
Maximum Clique Algorithm and Its
Approximation for Uniform

Test Form Assembly
Takatoshi Ishii, Pokpong Songmuang, and Maomi Ueno,Member, IEEE

Abstract—Educational assessments occasionally require uniform test forms for which each test form comprises a different set of

items, but the forms meet equivalent test specifications (i.e., qualities indicated by test information functions based on item response

theory). We propose two maximum clique algorithms (MCA) for uniform test form assembly. The proposed methods can assemble

uniform test forms with allowance of overlapping items among uniform test forms. First, we propose an exact method that maximizes

the number of uniform test forms from an item pool. However, the exact method presents computational cost problems. To relax those

problems, we propose an approximate method that maximizes the number of uniform test forms asymptotically. Accordingly, the

proposed methods can use the item pool more efficiently than traditional methods can. We demonstrate the efficiency of the proposed

methods using simulated and actual data.

Index Terms—Maximum clique problem, item response theory, uniform test forms, test assembly

Ç

1 INTRODUCTION

EDUCATIONAL assessments occasionally require uniform
test forms (which is also called parallel test forms) for

which each form comprises a different set of items but
which still must have equivalent specifications such as
equivalent amounts of test information based on item
response theory (IRT), equivalent question area, equivalent
average test score, and equivalent time limits. For example,
uniform test forms are necessary when a testing organiza-
tion administers a test in different time slots. To achieve
this, uniform test forms are assembled in which all forms
have equivalent qualities so that examinees who have taken
different test forms can be evaluated objectively using the
same scale.

Recently, automatic assembly for test forms has become
popular. Automatic assembly assembles test forms to satisfy
given test constraints, such as the numbers of test items, the
numbers of items from each set of contents, amounts of test
information, average test scores, and/or etc., to provide
equivalent qualities [1], [2], [3], [4], [5], [6], [7], [8], [9], [10],
[11], [12], [13], [14], [15], [16], [17].

In earlier studies, a test assembly was formalized as a
combinational optimization problem. For example, van der
Linden [18] proposed the big shadow test method using lin-
ear programming (LP). This method sequentially assembles
uniform test forms by minimizing qualitative differences
between a current assembled test form and the remaining
set of items in an item pool. Although this method

assembles uniform test forms in a practically acceptable
time, it presents two problems. First, qualitative differences
increase with the assembled order of test forms. Second,
this method does not maximize the number of uniform test
forms from the item pool.

To alleviate or ameliorate the first problem, Sun et al. [19]
proposed the use of a genetic algorithm (GA) for uniform
test assembly that simultaneously assembles uniform test
forms as minimizing differences among the qualities of
assembled test forms and user-determined values. Further-
more, Songmuang and Ueno [20] applied the bees algorithm
(BA) to uniform test form assembly and thereby improved
the performance of the method proposed by Sun et al. [19].
Although these methods [18], [19], [20] demonstrated effec-
tive performance for minimizing the qualitative differences
among assembled test forms, no method maximizes the
number of uniform test forms from the item pool. These
methods do not allow the item pool to be used efficiently to
the greatest degree possible.

To maximize the number of test forms, Belov and Arm-
strong [21] proposed a uniform test assembly method based
on maximum set-packing problems (MSP). Moreover, Belov
proposed a random test assembly method to improve the
tractability of maximizing the number of uniform test forms.
However, these methods [21], [22] cannot assemble uniform
test forms with overlapping items, where overlapping items
mean common items among multiple test forms. In the non-
overlapping conditions, each item is used only once on
assembled test forms. Therefore, the non-overlapping condi-
tion strongly restricts the number of assembled test forms.
Consequently, the non-overlapping condition interrupts the
efficient uses of the item pool.

Our study is conducted to assess a proposed uniform test
form assembly method that maximizes the number of
assembled test forms with overlapping conditions. To
achieve this goal, we apply the maximum clique algorithm

� T. Ishii and M. Ueno are with the University of Electro-Communications.
E-mail: {ishii, ueno}@ai.is.uec.ac.jp.

� P. Songmuang is with Thammasat University.
E-mail: pokpong@cs.tu.ac.th.

Manuscript received 10 May 2013; revised 25 Nov. 2013; accepted 19 Dec.
2013; date of publication 1 Jan. 2014; date of current version 6 May 2014.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TLT.2013.2297694

IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. 7, NO. 1, JANUARY-MARCH 2014 83

1939-1382� 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

(MCA), which solves the maximum clique problem (MCP).
We propose an exact method based on maximum clique
problem (ExMCP) for the maximum number of uniform test
forms from the item pool.

The unique feature of ExMCP is that it generalizes Belov
and Armstrong’s method [21] to maximize the number of
uniform test forms with an overlapping condition. There-
fore, theoretically, ExMCP can assemble a greater number
of test forms than when using traditional methods (e.g.,
[18], [19], [20], [21]). In fact, ExMCP is expected to use the
item pool more efficiently than traditional methods do.

However, the computational time and space costs of
ExMCP increase exponentially with the number of feasible
test forms (i.e., a set of test forms that satisfies all test con-
straints except for the overlapping constraint from a given
item pool). Therefore, it is difficult to use ExMCP for a large
item pool.

To relax this problem, we propose RndMCP by
approximating ExMCP using a random search approach,
such as that explained in an earlier report of the litera-
ture [23]. RndMCP maximizes the number of uniform
test forms asymptotically from the item pool with over-
lapping conditions and assembles a greater number of
test forms than those assembled using traditional meth-
ods (e.g., [18], [21]). In addition, RndMCP seeks the max-
imum number of uniform test forms more efficiently
than traditional random search methods [19], [20] do
because the search space of RndMCP is more restrictive
than those of the traditional methods.

Moreover, some experiments were conducted to evaluate
the proposed methods. Results show that the proposed
methods assemble a greater number of uniform test forms
than the traditional methods do.

2 ITEM RESPONSE THEORY

Most previous studies of test form assembly use item
response theory to measure the quality of test forms [18],
[20], [24], [25], [26], [27].

IRT, which describes the relation between item character-
istics and examinee abilities, can measure examinee abilities
on the same scale even when the examinees are taking dif-
ferent test forms. For IRT, uij denotes the response of item
ið1; . . . ; nÞ on examinee jð1; . . . ;mÞ as

uij ¼
1; If jth examinee answers

ith item correctly,
0; Other Cases.

8<
:

In the two-parameter logistic model, which is one of the
most popular IRT models, the probability of a correct
answer to item i by examinee j with ability u 2 ð�1;1Þ is
assumed as

piðujÞ � pðuij ¼ 1jujÞ ¼ 1

1þ expð�1:7aiðuj � biÞÞ ,

where ai 2 ½0;1Þ is the ith item’s discrimination parameter,

and bi 2 ð�1;1Þ is the ith item’s difficulty parameter.

