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Abstract—In this paper, energy efficiency (EE) is maximized
for the reconfigurable intelligent surface (RIS) aided millimeter-
Wave (mmWave) networks with non-orthogonal multiple access
(NOMA) and multiple mobile devices. To this end, we first
propose the EE optimization, under the constraints of maximum
power, minimal rate of devices and constant modulus of beam-
forming (BF) vectors. Then, the joint resource allocation scheme
of power allocation (PA) and BF is designed. Specifically, given
PA, an effective iterative algorithm based on the majorization-
minimization, concave-convex procedure and block coordinate
descent (BCD) is presented to obtain closed-form solutions of
suboptimal passive BF (PBF) and analog BF (ABF) for each
iteration. Then, given PBF and ABF, an effective iterative
algorithm based on the successive convex approximation, BCD
and Dinkelbach methods is derived to achieve suboptimal closed-
form PA for each iteration. By incorporating these two algorithms
into the BCD method, a joint optimization algorithm for EE
maximization is presented. As a result, joint resource allocation
of PA, PBF and ABF is attained. Besides, the convergence and
complexity of the algorithms are analyzed. For comparison, the
benchmark scheme based on the multidimensional search method
and artificial bee colony algorithm is also presented. Simulation
results show that the proposed joint scheme is effective and higher
EE can be obtained with lower complexity.

Index Terms—Energy efficiency, millimeter-wave communica-
tion, reconfigurable intelligent surface, power allocation, passive
beamforming, analog beamforming.

I. INTRODUCTION

THE fifth generation (5G) and beyond wireless networks
aim to achieve increasing network capacity and universal

wireless connection. Millimeter wave (mmWave) communica-
tion could be applied to help alleviate the shortage of spectrum
resources in the future communication networks, due to its
wide spectrum [1], [2]. However, the mmWave channel is vul-
nerable to the blockage and subject to high propagation loss.
Nevertheless, the limited transmission distance of mmWave
communication makes it difficult to be applied in large-
scale coverage. This problem can be effectively addressed
by deploying the reconfigurable intelligent surface (RIS) in
the system. The RIS can employ large number of low-cost
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passive reflection elements to improve the system perfor-
mance in wireless propagation environment, and increase the
coverage and connectivity of base stations (BS). Hence, it
has been regarded as a promising technology for the next
generation wireless communication networks [3]–[6]. Besides,
non-orthogonal multiple access (NOMA) has been considered
as a promising multiple access technique to support massive
connectivity for 5G and beyond, which may also be applied
in mmWave communication system to support more users and
further improve the performance [7]–[9]. Based on the above
discussions, the mmWave communication and RIS as well as
NOMA can be effectively combined to improve the overall
network performance, because of their high flexibility and
huge bandwidth availability.

Besides, due to the significant increase of mobile devices
and high data rate demand, the energy consumption is rapidly
increased, which accounts for about five percent of the world
energy consumption. Correspondingly, the energy consump-
tion problem has become a challenging one in future wireless
networks design. Based on this, pursuing high energy efficien-
cy (EE) has received more and more concerns because of the
environmental considerations. Hence, as a key performance
index in 5G and beyond communication, the EE has attract-
ed much more research interest in mmWave communication
and RIS-aided communication [10]–[19]. The authors in [10]
studied the mmWave system and proposed an optimal power
control strategy based on the bisection method to maximize
the EE of the system, and performance gain in both spectral
efficiency (SE) and EE can be attained. A heuristic hybrid
beamforming (BF) scheme was designed in [11] to improve
the EE performance of a large-array mmWave system, where
the simplified EE in consideration of the insertion loss was
optimized. Using the NOMA technology, the authors in [12]
studied the joint PA and BF designs for mmWave-NOMA
system, and two suboptimal joint design schemes based on
the one-dimensional search method were developed to increase
the system EE. Simulation results verified the effectiveness of
the proposed schemes. In [13], the authors investigated the
EE performance of mmWave-NOMA with hybrid precoding,
and the BF design was based on the given codebooks. For
RIS communication, the resource allocation schemes were
developed for downlink RIS-assisted multi-input single-output
(MISO) in [14] to improve the EE performance, where the
successive convex approximation (SCA) and greedy searching
methods were respectively used for single user and multiuser
case in the schemes. In [15], the authors proposed two resource
allocation schemes based on the alternating maximization for
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EE optimization in a RIS-based downlink multiuser MISO sys-
tem, where the gradient descent and the sequential fractional
programming were used for RIS designs, respectively, and the
effectiveness of proposed schemes was verified by simulations.
In [16], a joint design of transmit BF at access points and
reflecting coefficients at RISs was presented to maximize the
EE of RIS assisted cell-free network, which showed the benefit
of using RISs, and a simple and efficient alternating algorithm
was proposed to obtain the solution. By maximizing the system
sum-rate of multiuser MISO downlink communications assist-
ed by a self-sustainable intelligent reflection surface, the joint
design of beamformers and the energy harvesting schedule
was presented in [17], and an efficient iterative algorithm was
proposed to obtain a suboptimal solution. In [18], the joint
precoding at BSs and RIS for downlink RIS-aided cell-free
network was designed by maximizing the weighted sum rate
(WSR) to optimize the network capacity, and an alternating
optimization scheme was proposed to solve the optimization
problem and obtain the corresponding precoding design. With
the proposed scheme, the network capacity can be increased
greatly. In [19], the RIS was used to improve the cell-edge
performance of downlink multicell multiple-input multiple-
output (MIMO) systems, and joint design of the active transmit
precoding of all base stations and the phase shifts at the
RIS was presented to maximize the WSR of all users. By
means of the weighted minimum mean-square error method
and block coordinate descent (BCD) algorithm, an efficient
iterative algorithm was proposed to obtain superior cell-edge
performance over the conventional multicell system without
RIS. However, these schemes above did not consider the
integration of RIS and mmWave communications, and thus the
performance improvement is limited. For this reason, [20]–
[24] integrated the RIS in the mmWave communications to
increase the overall performance. By maximizing the received
signal power of RIS aided mmWave (RIS-mmWave) system,
the authors in [20] derived an optimal closed-form solution
for the single RIS case and obtained a near-optimal analytical
solution for the multi-RIS case. In [21], by minimizing the
mean-squared error between the received and the transmitted
symbols, the BF design was presented for RIS-mmWave
system, and the gradient-projection method was used to obtain
the solution of BF. In [22], the total power of RIS-mmWave
system was minimized by jointly optimizing the transmit
powers of the devices, the multiuser detector at the base
station (BS) and the passive BF at the RIS, and an alternating
optimization algorithm was provided to solve the problem. In
[23], by minimizing the transmit power at the BS under the
signal-to-interference-plus-noise-ratio (SINR) constraints, the
jointly design of hybrid BF at the BS and the response matrix
at the RIS is presented for the RIS-aided downlink mmWave
MIMO, and with this optimization design, the efficient power
reduction can be attained. Besides, a sum rate optimization
problem with respect to (w.r.t) the PA, active BF and pas-
sive BF was formulated for downlink RIS-assisted mmWave-
NOMA system in [24], and an iterative algorithm based on
the alternative optimization and SCA was proposed to solve
the problem. With this algorithm, the system performance was
effectively improved.

