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FastSTI: A Fast Conditional Pseudo Numerical
Diffusion Model for Spatio-temporal Traffic Data
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Abstract—High-quality spatiotemporal traffic data is crucial
for intelligent transportation systems (ITS) and their data-driven
applications. Inevitably, the issue of missing data caused by
various disturbances threatens the reliability of data acquisition.
Recent studies of diffusion probability models have demonstrated
the superiority of deep generative models in imputation tasks
by precisely capturing the spatio-temporal correlation of traffic
data. One drawback of diffusion models is their slow sam-
pling/denoising process. In this work, we aim to accelerate the
imputation process while retaining the performance. We propose
a fast conditional diffusion model for spatiotemporal traffic data
imputation (FastSTI). To speed up the process yet, obtain better
performance, we propose the application of a high-order pseudo-
numerical solver. Our method further revs the imputation by
introducing a predefined alignment strategy of variance schedule
during the sampling process. Evaluating FastSTI on two types of
real-world traffic datasets (traffic speed and flow) with different
missing data scenarios proves its ability to impute higher-quality
samples in only six sampling steps, especially under high missing
rates (60% ∼ 90%). The experimental results illustrate a speed-
up of 8.3× faster than the current state-of-the-art model while
achieving better performance.

Index Terms—Traffic data imputation, conditional diffusion
model, pseudo numerical methods, fast sampling.
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I. INTRODUCTION

SPATIOTEMPORAL traffic data, acquired by diverse sens-
ing systems, plays a fundamental role in intelligent trans-

portation systems (ITS), since they allow a wide array of
applications and decision-making processes [1], [2]. Neverthe-
less, the common presence of missing data due to equipment
failures and transmission errors negatively affects downstream
tasks, such as traffic flow prediction. Missing values can
lead city planning authorities to rerun experiments to gather
necessary data, resulting in additional budgetary expenses
and time delays [3]. For decades, missing data imputation
techniques have been extensively investigated, mostly trying to
identify spatial and temporal correlations from observed data
and accurately estimate the missing values [4].
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Focusing on imputing traffic data, early traditional methods,
exemplified by statistical [5], [6] or classical machine learning
(ML) [7], [8] are trivially simple that they neglect the poten-
tially complex interactions between spatial and temporal corre-
lations of traffic conditions. Conversely, deep learning (DL)-
based techniques have proven practicality in approximating
complex functions and better mining the spatiotemporal evo-
lution patterns. For example, RNNs and their variants [9], [10]
are commonly employed to impute missing values. Still, RNN-
based approaches present the limitation of assuming sequential
relationships within time-series data [11], [12]. Additionally,
RNNs cannot exploit parallel processing capabilities and face
difficulties directly modeling the interdependence among input
data with distinct timestamps.

Among various imputation methods, deep generative mod-
els have gained significant popularity. Recently, diffusion
models have emerged as the new state-of-the-art method
of deep generative models family [13]–[15], surpassing the
long-standing dominance of generative adversarial networks
(GANs) in diverse of challenging domains [16]. Compared
with other probabilistic approaches (e.g., VAEs and GANs),
diffusion-based imputation offers stable training and models
sophisticated data distributions by sufficient denoising steps
[17].

Existing works started to apply Denoising Diffusion Prob-
abilistic Model (DDPM) to impute missing traffic data [18]–
[20]. However, these approaches involve iterative procedures
with several evaluation steps, which can be time-consuming
and inefficient in real-time applications. To guarantee the
quality of the generated samples and enhance the model’s
capacity for representation, a number of denoise iterations
are necessary for diffusion-based imputation methods, which
lead to higher computational processing. For example, PriSTI
[20] experiments on the METR-LA dataset show that diffu-
sion models need around 50 denoising steps for satisfactory
estimations, taking ∼ 5s to impute average five-minute traffic
speed data from 207 sensors. This inevitably limits the real-
time performance of missing data imputation.

In this work, we design a fast conditional pseudo-numerical
diffusion model for spatiotemporal traffic data imputation,
where we apply pseudo-numerical methods and a predefined
variance schedule to accelerate the inference time while re-
taining the imputation precision. Our acceleration technology
is general and compatible with most diffusion-based models.
To the best of our knowledge, FastSTI is the first to allow real-
time application of conditional diffusion models in traffic data
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imputation with minimal computational cost and negligible
loss of accuracy. We can brief our contributions as follows:

1) We put forward and integrate the high-order pseudo-
numerical solvers into a conditional diffusion model
to improve traffic data imputation, both accuracy and
speed.

2) To further accelerate the data imputation process, we
tune and utilize a variance schedule that derives a short
and effective noise schedule, reducing computation time
without significant loss of accuracy.

3) To leverage observational feature knowledge, we use a
graph convolution network (GCN) variants to capture
the correlation of traffic conditions from both spatial and
temporal perspectives.

4) Extensive experiments are conducted to evaluate our
proposed imputation method, with different data-missing
scenarios and high missing rates, confirming the effec-
tiveness of our FastSTI model.

The remainder of this work is organized as follows: Section
II reviews related work. Section III defines the preliminaries.
Section IV introduces our proposed method FastSTI. Section
V presents experiments and performance discussions, and we
conclude in Section VI.

II. RELATED WORK

A. Spatiotemporal Traffic Data Imputation

Spatiotemporal traffic data imputation has emerged as a
prominent area of study in urban computing. Early con-
ventional methods mainly relied on statistical or classical
machine learning (ML) techniques, overlooking the complex
spatiotemporal patterns within the city’s road network. These
methods include but are not limited to Mean, Linear, KNN,
MICE, VAR, and KF [5], [7]. Likewise, some studies use
matrix and tensor factorization methods, which typically rely
on low-order decomposition to estimate or impute missing data
[21], [22]. In recent years, DL-based methods have become
widely employed when dealing with traffic data imputation
tasks that require complex and nonlinear situations. A common
approach in DL is to utilize RNNs and their variants, such
as LSTMs and GRUs, for time-series imputation [9], [10],
[23]. Nevertheless, RNN-based imputation models are time-
consuming, sensitive to error propagation during imputation,
and struggle to capture dynamic changes effectively.

Recent deep generative-based models have made significant
advancements in spatiotemporal traffic data imputation, such
as variational autoencoders (VAEs) [24]–[26], generative ad-
versarial networks (GANs) [27], [28], and normalizing flows
[29], [30]. As a state-of-the-art class of deep generative
models, diffusion models have emerged as strong contenders
challenging the long-standing supremacy of GANs [16]. For
instance, Tashiro et al. [18] proposed a probabilistic impu-
tation method to directly learn the conditional distribution
with conditional score-based diffusion models. Alcaraz et al.
[19] put forward a combination of state-space models as
effective blocks for capturing long-term dependencies in time
series with conditional diffusion models. Also, Liu et al. [20]
proposed PriSTI, a global context prior diffusion framework

for imputing spatiotemporal data. To enhance accuracy, PriSTI
incorporates conditional information, spatiotemporal global
correlations, and geographic relationships. However, the above
methods pose challenges to the practical application of data
imputation due to the extensive inference time. In this work,
we propose a fast, high-quality traffic data imputation diffusion
model.

B. Diffusion Models

Diffusion models are a family of probabilistic generative
models that proved outstanding performance in various do-
mains, including but not limited to computer vision [31],
spatiotemporal data modeling [18], natural language pro-
cessing [32], and multi-modal learning [33]. Ho et al. [13]
propose the Denoising Diffusion Probabilistic Model (DDPM),
utilizing two Markov chains process of the T -steps: 1) a
diffusion process that perturbs data by adding noise, and
2) a reverse process that reconstructs the data from the
noise. Given a data distribution x́0 ∼ p(x́0), and x́t is the
sampled latent variable sequence, with t = 1, · · · , T denoting
the diffusion steps. The diffusion process gradually adds
standard Gaussian noise into x́0 until it becomes close to x́t,
while the reverse process denoises x́t to recover x́0.