Using this correct probability, we can define the item
information that measures how accurately an item can esti-
mate the examinee’s ability levels u.

The ith item information function IiðuÞ based on the two-
parameter logistic model is defined as

IiðuÞ ¼ a2i piðuÞð1� piðuÞÞ.

To estimate how much accuracy a test form has, a test
administrator monitors test information functions. We can
define the test information similarly to the item information
function. The test information function is the sum of the
information functions of the items in the test form. The test
information function IðuÞ of a test form Test is defined as

IðujÞ ¼
X
i2Test

IiðujÞ.

Almost all traditional methods use this test information
function as the test form quality. Accordingly, their uniform
test assemblies are implemented by minimizing the differ-
ence between the assembled test information functions. (In
practice, they compare the test information function on
some points Q ¼ fu1; . . . ; uk; . . . ; uKg in ability level u, and
minimize each difference of test information Iðu1Þ; . . . ;
IðukÞ; . . . ; IðuKÞ.)

In fact, the test assembly methods were presumed to be
implemented after each item’s IRT parameters had been col-
lected in the item pool.

3 TRADITIONAL METHODS OF UNIFORM TEST
FORM ASSEMBLY

This section introduces some traditional methods.

3.1 Big Shadow Test Method

For uniform test forms, van der Linden [18] proposed a big
shadow testmethod using linear programming. Thismethod
assembles test forms sequentially by minimizing the differ-
ence of test information functions between a current assem-
bled test form and a set of items remaining in the item pool.
They called the set of remaining items a shadow test.

This method assembles equivalent test forms to solve an
optimization problem as follows:

minimize y

subjectto

XK
k¼1

Xn
i¼1

jIiðukÞxi � T ðukÞj � y;

XK
k¼1

Xn
i¼1

jIiðukÞzi � TST ðukÞj � y;

(1)

where

y � 0

xi ¼
1; If ith item is selected

into test form,

0; Otherwise,

8><
>:

zi ¼
1; If ith item is selected

into shadow test form,

0; Otherwise,

8><
>:

84 IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. 7, NO. 1, JANUARY-MARCH 2014

denotes a distribution of the ability level uk, and TST ðukÞ
denotes a target value of information function at ability level

uk for the shadow test form. The test quality constraints with-

out information function are included in the constraints of

Problem (1).

The inequality
PK

k¼1

Pn
i¼1 jIiðukÞxi � T ðukÞj � y in Prob-

lem (1) minimizes the difference of test information func-

tions between the currently assembled test form and the

target value T ðukÞ. The inequality
PK

k¼1

Pn
i¼1 jIiðukÞzi�

TST ðukÞj � y in Problem (1) minimizes the difference of test

information functions between the set of remaining items

and the target value TST ðukÞ. That is to say, Problem (1)

simultaneously minimizes the difference of test information

functions between a current assembled test form and a set

of items remaining in the item pool.

Solving Problem (1) assembles an equivalent test form
one by one. For uniform test forms, this method repeatedly
solves this problem. Let R be the user-determined desired
number of assembled test forms. The algorithm of this
method is shown as Algorithm 1.

This method decomposes the uniform test form
assembly into R times assemblies. This decomposition
reduces computational costs, but increases the qualitative
difference between the first assembled test form and the
last test form.

3.2 Genetic Algorithm for Uniform Test Form
Assembly

To reduce the qualitative difference among the assembled
test forms, Sun et al. [19] proposed a uniform test form
assembly using the genetic algorithm. This method simulta-
neously assembles test forms by minimizing the difference
between the qualities of assembled test forms and the target
value T ðukÞ.

Then the method assembles the uniform test forms by
solving an optimization problem as follows:

minimize y

subject to

XK
k¼1

Xn
i¼1

jIiðukÞxir � T ðukÞj � y;

ðr ¼ f1; 2; . . . ; RgÞ;

(2)

where

xir ¼
1; If ith item is selected

into rth test form,

0; Otherwise.

8><
>:

The test quality constraints without an information func-

tion are included in the constraints of Problem (2), which

minimizes the difference of test information functions simul-

taneously and directly among all test forms. The termPK
k¼1

Pn
i¼1 jIiðukÞxir � T ðukÞj in Problem (2) is the difference

between the quality of rth test form and target value T ðukÞ.
This term is called the fitting error. That is, Problem (2) min-

imizes all the test form fitting errors.

This method approximately solves Problem (2) using
GA. More specifically, a vector x ¼ ðx11; x21; . . . ; xN1; x12;
x22; . . . ; xN2; . . .xNRÞ in Problem (2) is represented as popu-
lation for the GA operations (i.e., random sampling, fitting,
crossover, and mutation).

This method repeats the GA operations to the vector x,
and seeks a better solution that has less qualitative differ-
ence among the assembled test forms.

3.3 Bees Algorithm for Uniform Test Form
Assembly

Songmuang and Ueno [20] proposed a uniform test form
assembly method using the bees algorithm.

This method has the following two steps:

1. (Satisfying test constraints)
Step 1 assembles test forms only to minimize the

fitting errors of each test form. To achieve this, step 1
solves the following optimization problem:

minimize XK
k¼1

Xn
i¼1

jIiðukÞxi � T ðukÞj; (3)

where

xi ¼
1; If ith item is selected

into test form,

0; Otherwise.

8><
>:

The test quality constraints without information func-

tion are included in the constraints of Problem (3).

This step repeats solving Problem (3) L times and
assembles L feasible test forms that satisfy the test
constraints without overlapping constraints.

2. (Equating test forms)
Step 2 extracts the most equivalent set of test

forms from the assembled L feasible test forms in
Step 1.

To achieve this, step 2 solves the following opti-
mization problem:

minimize

ffi
1PL

l¼1 sl þ 1

XL
l¼1

slðe� mSÞ2
vuut ; (4)

ISHII ET AL.: MAXIMUM CLIQUE ALGORITHM AND ITS APPROXIMATION FOR UNIFORM TEST FORM ASSEMBLY 85

where

sl ¼
1; If lth test form is selected

into the set of test forms,

0; Otherwise,

8><
>:

e ¼
XK
k¼1

Xn
i¼1

jIiðukÞxi � T ðukÞj;

mS ¼ 1PL
l¼1 sl þ 1

XL
l¼1

sle:

The objective function in Problem (4) is a standard
deviation of fitting errors e among the extracted test
forms (indicated by vector s ¼ ðs1; s2; . . . ; sLÞ). The over-
lapping constraint is included in optimization constraints
of Problem (4).