Based on the above analysis, the resource allocation
schemes for sum-rate maximization and power minimization
in RIS-mmWave communication were studied. However, there
are few works to address the resource allocation schemes for
energy efficient design in RIS-mmWave networks because of
the challenging optimization, although some resource alloca-
tion schemes were developed for EE optimization in mmWave
or RIS communication networks. Specifically, to our best
knowledge, an energy-efficient joint resource allocation of
PA, passive BF (PBF) and analog BF (ABF) for uplink RIS-
mmWave with NOMA is not yet available in the literature.
Motivated by the reasons above, the EE optimization of
multi-device RIS aided mmWave-NOMA for jointly designing
the PA and PBF as well as ABF over mmWave channel
including light-of-sight (LOS) and non-light-of-sight (NLOS)
paths is studied. Under the constraints of maximum power
and constant-modulus (CM) as well as minimal rate, the
constrained EE optimization problems are formulated. A joint
design scheme is developed for achieving the corresponding
resource allocations, and an efficient iterative algorithm is
proposed to solve the optimization problem. With this scheme,
superior EE performance is attained. The main contributions
of this paper are summarized as follows:

1) The uplink RIS-assisted mmWave-NOMA network is
presented and the RIS is used to aid the communication from
the mobile devices to the BS to improve the network per-
formance. The achievable sum rate and EE are firstly derived
for performance evaluation and optimization. Then, with these
results, a joint optimization problem for EE maximization is
formulated subject to the constraints of the maximum transmit
power, minimum rate of each device, the CM of the ABF and
discrete CM of ABF vectors. For this problem, the PA of each
device, the ABF of the BS and the PBF at the RIS are jointly
optimized to maximize the EE.

2) Considering that the optimization problem of EE has
the block structure, the BCD method is employed to tackle
this problem. With this method, the original problem is firstly
transformed into the subproblem of BF vectors design for
the fixed PA and the subproblem of PA for the fixed BF
vectors. For the fixed PA, an auxiliary variable is introduced
and the penalty function method is utilized to deal with the BF
design. Then, the BF design problem is decomposed into the
design of PBF and ABF by means of the BCD method. With
the bisection method and majorization-minimization (MM)
method as well as the concave-convex procedure (CCCP)
method, an effective iterative algorithm is proposed to tackle
the joint BF design problem. As a result, suboptimal PBF and
ABF with closed form are attained for each iteration.

3) For the fixed BF vectors, the SCA is utilized to transform
the non-convex problem of PA into the convex problem.
Then, using SCA, Dinkelbach and BCD methods, an effective
iterative algorithm is proposed for solving PA optimization
problem, where the solution of PA is derived in closed-form for
each iteration. With two algorithms above, a joint optimization
algorithm based on BCD method is proposed to obtain the
suboptimal PA, PBF and ABF. Correspondingly, the energy-
efficient resource allocation scheme is developed. After that,
the complexity and convergence of the proposed algorithms
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are analyzed. For comparison, the benchmark scheme (i.e.,
the second joint resource allocation scheme) is also presented
based on the multidimensional search method and artificial
bee colony (ABC) algorithm, which can obtain superior per-
formance but with higher complexity.
4) Simulation results show that the proposed optimization

scheme for the RIS-mmWave-NOMA is effective. With this
scheme, the EE can be greatly increased and is much higher
than that of the random phase based PBF scheme and the code-
book based ABF scheme. Moreover, compared with the system
without RIS, the proposed system can significantly improve
the EE performance in mmWave communication. Moreover,
the proposed scheme can achieve the EE performance near to
that of the benchmark scheme but with lower complexity.
Notations: Vectors and matrices are respectively represented

by boldface lower and upper case symbols. (·)∗, (·)T and (·)H
stand for the complex conjugate, the transpose and conjugate
transpose, respectively. |·| and ∥·∥ represent the absolute value
and 2-norm, respectively. Re{·} means taking the real part.
O(·) stands for the big-O notation. CN (0,R) denotes the
complex Gaussian distribution with zero-mean and covariance
matrix R, and U[a, b] represents the uniform distribution in
the interval [a, b].

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System model

We consider an uplink RIS-mmWave network with NOMA
and multiple mobile devices, as shown in Fig.1, where there
are a BS with N antennas, K devices with a single antenna,
a RIS with M reflection elements and one controller. The BS
adopts the ABF architecture and requires one radio frequency
chain (RFC). Each antenna connects to the RFC by a phase
shifter (PS) and a lower noise amplifier (LNA), where N
PSs and N LNAs are needed. In order to reduce the com-
plexity of hardware implementation, all LNAs have the same
amplification factor, such that the ABF vector w ∈ CN×1

needs to meet the CM constraint [7], [8], [12], [25], i.e.,
|[w]n| = 1/

√
N, ∀n ∈ 1, .., N .

The BS receives the signals from devices in terms of uplink
NOMA protocol, and a RIS assists the communication from
the devices to the BS to improve the performance. The RIS
reflection coefficients are calculated by the BS and fed back to
the RIS controller through a dedicated link. It is supposed that
the perfect channel state information (CSI) is available, which
is also assumed in [14]- [24], and may be practically achieved
by using different channel estimation methods [26]–[30]. At
the transmitter, the signal transmitted by the k-th device (which
is denoted as Uk) is

sk =
√
pkxk, ∀k ∈ K, (1)

where pk and xk are the transmit power and signal of Uk,
respectively, and the set K is defined as K , {1, ...,K}.
Based on the uplink NOMA protocol [7]–[9] [12], the

received signal at the BS after the ABF processing is given

by

y =
K∑

k=1

wH(gk +HΘhk)sk +wHn

=

K∑
k=1

wH(gk + H̃kθ)sk +wHn, ∀k ∈ K,

(2)

where n ∈ CN×1 ∼ CN (0, σ2IN ) is the noise vector, and
its element has zero mean and variance σ2, Θ ∈ CM×M =
diag(θ) is the PBF matrix of the RIS, in which the PBF
vector θ = [ejθ1 , ..., ejθM ]T, θm is the phase shift of reflection
coefficients, ∀m ∈ M, where the set M , {1, ..,M}, and the
amplitude of reflection coefficients is set as one to maximize
the signal reflection. H̃k = Hdiag(hk) is the cascade channel.
Besides, considering the hardware cost, the phase shifts {θm}
can only be selected from a finite set of discrete values, which
can be attained by uniformly quantizing the set of interval
[0, 2π). Specifically, the set of discrete phase shift values at
each reflection element is given by [31], [24]

Ω = {0,∆θ, ..., (L− 1)∆θ} (3)

where∆θ = 2π/L, and L is the total number of discrete phase
shift levels. Ideally, when L tends to be infinity, each element
will have any phase-shift value in [0, 2π), which corresponds
to the continuous phase-shift case.

The mmWave channel vector gk between Uk and the BS,
hk between Uk and the RIS, H between the RIS and the BS
all adopt the Saleh-Valenzuela (SV) model. Specifically, the
direct link gk ∈ CN×1 is modeled as

gk = λUλB

√
N

Lk,B

Lk,B∑
l=1

αk,laB(N,ϕ
(AoA)
k,l ), (4)

where λU, λB are the transmit gain and the receive gain,
respectively. Lk,B is the number of mmWave channel paths
between Uk and the BS. αk,l and ϕ

(AoA)
k,l denote the complex

gain coefficient and the angle of arrival for the l-th path of
Uk, respectively. aB(N,ϕ

(AoA)
k,l ) is the array steering vector

between Uk and the BS. It is defined that a(N,∆) =
1√
N
[1, ejπ sin∆, ..., ejπ(N−1) sin∆]T, where ∆ ∼ U[0, 2π].