However, the process of generating samples from DDPM
requires iterative approaches that involve multiple evaluation
steps. Many works have focused on accelerating the sampling
process and improving the quality of the resulting samples
by considering stochastic differential equations (SDEs) or
ordinary differential equations (ODEs). Compared to SDE-
slover, ODE-solver brings a more promising approach as the
trajectories they solve are deterministic and not influenced
by random fluctuations. One example of early work in ac-
celerating diffusion model sampling is Denoising Diffusion
Implicit Models (DDIM) [34], considered as a first-order
ODE-solver. In extensive experimental investigations, Karras
et al. [35] recently demonstrated that high-order numerical
solvers achieve a better trade-off between sample quality and
speed. By obtaining the ODE form, many numerical solvers
can be readily applied to the sampling process. To a certain
extent, high-order solvers reduce discretization errors but also
increase computational requirements. Instead, our framework
enhances the denoising process of the diffusion model by
integrating the variants of high-order numerical solvers and
presenting an acceleration method that effectively reduces time
consumption.

C. Numerical Methods

As stated above, various numerical methods can provide
high-order approaches for solving ODEs [36], such as:

1) Heun’s Method: also named improved Euler, it modifies
Euler’s method from one step into a two-step to improve
accuracy.

2) Runge-Kutta Methods (RK): a class of numerical tech-
niques that enhance accuracy by incorporating informa-
tion from multiple hidden steps.

3) Linear Multi-Step Method (LMS): Similar to but dif-
ferent from RK methods, the linear multi-step method
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TABLE I
NOTATION

Notations Descriptions
X Road traffic data
X́ Manually selected imputation target
L The length of time steps
N The number of the observation nodes
G Road traffic network
A Adjacency matrix of geographic information
K Graph random walk steps
χ Conditional observations
T The number of diffusion steps
αt, βt, ᾱt, ϵ Constant hyperparameters of diffusion process
ϵθ , φ̄t, ξ̄t Constant hyperparameters of imputation process
Tacc The number of accelerated denoising steps

utilizes previous steps rather than hidden steps to esti-
mate the next step.

However, [37], [38] also showed that these classical nu-
merical methods introduce significant noise at a high speedup
ratio, causing the solver to sample data that deviates from
the main distribution area. To deal with this issue, Liu et al.
[38] designed a pseudo-numerical method for unconditional
diffusion models by introducing a nonlinear transfer part as
the pseudo-numerical method rather than directly using clas-
sical numerical methods. Our approach leverages the pseudo-
numerical solvers into a conditional diffusion model to further
extract additional prior knowledge, enhancing the imputation
accuracy of traffic data.

III. PRELIMINARIES

Our task is to estimate the missing data or the correspond-
ing distributions in traffic datasets with incomplete observed
values. We define the traffic network as a graph G, exploit
the spatiotemporal correlation within the network, and impute
the missing values. Table I summarizes the notations used
throughout our work.

Formally, let X = {x1, x2, . . . , xL} be a sequence with
shape RL×N , where L represents the length of time steps, and
N is the number of observation nodes (e.g., traffic sensors/loop
detectors). The observation nodes can be denoted with a
directed graph G = (V,E,A), where V and E represent
a finite set of nodes and edges, respectively. The adjacency
matrix A ⊆ RN×N is a distance weight matrix, standing
for the geographic distance between each pair of observation
nodes (vi, vj). Here, we use threshold Gaussian Kernel [39]
to obtain the adjacency matrix from the geographic distances
among nodes.

To account for missing values, we use a binary mask
Ml ∈ {0, 1}N that indicates which node of xl are observed in
X . Specifically, if mi,j

l = 0, the corresponding element xi,j
l

is missing, while mi,j
l = 1 denotes that xi,j

l is an observed
value. To handle missing data in practical scenarios where
ground truth is unavailable, we manually select imputation
targets X́ from the observed data and then use the binary
mask ´

Ml ∈ {0, 1}N to identify these targets. In this way, we
can assess the efficiency of our imputation technique under
real-life conditions.

IV. METHODOLOGY

In this section, we describe the basic ideas of our pro-
posed Fast Conditional Pseudo Numerical Diffusion Model
for Spatio-temporal Traffic Data Imputation (FastSTI). Figure
1 illustrates the architecture of our proposed method. We
build our methodology on top of the state-of-the-art PriSTI
model [20]. Different from PriSTI [20], we propose a high-
order conditional pseudo-numerical method to improve the
sampling quality in the reverse process of the diffusion model.
Meanwhile, we explore an accelerated method by using vari-
ance scheduling to address limitations in the inference time
of diffusion model-based baselines. In addition, a variant of
GCN (Diff-GCN) is adopted to enhance the extraction of local
spatial correlations of traffic patterns (i.e., traffic speed and
flow), in replacement of the direct message passing approach
used in PriSTI.

A. Masking Strategy of Imputation Targets

Given an observed sequence X , we split it into two parts:
one represents the imputation target X́ , while the other repre-
sents the observed values serving as conditional observations.
To simulate different real-life scenarios of missing traffic data,
following [10], we consider two masking strategies:

• Block-missing scenario: Missing values occur in con-
tiguous blocks over time. We randomly mask 5% of
the available data and adopt simulated failures with
a probability of 0.15% for each node/sensor. The du-
ration of each failure is sampled uniformly from the
interval [min steps,max steps], where min steps and
max steps correspond to the length of time steps.

• Point-missing scenario: Random occurrence of missing
values, where 25% of observations are masked in a
random manner.

B. Conditional Diffusion Model

Our conditional diffusion model utilizes the observed values
and geographic location data of all sensors as inputs. This
input information is processed through a coarse interpolation
and conditional feature prior module to model and extract the
spatiotemporal correlations of traffic patterns (i.e., traffic speed
and flow). Subsequently, the noise prediction module performs
reverse denoising using the aforementioned conditional feature
information to generate the imputation output.

Coarse Interpolation. To provide rough but efficient in-
terpolated conditional information denoted as χ, Linear inter-
polation (Lin-TIP) is employed to fill in the missing data at
each node. This approach relies on the uniform distribution
of missing data to ignore the randomness of time series but
retains certain spatiotemporal relations. We can also observe
the baseline result of Lin-TIP from Table V. Meanwhile, Lin-
TIP, a simple architecture, meets the requirements for real-time
performance.

GCN-based Conditional Feature Prior. The linear in-
terpolation method assumes uniform and linear changes in
traffic states. However, traffic data exhibits dynamic temporal
dependencies, and the flow of different regions/interactions
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Fig. 1. Proposed FastSTI Model Architecture. In FastSTI, we take observed values and geographic location information as input. Our approach uses linear
interpolation and leverages the conditional feature prior module to model the prior spatiotemporal context. Afterwards, the prior feature weights are obtained
and fed into the noise prediction module to help predict noise.

affects each other, making linear interpolation inadequate
for capturing the nonlinear and random patterns in real-life
traffic conditions [40]. Therefore, it is necessary to utilize
a learnable module that can adapt to such non-linearity and
randomness in real-life traffic patterns. To address the problem,
we adopt a conditional feature prior module ρ (·), which
takes the interpolated information χ and the adjacency matrix
A to model the nonlinear conditional information, extracting
global spatial and temporal correlations as well as local
geographic correlations of road traffic patterns, as illustrated
in Eq. 1, where the input H denotes a 1d convolution of
the interpolated data (H = Conv(χ)). Similar to [20], the
global temporal correlation is captured using a transformer-
based self-attention module ϕTem (H) (Eq. 2), while another
global self-attention module ϕSpa (H) extracts the global
spatial correlations, as in Eq. 3. To better model the local
geographic correlations, our conditional prior module replaces
the message-passing network in [20] with a graph convolution
module ϕDGCN (H,A)), as in Eq. 4.