The test forms extracted by solving Problem (4) are the
uniform test forms. These satisfy all qualitative constraints
and overlapping constraints.

Both A and B steps use the bees algorithm to solve
each Problem (3), (4). The vector x ¼ ðx1; x2; . . . ; xnÞ in
Problem (3) and the vector s ¼ ðs1; s2; . . . ; sLÞ in Problem
(4) are represented as populations. This method repeats
the BA operations (i.e., generates neighbor solutions,
evaluates the fitness of the solutions, and learns the fit-
ness distribution for the solutions. For more details,
see [20]) to seek a better solution. Accordingly, this
method assembles uniform test forms and approximately
minimizes the qualitative difference among the uniform
test forms.

3.4 Maximum Set-Packing Problem for Uniform Test
Form Assembly

Although previously introduced methods [18], [19], [20]
showed effective performance to minimize difference of
qualities among the uniform test forms, none of these meth-
ods was able to guarantee the maximum number of test
forms from an item pool. These methods do not allow the
item pool to be used efficiently to the greatest degree
possible.

To maximize the number of uniform test forms from the
item pool, Belov and Armstrong [21] proposed a uniform
test assembly method based on maximum set-packing
problems.

The maximum set-packing problem is an optimization
problem. Let S be a finite set, S ¼ fs; s � Sg, and let jSj be
the number of elements in S. Given those assumptions,
maximum set-packing problem is defined as

maximize jSj
subject to

8v; w 2 S; v \ w ¼ ;:
(5)

In this method, a uniform test form assembly problem is
represented as a kind of MSP. Letting S be a given item
pool, and S be a set of uniform test forms, MSP for uniform
test form assembly is the following:

maximize jSj
subject to

v 2 S :

test form v satisfy all test constraints

8v; w 2 S; v \ w ¼ ;
(non-overlapping constraint):

(6)

Therefore, this method guarantees the maximum number
of uniform test forms with a non-overlapping condition.

3.5 Random Test Assembly Based on Linear
Programming

Almost all uniform test form assemblies use LP (i.e.,
[18] [19], and others) because LP has several powerful solv-
ers (i.e., [28]). However, in Belov and Armstrong’s method
[21], a uniform test form assembly is implemented as a kind
of MSP. Nevertheless, the MSP is not tractable for practical
use because it has no useful and practical solvers.

To resolve this problem, Belov proposed a random test
assembly method with low probability of overlapping
items [22].

This method assembles equivalent test forms as follows:

maximize
Xn
i¼1

�ixi;

where xi ¼
1; If ith item is selected

into the test form,

0; Otherwise.

8><
>:

ð7Þ

Therein, coordinates �1; �2; . . . ; �n denote random variables

distributed uniformly on ½0; 1�. All test constraints except

the overlapping constraint are included in the constraints in

Problem (7). �ið0 � i � nÞ are resampled each Problem (7)

is solved.

From Sepian’s inequality, Problem (7) is guaranteed to
assemble uniform test forms with low probability of over-
lapping items theoretically.

Using this theory, Belov proposed an algorithm (shown
in Algorithm 2) for uniform test form assembly with a non-
overlapping condition.

86 IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. 7, NO. 1, JANUARY-MARCH 2014

To assemble uniform test forms, Algorithm 2 repeat-
edly assembles a test form by solving Problem (7), and
seeks the uniform test forms from the combinations of
assembled test forms.

Because Problem (7) assembles uniform test forms
with lower overlapping items, this algorithm is expected
to assemble numerous uniform test forms. Accordingly,
this algorithm asymptotically maximizes the number of
assembled test forms. Moreover, this method is more
tractable than the previous method [21] because this
method decomposes uniform test assembly into repeated
LP solving.

However, this algorithm and the previous method [21]
assemble uniform test forms only with non-overlapping con-
ditions. The non-overlapping conditions strongly restrict the
number of assembled test forms.

The non-overlapping conditions therefore interrupt the
efficient uses of the item pool.

4 MAXIMUM CLIQUE ALGORITHM FOR UNIFORM

TEST FORM ASSEMBLY

Traditional methods can not maximize the number of uni-
form test forms from the item pool in overlapping condi-
tions. To solve this problem, we propose new methods.

4.1 Maximum Clique Problem

We apply the maximum clique algorithm to assemble the
maximum number of uniform test forms. The MCA is an
algorithm to solve the maximum clique problem, which is a
well-known combinational optimization problem in graph
theory [29], [30], [31], [32].

As described in this paper, a graph is represented as a
pair G ¼ fV;Eg, where V denotes a set of vertices, and E
denotes a set of edges.

The maximum clique problem seeks a special structure
called maximum clique from a given graph. A Clique is a set
of vertices for which each pair of vertices is connected. The
maximum clique is the clique which has the maximum
number of vertices in the given graph.

LettingG ¼ fV;Eg be a finite graph, and letting C � V be
clique, then the maximum clique problem is formally
defined as follows:

maximize jCj
subject to

8v; w 2 C; fv; wg 2 E

(clique constraint).

(8)

Fig. 1 presents an example of the maximum clique. Graph G
has six vertices V with nine edges E. The maximum clique

Cmax ¼ f1; 2; 5; 6g has four vertices and six edges.

4.2 Maximum Clique Algorithm for Uniform Test
Form Assembly

In our study, the maximum number of uniform test forms is
assembled to solve the maximum clique problem.

We assemble the following Uniform test forms:

1. Any test form satisfies all test constraints.
2. Any two test forms satisfy the overlapping con-

straint. (i.e., any two test forms have fewer overlap-
ping items than the allowed number in the
overlapping constraint).

Accordingly, the maximum number of uniform test form
assembly can be described as the maximum clique extrac-
tion from a graph:

V ¼

s : s 2 S;Feasible test form s

satisfies all test constraints

excepting the overlapping

constraint from a given

item pool

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

;

E ¼
fs0; s00g : The pair of s0and s00

satisfies the

overlapping constraint

8><
>:

9>=
>;
.

This maximum clique problem seeks the maximum set of
feasible test forms in which any two test forms satisfy the
overlapping constraint. This set is the maximum uniform
test forms. Therefore, this optimization problem theoreti-
cally maximizes the number of uniform test forms. Fig. 2
presents an example of uniform test form assembly using
the maximum clique problem. The graph G has six feasible
test forms T1-T6 with nine satisfactions of overlapping

Fig. 1. Maximum clique in graphG.

ISHII ET AL.: MAXIMUM CLIQUE ALGORITHM AND ITS APPROXIMATION FOR UNIFORM TEST FORM ASSEMBLY 87

constraint and the maximum number of uniform test forms
Cmax ¼ fT1;T2;T3;T4g.