The mmWave channel between Uk and the RIS, hk ∈ CM×1

is modeled as

hk = λUλI

√
M

Lk,I

Lk,I−1∑
l=0

βk,laI(M,ψ
(AoA)
k,l ), (5)

where λI is the receive gain. Lk,I is the number of mmWave
channel paths between Uk and the RIS. βk,l and ψ

(AoA)
k,l denote

the complex gain coefficient and the angle of arrival for the l-
th path of Uk, respectively. aI(M,ψ

(AoA)
k,l ) is the array steering

vector between Uk and the RIS.
The mmWave channel between the RIS and the BS, H ∈

CN×M is expressed as

H = λIλB

√
MN

LI,B

LI,B−1∑
l=0

βlaB(N,ψ
(AoA)
l )aHI (M,ϕ

(AoD)
l ),

(6)
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Fig. 1. Structure of uplink mmWave-RIS network with multiple devices.

where LI,B is the number of mmWave channel paths between
the RIS and the BS. βl, ψ

(AoA)
l and ϕ(AoD)l denote the com-

plex gain coefficient, the angle of arrival and the angle of
department for the l-th path, respectively. aI(M,ψ

(AoA)
l ) and

aB(N,ψ
(AoD)
l ) are the array steering vectors between the RIS

and the BS. Moreover, in (4), (5) and (6), l = 0 denotes the
LOS path, while l > 0 denotes the NLOS path.
In order to process the superposed signal in (2), the BS

employs the successive interference cancelation (SIC) scheme
to decode the signal of users. For uplink NOMA, the SIC
decoding order is the descending order of the effective chan-
nel gains of the users [7]–[9] generally, thus we need to
consider the SIC decoding constraint |wH(g1 + H̃1θ)|2 ≥
.... ≥ |wH(gK + H̃Kθ)|2 for optimization design, where
|wH(gk + H̃kθ)|2 is the effective channel gain of user k.

B. Problem formulation

Based on the analysis above, the EE optimization problem
is formulated in this subsection. According to (2), using the
SIC scheme and the decoding order, the SINR of Uk, ∀k ∈ K
can be derived as

SINRk =
pk

∣∣∣wH(gk + H̃kθ)
∣∣∣2∑K

j=k+1 pj

∣∣∣wH(gj + H̃jθ)
∣∣∣2 + σ2

. (7)

Thus, we can obtain the achievable rate of Uk as

Rk = log2(1 + SINRk)

= log2(1 +
pk|wH(gk + H̃kθ)|2∑K

j=k+1 pj |wH(gj + H̃jθ)|2 + σ2
).

(8)

According to the definition, the EE can be expressed as

ηEE =

∑K
k=1Rk∑K

k=1 νpk + PC
=

∑K
k=1 log2(1 + SINRk)∑K

k=1 νpk + PC
(9)

where ν = ϱ−1, ϱ is the drain efficiency of the power
amplifier, PC = PRF+NPPS+NPLNA+PBB+PRIS, in which
PRF, PPS, PLNA, and PBB are the power consumption of the
RFC, PSs, LNAs and baseband, respectively [12], [13]. PRIS
is the power consumed by the RIS and it can be a constant
[32], [33]. Therefore, under the maximum power, minimum

rate and CM constraints, the EE optimization problem can be
formulated as

P0 : max
{p,w,θ}

ηEE =

∑K
k=1 log2(1 + SINRk)∑K

k=1 νpk + PC

s.t. C1 : |[w]n| = 1/
√
N, ∀n ∈ N ,

C2 : θm ∈ Ω, ∀m ∈ M,

C3 : 0 ≤ pk ≤ Pmax,k, ∀k ∈ K,
C4 : Rk ≥ r0,k,

C5 : |wH(g1 + H̃1θ)|2 ≥ .... ≥ |wH(gK + H̃Kθ)|2,
(10)

where the set N , {1, ..., N}, p = [p1, ..., pK ]T, Pmax,k and
r0,k are the maximum transmit power and minimum rate of
Uk, respectively.

By solving the optimization problem P0 above, we design
a joint resource allocation scheme to maximize the EE. Since
the P0 is non-convex fractional optimization problem and the
number of the optimization variables is M + N + K, the
complexity of directly searching the global optimal solution
is extremely high considering that M and N are large in
general. For this reason, a joint optimization algorithm based
on the BCD method is proposed to solve the P0 taking the
block structure of P0 into account. According to BCD method
[34], [35], we alternatively optimize the PA p and BF vectors
{w,θ} in problem P0. Thus, the P0 is divided into two
subproblems P1 and P2. We firstly solve the problem P1 w.r.t
{w,θ} given p, and then solve the problem P2 w.r.t {p}
given {w,θ} until they converge. Hence, in the following two
sections, we will present a design of BF vectors {w,θ} given
PA p and a design of p given {w,θ}, which are performed
at the t-th iteration of BCD method.

In order to deal with the problem (10), we first relax
the discrete values of {θm} into continuous values, i.e.,
θm ∈ [0, 2π], and then map the attained continuous phase
shifts to the nearest discrete values in [0, 2π). Correspondingly,
|[θ]m| = 1. Thus, the optimization problem (10) is transformed
into

P̃0 : max
{p,w,θ}

ηEE =

∑K
k=1 log2(1 + SINRk)∑K

k=1 νpk + PC

s.t. C1, C3, C4, C5,

C̃2 : |[θ]m| = 1, ∀m ∈ M.

(11)
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III. BEAMFORMING DESIGN

In this section, we will design the BF vectors for the joint
optimization scheme, and provide the solution of {w,θ} for
given p by solving problem P1.
With (11) and (7), given p, the BF problem w.r.t {w,θ} is

formulated as

P1 : max
{w,θ}

K∑
i=1

log

(
1 +

pi|wH(gi + H̃iθ)|2∑K
j=i+1 pj |wH(gj + H̃jθ)|2 + σ2

)
s.t. C1, C̃2, C4, C5,

(12)
where log(2) is omitted because it is a constant and does not
affect the optimization result.
Since the problem P1 is difficult to be solved directly, we

introduce the auxiliary variable zi = |wH(gi+ H̃iθ)|2(i ∈ K)
for dealing with the P1, and the corresponding P1 is rewritten
as

P̄1 : max
{z,w,θ}

K∑
i=1

log

(
1 +

pkzi∑K
j=i+1 pjzj + σ2

)
s.t. C1, C̃2, C4,

C6 : zi = |wH(gi + H̃iθ)|2, ∀i ∈ K
C̃5 : z1 ≥ ... ≥ zK .

(13)

where z = [z1, z2, ..., zK ]T . By using the penalty function
method [36], the equality constraint is moved into the objective
function. Then P̄1 is reformulated as

P̃1 :

max
{z,w,θ}

K∑
i=1

log

(
1 +

pizi∑K
j=i+1 pjzj + σ2

)

− 1

2
ρ(l)

K∑
i=1

(√
zi − |wH(gi + H̃iθ)|

)2
s.t. C1, C̃2, C4, C̃5,

(14)

where ρ(l−1) is the penalty coefficient at the (l − 1)-th
iteration of penalty method which is updated according to
ρ(l) = cρ(l−1)(c > 1).
In order to solve the problem P̃1, we decompose P̃1 into

three subproblems based on BCD method by iteratively opti-
mizing one optimization variable with the others being fixed.
In particular, the following steps are carried out at the r-th
iteration of BCD method.

A. Solving z given {w,θ}
With (14), given {w,θ}, the subproblem w.r.t z is formu-

lated as
P1.1 :

max
z

J1 =
K∑
i=1

log

(
1 +

pizi∑K
j=i+1 pjzj + σ2

)

− 1

2
ρ(l)

K∑
i=1

(√
zi − |wH(gi + H̃iθ)|

)2
.

(15)

It is observed that the objective function J1 in problem P1.1
has a special form, i.e., it is the difference of concave (D.C.)

functions [37]. According to this, the CCCP method [37] is
employed to tackle this problem to obtain the optimized z.
With the CCCP method, the J1 of the problem P1.1 becomes
J2 in (16), which is shown at the top of next page, where
z
(n−1)
i is the value of zi at the (n− 1)-th iteration of CCCP
method.