ρ (H,A) = MLP(ϕTem (H) + ϕSpa (H) + ϕDGCN (H,A))
(1)

ϕTem (H) = Norm (AttnTem(H) +H) (2)

ϕSpa (H) = Norm (AttnSpa(H) +H) (3)

ϕDGCN (H,A) = Norm (DiffGCN(H,A) +H) (4)

In contrast to the message-passing network (MP) employed
in PriSTI [20], our framework captures the local geographic
correlations with an improved graph convolution network
module named Diffusion-GCN (Diff-GCN). The local geospa-
tial dependency in traffic flow is modeled by correlating it with
a diffusion flow process, described by [41], which effectively
extracts the random nature of traffic dynamics, in addition
to featuring a more lightweight structure during the diffusion
process, meeting real-time requirements. Additionally, Diff-
GCN benefits from a bi-directional random walk K strategy,
providing enhanced flexibility in capturing influences from

upstream and downstream traffic conditions (e.g., speed or
flow).

Specifically, the key operation of diffusion graph convo-
lution over the coarse interpolated data χ is defined in Eq.
5, where A denotes an adjacency matrix (road distance-based
node matrix), K is the step of graph random walk, ϱ ∈ [0, 1] is
the graph coefficient, θk is the parameter of the convolutional
filter, and Dg and Dc are the transition matrices of the graph
diffusion process and the converse one. Here, D = diag(A∗1),
matrix 1 ∈ RN represents all element is one.

DiffGCN(H,A) =

K∑
k=0

(
ϱk≥1

(
θ1k (DgA)

k
+ θ2k (DrA)

k
))

χ

(5)
Simply put, Diff-GCN generates a group of node features as

output after aggregating graph information from the self-node
and its K-hop neighbors. Notably, the number of neighbors
in the graph random walk K is a hyperparameter to be
tuned, where a large K value can enable graph convolution to
capture more geospatial information. The learning process also
becomes more complex and the computation time increases
when larger convolution filters are chosen.

Once the conditional feature prior module Hcond is estab-
lished, these coarse yet useful conditional features are fed
into the noise prediction module to facilitate the learning of
spatiotemporal correlations of road traffic patterns.

Noise Prediction Module. The noise prediction module
is designed to utilize conditional information to predict the
missing values, as shown in Fig. 1. The module takes two
inputs: 1) The conditional prior Hcond; 2) Noise information
Hnoi = Conv(χ||X́), where Conv(.) is the 1d convolution,
(||) represents concatenation, and X́ is the data sequence with
the missing data sampled from a standard Gaussian noise.
The temporal, spatial, and geographic modules of the noise
prediction are the same modules of the conditional feature
prior. However, the noise information Hnoi would not provide
an accurate representation of real-life traffic data; therefore,
the conditional information Hcond is used for both the query
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Algorithm 1 Training procedure

Require: incomplete observed dataX, the noise levels ᾱt,
the adjacency matrix A, the number of iteration N t

i ,
the diffusion steps T.
for i = 1 to N t

i do
Sample xT ∼ qdata, ϵ ∼ (0, I),
t ∼ Uniform ({0, . . . , T − 1})
Compute X́t =

√
ᾱtx0 +

√
1− ᾱtϵ

Lt = || ϵ− ϵθ(X́t, χ,A, t) ||2
Take gradient descent step on ∇θLt

end for

and value of the temporal attention ϕTem and spatial attention
ϕSpa, while Hnoi is used for the key.

The output of each layer in the noise prediction module
is split into a residual connection and skip connections. The
residual connection is the input of the next layer, and the skip
connections of each layer are added and fed into a two-layer
1d convolution to obtain the output of the noise prediction
module, where the output contains only the value of the
imputation target.

C. Training Procedure

Given an observed sequence X and split into two parts: one
part represents the imputation target X́ which is generated by
the masking strategies (i.e., block-missing and point-missing
strategy), while the remaining observed values serve as con-
ditional observations χ.

Next, given the imputation target X́ and the interpolated
conditional observations χ, we sample the imputation target
X́ and train the noise prediction model ϵθ by minimizing the
loss function. Where the noise predictor minimizes the loss
function Lt, defined in Eq. 6, where the imputation target
X́t =

√
ᾱtx0 +

√
1− ᾱtϵ; ᾱt =

∏t
i=1 αi, αt = 1 − βt. The

training procedure is summarized in Algorithm 1.

minLt = minEX́∼q(X́0),ϵ∼N(0,I) || ϵ− ϵθ(X́t, χ,A, t) ||2
(6)

D. Conditional Pseudo-Numerical Methods

As described earlier, we aim to speed up the imputation
process and improve its quality. Inspired by [38], we introduce
the pseudo-numerical solvers to our conditional diffusion
model during the reverse/sampling process. Different from
the baseline models PriSTI [20] and CSDI [18] that directly
use reverse sampling calculation of DDPM, our approach
leverages the higher-order numerical solver to sample the
distribution of data and avoid the influence of random noise
caused by DDPM, thereby enhancing the quality of data
generation.

In this work, we apply two kinds of pseudo-numerical meth-
ods for the conditional diffusion model in our imputation task:
FastSTI-2 (2nd-order) and FastSTI-4 (4th-order). As DDPM
can be considered a special case of DDIM [34], we provide the
following steps to develop the high-order pseudo-numerical

Algorithm 2 Imputation (sampling) process of FastSTI-4

Require: observed data X, adjacency matrix A,
#iterations N t

i ,noise predictor ϵθ,diffusion steps T.
xT ∼ N (0, I)
for t = T − 1, T − 2, T − 3 do

xt, et = PRK4(xt+1, χ,A, t+ 1, t)
end for
for t = T − 4, . . . , 0 do

xt, et = PLMS4(xt+1, {ep}p>t, χ,A, t+ 1, t)
end for
return x0

sampling method in the conditional diffusion model. First,
the reverse process of DDIM is transformed into an ordinary
differential equation (ODE) form. Then, the nonlinear transfer
part is combined with three classical numerical techniques,
namely Heun’s methods, Runge-Kutta methods (RK), and
Linear Multi-Step methods (LMS). Meanwhile, the conditional
information is built into the pseudo-numerical diffusion model
for our task of traffic data imputation.

Mathematically, the reverse process of DDIM is defined in
Eq. (9). To construct the ODE form of the diffusion model,
the equation is reformulated by subtracting xt from both sides.
This reformulation makes it equivalent to a numerical step in
solving the ODE, as demonstrated in Eq. (10).