Belov and Armstrong’s method [21] is a special case of
this maximum clique problem when E ¼ ffv; wg :
v and w have no overlap items ðv \ w ¼ ;Þg. Therefore, our
method generalizes Belov and Armstrong’s method by
relaxing the overlapping constraint.

4.3 Exact Solution: ExMCP

We propose a uniform test assembly algorithm; ExMCP,
which exactly solves the maximum clique problem
described in Section 4.2. Therefore, ExMCP theoretically
maximizes the number of uniform test forms.

ExMCP consists of the following three steps:

1. (Assembling feasible test forms)
Step 1 assembles all feasible test forms. We use

branch and bound technique (e.g., [33]) to assemble
the feasible test forms using test constraints except
for the overlapping constraint. Finally, Step 1 stores
the feasible test forms in system memory.

2. (Generating a graph which corresponds to a set of
feasible test forms with overlapping items)

Step 2 generates the corresponding graph by
counting overlapping items among each pair of fea-
sible test forms. The feasible test forms are repre-
sented as vertices and satisfactions of the
overlapping constraint are represented as edges.

Thereby, only if a pair of test forms has fewer
common items than the overlapping constraint do
two vertices representing the pair of test forms have
an edge.

3. (Extracting the maximum clique from the graph)
Step 3 extracts the maximum clique from the

graph generated in Step 2. The extracted maximum
clique represents the maximum number of uniform
test forms that satisfy all test constraints including
the overlapping constraint.

To obtain the maximum clique, we employ
Nakanishi and Tomita’s algorithm [31], which is
the fastest exact algorithm in MCA.

ExMCP guarantees extraction of the maximum number
of uniform test forms with overlapping conditions from all
combinations of feasible test forms from an item pool. How-
ever, the computational time and space costs of ExMCP are
Oð2F Þ and OðF 2Þ when F is the number of feasible test
forms from an item pool. Consequently, ExMCP is not avail-
able for large item pools.

4.4 Performance of ExMCP

To demonstrate the performance of ExMCP, we conduct the
following experiment. We make a comparison of the num-
ber of assembled test forms of ExMCP to those of traditional
methods [18], [19], [20].

Table 1 presents details of the computational environ-
ment used for this experiment.

We use two simulated item pools. The items in the item
pools have the discrimination parameter a and the difficulty
parameter b based on item response theory. The items have
the discrimination parameter a ¼ 1. The difficulty parame-
ter b is distributed as b 	 Nð0; 12Þ. The simulated item pools
have the total number of items I ¼ 20 and 30. (ExMCP can
not accommodate large item pools because it entails high
computational costs.)

We set the test constraints as follows:

1. The test includes four items.
2. The allowed numbers of overlapping items are

0; 1 and 2,
and the information constraint. The information con-

straint is described by the lower and upper bounds of test
information function IðukÞ, and those are listed in Table 2.

For traditional methods [18], [19], [20], we determine the
target value of information function T ðukÞ as follows:

T ðukÞ ¼ f(Lower bounds of information function)

þ (Upper bounds of information function)g=2:
(The target value T ðukÞ is an average value of the lower and

upper bounds of information function.) We used CPLEX [28]

for the linear programming method in Linden’s method.

Table 3 shows the averages (Avg.) and the standard devi-
ations (SD) of the assembled test forms for each method, the
item pool size and the overlapping constraint (maximum
number of overlap items). “OC” denotes the overlapping
constraint. “EM” denotes the proposed method ExMCP,
“BST” denotes Linden’s method [18], “GA” denotes Sun’s
method[19], and “BA” denotes Songmuang’s method[20].

Table 4 shows the number of times that the proposed
method generates more uniform test forms than the tradi-
tional methods do. “vsBST” signifies a comparison to
Linden’s method [18]. “vsBA” signifies a comparison to

TABLE 1
Computational Environment

TABLE 2
Test Information Constraint for Experiment of ExMCP

Fig. 2. MCA for uniform test assembly.

88 IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. 7, NO. 1, JANUARY-MARCH 2014

Sun’s method [19]. “vsGA” signifies a comparison to
Songmuang’s method [20]. “> ” denotes the times that
ExMCP assembles fewer uniform test forms than the target
traditional method does. “¼” denotes the times that ExMCP
assembles as many uniform test forms as the target tradi-
tional method does. “< ” denotes the times that ExMCP
assembles a greater number of uniform test forms than the
target traditional method does.

Table 3 shows no significant difference. However, Table 4
shows that in any condition, ExMCP assembles as many or
more uniform test forms than the traditional methods do.
Moreover, the “< ” cases increases with item pool size or
overlapping constraints.

That is to say, ExMCP increases the number of assembled
test forms more efficiently than the traditional methods do.
This efficiency increases with the number of feasible test
forms (or the scale of test assembly).

However, ExMCP presents computational cost problems.
In this experiment, the item pool sizes are limited by
computational costs of ExMCP. Accordingly, the result
shows that ExMCP is not available for large item pools.

These results are summarized as follows:

1. ExMCP assembles a greater number of uniform test
forms than the traditional methods do.

2. The efficiency of ExMCP increases with the scale of
test assembly.

3. However, ExMCP presents computational costs
problems in large scale test assembly.

4.5 Approximate Solution: RndMCP

To relax the computational cost problem, we approximate
ExMCP using a random search approach. This method is
designated as RndMCP, which maximizes the number of
uniform test forms asymptotically.

RndMCP cannot employ the usual approximation for
MCA. The usual approximations require a global structure
of the target graph. For example, [32], [34], [35] use each

vertices degree for a given graph. The corresponding
graph in the proposed method cannot use the global struc-
ture because the vertices in the corresponding graph are
too numerous to store. Consequently, RndMCP approxi-
mates ExMCP without using the global structure.

Although, RndMCP consists of three steps similar to
those of ExMCP, RndMCP repeats the three steps using a
random search approach until it satisfies the three following
constraints for computational costs:

� C1 is the number of feasible test forms assembled in
Step 1,

� C2 is the time limit of Step 3,

� C3 is the total time limit of the test assembly.
Details of steps are the following:

1. (Assembling feasible test forms randomly)
Step 1 randomly assembles feasible test forms.

Step 1 continues this step until the number of feasi-
ble test forms reaches C1. Finally, Step 1 stores the
feasible test forms into the system memory.

2. (Generating a graph that corresponds to a set of fea-
sible test forms with overlapping items)

Step 2 generates the corresponding graph by
counting the overlapping items among feasible test
forms similarly to ExMCP.