By removing the constant term and letting ξi = |wH(gi +
H̃iθ)|, the problem P1.1 is transformed into

P̄1.1 : max
z
J3 =

K∑
k=1

log

(
K∑
i=k

pizi + σ2

)
−

K∑
k=1

k−1∑
i=1

zkpk∑K
j=i+1 pjz

(n−1)
j + σ2

− 1

2
ρ(l)

K∑
i=1

(
√
zi − ξi)

2
.

(17)
It is shown that the problem P̄1.1 is convex, so the optimal

solution of zk can be attained by solving the ∂J3

∂zk
= 0. With

(17), we can calculate ∂J3

∂zk
as

∂J3
∂zk

= f(zk)

=
k∑

i=1

pk∑K
j=i pjzj + σ2

−
k−1∑
i=1

pk∑K
j=i+1 pjz

(n−1)
j + σ2

=

k∑
i=1

pk

pkzk + Ĩ1,ik
− Ĩ2,k − 1

2
ρ(l)(1− ξk√

zk
)

(18)
where Ĩ1,ik =

∑K
j=i,̸=k pjzj + σ2 and Ĩ2,k =

pk
∑k−1

i=1
1∑K

j=i+1 pjz
(n−1)
j +σ2

.

In the following, we introduce the Lemma 1 to show that
f(zk) = 0 has a unique solution.

Lemma 1: The equation f(zk) = 0 has a unique solution
of zk.

Proof: Please see Appendix A.
Based on the Lemma 1, we can employ the simple bisection

method to obtain the optimal solution of f(zk) = 0, i.e., zok.
Correspondingly, z(n)k is updated by zok for k = 1, ...K . Based
on this, using the CCCP method and iterative calculation, a
near-optimal znopk is attained. Considering the C4 constraint,
z
(r)
k is updated by

z
(r)
k = max{znopk , zk,min}, ∀k ∈ K, (19)

where zk,min = (2r0,k − 1)p−1
k (
∑K

j=k+1 pjzj + σ2). Further-
more, considering the C̃5 constraint, we have:

z
(r)
k = max{z(r)k , z

(r)
k+1}, k = 1, ...,K − 1. (20)

B. Solving θ given {z,w}
Given {z,w}, the subproblem w.r.t θ is formulated as

P1.2 : min
θ

K∑
i=1

(√
zi − |wH(gi + H̃iθ)|

)2
s.t. |[θ]m| = 1, ∀m ∈ M.

(21)
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J2 =K log

 K∑
j=1

pjzj + σ2

−
K∑
i=1

log

 K∑
j=i+1

pjz
(n−1)
j + σ2

−
K∑

k=1

k−1∑
i=1

(zk − z
(n−1)
k )pk∑K

j=i+1 pjz
(n−1)
j + σ2

− 1

2
ρ(l)

K∑
i=1

(√
zi − |wH(gi + H̃iθ)|

)2
,

(16)

Since z and w are known, the problem P1.2 is equivalent
to

P̃1.2 : min
θ

K∑
i=1

|wH(gi + H̃iθ)|2 − 2
√
zi|wH(gi + H̃iθ)|

s.t. |[θ]m| = 1, ∀m ∈ M.
(22)

Considering the effectiveness of the MM method [38], we
can use it to solve the problem P̃1.2. Let fi = gi + H̃iθ, then
we have:

∣∣wHfi
∣∣ ≥ Re

{
wHfi

(
f
(s−1)
i

)H
w

}
∣∣∣wHf

(s−1)
i

∣∣∣ , (23)

where f
(s−1)
i is the (s− 1)-th iteration of fi, and (23) can be

obtained by the following Lemma 2.
Lemma 2: For two complex numbers x̃ and ỹ, it can be

shown that
|x̃||ỹ| ≥ Re{x̃ỹ∗}. (24)

Proof: Please see Appendix B.
With (23), the convex majorization problem for (22) is given

by

P̄1.2 : min
θ

K∑
i=1

∣∣ti −wHfi
∣∣2

s.t. |[θ]m| = 1, ∀m ∈ M,

(25)

where ti =
√
zi

wHf
(s−1)
i∣∣∣wHf
(s−1)
i

∣∣∣ , ∀i ∈ K. Considering that

∣∣ti −wHfi
∣∣2 = |ti −wHgi −wHH̃iθ|2

= θH
(
H̃H

i wwHH̃i

)
θ

− 2Re
(
θH
(
H̃H

i w
(
ti −wHgi

)))
+
∣∣ti −wHgi

∣∣2 ,
(26)

the problem P̄1.2 is reformulated as

P̌1.2 : min
θ

θHVθ − 2Re
{
θHṽ

}
+ v̄

s.t. |[θ]m| = 1, ∀m ∈ M,
(27)

where V =
∑K

i=1 H̃
H
i wwHH̃i, ṽ =∑K

i=1 H̃
H
i w
(
ti −wHgi

)
, and v̄ =

∑K
i=1

∣∣ti −wHgi

∣∣2.
Given θ(s−1), the value of θ at the (s − 1)-th iteration of

MM algorithm, the tight upper bound of θHVθ is given by
[38]

θHVθ ≤ θHV̂θ − 2Re
{
θHe(s−1)

}
+
(
θ(s−1)

)H
e(s−1),

(28)

where e(s−1) =
(
V̂ −V

)
θ(s−1), V̂ = λmax(V)IM ,

λmax(V) is the maximum eigenvalue of V which is from
the eigenvalue decomposition (EVD) of V. For the feasible
solution θ in (27), θHV̂θ = Mλmax(V) is a constant.
Discarding the constants independent of θ, problem P̌1.2 is
approximated as

P̂1.2 : max
θ

Re
{
θHẽ(s−1)

}
s.t. |[θ]m| = 1, ∀m ∈ M,

(29)

where ẽ(s−1) = e(s−1) + ṽ.
The problem P̂1.2 can be divided into M subproblems as

follows:

P1.2.1 : max
ϑm

cos
{
υ(s−1)
m − ϑm

}
s.t. 0 < ϑm < 2π, ∀m ∈ M,

(30)

where υ(s−1)
m and ϑm are the phases of [ẽ(s−1)]m and [θ]m,

respectively. Obviously, the optimal solution of the problem
P1.2.1 is ϑoptm = υ(s-1)m , ∀m ∈ M. Thus, the solution of P̂1.2 is
given by

θo =
[
exp(jϑopt1 ), ..., exp(jϑoptM )

]T
. (31)

Correspondingly, θ(s) is updated by θ(s) = θo. Based
on this, using the MM algorithm and iterative calculation,
suboptimal θ, θsub is achieved. Thus, θ(r) is updated by

θ(r) = θsub. (32)

As a summary, the MM algorithm for solving P1.2 is shown
as follows:

Algorithm 1 MM algorithm for solving the problem P1.2
1: Initialize: iteration index s = 0, iteration tolerance ε > 0,

initial point θ(0);
2: repeat
3: s = s+ 1;
4: Update θ(s) according to (31);
5: until ∥θ(s) − θ(s−1)∥ < ε
6: Output: θ(s).

Considering that the above obtained phase shift is continu-
ous, we present the suboptimal passive BF with discrete phase
shifts by using the phase quantization based on the continuous
phase shifts. Namely, we map the obtained phase shifts to the
nearest discrete values in [0, 2π), which can be given by

θm = argmin
θ∈Ω

| exp(jθ)− [θsub]m|, ∀m ∈ M. (33)

Note that the newly achieved solution of {θm} may not be
optimal, to guarantee that the proposed algorithm converges,
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the solution {θm} is updated only when the objective functions
value in (13) increases [24].