Then, the discrete-time step t−1 in Eq. (9) is replaced with
a continuous version represented by t−∆t, and by letting ∆t
tends to 0, the ODE becomes:

dx

dt
= −ᾱ′(t)

(
x(t)

2ᾱ(t)
− ϵθ(x(t), t)

2ᾱ(t)
√

1− ᾱ(t)

)
(7)

After obtaining the ODE, the pseudo-numerical method
categorizes the classical numerical methods (Heun’s, RK, and
LMS) into two components:

1) The gradient part, responsible for determining the gradi-
ent at each step, e.g., 4th-order linear multi-steps gradi-
ent part f ′ = ∆t

24 (55ft−59ft−∆t+37ft−2∆t−9ft−3∆t).
2) The transfer part, as shown in Eq. (8), which generates

the result for the next step, i.e., xt−∆t = xt +∆tf ′.
All numerical methods share the same transfer part, while

their gradient parts differ. The transfer part xt−∆t is obtained
by ν, rewriting Eq. (10) into Eq. (8), where χ represents the
conditional observations. While the gradient part is defined for
each numerical method in Table II.

ν (xt, ϵt, χ,A, t, t−∆t) =
√
ᾱt−∆t√
ᾱt

xt −
(ᾱt−∆t − ᾱt)

√
ᾱt

(√
(1− ᾱt−∆t) ᾱt +

√
(1− ᾱt) ᾱt−∆t

)ϵt
(8)

Algorithm 2 shows an example of our FastSTI-4, where
we initially adopt the 4th-order pseudo Runge-Kutta (PRK4)
method to obtain the results of the first three steps, fol-
lowed by the utilization of the 4th-order pseudo-linear multi-
step method (PLMS4) to compute the remaining. Similarly,



6

TABLE II
GRADIENT EQUATIONS OF THE DIFFERENT PSEUDO NUMERICAL METHODS

2nd-order pseudo linear multi-step (PLMS2)
et = ϵθ (x́t, χ,A, t) ,

e′t =
1

2
(3et − et−∆t),

xt−∆t = ν(x́t, χ, e
′
t, A, t, t−∆t).

2nd-order pseudo Heun’s (PH2)

e1t = ϵθ (x́t, χ,A, t) ,

x1
t = ν(x́t, χ, e

1
t , A, t, t−∆t),

e2t = ϵθ
(
x́1
t , χ,A, t−∆t

)
,

e′t =
1

2
(e1t + e2t ),

xt−∆t = ν(x́t, χ, e
′
t, A, t, t−∆t).

4th-order pseudo linear multi-step (PLMS4)
et = ϵθ (x́t, χ,A, t) ,

e′t =
1

24
(55et − 59et−∆t + 37et−2∆t − 9et−3∆t),

xt−∆t = ν(x́t, χ, e
′
t, A, t, t−∆t).

4th-order pseudo Runge-Kutta (PRK4)

e1t = ϵθ (x́t, χ,A, t) ,

x1
t = ν(x́t, χ, e

1
t , A, t, t−

∆t

2
),

e2t = ϵθ(x́
1
t , χ,A, t−

∆t

2
),

x2
t = ν(x́t, χ, e

2
t , A, t, t−

∆t

2
),

e3t = ϵθ(x́
2
t , χ,A, t−

∆t

2
),

x3
t = ν(x́t, χ, e

3
t , A, t, t−∆t),

e4t = ϵθ
(
x́3
t , χ,A, t−∆t

)
,

e′t =
1

6
(e1t + 2e2t + 2e3t + e4t ),

xt−∆t = ν(x́t, χ, e
′
t, A, t, t−∆t).

FastSTI-2 employs the 2nd-order pseudo Heun’s (PH2) to
obtain the results of the first two steps, followed by utilizing
the 2th-order pseudo-linear multi-step method (PLMS2) to
calculate the remaining. Our conditional pseudo-numerical
methods are compatible with many diffusion-based models
(e.g., PriSTI [20]). We leverage one of the sampling methods
to the baseline model in the experiments (see Sec. V-E).

xt−1 =

√
ᾱt−1

ᾱt

(
x−

√
1− ᾱtϵθ(xt, t)

)
+
√

1− ᾱt−1ϵθ(xt, t)

(9)

xt−∆t − xt = (ᾱt−∆t − ᾱt)

(
xt√

ᾱt (
√
ᾱt−∆t +

√
ᾱt)

− ϵθ (xt, t)
√
ᾱt

(√
(1− ᾱt−∆t) ᾱt +

√
(1− ᾱt) ᾱt−∆t

)
 (10)

E. Accelerated Imputation.

The application of the reverse process of DDPM for denois-
ing suffers from the drawback of being time-consuming due to
the necessity for numerous denoising steps to ensure the qual-
ity of the generated samples, see the classical denoising steps
(gray part) of Fig. 2. Some typical diffusion-based baselines,

Fig. 2. Accelerated Imputation. FastSTI utilizes ”schedule alignment” to
estimate the denoised distribution, replacing multiple classical denoising steps,
thereby accelerating inference without significant loss of accuracy.

Algorithm 3 Accelerated imputation of FastSTI-4

Sample xTacc
∼ N (0, I)

for c = Tacc − 1, Tacc − 2, Tacc − 3 do
xc, ec = PRK4(xc+1, χ,A, c+ 1, c)

end for
for c = Tacc − 4, . . . , 0 do

xc, ec = PLMS4(xc+1, {ep}p>c, χ,A, c+ 1, c)
end for
return x0

such as PriSTI [20] and CSDI [18], with 50 reverse steps,
and SSSD [19], with 200 steps, use DDPM’s sampling way.
These baseline models cannot meet real-time requirements in
real-world applications.

To accelerate the imputation (sampling) process, inspired
by [42], we introduce a ”schedule alignment” approach that
utilizes a predefined number of Tacc-steps to minimize the
imputation time without significant loss of quality. As shown
in Fig. 2, the key concept is to align the original T -steps
reverse process into a condensed Tacc-steps process using a
predefined variance schedule. In this way, our method is able
to skip several reverse steps to reduce denoising iterations.
Algorithm 3 summarizes the proposed accelerated sampling
(imputation) procedure.

Formally, given the steps of Tacc ≪ T in the imputation
process and a predefined variance schedule {ξt}Tacc

t=1 . Different
from the training variance schedule {βt}Tt=1, the {ξt}Tacc

t=1 ,
with a manual setting of the values, we can calculate the
corresponding constants as follows:

φt = 1− ξt, φ̄t =

t∏
s=1

φc, ξ̃t =
1− φ̄t−1

1− φ̄t
ξt (11)

Our objective is to determine and interpolate the value of√
φ̄c between the training noise levels:

√
ᾱt and

√
ᾱt+1, such

that
√
φ̄c closely approximates

√
ᾱt. Afterward, we obtain the

aligned diffusion step t by calculating the floating-point tc, as
in Eq. (12).

tc = t+

√
ᾱt −

√
φ̄c√

ᾱt −
√
ᾱt+1

(12)

It is worth highlighting that our acceleration approach is
general and compatible with most diffusion-based models,
including PriSTI [20]. To prove this point, we also apply the
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TABLE III
STATISTICS OF DATASETS

Traffic Speed Traffic Flow
Datasets METR-LA PEMS-BAY PeMS04 PeMS08

Nodes (Sensors) 207 325 307 170
Edges 1515 2694 340 275

Total Timestamps 34272 52116 16992 17856

Time Span
01/03/2012 -
27/06/2012

01/01/2017 -
30/06/2017

01/01/2018 -
28/02/2018

01/07/2016 -
31/08/2016

Time Interval 5 minutes
Daily Range 00:00 - 24:00

proposed acceleration technique to the baseline model in the
experiments (see Section V-F).

V. EXPERIMENTS

A. Datasets

We conduct our experiments on two types of traffic impu-
tation tasks: traffic speed and traffic flow imputation. Table
III describes the statistics of these publicly available real-life
datasets. Further details about datasets are listed as follows:

1) Traffic Speed Data: METR-LA and PEMS-BAY [41].
The traffic speed data is aggregated and reported by the PeMS
system at every 5-minute time intervals. METR-LA comprises
four months of traffic speed statistics collected from 207 loop
detectors installed in the highway of Los Angeles County.
Similarly, PEMS-BAY holds six months of traffic speed data
from 325 sensors in the Bay Area.