3. (Extracting the maximum clique)
Although Step 3 extracts the maximum clique

from the graph similarly to ExMCP, the computation
time of this step is limited byC2.

4. (Controlling the computation time)
Step 4 compares the current largest clique and the

result of Step 3. Step 4 stores the larger clique as the
largest clique. If the computation time is less than
C3, then jump to Step 1.

The computational time cost of RndMCP is C3, and the
space cost of RndMCP is OðC1

2Þ. By controlling the compu-
tational time and space costs, RndMCP relaxes the compu-
tational costs problem in ExMCP.

RndMCP repeatedly extracts the maximum number of
uniform test forms from subsets that are sampled ran-
domly from all of feasible test forms. Therefore, it
assembles the maximum number of uniform test forms
asymptotically.

TABLE 5
Test Information Constraint for Experiment

of RndMCP (Simulated Data)

TABLE 3
Versus the Traditional Method: Average of the Number of Test Forms

TABLE 4
Versus the Traditional Method: Comparison of ExMCP

and Traditional Methods

ISHII ET AL.: MAXIMUM CLIQUE ALGORITHM AND ITS APPROXIMATION FOR UNIFORM TEST FORM ASSEMBLY 89

Moreover, this method seeks the maximum number of
uniform test forms more efficiently than the traditional ran-
dom search methods [19], [20] do because the search space
of RndMCP is more restrictive than that of the traditional
methods. The traditional methods have Oð2F Þ search space
size, but RndMCP (and ExMCP) has Oð20:19171F Þ search
space because this depends on Nakanishi and Tomita’s
MCA [31]. This size is an upper bound of the search space
size of the maximum clique algorithm and might be more
restricted as MCA research progresses.

4.6 Tradeoff between Computational Costs and the
Number of Assembled Test Forms

RndMCP assembles uniform test forms with the computa-
tional cost constraints. Consequently, RndMCP presents a
tradeoff between the number of assembled test forms and
the computational cost constraints. In this section, we eluci-
date this tradeoff: How much cost is sufficient for practical
use? To show that, we compare the number of assembled
test forms in various computational cost constraints.

RndMCP has three cost constraints: C1;C2; and C3. We
first show the relation of C2 and the number of uniform test
forms by plotting. We use six simulated item pools and a
test constraint.

The item pools have the total number of items I¼
70; 80; 90; 100; 110; and 120. The items in simulated item
pools have discrimination parameter a and difficulty
parameter b based on item response theory. The discrimina-
tion parameter a is distributed as a 	 Uð0; 1Þ. The difficulty
parameter b is distributed as b 	 Nð0; 12Þ.

The test constraints are the following:

1. The test includes four items.
2. The allowed numbers of overlapping items are

0; 1 and 2.
The information constraints are presented in Table 5.
We determined C1 ¼ 100; 000 and C3 ¼ C2. This C1 size

is the maximum allocation of the used environment. We
change C2 between 0 � C2 � 360 min, and plot the number
of assembled test forms forC2.

Table 6 lists the number of assembled tests for item
pool size, C2 time constraints, and Overlapping Con-
straints. From Table 6, the number of assembled test
forms does not appear to increase with the time con-
straint C2. This result shows that the number of assem-
bled test forms rapidly converges to the optimal
solution, and that the time constraint C2 does not
strongly affect the number of assembled test forms.

Next, we show the relations of C1, C3 and the num-
ber of test forms. We compare the number of assembled
test forms using ExMCP and RndMCP with various C1

and C3 constraints.
We use a simulated item pool (I ¼ 120) and the same test

constraints as those used in the preceding experiment. We
use the space constraints C1 as 1; 000; 5; 000; 10; 000; 50; 000;
and 100; 000, and the time constraints as C2 ¼ 60½s�, C3 �
360min (¼ 6 hr).

Table 7 shows the number of assembled tests for C1

space constraints, C3 time constraints, and Overlapping
Constraints.

In Table 7, the “Optimal” correspond to the number of
assembled test forms by ExMCP. These numbers are the
maximum numbers of test forms in the respective
conditions.

From Table 7, it might be readily apparent that the num-
ber of assembled test forms did not increase greatly with
time constraint C3. Moreover, the number of assembled test
forms increases with C1, and close to the “Optimal”. How-
ever, in the case of “OC” ¼ 2, the number of test forms does
not reach the “Optimal” level even if C1 ¼ 100; 000. These
results demonstrate that C1 ¼ 100; 000 is insufficient for
“OC”¼ 2. Moreover, the different number between RndMCP
and ExMCP increaseswith the scale of the test assembly.

These results are summarized as shown below.

1. The number of test forms assembled by RndMCP
increases with space cost C1, and approaches the
result of ExMCP.

2. The time costsC2 andC3 do not affect the number of
assembled test forms.

TABLE 6
C2 Time and Number of Tests

TABLE 7
C3 Time and Number of Tests

90 IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. 7, NO. 1, JANUARY-MARCH 2014

4.7 Comparison of RndMCP and ExMCP

To show the performance of RndMCP, we present the fol-
lowing experiment. We compare the number of assembled
test forms with ExMCP, RndMCP, and the traditional meth-
ods [18], [19], [20].

We use simulated and actual item pools. The simulated
item pools have a total number of items I ¼ 70; 80; 90;
100; 110 and 120. We set the simulated item parameter to
have similar features to actual items. The items have a dis-
crimination parameter a distributed as a 	 Uð0; 1Þ, and the
difficulty parameter b distributed as b 	 Nð0; 12Þ.

We use the actual item pools with total numbers of
items I ¼ 87, 93, 104, 141, 158, 175, and 220. The distribu-
tions of item parameters a and b in item pool are given
in Table 8.

We set the test constraint as follows:

1. The test includes four items.
2. The allowed numbers of overlapping items are

0; 1 and 2,
and the information constraints listed in Table 9.

These constraints are configured to increase the number
of assembled test forms to the constraints ID:1 < ID:2
< ID:3 for the actual item pools.

These actual item pools and test constraints were used in
the synthetic personality inventory (SPI) examination [39].
The SPI is a popular aptitude test in Japan. This examination
has seven contents areas and total number of 28 items (four
items
 seven contents areas). In fact, this examination was
assembled by integrating the sub-tests assembled separately
from each area.

For the simulated experiments, we use the same compu-
tational environment as in the previous experiment pre-
sented in Table 1 and the time limitation of test assembly
was 6 hr for all methods except for RndMCP. For RndMCP,
we determine the computational cost constraint C1 as
100,000, C2 as 60 s, and C3 as 1,400 s.

For the actual experiments, we use the computational
environment presented in Table 10.