C. Solving w given z and θ

Given z and θ, {fi = gi+H̃iθ} are known, the subproblem
w.r.t w can be formulated as

P1.3 : min
w

K∑
i=1

(√
zi −

∣∣wHfi
∣∣)2 =

K∑
i=1

(√
zi −

∣∣fHi w∣∣)2
s.t. [w]n = 1/

√
N, ∀n ∈ N .

(34)
It can be found that the problem P1.3 is very similar to

P1.2. Thus, MM algorithm can also be used for solving w in
problem P1.3.
Based on Lemma 2, we have:

∣∣fHi w
∣∣ ≥ Re

{
fHi w

(
w(ι−1)

)H
fi

}
∣∣fHi w(ι−1)

∣∣ , (35)

where w(ι−1) is the value of w at the (ι − 1)-th iteration of
MM algorithm, using the analytical method in (21)-(25), the
problem P1.3 can be changed into

P̄1.3 :
min
w

∑K
i=1

∣∣qi − fHi w
∣∣2

s.t. |[w]n| = 1/
√
N, ∀n ∈ N ,

(36)

where qi =
√
zi

fHi w(ι−1)

|fHi w(ι−1)|| , ∀i ∈ K.

Therefore, the problem P̄1.3 is equivalent to

P̃1.3 :
min
w

wHSw − 2Re
{
wHs̃

}
+ s̄

s.t. |[w]n| = 1/
√
N, ∀n ∈ N ,

(37)

where S =
∑K

i=1 fif
H
i , s̃ =

∑K
i=1 fiqi, s̄ =

∑K
i=1 |qi|

2.
Given w(ι−1), the tight upper bound of wHSw is

wHSw ≤ wHŜw − 2Re
{
wHb(ι−1)

}
+
(
w(ι−1)

)H
b(ι−1),

(38)
where b(ι−1) = (Ŝ− S)w(ι−1), Ŝ = λmax(S)IN .
Considering that wHŜw = λmax(S) is a constant, and

removing the constants independent of w, the problem P̃1.3
is approximated as

P̂1.3 : max
w

Re
{
wHb̃(ι−1)

}
s.t. |[w]n| = 1/

√
N, ∀n ∈ N ,

(39)

where b̃(ι−1) = b(ι−1) + s̃. The problem P̂1.3 can be divided
into N subproblems:

P1.3.1 : max
ϑ′
n

cos
(
(υ

′

n)
(ι−1) − ϑ

′

n

)
s.t. 0 ≤ ϑ

′

n ≤ 2π,
(40)

where υ
′

n and ϑ
′

n are the phases of [b̃(ι−1)]n and [w]n,
respectively. Obviously, the optimal solution of the problem
P1.3.1 is ϑ

′opt
n = υ

′

n
(ι−1), ∀n ∈ N . Correspondingly, the

solution of P̂1.3 is given by

wo =
[
exp(jυ

′

1)
(ι−1), . . . , exp(jυ

′

N )(ι−1)
]T
/
√
N. (41)

Hence, w(ι) is updated by w(ι) = wo. Based on this, using
the MM algorithm and iterative calculation, suboptimal w,
wsub is achieved. Thus, w(r) is updated by

w(r) = wsub. (42)

According to the analysis above, the MM Algorithm for
solving P1.3 is summarized as Algorithm 2.

Algorithm 2 MM algorithm for solving the problem P1.3
1: Initialize: iteration index ι = 0, iteration tolerance ε > 0,

initial point w(0);
2: repeat
3: ι = ι+ 1;
4: Update w(ι) according to (41);
5: until ∥w(ι) −w(ι−1)∥ < ε
6: Output: w(ι).

Based on the analytical results above, Algorithm 3 is
proposed to solve the problem P1. As a result, the optimized
θ and w under the given p are attained. Correspondingly, θ(t)

and w(t) are updated by

θ(t) = θ(r),w(t) = w(r). (43)

Algorithm 3 BF design for solving the problem P1
1: Initialize: tolerance ϵ1, ϵ2, the iteration number l = 0, r

, the maximum iteration lmax, rmax, the convergence flag
f = 0 and the penalty parameters ρ(0), c;

2: repeat
3: l = l + 1;
4: Initialize the objective function z(0) = 0, the iteration

number r = 0, initial points {θ(0),w(0), z(0)};
5: repeat
6: r = r + 1;
7: For fixed {θ(r−1),w(r−1)}, update z(r);
8: For fixed {z(r),w(r−1)}, update θ(r) according to

Algorithm 1 and (33);
9: For fixed {z(r),θ(r)}, update w(r) according to Al-

gorithm 2;

10: Calculate z(r) =
∑K

i=1 log

(
1 + pizi∑K

j ̸=i pjzj+σ2

)
−

1
2ρ

(l−1)
∑K

i=1

(√
zi −

∣∣∣wH(gi + H̃iθ)
∣∣∣)2;

11: until
∣∣z(r) −z(r−1)

∣∣ < ϵ2 or r > rmax

12: Calculate Ξ(r) =
∑K

i=1

(√
zi −

∣∣∣wH(gi + H̃iθ)
∣∣∣)2;

13: if Ξ(r) < ϵ1 then
Set f = 1;

else:
Update ρ(l) = cρ(l−1);

end if
14: until f = 1 or l > lmax

15: Output: if f = 1, output {θ(r),w(r)}.
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IV. PA AND JOINT OPTIMIZATION SCHEME DESIGN

In this section, we firstly give the power allocation for joint
optimization scheme design under given BF vectors. Then,
based on the obtained PBF, ABF and PA, the joint design
scheme for EE maximization is developed, and corresponding
joint optimization algorithm is presented. Finally, the com-
plexity and convergence of the algorithms are analyzed.

A. Solving p given {w,θ}
For given {w,θ}, with (11) and (7), the PA problem for

joint design scheme is formulated as

P2 : max
p

J4 =

∑K
i=1 log

(
1 +

pk|wH(gk+H̃kθ)|2∑K
j=k+1 pj|wH(gj+H̃jθ)|2+σ2

)
∑K

i=1 νpi + PC

s.t. C3, C5.
(44)

Since the problem P2 is non-convex, it is hard to be solved
directly. For this reason, we exploit the SCA method to
tackle it. Using the SCA method, the non-convex numerator
of objective function J4 in (44) can be transformed into a
convex one by leveraging the following lower-bound of the
logarithmic function [39], [40]. To be specific, we have:

Ri = log

(
1 +

piξi∑K
j=i+1 pjξj + σ2

)

≥ ωi log

(
piξi∑K

j=i+1 pjξj + σ2

)
+Ωi,

(45)

where ξi = |wH(gi + H̃iθ)|2(i ∈ K), which is known for
given {w,θ}. The equality holds when γi = piξi∑K

j=i+1 pjξj+σ2 .
Here,

ωi =
γi

1 + γi
,

Ωi = log(1 + γi)−
γi

1 + γi
log(γi).