2) Traffic Flow Data: PEMS04 and PEMS08 [43]. PEMS04
includes two months of traffic flow data collected from 307
detectors installed in the San Francisco Bay Area. PEMS08
contains two months of traffic flow data from 170 sensors in
San Bernardino. Both datasets are aggregated every 5 minutes.

B. Evaluation Metrics

The data sets are split into 70% for training, 10% for valida-
tion, and 20% for testing. The evaluation metrics adopted are
Mean Absolute Error (MAE), as in Eq. (13); Mean Square
Error (MSE)/Root Mean Square Error(RMSE), described in
Eq. (14) and Eq. (15), respectively; and Continuous Ranked
Probability Score (CRPS) [44]. MAE and MSE/RMSE assess
the errors between targets and imputed values, with conditional
masking (meval) applied to xi and x́i.

MAE =
1

n

n∑
i=1

|(xi − x́i)⊙meval| (13)

MSE =
1

n

n∑
i=1

((xi − x́i)⊙meval)
2 (14)

RMSE =

√√√√ 1

n

n∑
i=1

((xi − x́i)⊙meval)2 (15)

CRPS reflects the compatibility of an estimated prob-
ability distribution P with the observed values x. CRPS
Eq. (16) is defined as the integral of the quantile loss

TABLE IV
FASTSTI HYPERPARAMETERS

Hyperparameter Value
Epochs 200
Batch size 16
Sequence length L 24
Learning rate 1× 10−3

Weight decay 1× 10−6

Residual layers 4
Residual channels r 64
Self-attention heads h 8
Temporal embedding dim m 128
Graph random walk step K 2
Graph coefficient ϱ 0.1
Diffusion Schedule Quadratic
The minimum noise level β1 0.0001
The maximum noise level βT 0.2
Diffusion steps T 50
Accelerated denoising steps Tacc 6
Variance Schedule {0.0001, 0.001, 0.2, 0.3, 0.5, 0.9}

Λω(P
−1(ω), x) = (ω − 1x<P−1(ω))(x − P−1(ω)), where

P−1(ω) is the ω−quantile of distribution P , ω ∈ [0, 1]
represents the quantile levels, and 1 is the indicator function.
Following the same setting in [18], 100 samples are generated
to approximate the distribution of missing values. We compute
quantile losses for discretized quantile levels with 0.05 ticks,
defined in Eq. (17), defining CRPS(P, X̃) as the average
CRPS at each imputed point as in Eq. (18).

CRPS(P−1, x) =

∫ 1

0

2Λω(P
−1(ω), x)dω (16)

CRPS(P−1, x) ≃
19∑
i=1

2Λi∗0.05(P
−1(i ∗ 0.05), x)/19 (17)

CRPS(P, X̃) =

∑
x̃∈X̃ CRPS(P−1, x̃)∣∣∣X̃∣∣∣ (18)

C. Implementation Details

As explained in our methodology, we apply two missing
data scenarios: 1) Block-missing, masking 5% of data in the
range of [12, 48] time steps, with a node-failure probability
of 15%; 2) Point-missing, masking randomly 25% of the
points. Noting that all datasets include initially missing values
(i.e., 8.10% in METR-LA, 0.02% in PEMS-BAY, 1.59% in
PEMS04, and 0.35% in PEMS08), except for with manually
simulated anomalies. Performance evaluation is conducted
primarily on the manually masked test set.

Table IV summarizes our hyperparameters, where the model
is trained for 200 epochs with a batch size of 16, learning
rate of 10−3, and Adam optimizer. The diffusion model noise
schedule is Quadratic, and we utilize user-defined variance
schedules {0.0001, 0.001, 0.2, 0.3, 0.5, 0.9}.

All the experiments are conducted on Intel(R) Xeon(R) W-
2133 CPU @3.60GHz and NVIDIA GeForce 3080Ti GPU
12GB. We implement our FastSTI model in Python 3.7 using
Pytorch 1.13.0.
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D. Baselines

We compare our FastSTI model with seventeen baseline
models, including statistical (Mean, KNN, Linear InTerPola-
tion (Lin-LTP)), classical ML (MICE, Vector AutoRegression
(VAR), Kalman Filter (KF)), low-matrix factorization (TRMF,
BATF), deep autoregressive (BRITS, GRIN), and deep gener-
ative models (V-RIN, GP-VAE, rGAIN, CSDI, SSSD, PriSTI)
in the missing data imputation domain. We provide a concise
overview of the baseline models as follows:

(1) Mean: using node-level average to impute missing val-
ues. (2) KNN [5]: estimating missing values with observation
values from the nearest neighbors based on a similarity mea-
sure. (3) Lin-LTP: performing linear interpolation on the time-
series data for each node. (4) KF: using Kalman filtering for
imputing missing values in temporal observations. (5) MICE
[7]: a multiple imputation model with chained equations. (6)
VAR: a vector autoregressive single-step-ahead predictor. (7)
TRMF [21]: a temporal regularized matrix factorization frame-
work for imputation. (8) BATF [22]: a Bayesian augmented
tensor factorization model for imputing missing traffic data.
(9) BRITS [9]: a method that uses a bidirectional RNN to
impute missing values. (10) GRIN [10]: a framework for
multivariate time series imputation by bidirectional graph
recurrent neural network. (11) V-RIN [45]: a variational au-
toencoder framework with a recurrent neural network and a
modified loss function to impute the uncertainty of missing
values. (12) GP-VAE [24]: an architecture that combines the
variational autoencoder and the Gaussian process to impute
missing values. (13) rGAIN [27]: a GAN-based method that
employs a bidirectional recurrent encoder and decoder ar-
chitecture. (14) CSDI [18]: a model to impute multivariate
time series with conditional score-based diffusion models,
leveraging Transformer to extract the features. (15) SSSD [19]:
a diffusion-based method using structured state space models
for time-series imputation. (16) PriSTI [20]: a conditional
diffusion framework for spatio-temporal data imputation with
enhanced feature knowledge modeling. (17) PriSTI variant:
PriSTI adopts our 4th-order conditional pseudo-numerical
sampling method instead of their first-order one from DDPM.

E. Imputation Performance

First, we compare our model to the seventeen baselines.
Table V reports the MAE and MSE/RMSE comparison on two
traffic speed datasets (METR-LA and PEMS-BAY) and two
traffic flow datasets (PEMS04 and PEMS08), while Table VI
reports the CRPS metric. FastSTI, using only 6 reverse steps,
outperforms all of the baselines, producing more realistic
imputation. Focusing on the comparison between FastSTI
and PriSTI [20], we have a better performance, proving the
effectiveness of the proposed high-order conditional pseudo-
numerical method in generating higher-quality samples. No-
tably, traffic flow is more challenging than traffic speed be-
cause its fluctuations are more significant and random over
time. Our approach enhances overall performance on traffic
flow datasets (PEMS04 and PEMS08) by utilizing higher-
order pseudo-numerical methods that better handle noise and
uncertainty in the data. Conversely, PriSTI [20], CSDI [18],

and SSSD [19] exhibit limited effectiveness, attributed to
their first-order numerical sampling from DDPM [13], which
struggles with the complexities of traffic patterns. FastSTI
also benefits from the Diff-GCN features extractor, in contrast
to the message-passing neural network (MPNN) used in the
best baseline PriSTI. Meanwhile, we applied the proposed
sampling method on PriSTI, called the PriSTI variant, and
the results show that it can help improve the interpolation
performance. Additionally, the comparison between FastSTI-2
and FastSTI-4 favors FastSTI-4, which makes sense, as the
imputation quality can improve as the order of the numerical
method increases.

