the patch size d. Our preliminary results were performed
on slice sections of n ≈ 108 = 104 × 104, which were downsampled using Gaussian
smoothing plus bi-linear interpolation to obtain three scales with sizes of n ≈ 5000 × 5000, n
≈ 106 = 1000 × 1000, n 104 = 100 × 100. Improved TEM techniques utilizing multiple
camera arrays have lead to datasets of n = 1010 = 105 × 105. The size of a typical local image
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patch is d = 104 = (100 × 100), and employing JL lemma and randomized projection turns
the initial n × d image patch matrix into an n × k projected patch matrix (where k = 30 in our
experiments).

The running time is composed of the preprocessing time required to project each image
patch, the time to search for correspondences between the images and the time to perform
transformation estimation. As noted in Sec. II-C, the projection scheme currently requires
O(dk), but it has been suggested effective projection can be carried out in O(d) operations
[38].

The brute force search involves comparing each projected patch to all the projected patches
in the neighboring image. The complexity of this search time per query is O(dn). Thus, the
overall complexity for using the full d-dimensional patches is O(n2d). Hence, our
randomized projection alone reduces the complexity to O(n2k) ≈ O(n2 log n) saving O(d −
k) operations (104 operations per search in our experiments).

Additional significant acceleration may be obtained by employing recent advances in
approximation algorithms for performing approximate near neighbor (ANN) search. Relying
on the algorithm presented by [46], the speedup between the naive and accelerated searches
is O(n1−1/c2) and for c = 2 this becomes O(n3/4) which for recent TEM data is O(107.5). We
also note that the query time quoted here assumes the need to project from high dimension
to low dimension before doing the search. However, since our patches participate as both
search and target regions, we can benefit from pre-computing the projection of all the
patches ahead of time, which further reduces the search cost by O(d). Recall d = 104 in our
case, so this is a substantial improvement.

Projection of 160000 patches from one section required 842 sec ≈ 14 min on average. As
described above, the time to project each patch to low dimension is a small fraction of the
overall running time which is determined by the search for correspondences. Therefore,
Table II focuses on the most expensive component of the algorithm which is the search for
correspondences and demonstrates the efficiency of the algorithm.

Table II presents results for testing with patches of dimension d = 10000 for n = 42336 and n
= 160000 per section. The brute force computation time required 283400 sec = 3.3 days and
4400000 sec≈ 51 days respectively 2. In theory by utilizing the full ANN approach we
expect to obtain savings of O(n3/4), leading to a factor of 8000 for n = 160000. Currently, in
our experiments we have found that the JL projection alone provides a saving factor of ≈80,
110 for n = 42336, n = 160000 respectively and that the kd-tree search data structure
provides an additional saving factor of 8.5 leading to ≈ 800−fold speed up for these n
values. The significant speed-up achieved (e.g. on n = 42336 the algorithm requires several
minutes instead of more than three days), is currently based on the randomized projection
from d to k and search using the kd-tree data structure.

IV. DISCUSSION AND CONCLUSION
We described a novel algorithm for iconic feature based alignment and demonstrated its
successful application to large TEM images. The registration algorithm achieves a
significantly accelerated search by forming a low dimensional representation of the features
by randomized projections. We demonstrated that the accelerated search still achieves high
robustness and accuracy of the alignment. In this work we have demonstrated these

2The brute force computation time for n = 160000 was estimated by utilizing the kd-tree search on the high dimensional data
multiplied by the saving factor calculated for the kd-trees compared to the brute-force approach on the projected data.
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contributions on TEM data. We analyzed the impact of dimensionality reduction on the
transformation accuracy and demonstrated for the first time the feasibility and effectiveness
of this approach, showing that the projected features are as effective for registration as the
full-dimensionality features. Future work will evaluate alternative data structures for search
strategies for the acceleration of accurate correspondence estimation. This will include
further development and evaluation of data structures that support ANN search strategies,
such as locality sensitive hashing (LSH) and tree search and assessment of faster variants of
projection algorithms to improve performance efficiency of the projection into k-
dimensional space.
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Fig. 1.
Schematic outline of the alignment algorithm.
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Fig. 2.
Effectiveness of similarity measure for identifying correspondences. The fusion of the
similarity map computed for the patch (a) with the successive slice (b) and with the original
slice, from which the patch was extracted (c). The maxima regions in both slices (b,c)
respectively, are highlighted in red rectangles and enlarged. The red maxima values in the
fusion image correspond to higher similarity values, showing that the features are a sharp
local maxima of the function.
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Fig. 3.
Impact of dimensionality k on registration accuracy. (a) Illustrates the decrease in Euclidean
distance error as k increases. (b) Shows the decrease in the transformation estimation error
as k increases until reaching a value for which it is small and stable. It can be seen that for k
30 the transformation is identified accurately.
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Fig. 4.
An orthogonal view of the reconstructed volume performed (a-c) Manually with three
different sets of points (d) Automatically with d = 10000 (e) Automatically with k = 30 .
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Fig. 5.
Successive pair of slices before and after alignment. (a) and (b) present the fixed and
moving image before alignment and (c) shows their checkerboard composite. (d),(e),(f)
show the alignments results of the manual, and automatic algorithms with JL projection and
without projection respectively. (g),(h),(i) demonstrate the checkerboard of the fixed image
in (a) and the aligned moving image in (d), (e) and (f) respectively.
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Fig. 6.
Two examples comparing the transformation results of the affine and non-rigid approach.
The checkerboard composite and the overlap of the edges demonstrate that the proposed
approach using a Gaussian regularization of a block-rigid transformation to estimate the
non-linear deformation field improves the accuracy of the alignment especially in cases of
distortions.
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TABLE I

Evaluating the difference between the transformation obtained by our automatic algorithm to the manual
transformation on the set of TEM images. The high accuracy achieved is obtained both with and without the
JL projection.

Dimension Scale of (1000 × 1000 voxels) Scale of (5000 × 5000 voxels)

k = 30 (with JL projection) 3.62 ± 2.32 3.18 ± 1.80

d = 10000 (without JL projection) 3.38 ± 1.85 3.03 ± 1.30
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TABLE II

Comparison of the computation times of the different approaches.

Search per n queries Brute force Brute force + JL JL + kd-trees ANN-LSH

Theoretical O(n2d) O(n2k)

O(nkn
1−

1
k ) O(ndn1/4)

Practical n = 42336 283400sec = 3.3days 3614sec = 60min 420sec = 7min –

Practical n = 160000 4.4 × 106 sec ≈ 51 days1 53506sec = 892min 6300sec = 105min –
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