(46)

According to (45), Ri is tightly lower bounded by

R̂i = ωi log

(
piξi∑K

j=i+1 pjξj + σ2

)
+Ωi. (47)

With (47), the optimization problem is relaxed and can be
converted to a convex optimization problem by introducing
τi = log(pi). Based on this, substituting (47) into (44),
problem P2 is changed into

P̂2 : max
τ

J5 =

∑K
i=1 ωi log

(
eτiξi∑K

j=i+1 eτj ξj+σ2

)
+Ωi∑K

i=1 νe
τi + PC

=

∑K
i=1 ωi

(
τi + log ξi − log(

∑K
j ̸=i e

τjξj + σ2)
)
+Ωi∑K

i=1 νe
τi + PC

s.t. τi ≤ log(Pmax,i), ∀i ∈ K.
(48)

where τ = [τ1, ..., τK ]T . Because log-sum-exp is convex [39],
the numerator of J5 is a concave function. Moreover, the
denominator is a convex function. Furthermore, the constraint

is linear. Therefore, the problem P̂2 is strictly pseudo-convex
and will have a global optimal solution. Besides, this problem
is also fractional, so we can utilize the factional programming
theory to obtain the optimal solution. Correspondingly, P̂2
becomes the following equivalent subtraction problem as

P̄2 : max
τ

J6 =
K∑
i=1

ωi

τi + log ξi − log(
K∑

j=i+1

eτjξj + σ2)


+Ωi − η

(∑K

i=1
νeτi + PC

)
s.t. τi ≤ log(Pmax,i), ∀i ∈ K

eτiξi ≥ (2r0,k − 1)
∑K

j=i+1
eτjξj + σ2

(49)
where η is a non-negative weighted parameter. The problems
P̄2 and P̂2 are equivalent. Hence, we only need to optimize
the equivalent problem P̄2 to obtain the solution of P̂2. Given
the initial value of τ and the parameter η, the problem P̄2 is
strictly convex and thus it has a global solution. Hence, we can
use the Dinkelbach method [41] to obtain the optimal solution
of τ . With (49), the first-order derivative of J6 w.r.t τk can be
calculated as

∂J6
∂τk

= ωk − eτk
k−1∑
i=1

ωiξk∑K
j=i+1 e

τjξj + σ2
− ηνeτk . (50)

With (50), the solution of ∂J6

∂τk
= 0 can be given by

τok = log

(
ωk/(

k−1∑
i=1

ωiξk∑K
j=i+1 e

τjξj + σ2
+ ην)

)
, (51)

where {ωi} and {τj} at the right-hand side of (51) can take the
values of their previous iterations. Considering the maximum
power and minimal rate constraints, τk needs to be rewritten
as

τk = min{max{τok , log(Pmin,k)}, log(Pmax,k)}, (52)

where Pmin,k = (2r0,k − 1)ξ−1
k (
∑K

j=k+1 e
τjξj + σ2) is from

the C4 constraint.
Next, using the obtained τk and BCD method to update oth-

er PA coefficients {τj , j ̸= k} alternately until they converge.
With the obtained {τk}, we utilize the Dinkelbach method to
update η as

η =

∑K
i=1 ωi log

(
eτiξi∑K

j=i+1 eτj ξj+σ2

)
+Ωi∑K

i=1 νe
τi + PC

(53)

until it converges. Then, we use the obtained τ to update
p as {pk = eτk}. After that, we employ the obtained p to
update {ωi} and {Ωi} by (46) until they converge. Finally, the
suboptimal PA, psub is attained. Based on the above analysis,
an effective iterative algorithm based on SCA, Dinkelbach and
BCD methods is proposed to obtain the PA coefficients. The
algorithm is summarized as Algorithm 4. With Algorithm 4,
the solution of the problem P2 are updated by p(t) = psub.
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Algorithm 4 PA algorithm for solving the problem P2
1: Initialize: tolerance εSCA, εFP, ε > 0, the iteration number
v = 0, the maximum iteration number vmax and initial
point p(0)k , η(0), ω(0)

i ,Ω
(0)
i ;

2: repeat
3: v = v + 1;
4: Initialize the iteration number v1 = 0 and initial point

p
(v1)
k = p

(v−1)
k , τ (v1)k = log p

(v1)
k ;

5: repeat
6: v1 = v1 + 1;
7: Initialize the iteration number v2 = 0 and initial point

p
(v2)
k = p

(v1−1)
k , τ (v2)k = log p

(v2)
k ;

8: repeat
9: v2 = v2 + 1;
10: Update τ (v2) according to (51) and (52);
11: until ||τ (v2) − τ (v2−1)|| < ε

12: Update τ (v1)k = τ
(v2)
k ;

13: Update η(v1) by (53);
14: until |η(v1) − η(v1−1)| < εFP;
15: p

(v1)
k = eτ

(v1)

k ;
16: Update p(v)k = p

(v1)
k ;

17: Calculate ω(v)
i ,Ω

(v)
i by (46);

18: until max
i∈K

{
|ω(v)

i − ω
(v−1)
i |, |Ω(v)

i − Ω
(v−1)
i |

}
< εSCA

19: Output: p(v).

B. Joint optimization algorithm

Based on the analytical results above, a joint resource
allocation scheme for EE maximization is developed, and the
corresponding algorithm is proposed to solve the optimization
problem P0. As a result, the suboptimal PA, PBF and ABF
are attained. The specific joint algorithm design is illustrated
as Algorithm 5.

Algorithm 5 Joint optimization algorithm for solving the
problem P0
1: Initialize: tolerance ϵBCD, the iteration number t =

0, the maximum iteration tmax and initial point
{p(0),θ(0),w(0)};

2: repeat
3: t = t+ 1;
4: For given p(t−1) , update {θ(t),w(t)} according to

Algorithm 3;
5: For given {θ(t),w(t)}, update p(t) according to Algo-

rithm 4;
6: Calculate the value of objective function Γ(t)=ηEE in

problem P0;
7: until

∣∣Γ(t) − Γ(t−1)
∣∣ < ϵBCD or t > tmax

8: Output: {p(t),θ(t),w(t)}.

C. Complexity and convergence analysis

In this subsection, we give the complexity and convergence
analysis. For the proposed optimization algorithm of joint
design of PA, PBF and ABF, i.e., Algorithm 5, its complexity

is mainly from the Algorithms 3 and 4. For the Algorithm 3,
the complexity is mainly from Algorithms 1 and 2 as well
as the iteration of CCCP method. Regarding the Algorithm 1,
it mainly involves the iteration of MM method and EVD of
matrix, and the corresponding complexity is approximated as
O
(
M3 +M2I1

)
, where I1 is the iterative number of Algo-

rithm 1. Similarly, the complexity of Algorithm 2 is approxi-
mated as O

(
N3 +N2I2

)
, where I2 is the iterative number of

Algorithm 2. Thus, the complexity of Algorithm 3 is approxi-
mated as O

(
(M3 +M2I1 +N3 +N2I2 +KI

(1)
3 )I

(2)
3 I

(3)
3

)
,

where I(1)3 is the iteration of CCCP method, I(2)3 and I(3)3 are
the numbers of outer and outermost iterations of Algorithm
3, respectively. In Algorithm 4, the main calculation burden
involves three-loop iterations of K devices, i.e., the inner-
most iteration of BCD method, inner iteration of Dinkelbach
method and outer iteration of SCA method. Corresponding-
ly, its complexity is approximated as O

(
KI

(1)
4 I

(2)
4 I

(3)
4

)
,

where I
(1)
4 , I(2)4 and I

(3)
4 are the numbers of innermost,

inner and outer iteration of Algorithm 4, respectively. Hence,
based on the above analysis, the complexity of Algorithm
5 is approximated as O(((M3 + M2I1 + N3 + N2I2 +

KI
(1)
3 )I

(2)
3 I

(3)
3 +KI(1)4 I

(2)
4 I

(3)
4 )I5), where I5 is the iterative

number of the outermost BCD method.
In what follows, the convergence analysis of proposed joint

optimization algorithm (Algorithm 5) is addressed. Due to the
power limitation, the sum rate is also limited. Hence, the value
of EE is upper-bounded. Moreover, for the t-th iteration, it can
be concluded that