To comprehensively evaluate the imputation performance
under different missing rates, we report missing rates from
10% to 90% on the METR-LA and PEMS04 datasets in
Figures 3 and 4. Figure 3a and 4a show such an effect with the
block-missing strategy, and Figure 3b and 4b show the impact
of increasing the point-missing rate. Intuitively, as the rate
of missing values increases, data imputation becomes more
challenging due to the reduced availability of observed values
and the increased complexity of extracting spatiotemporal
correlation of traffic conditions. We can see that the proposed
FastSTI-4 (6) consistently outperforms baseline models in
terms of imputation performance, regardless of the missing
rate. 1) As show in Figures 3a and 3b, FastSTI outperforms the
competitors by up to 47.11% in MAE (FastSTI-4 vs. BRITS
block-missing at 90% rate) and 42.4% in MAE (FastSTI-4
vs. BRITS point-missing at 90% rate). Compared with the
best baseline model PriSTI, FastSTI-4 reduces the MAE by
up to 17.96% (block-missing at 90% rate) and 7.3% (point-
missing at 90% rate). 2) From a block-missing rate of 10%
to 90% (see Fig. 4a), the error of the FastSTI increased by
18.01%, while that of the PriSTI increased by 19.47%. FastSTI
is less influenced by changes in the missing rate and has
demonstrated better robustness than PriSTI. These results also
prove the effectiveness of FastSTI in keeping better accurate
imputation, especially under high missing rates (60% ∼ 90%),
by effectively capturing the spatial and temporal correlations
among traffic speed observations across various locations and
periods. Moreover, compared to baseline models, our advanced
conditional pseudo-numerical method can extract additional
features from observed values as the missing rate increases.

F. Time Performance

We evaluate the inference time of our proposed FastSTI
from two perspectives: 1) with and without our acceleration
technique, and 2) with two different random walk steps K ∈
{2, 6}. The detailed settings are as follows.

1) Without acceleration:
• CSDI [18]. CSDI with 50 reverse steps, following the

original paper settings.
• PriSTI [20]. PriSTI with 50 reverse steps, following the

original paper settings.
• FastSTI-2 (K=6) w/o acc. FastSTI-2 with 50 reverse

steps and K=6 of Diff-GCN.
• FastSTI-4 (K=6) w/o acc. FastSTI-4 with 50 reverse

steps and K=6 of Diff-GCN.
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TABLE V
MAE AND MSE/RMSE COMPARISON WITH THE BASELINES [BOLD = BEST, AND UNDERLINE = SECOND BEST]. (6) REPRESENTS THAT OUR

ACCELERATED METHODS ONLY REQUIRES 6 REVERSE STEPS DURING THE INFERENCE.

METR-LA PEMS-BAY
Method Block-missing (16.52%) Point-missing (31.09%) Block-missing (9.20%) Point-missing (25.01%)

MAE MSE MAE MSE MAE MSE MAE MSE

Mean 7.48±0.00 139.54±0.00 7.56±0.00 142.22±0.00 5.46±0.00 87.56±0.00 5.42±0.00 86.59±0.00
KNN 7.79±0.00 124.61±0.00 7.88±0.00 129.29±0.00 4.30±0.00 49.90±0.00 4.30±0.00 49.80±0.00

Lin-ITP 3.26±0.00 33.76±0.00 2.43±0.00 14.75±0.00 1.54±0.00 14.14±0.00 0.76±0.00 1.74±0.00
KF 16.75±0.00 534.69±0.00 16.66±0.00 529.96±0.00 5.64±0.00 93.19±0.00 5.68±0.00 93.32±0.00

MICE 4.22±0.05 51.07±1.25 4.42±0.07 55.07±1.46 2.94±0.02 28.28±0.37 3.09±0.02 31.43±0.41
VAR 3.11±0.08 28.00±0.76 2.69±0.00 21.10±0.02 2.09±0.10 16.06±0.73 1.30±0.00 6.52±0.01

TRMF 2.96±0.00 22.65±0.13 2.86±0.00 20.39±0.02 1.95±0.01 11.21±0.06 1.85±0.00 10.03±0.00
BATF 3.56±0.01 35.39±0.03 3.58±0.01 36.05±0.02 2.05±0.00 14.48±0.01 2.05±0.00 14.90±0.06
BRITS 2.34±0.01 17.00±0.14 2.34±0.00 16.46±0.05 1.70±0.01 10.50±0.07 1.47±0.00 7.94±0.03
GRIN 2.03±0.00 13.26±0.05 1.91±0.00 10.41±0.03 1.14±0.01 6.60±0.10 0.67±0.00 1.55±0.01
V-RIN 6.84±0.17 150.08±6.13 3.96±0.08 49.98±1.30 2.49±0.04 36.12±0.66 1.21±0.03 6.08±0.29

GP-VAE 6.55±0.09 122.33±2.05 6.57±0.10 127.26±3.97 2.86±0.15 26.80±2.10 3.41±0.23 38.95±4.16
rGAIN 2.90±0.01 21.67±0.15 2.83±0.01 20.03±0.09 2.18±0.01 13.96±0.20 1.88±0.02 10.37±0.20
CSDI 1.98±0.00 12.62±0.60 1.79±0.00 8.96±0.08 0.86±0.00 4.39±0.02 0.57±0.00 1.12±0.03
SSSD 2.95±0.01 23.48±0.09 2.83±0.02 21.95±0.14 1.03±0.01 7.32±0.05 0.97±0.01 2.98±0.03
PriSTI 1.86±0.00 10.70±0.02 1.72±0.00 8.24±0.05 0.78±0.00 3.31±0.01 0.55±0.00 1.03±0.00

PriSTI† variant 1.83±0.00 10.57±0.00 1.72±0.01 8.20±0.00 0.77±0.01 3.29±0.01 0.52±0.00 1.01±0.01
FastSTI-2 (6) 1.81±0.01 10.44±0.00 1.73±0.00 8.17±0.03 0.78±0.00 3.28±0.03 0.51±0.00 0.98±0.01
FastSTI-4 (6) 1.79±0.01 10.38±0.00 1.71±0.00 8.15±0.02 0.75±0.00 3.26±0.02 0.50±0.00 0.96±0.01

PEMS04 PEMS08
Block-missing (10.59%) Point-missing (26.21%) Block-missing (9.41%) Point-missing (25.25%)
MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Mean 40.89±0.00 83.41±0.00 39.46±0.00 77.97±0.00 37.54±0.00 76.14±0.00 35.11±0.00 70.28±0.00
KNN 39.28±0.00 75.41±0.00 35.14±0.00 66.90±0.00 33.49±0.00 70.25±0.00 31.06±0.00 63.41±0.00

Lin-ITP 27.74±0.00 55.41±0.00 23.46±0.00 51.54±0.00 25.79±0.00 53.87±0.00 22.01±0.00 40.77±0.00
KF 46.21±0.00 87.36±0.00 43.15±0.00 80.16±0.00 40.03±0.00 79.98±0.00 37.51±0.00 76.10±0.00

MICE 29.56±0.01 57.84±0.04 27.15±0.06 50.28±0.36 27.94±0.01 49.14±0.09 24.76±0.02 39.97±0.07
VAR 24.68±0.01 50.16±0.01 20.44±0.01 32.87±0.06 22.69±0.05 36.94±0.01 17.92±0.01 29.36±0.02