The time limitation of test assembly was 6 hr for all meth-
ods except for RndMCP. For RndMCP, we determine the

computational cost constraint C1 as 100,000, C2 as 30 s, and
C3 as 6hr.

For traditional methods [18], [19], [20], we determined
the same target value of information function T ðukÞ as the
previous experiment in Section 4.4.

Table 11 shows the number of test forms assembled
using the proposed methods and traditional methods from
simulated item pools for the item pool sizes, the overlap-
ping constraint (maximum number of overlap items and
information constraints. In the table, “EM” denotes the pro-
posed exact method: ExMCP, “RM” denotes the proposed
approximate method: RndMCP, “BST” denotes Linden’s
method [18], “GA” denotes Sun’s method [19], and “BA”
denotes Songmuang’s method [20].

In many cases, ExMCP failed the test assembly because it
did not complete the calculations in 6 hr (y). Moreover, it
was unable to assemble uniform test forms because the
computational environment had an insufficient system (z).
In y cases, ExMCP detected a greater number of uniform
test forms than any other method in a given time. In all
cases, RndMCP assembled a greater number of uniform test
forms than the traditional methods [18], [19], [20] did. In
addition, the computational time of RndMCP is less than
that of the other random search methods (e.g., [19], [20])
The computational time of RndMCP is C3 ¼ 1;400 s. The
time limitations of the other random search methods are
6 hr. Results show that RndMCP provides more accurate
results than the other random search methods do. More-
over, the different numbers of assembled test forms
between the proposed method and the traditional methods
increase with the number of assembled test forms (or the
scale of assembly).

Table 12 shows the number of test forms assembled by
RndMCP and the traditional methods from the actual item
pools. Similar to the previous experiments, the number of
test forms assembled by RndMCP is greater than those of
the traditional methods. In all cases, RndMCP assembled
greater quantities of uniform test forms than the traditional
methods [18], [19], [20] did. Moreover, the different number
of assembled test forms between RndMCP and the tradi-
tional methods increases with the scale of test assembly.

Figs. 3, 4, and 5 portray results obtained using the pro-
posed method and the traditional methods from the item
pool (I ¼ 141). The horizontal axes show the test constraints.
The vertical axes show the numbers of assembled test forms.
The overlapping constraints in Figs. 3, 4, and 5 are 0; 1 and 2.

From Figs. 3, 4, and 5, the number of assembled test
forms by RndMCP are shown to increase more than those
of the traditional methods as the range between the upper
and lower bounds of test information increases. Accord-
ingly, RndMCP uses an item pool more efficiently than the
traditional methods do.

Actually, there is a difference in the number of high
informative items among item pools. This difference causes

TABLE 8
Details of Actual Item Pool

TABLE 9
Test Information Constraints for Comparison of RndMCP and

Traditional Methods

TABLE 10
Computation Environment

ISHII ET AL.: MAXIMUM CLIQUE ALGORITHM AND ITS APPROXIMATION FOR UNIFORM TEST FORM ASSEMBLY 91

the phenomenon that the item pool size does not necessarily
increase the number of assembled test forms. For example,
the number of assembled test forms from the item pool with
158 items is lower than that from the item pool with 104
items. In addition, even when a given test constraint is
relaxed (i.e., a given test constraint changes from ID:1 to
ID:2), then the number of assembled test forms from the
item pool with 87 items does not increase.

Therefore, these results are summarized as follows:

1. ExMCP assembles the maximum number of uniform
test forms, but it entails a computational cost problem.

2. Even when ExMCP fails a uniform test form assem-
bly by computational cost problem, RndMCP assem-
bles a greater number of uniform test forms than the
traditional methods do. Actually, RndMCP relaxes
ExMCP computational cost problems.

3. RndMCP assembled more quantities of uniform test
forms in a shorter time than the other random search
methods (e.g., [21], [20]) did. Results show that
RndMCP provides more accurate results than the
other random search methods do.

4. The differences of the number of assembled test
forms between the proposed methods and tradi-
tional methods increase with the number of feasi-
ble test forms (or the scale of test assembly). For
large-scale assembly, the proposed methods are
more efficient than the traditional methods are.

5 RNDMCP FOR LARGE ITEM POOLS

Finally, we demonstrate the performance of RndMCP for
large item pools. We compare the number of assembled
test forms with RndMCP and the traditional methods

TABLE 11
Results for the Simulated Item Pool

y: Maximum number of uniform test forms detected in 6 hr.
z: insufficient memory problem interrupted the test construction

TABLE 12
Results for Actual Item Pool

92 IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. 7, NO. 1, JANUARY-MARCH 2014

[18], [19], [20]. We use simulated item pools and an
actual item pool.

For this experiment, we use the computational environ-
ment presented in Table 1.

We use three simulated item pools with total numbers of
items I ¼ 500; 1;000, and 2;000. The items in the simulated
item pools have discrimination parameter a 	 Uð0; 1Þ. The
difficulty parameter b is distributed as b 	 Nð0; 12Þ.

We use an actual item pool with a total number of items
I ¼ 978. This item pool is a summation of the actual item
pools used in a previous experiment Section 4.7. Details of
this item pool are listed in Table 8.

We set the test constraints as follows:

1. The test includes 25 items.
2. The numbers of allowed overlapping items are

0; 5 and 10,
and test information constraint as Table 13, We determine

these constraints according to the actual test setting[39].

For RndMCP, we determine the computational cost con-
straints C1 ¼ 100; 000, C2 ¼ 60 s, and C3 ¼ 24 hr. All other
assembly methods are also given 24 hr for calculation time.

For the traditional methods [18], [19], [20], we determined
the same target value of the information function T ðukÞ as
the previous experiment Section 4.4.

Table 14 shows the number of test forms assembled
using the RndMCP and the traditional methods for the item
pool size and the overlapping constraint. With the exception
of “OC¼0” cases, the proposed method assembles more
number of test forms than traditional methods do.

However, in the case of “OC¼0”, BST assembles the
greatest number of tests. The reason is that theC1 size is too
small for this test assembly setting. In the case of “OC¼10”,
the numbers of assembled tests by RndMCP converged to
100,000. In the cases except for “OC¼0”, RndMCP assem-
bles the most number of tests. Especially, the number of test
forms assembled by RndMCP exponentially increases as the
number of overlapping items increases. Therefore, by allow-
ing item overlapping between assembled tests, RndMCP
assembles a greater number of assembled tests than tradi-
tional methods do.

6 CONCLUSION

We proposed two uniform test form assembly methods,
ExMCP and RndMCP, based on the maximum clique algo-
rithm. The proposed methods exactly or asymptotically
maximize the quantities of uniform test forms with an over-
lapping condition.