Υ1 : Γ
(
p(t−1),w(t),θ(t)

)
≥ Γ

(
p(t−1),w(t−1),θ(t−1)

)
,

Υ2 : Γ
(
p(t),w(t),θ(t)

)
≥ Γ

(
p(t−1),w(t),θ(t)

)
(54)

where Υ1 holds for the convergence of the Algorithm 2, and
Υ2 holds for the convergence of the SCA algorithm. For the
Algorithm 2, its convergence analysis is shown as follows. For
the given ρ(l−1), it can be concluded that

Υ̃1 : z
(
w(r−1),θ(r−1), z(r)

)
≥ z

(
w(r−1),θ(r−1), z(r−1)

)
,

Υ̃2 : z
(
w(r−1),θ(r), z(r),

)
≥ z

(
w(r−1),θ(r−1), z(r)

)
,

Υ̃3 : z
(
w(r),θ(r), z(r),

)
≥ z

(
w(r−1),θ(r), z(r)

)
(55)

where Υ̃1 holds for the convergence of the CCCP method [37],
Υ̃2 holds for the convergence of the MM algorithm [38], and
Υ̃3 holds for the convergence of the MM algorithm.

V. BENCHMARK SCHEME BASED ON THE
MULTIDIMENSIONAL SEARCH AND ABC ALGORITHM

In this section, to evaluate the performance of the proposed
joint resource allocation scheme in section IV, we present
a benchmark scheme based on the multidimensional search
method and ABC algorithm, where the power allocation is
obtained by the K-dimensional search method, and the ABF
and PBF are achieved by means of the ABC algorithm in [43],
[44].

In order to deal with the ABF vector w and PBF vector θ
well, the optimization problem P0 in (11) can be equivalently
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transformed into

P̄0 : max
{p,w̃,θ}

ηEE =

K∑
i=1

log

(
1 + pi|w̃H(gi+H̃iθ)|2∑K

j=i+1 pj |w̃H(gj+H̃jθ)|2+Nσ2

)
∑K

k=1 νpk + PC

s.t. C̃2, C3, C4, C5,

C̃1 : |[w̃]n| = 1, ∀n ∈ N ,
(56)

where w̃ =
√
Nw. Thus, θ and w̃ have the same CM

constraint. Taking the C3 constraint into account, we can
employ the K-dimensional search method to find the optimal
power allocation pk ∈ [0, Pmax,k] for k ∈ K to maximize the
EE, where the power of each user pk is uniformly quantized
over the range of 0 and Pmax,k with smaller step size. Corre-
spondingly, the search complexity is increased exponentially
as K increases, and thus the complexity becomes high.
Considering that the dimensions of θ and w̃ are M and

N , respectively, their sum dimension is high because of large
M and N . Hence, for each searched power allocation p, we
use the ABC algorithm to achieve near-optimal solutions of
θ and w̃ with maximum EE, i.e., θ(p) and w̃(p). This is
based on that the ABC algorithm is more suitable for solving
the optimization problem with high-dimension variables [43],
[44]. Specifically, for each value of p in the set Φ = {p|p ∈
[0, Pmax,1] × .... × [0, Pmax,K ]}, we can compute θ(p) and
w̃(p) by using the ABC algorithm. Then with the obtained
p,θ(p), andw̃(p), we can decide whether these results satisfy
the constrain conditions. If the conditions are satisfied, then
we calculate the EE of the system, ηEE. Otherwise, ηEE is set
equal to zero. By comparing all values of ηEE, we can find the
optimalK indexes corresponding to maximum ηEE. With these
K indexes, the optimal po,θ(po), w̃(po) are achieved, and the
corresponding joint resource allocation scheme is presented.
For easy presentation, this benchmark scheme is referred as
’joint-scheme2’, and the presented joint scheme in section
IV is referred as ’joint-scheme1’. The joint-scheme2 can
obtain superior performance over the joint-scheme1 because
of near-optimal solution, but it has much higher complexity
than the latter since the complicated multidimensional search
method and ABC algorithm are employed to find the solution,
especially when K is larger.

VI. SIMULATION RESULTS

In this section, we evaluate the effectiveness of the pro-
posed resource allocation scheme for RIS-mmWave system
in terms of EE performance through computer simulation.
For the simulation setup, the BS and RIS are located at
(0m, 0m) and (90m, 5m), respectively, and all devices are
uniformly distributed in the circular area with (100m, 0m)
as the center and the radius of 5m [23]. Unless otherwise
specified, other main parameters are listed in Table I. Besides,
λU = 0 dBi and λB = 9.82 dBi, and the relative gain of
the RIS is ν = λI√

λBλU
= 10 dB [42] [22]. The carrier

frequency is 28 GHz, LB = Lk,I = Lk,B = 4(∀k ∈ K).
The gains βl follows a complex Gaussian distribution, i.e.,
βl ∼ CN (0, 10−0.1µl(d)) and so are αk,l and βk,l, where
µl(d) = a+ 10b log10(d) + ξ dB, d is the distance in meters

between the transmitter and the receiver, the values of a, b
and ξ are set to as a = 61.4, b = 2, ξ = 5.8 dB for LOS
path and a = 72, b = 2.92, ξ = 8.7 dB for NLOS path [45].
PRIS =20dBm [32], [33]. Simulation results are illustrated in
Figs. 2-9, respectively. In simulation, the computer we used is
an Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz.

TABLE I
SIMULATION PARAMETERS

Parameters Default Values
Number of devices K = 3

Number of antennas at the BS N = 16
Number of refection elements at the RIS M = 20

Maximum power consumption Pmax,k = Pmax

Power amplifier coefficient ν = 1/0.38
Minimum rate constraint r0,k = 0.5b/s/Hz

Power consumption of the baseband PBB = 200 mW
Power consumption of the RFC PRF = 160 mW
Power consumption of the PS PPS = 20 mW
Power consumption of the LNA PLNA = 40 mW

Noise power σ2 = −104 dBm

In Fig. 2, we plot the EE performance of the system with the
proposed schemes for different numbers of phase shift levels,
where L=2, 8, K=2, the joint-scheme1 and the benchmark
scheme (i.e., joint-scheme2) are compared. The continuous
phase shift (i.e., L = +∞) is also used as the performance
upper bound to evaluate the discrete phase shift. From Fig. 2,
it is found that the EE performance with discrete phase shifts
is worse than that with continuous phase shifts, as expected,
but it is increased with the increase of L. Namely, the system
with L=8 has higher EE than that with L=2. This is because
the larger is the value of L, the better is the adjustment
on the IRS phase shifts. Thus, the discrete phase shift of
RIS can be optimized well. Moreover, the system with L=8
can obtain the EE performance close to that of that with
continuous phase shifts (L=+∞). Besides, the proposed joint-
scheme1 can achieve the performance close to that of the
benchmark scheme for different values of L, but the former
has lower complexity than the latter because the latter needs
the exhaustive multidimensional search method to achieve the
near-optimal solution, while the former does not need this
search method. Specifically, the latter needs average run time
of 72215.09s, while the former only needs average run time
of 1.28s. Based on these results above, we employ L=8 in the
following figures taking the performance and complexity into
account.