TRMF 21.72±0.01 34.12±0.01 18.37±0.01 30.97±0.06 20.32±0.05 35.74±0.01 15.32±0.01 26.99±0.02
BATF 27.10±0.13 40.28±0.01 20.89±0.01 34.11±0.02 23.87±0.05 37.88±0.03 18.26±0.03 29.21±0.02
BRITS 20.24±0.01 33.05±0.02 17.87±0.03 29.74±0.01 18.37±0.02 32.51±0.01 14.67±0.01 25.33±0.03
GRIN 18.77±0.03 29.88±0.08 16.94±0.01 26.11±0.01 12.98±0.02 24.23±0.10 11.37±0.01 18.21±0.01
V-RIN 25.78±0.01 49.11±0.01 24.26±0.01 43.57±0.24 24.56±0.01 40.13±0.22 22.77±0.02 35.49±0.08

GP-VAE 27.83±0.15 52.97±0.01 27.54±0.01 50.99±0.01 21.5±0.06 36.98±0.05 19.99±0.13 31.43±0.01
rGAIN 17.67±0.01 29.84±0.07 15.21±0.04 25.03±0.01 14.03±0.01 24.72±0.01 10.98±0.02 19.34±0.01
CSDI 16.58±0.01 28.13±0.02 15.09±0.01 24.91±0.02 12.06±0.05 23.08±0.10 10.07±0.01 17.19±0.00
SSSD 17.93±0.03 30.19±0.01 15.32±0.04 25.11±0.01 13.96±0.01 24.63±0.01 10.97±0.01 19.21±0.01
PriSTI 16.41±0.01 28.01±0.03 14.87±0.01 24.53±0.01 11.89±0.01 22.24±0.01 10.05±0.00 17.13±0.02

PriSTI† variant 16.36±0.00 27.93±0.00 14.75±0.00 24.50±0.00 11.76±0.01 22.10±0.00 9.94±0.00 17.03±0.00
FastSTI-2 (6) 16.28±0.00 27.89±0.01 14.69±0.01 24.47±0.03 11.60±0.01 21.79±0.01 9.89±0.00 16.97±0.01
FastSTI-4 (6) 16.21±0.01 27.70±0.00 14.67±0.02 24.42±0.01 11.73±0.01 22.00±0.00 9.80±0.01 16.93±0.01

TABLE VI
CPRS COMPARISON ([BOLD = BEST, AND UNDERLINE = SECOND BEST]. (6) REPRESENTS THAT OUR ACCELERATED METHODS ONLY REQUIRES 6

REVERSE STEPS DURING THE INFERENCE.

Method METR-LA PEMS-BAY PEMS04 PEMS08
Block-missing Point-missing Block-missing Point-missing Block-missing Point-missing Block-missing Point-missing

V-RIN 0.1283 0.7781 0.0394 0.0191 0.1842 0.1524 0.1522 0.1198
GP-VAE 0.1118 0.0977 0.0436 0.0568 0.1623 0.1358 0.1436 0.1103

CSDI 0.0260 0.0235 0.0127 0.0067 0.0583 0.0547 0.0420 0.0371
PriSTI 0.0244 0.0227 0.0093 0.0064 0.0556 0.0522 0.0418 0.0364

FastSTI-2 (6) 0.0243 0.0223 0.0095 0.0062 0.0542 0.0505 0.0373 0.0307
FastSTI-4 (6) 0.0241 0.0219 0.0093 0.0060 0.0540 0.0503 0.0374 0.0305

• FastSTI-2 (K=2) w/o acc. FastSTI-2 with 50 reverse
steps and K=2 of Diff-GCN.

• FastSTI-4 (K=2) w/o acc. FastSTI-4 with 50 reverse
steps and K=2 of Diff-GCN.

2) Acceleration:

• PriSTI w/ our acc. PriSTI of with 6 reverse steps,
integrated with our acceleration method (see Section
IV-E).
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(a) Block-missing scenario (b) Point-missing scenario

Fig. 3. The Impact of Missing Rate on the Imputation Performance on METR-
LA Dataset.

(a) Block-missing scenario (b) Point-missing scenario

Fig. 4. The Impact of Missing Rate on the Imputation Performance on
PEMS04 Dataset.

• FastSTI-2 (K=6) w/ acc. FastSTI-2 with 6 reverse steps
and K=6 of Diff-GCN.

• FastSTI-4 (K=6) w/ acc. FastSTI-4 with 6 reverse steps
and K=6 of Diff-GCN.

• FastSTI-2 (K=2) w/ acc. FastSTI-2 with 6 reverse steps
and K=2 of Diff-GCN.

• FastSTI-4 (K=2) w/ acc. FastSTI-4 with 6 reverse steps
and K=2 of Diff-GCN.

Figures 5 and 6 display the imputation time of the models
for all sensors throughout 24-time points (i.e., for 2 hours at
5-minute intervals) on traffic speed and flow datasets. We can
conclude that: 1) FastSTI utilizes a tuned variance schedule
to speed up inference time in the imputation phase, which
enables FastSTI to impute highly accurate traffic data with
only 6 reverse steps (8.3× less than the 50 steps of both PriSTI
[20] and CSDI [18]). Meanwhile, from Figure 5, our FastSTI-
2 (K=2) w/ acc. (∼ 12.10s) is 6.5× faster than PriSTI
(∼ 78.96s) and 5× faster than CSDI (∼ 60.2s) on METR-LA.
With the higher-order FastSTI-4 w/ acc. (∼ 31.44s), the model
requires more inference time; however, FastSTI-4 (K=2) w/
acc is still 3.4× faster than PriSTI and 2.5x faster than CSDI.
Thereby, FastSTI significantly reduces the computational time
required compared to these competing diffusion architectures.
2) The larger the parameters of Diff-GCN, the slower the
inference speed. As shown in Figure 6, with the accelerated
version, FastSTI-2 (K=2) is 18.7 seconds faster than FastSTI-
2 (K=6) at every two hours of imputation on the PEMS04
dataset. Similarly, FastSTI-2 (K=2) is 10.6 seconds faster than
FastSTI-2 (K=6) on PEMS08. This indicates that increasing
the K parameter in Diff-GCN allows for more geospatial

Fig. 5. Inference Times on Traffic Speed Datasets (METR-LA and PEMS-
BAY).

Fig. 6. Inference Times on Traffic Flow Datasets (PEMS04 and PEMS08).

TABLE VII
THE INFLUENCE OF DIFFERENT COMPONENTS ON FASTSTI-4.

PN Diff-GCN
METR-LA

Block-missing Point-missing
MAE MSE MAE MSE

✗ ✗ 1.86±0.00 10.70±0.02 1.72±0.00 8.24±0.05
✗ ✓ 1.83±0.00 10.40±0.00 1.74±0.00 8.22±0.00
✓ ✗ 1.89±0.00 10.87±0.00 1.82±0.00 8.57±0.00
✓ ✓ 1.79±0.01 10.38±0.00 1.71±0.00 8.15±0.02

information extraction from traffic patterns, but it also adds to
the computational time burden. 3) Our acceleration technique
can be compatible with most diffusion-based models (e.g.,
PriSTI [20]). Compared to our FastSTI-2 (K=2), PriSTI can
obtain a close inference time using our acceleration method.