ExMCP generalizes Belov’s method [21] for overlapping
conditions. Furthermore, it maximizes the number of uni-
form test forms with overlapping conditions. However,
ExMCP has computational cost problems. RndMCP approx-
imates ExMCP using a random search approach to relax
this computational cost problem. RndMCP assembles a
greater number of uniform test forms than traditional meth-
ods (e.g., [18], [19], [20], [21]) do. Moreover, RndMCP pro-
vides more accurate results than other random search
methods (e.g., [19], [20]) do.

To demonstrate these features, we conducted some
experiments using simulated and actual data. Each experi-
ment demonstrated that the proposed methods assemble a

Fig. 3. Constraints and numbers of tests in overlap ¼ 0 from actual item
pool I ¼ 141.

Fig. 4. Constraints and numbers of tests in overlap ¼ 1 from actual item
pool I ¼ 141.

Fig. 5. Constraints and numbers of tests in overlap ¼ 2 from actual item
pool I ¼ 141.

TABLE 13
Test Information Constraint for Large Item Pools

TABLE 14
Number of Tests from Large Item Pools

ISHII ET AL.: MAXIMUM CLIQUE ALGORITHM AND ITS APPROXIMATION FOR UNIFORM TEST FORM ASSEMBLY 93

greater number of uniform test forms than the traditional
methods do. Moreover, the different numbers of assem-
bled test forms between the proposed methods and the
traditional methods increase with the number of feasible
test forms (or the scale of test assembly). These results
demonstrate that the proposed methods can assemble a
greater number of uniform test forms than the traditional
methods can.

In simulated experiments, more cases exist in which
ExMCP cannot assemble uniform test forms because of
computational cost problems. However in those cases,
RndMCP assembles a greater number of uniform test
forms than the traditional methods do. This result shows
that RndMCP relaxes the computational cost problems
of ExMCP.

In simulated experiments, the computational time of
RndMCP is less than that of the other random search meth-
ods (e.g., [19], [20]). In actual experiments, RndMCP assem-
bles a greater number of test forms than the traditional
methods do, given equal time limitations. Therefore,
RndMCP provides more accurate results than other random
search methods (e.g., [19], [20]) do.

Results underscore the salient benefits of using the pro-
posed methods.

However, in these experiments, we did not use a content
constraint (such as the number of algebra items, geometry
items and numbers and operations). Moreover, we employ
only a 2PL-IRT model, but there are various IRT models
such as 1 and 3 PL models. Wainer reports that those situa-
tions might produce unpredictable behavior [40]. Therefore,
one course of future work is to evaluate the proposed
method in those situations.

Furthermore, Wainer observed that the distribution of
item exposure (use counts in assembled tests) followed
Zip’s law [41]. In other words, the same item is selected on
nearly every form. Our methods also might suffer the bias
of item exposure. Therefore, an important future challenge
is to resolve the item exposure problem.

REFERENCES

[1] F.M. Lord, Applications of Item Response Theory to Practical Testing
Problems. First ed., Routledge, July 1980.

[2] T.J.J.M. Theunissen, “Binary Programming and Test Design,” Psy-
chometrika, vol. 50, no. 4, pp. 411-420, Dec. 1985.

[3] W.J. van der Linden and E. Boekkooi-Timminga, “A Zero-One Pro-
gramming Approach to Gulliksen’s Matched Random Subtest Method,”
Series Project Psychometrische Aspecten Van Item Banking, Dept.
of Education, Univ. of Twente, 1986.

[4] T.J.J.M. Theunissen, “Some Applications of Optimization Algo-
rithms in Test Design and Adaptive Testing,” Applied Psychological
Measurement, vol. 10, no. 4, pp. 381-389, 1986.

[5] E. Boekkooi-Timminga, “Simultaneous Test Construction by
Zero-One Programming,”Methodika, vol. 1, pp. 101-112, 1987.

[6] F.B. Baker, A.S. Cohen, and B.R. Barmish, “Item Characteristics of
Tests Constructed by Linear Programming,” Applied Psychological
Measurement, vol. 12, no. 2, pp. 189-199, 1988.

[7] J.J. Ameda and W.J. van der Linden, “Algorithms for Computer-
ized Test Construction Using Classical Item Parameters,” J. Educa-
tional Statistics, vol. 14, pp. 279-290, 1989.

[8] T.A. Ackerman, “An Alternative Methodology for Creating
Parallel Test Forms Using the IRT Information Function,” Proc.
Ann. Meeting of the Nat’l Council on Measurement in Education,
Mar. 1989.

[9] J.J. Ameda, “Models and Algorithms for the Construction of
Achievement Tests,” PhD Dissertation, Univ. of Twente, 1990.

[10] J.J. Adema, E. Boekkooi-Timminga, and W.J. van der Linden,
“Achievement Test Construction Using 0-1 Linear Pro-
gramming,” European J. Operational Research, vol. 55, no. 1,
pp. 103-111, 1991.

[11] J.J. Adema, “Methods and Models for the Construction of Weakly
Parallel Tests,” Applied Psychological Measurement, vol. 16, no. 1,
pp. 53-63, 1992.

[12] L. Swanson and M.L. Stocking, “A Model and Heuristic for Solv-
ing Very Large Item Selection Problems,” Applied Psychological
Measurement, vol. 17, no. 2, pp. 151-166, 1993.

[13] H. Jeng and S. Shih, “A Comparison of Pair-Wise and Group
Selections of Items Using Simulated Annealing in Automated
Construction of Parallel Tests,” Psychological Testing, vol. 44, no. 2,
pp. 195-210, 1997.

[14] R.M. Luecht, “Computer-Assisted Test Assembly Using Optimi-
zation Heuristics,” Applied Psychological Measurement, vol. 22,
no. 3, pp. 224-236, 1998.

[15] W.J. van der Linden and J.J. Adema, “Simultaneous Assembly of
Multiple Test Forms,” J. Educational Measurement, vol. 35, no. 3,
pp. 185-198, Sept. 1998.

[16] G.-J. Hwang, P.-Y. Yin, and S.-H. Yeh, “A Tabu Search Approach
to Generating Test Sheets for Multiple Assessment Criteria,” IEEE
Trans. Education, vol. 49, no. 1, pp. 88-97, Sept. 2006.

[17] P. Songmuang and M. Ueno, “Development of Practice of and
Integrative E-Testing System,” Japanese Test Soc., vol. 4, no. 1,
pp. 53-64, 2008.

[18] W.J. van der Linden, Liner Models for Optimal Test Design.
Springer, 2005.

[19] K.-T. Sun, Y.-J. Chen, S.-Y. Tsai, and C.-F. Cheng, “Creating
IRT-Based Parallel Test Forms Using the Genetic Algorithm
Method,” Applied Measurement in Education, vol. 2, no. 21,
pp. 141-161, 2008.