Fig. 3 gives the EE performance of the system with the
proposed first scheme based on different PBF designs, in-
cluding the particle swarm optimization (PSO) [46] based
PBF scheme, the designed PBF scheme, and the random
phase based PBF scheme (where the phase shifts of reflection
coefficients in RIS are generated randomly), which are referred
as “PSO PBF”, “Designed PBF”, and “Rand-phase PBF”,
respectively. From Fig. 3, we observe that our designed PBF
scheme can obtain almost the same EE as the benchmark
scheme of “PSO PBF”, but it has lower complexity than the
latter due to poor computational efficiency of latter, which
can be seen from the run time. Namely, the former needs
average run time of 0.0183s, while the latter needs average
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Fig. 2. EE of RIS-mmWave-NOMA with different numbers of phase shift
levels.

run time of 0.481s. Besides, “Designed PBF” and “PSO PBF”
schemes both have much higher EE than the “Rand-phase
PBF” scheme. This is because the PBF of “Rand-phase PBF”
scheme is randomly generated and not optimized. The above
results show effectiveness of the designed PBF scheme.
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Fig. 3. EE of RIS-mmWave with different PBF schemes.

In Fig. 4, to illustrate the effectiveness of the designed
ABF scheme, we give the EE comparison among the PSO
based ABF scheme, the designed ABF scheme, codebook-
based ABF scheme in [13], which are referred as “PSO
ABF”, “Designed ABF”, and “Codebook ABF”, respectively.
It is shown in Fig. 4 that our designed ABF scheme and
the benchmark scheme of “PSO ABF” both exhibit superior
performance, and have much higher EE than the existing
“Codebook ABF” scheme. This is because the BF vector in
“Codebook ABF” scheme is selected from a finite set, and
not always suitable for each channel realization. Besides, the
designed scheme has almost the same EE as the benchmark
scheme of “PSO ABF”, but it has lower complexity than
the latter. Specifically, the former needs average run time of
0.0045s, while the latter needs average run time of 0.387s.
In Fig. 5, we compare the EE of the system with different
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Fig. 4. EE of RIS-mmWave-NOMA with different ABF schemes.

numbers of RIS reflection elements, where the number of RIS
reflection elements is set to M = 0, 20, 40, 80, and M = 0
means that RIS is not used. It is shown in Fig. 5 that the EE
performance is improved as the number of reflection elements
increases. Namely, the system with M = 80 obtains higher
EE than that with M = 40, and the system with M = 40
obtains higher EE than that with M = 20. The reason is that
the design of RIS reflection phase can provide the passive
beamforming gain of RIS. Thus, with the increase of M , the
higher passive beamforming gain can be attained. Besides, the
system without RIS has the worst performance, and its EE
is smallest. Hence, application of RIS does improve the EE
performance effectively.
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Fig. 5. EE of RIS-mmWave-NOMA with different numbers of RIS reflection
elements.

Fig. 6 illustrates the EE of RIS-mmWave system with the
proposed scheme under different numbers of antennas, where
N = 16, 32, 64. As shown in Fig. 6, with the increase of
antenna number N , the EE performance becomes worse. This
is because the impact of total power consumption on the
EE performance is more significant than the achievable sum
rate when the antenna number is larger (which will result in
the increase of total power consumption). The results above
indicate that the proposed scheme is also valid for different
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numbers of antennas.
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Fig. 6. EE of RIS-mmWave-NOMA with different numbers of antennas.

In Fig. 7, we plot the EE performance of the system with
the proposed scheme for different numbers of devices, where
the device number K=7, 9, 11. From Fig. 7, it is found that
the EE is increased as the number of device increases, i.e.,
the EE with K=11 is higher than that with K=9, and the EE
with K=9 is higher than that with K=7 since more devices are
supported. The above results show that the proposed scheme
is also effective for different numbers of device.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
7

7.5

8

8.5

9

9.5

Fig. 7. EE of RIS-mmWave-NOMA with different numbers of devices.

Fig. 8 shows the convergence behavior of the outermost
iteration in the proposed joint optimization algorithm (Al-
gorithm 5) for different values of Pmax, where the EE
versus the number of iterations is provided, and we set
Pmax=0.02W, 0.4W. From Fig. 8, we can find that the EE
is gradually increasing and finally saturated as the number
of iteration increases for different values of Pmax. Thus, the
outermost BCD convergence of Algorithm 5 is guaranteed.
Moreover, after some iterations, two curves can converge to
their respective optimal values, but these values are different.
The value of EE with Pmax=0.4W is higher than that with
Pmax=0.02W. Besides, their required iterations are different.
Since Pmax=0.02W is low, the obtained PA is easily under

the maximum power constraint. Correspondingly, the EE curve
with Pmax=0.02W converges faster than that with Pmax=0.4W.
Specifically, the former needs about 3 iterations to converge,
while the latter needs about 4 iterations to converge.
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Fig. 8. EE versus number of iterations

In Fig. 9, we evaluate the impact of imperfect CSI (I-
CSI) on the EE performance of the RIS-aided mmWave-
NOMA, where r0,k=0. Following the statistical cascaded CSI
estimation model in [29], [30], the cascaded channel matrix
H̃k and the channel vector gk can be respectively modeled as
H̃k = Ĥk +Ek and gk = ĝk + ϵk, where Ĥk and ĝk are the
estimated channel matrix and vector, respectively, Ek and ϵk
are the corresponding CSI error matrix and vector, and they
obey the circularly symmetric complex Gaussian distribution.
Namely, vec(Ek) ∼ CN(0, σ2

kIMN ), and ϵk ∼ CN(0, ς2kIN ),
where σ2

k and ς2k are the variances of the corresponding CSI
errors. According to [29], [30], σ2

k = µ2
k||vec(Ĥk)||2 and

ς2k = µ̃2
k||ĝk||2, where µ2

k ∈ [0, 1) and µ̃2
k ∈ [0, 1) are the

normalized CSI errors that measure the CSI uncertainty level,
and it is assumed that the normalized CSI errors of the users
are the same for the convenience [29], [30], i.e., µ2

k = µ2,
and µ̃2

k = µ̃2. In simulation, different errors µ2 = µ̃2=0.012,
and µ2 = µ̃2=0.022 are considered, and for comparison, the
EE performance under perfect CSI (P-CSI) is also provided.
As illustrated in Fig. 9, the EE performance of the system
becomes worse as the µ2 and µ̃2 increase because of the
degradation of CSI accuracy. Moreover, due to the CSI error,
the system with I-CSI has lower EE than that with P-CSI, as
expected.

VII. CONCLUSIONS

The joint resource allocation of PA, PBF and ABF is stud-
ied for maximizing the EE of uplink RIS-mmWave-NOMA
network under the constraints of maximum power of devices
and constant modulus of BF vectors. The joint optimization
scheme with BCD method is developed to obtain the subopti-
mal PA, PBF and ABF. By means of MM method, CCCP and
BCD method, suboptimal PBF and ABF are firstly designed
given the PA, and an effective iterative algorithm is presented
to obtain the suboptimal solutions. As a result, closed-form
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Fig. 9. EE of RIS-mmWave-NOMA with different normalized CSI errors

PBF and ABF are attained at each iteration. Then, given these
two BFs, suboptimal PA is derived based on the SCA, Dinkel-
bach and BCD methods, and corresponding iterative algorithm
is proposed for PA optimization, where closed-form PA is ob-
tained at each iteration. By incorporating these two algorithms
into the BCD method, a joint optimization algorithm for EE
maximization is presented. With this algorithm, joint design
of PA, PBF and ABF is implemented. Besides, the benchmark
scheme is also presented based on the multidimensional search
method and ABC algorithm for comparison. Simulation results
illustrate that the proposed joint scheme is effective, and it can
obtain superior EE performance over the random phase scheme
and codebook scheme. Moreover, the proposed scheme has the
EE performance close to the benchmark scheme but with lower
complexity. Considering that the resource allocation scheme is
based on perfect CSI, which is challenging to achieve, we will
further study the optimization design of resource allocation
for RIS-aided mmWave-NOMA network with imperfect CSI
in our future work.
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