[20] P. Songmuang and M. Ueno, “Bees Algorithm for Construction of
Multiple Test Forms in E-Testing,” IEEE Trans. Learning Technolo-
gies, vol. 4, no. 3, pp. 209-221, July/Sept. 2011.

[21] D.I. Belov and R.D. Armstrong, “A Constraint Programming
Approach to Extract the Maximum Number of Non-Overlapping
Test Forms,” Computational Optimization and Applications, vol. 33,
pp. 319-332, 2006.

[22] D.I. Belov, “Uniform Test Assembly,” Psychometrika, vol. 73, no. 1,
pp. 21-38, 2008.

[23] F.J. Solis and R.J.-B. Wets, “Minimization by Random Search
Techniques,” Math. of Operations Research, vol. 6, no. 1, pp. 19-30,
1981.

[24] W.J. van der Linden and E. Boekkooi-Timminga, “A Maximin
Model for IRT-Based Test Design with Practical Constraints,” Psy-
chometrika, vol. 54, no. 2, pp. 237-247, June 1989.

[25] E. Boekkooi-Timminga, “The Construction of Parallel Tests from
IRT-Based Item Banks,” J. Educational Statistics, vol. 15, pp. 129-
145, 1990.

[26] R.D. Armstrong, D.H. Jones, and Z. Wang, “Automated Parallel
Test Construction Using Classical Test Theory,” J. Educational Sta-
tistics, vol. 19, no. 1, pp. 73-90, 1994.

[27] R.D. Armstrong, D.H. Jones, and C.S. Kunce, “IRT Test Assembly
Using Network-Flow Programming,” Applied Psychological Mea-
surement, vol. 22, no. 3, pp. 237-247, 1998.

[28] ILOG, ILOG CPLEX User’s Manual 11.0, 2007.
[29] R.M. Karp, “Reducibility Among Combinatorial Problems,” Com-

plexity of Computer Computations, vol. 40, no. 4, pp. 85-103, 1972.
[30] M.R. Garey and D.S. Johnson, Computers and Intractability; A Guide

to the Theory of NP-Completeness. W.H. Freeman, 1990.
[31] H. Nakanishi and E. Tomita, “An oð20:19171nÞ-Time and Polyno-

mial-Space Algorithm for Finding a Maximum Clique,” The Spe-
cial Interest Group Technical Reports of IPSJ, vol. 2008, no. 6, pp. 15-
22, 2008.

[32] X. Geng, J. Xu, J. Xiao, and L. Pan, “A Simple Simulated Annealing
Algorithm for the Maximum Clique Problem.,” Information Scien-
ces, vol. 177, no. 22, pp. 5064-5071, 2007.

[33] J.J. Ameda, “Implementations of the Branch-and-Bound Method
for Test Construction Problems,” Methodika, vol. 6, pp. 99-117,
1992.

[34] Q. Zhang, J. Sun, and E. Tsang, “An Evolutionary Algorithm with
Guided Mutation for the Maximum Clique Problem,” IEEE Trans.
Evolutionary Computation, vol. 9, no. 2, pp. 192-200, Apr. 2005.

[35] S. Balaji, V. Swaminathan, and K. Kannan, “A Simple Algorithm
to Optimize Maximum Independent Set,” Advanced Modeling and
Optimization, vol. 12, no. 1, pp. 107-118, 2010.

94 IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, VOL. 7, NO. 1, JANUARY-MARCH 2014

[36] K. Katayama, A. Hamamoto, and H. Narihisa, “An Effective
Local Search for the Maximum Clique Problem,” Information
Processing Letters, vol. 95, pp. 503-511, http://dx.doi.org/
10.1016/j.ipl.2005.05.010, Sept. 2005.

[37] A. Singh and A.K. Gupta, “A Hybrid Heuristic for the Maximum
Clique Problem,” J. Heuristics, vol. 12, pp. 5-22, Jan. 2006.

[38] S. Balaji, V. Swaminathan, and K. Kannan, “A Simple Algorithm
for Maximum Clique and Matching Protein Structures,” Int’l J.
Combinatorial Optimization Problems and Informatics, vol. 1, no. 2,
pp. 2-11, 2010.

[39] Recruit, Synthetic Personality Inventory (SPI), http://www.spi.
recruit.co.jp/, 2014.

[40] H. Wainer, “Rescuing Computerized Testing by Breaking Zipf’s
Law,” J. Educational and Behavioral Statistics, vol. 25, pp. 203-224,
2000.

[41] H. Wainer and Educational Testing Service, CATS: Whither and
Whence. Educational Testing Service, 2000.

[42] T. Ishii, P. Songmuang, and M. Ueno, “A Method to Extract the
Maximum Number of Test Forms Using Maxclique,” Proc. 23rd
Ann. Conf. Japanese Soc. for Artificial Intelligence, 2009.

[43] T. Ishii, P. Songmuang, and M. Ueno, “Maximum Clique Algo-
rithm for Uniform Test Forms,” Proc. 16th Int’l Conf. Artificial Intel-
ligence in Education, 2013.

Takatoshi Ishii received the BEng and MEng
degrees from the University of Electro-Communi-
cations in 2008 and 2011, respectively. He is cur-
rently a student of the doctor course at the
University of Electro-Communications. His
research interests include e-testing, data mining,
and computer science.

Pokpong Songmuang received the BEng
degree from Thammasat University in 2003, the
MEng degree from the Nagaoka University of
Technology in 2006, and the PhD degree in com-
puter science from the University of Electro-
Communications in 2010. He has been a lecturer
at Thammasat University. His research interests
include e-testing, data mining, and web
technologies.

Maomi Ueno received the PhD degree in com-
puter science from the Tokyo Institute of Tech-
nology in 1994. He has been a professor of the
Graduate School of Information Systems at
the University of Electro-Communications since
2013. He has also worked at the Tokyo Institute
of Technology (1994-1996), Chiba University
(1996-2000), and the Nagaoka University of
Technology (2000-2007). He received best paper
awards from the 20th IEEE International Confer-
ence on Tools with Artificial Intelligence (ICTAI

2008), ED-MEDIA 2008, e-Learn 2004, e-Learn 2005, and e-Learn
2007. His research interests include e-learning, e-testing, e-portfolio,
machine learning, data mining, Bayesian statistics, Bayesian networks,
and so on. He is a member of the IEEE.

ISHII ET AL.: MAXIMUM CLIQUE ALGORITHM AND ITS APPROXIMATION FOR UNIFORM TEST FORM ASSEMBLY 95

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