G. Ablation Study on Imputation Performance

We conduct an ablation study on the METR-LA datasets
to verify the impact of different components of our FastSTI
model. Table VII illustrates the performance of FastSTI-
4 with and without employing our proposed components,
including the pseudo-numerical method (PN) and the GCN-
based conditional extractor (Diff-GCN). When we remove
the pseudo-numerical (PN) methods, the model no longer
considers high-order numerical methods converging to the
exact solution when ∆t is closer to 0. Consequently, it no
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TABLE VIII
THE IMPACT OF INCREASING THE NUMBER OF STEPS ON FASTSTI . (6) REPRESENTS THAT FASTSTI ONLY REQUIRES 6 REVERSE STEPS WITH OUR

ACCELERATED METHOD, AND (50) REPRESENTS FASTSTI USE 50 REVERSE STEPS WITHOUT ACCELERATED METHOD.

METR-LA PEMS-BAY
Method Block-missing (16.52%) Point-missing (31.09%) Block-missing (9.20%) Point-missing (25.01%)

MAE MSE CRPS MAE MSE CRPS MAE MSE CRPS MAE MSE CRPS
FastSTI-2 (50) 1.80±0.00 10.34±0.01 0.0241 1.69±0.03 8.01±0.03 0.0220 0.72±0.01 3.26±0.00 0.0091 0.52±0.01 1.01±0.02 0.0061
FastSTI-4 (50) 1.79±0.01 10.29±0.00 0.0239 1.68±0.00 7.99±0.01 0.0219 0.70±0.00 3.24±0.00 0.0089 0.51±0.00 0.99±0.00 0.0059
FastSTI-2 (6) 1.81±0.01 10.44±0.00 0.0243 1.73±0.00 8.17±0.03 0.0223 0.78±0.00 3.28±0.03 0.0095 0.51±0.00 0.98±0.01 0.0062
FastSTI-4 (6) 1.79±0.01 10.38±0.00 0.0241 1.71±0.00 8.15±0.02 0.0219 0.75±0.00 3.26±0.02 0.0093 0.50±0.00 0.96±0.01 0.0060

PEMS04 PEMS08
Method Block-missing (10.59%) Point-missing (26.21%) Block-missing (9.41%) Point-missing (25.25%)

MAE RMSE CRPS MAE RMSE CRPS MAE RMSE CRPS MAE RMSE CRPS
FastSTI-2 (50) 16.22±0.00 27.84±0.01 0.0539 14.64±0.01 24.42±0.03 0.0503 11.57±0.01 21.77±0.02 0.0371 9.82±0.02 16.93±0.01 0.0302
FastSTI-4 (50) 16.17±0.01 27.64±0.03 0.0537 14.63±0.01 24.38±0.01 0.0501 11.69±0.01 21.95±0.02 0.0373 9.74±0.01 16.89±0.01 0.0302
FastSTI-2 (6) 16.28±0.00 27.89±0.01 0.0542 14.69±0.01 24.47±0.03 0.0505 11.60±0.01 21.79±0.01 0.0373 9.89±0.00 16.97±0.01 0.0307
FastSTI-4 (6) 16.21±0.01 27.70±0.00 0.0540 14.67±0.02 24.42±0.01 0.0503 11.73±0.01 22.00±0.00 0.0374 9.80±0.01 16.93±0.01 0.0305

TABLE IX
INFLUENCE OF DIFFERENT DIFFUSION PARAMETERS ON METR-LA

DATASET [BOLD = BEST].

Diffsion parameters Performance
β1 βT schedule MAE MSE

0.0001 0.2
linear 1.96 12.46
cosine 1.88 11.78

quadratic 1.79 10.38
0.001 0.2 quadratic 2.06 13.87

0.0001
0.1 linear 1.95 12.37
0.1 quadratic 1.86 11.54
0.3 quadratic 1.91 11.89

(a) PEMS04 Block-missing (b) PEMS08 Block-missing

Fig. 7. The Effect of Diff-GCN’s K Parameter on Imputation Performance.

longer utilizes a larger iteration interval ∆t to achieve global
error reduction, resulting in decreased imputation accuracy.
Additionally, the spatial learning sub-component, Diff-GCN,
is crucial in extracting geographic interactions among nodes
within the spatial correlation. When removing Diff-GCN, the
model has a weak ability to capture the influence among
nodes by spreading the traffic feature information on graph
G. Therefore, integrating PN and Diff-GCN together into the
model achieves the best performance.

For further ablation, we investigate the impact of increasing
the number of denoising steps on our model. Table VIII reports
a comparison between our FastSTI (6 steps) and FastSTI w/o
acceleration when increasing the number of steps to 50. Surly,
increasing the number of steps increases the performance by
a noticeable gap, proving the effectiveness of FastSTI quality-
wise. However, increasing the number of steps results in a
dramatic increase in imputation time.

(a) PEMS04 Block-missing (b) PEMS08 Block-missing

Fig. 8. The Effect of Diff-GCN’s ϱ Parameter on Imputation Performance.

H. Hyperparameter Analysis

In this part, we explore the impact of FastSTI’s diffusion
parameters on the METR-LA dataset, including the minimum
noise level β1, the maximum noise level βT , and the diffusion
schedule to generate β. Table IX reveals that FastSTI performs
best when setting β1 to 0.0001, βT to 0.2, and utilizing a
quadratic diffusion schedule. Here, the noise level parameter
is employed to regulate the diffusion speed. The convergence
speed of the model slows down when the βT is smaller, while
the numerical stability of the model is compromised when the
βT is larger. Additionally, regarding the diffusion schedule, a
quadratic schedule outperforms linear and cosine schedules.
This is because the quadratic schedule allows for a gentle
decay of αt, which in turn improves sample quality, making
it the optimal choice for FastSTI.

To further investigate our Diff-GCN feature extractor for
capturing local geospatial dependencies, we report different
parameters of graph random walk step K and the graph
coefficient ϱ of FastSTI-4 on the PEMS04 and PEMS08
datasets under the block-missing scenario. 1) The parameter
K corresponds to the convolutional filter’s receptive field size.
Large K values enable the module to capture a wide range
of spatial graph information but come with the trade-off of
increased learning complexity. As shown in Figures 7a and
7b, we can observe that with increasing the number of K,
the error on the testing set initially decreases, followed by
a slight increase. Compared with K=2, K=6 reports similar
MAE values but heavily increases the time consumption. We
also analyze the time performance of the setting of these two
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Fig. 9. Case study on METR-LA.

parameters in Sec. V-F. Therefore, K=2 can be selected as the
optimal parameter. That is, the graph convolution operation
can aggregate the features of the node itself, as well as those
of its 1-hop and 2-hop graph neighbors when K=2. 2) The
graph coefficient ϱ represents the scaling factor controlling
the influence of the neighboring nodes’ matrix (excluding self-
node) during feature propagation in the Diff-GCN. For road
traffic pattern, where the self-node spatial correlation typically
holds greater significance than neighboring nodes’ contribu-
tions, setting the optimal ϱ=0.1 (see Fig. 8) means that the
influence of K-hop (where K > 0) node’s adjacency matrix
on the feature propagation is scaled to 10% of their original
value. Such configuration enables the model to primarily focus
on a self-node adjacency matrix for feature propagation while
slightly considering the impact of the neighboring nodes.

I. Case Study

We present the visualized results of the case study on
the METR-LA dataset; comparing METR-LA to PEMS-BAY
(Bay Area) shows that traffic imputation on the METR-LA
dataset (Los Angeles, famous for its complicated traffic con-
ditions) is a more complicated way. Taking the block-missing
scenario as an example, Fig. 9 provides a visualization of the
two-hour imputation (24-time points) for five closely located
sensors/nodes. Here, the green lines represent the imputed val-
ues generated by our FastSTI-4. The purple points indicate the
ground-truth imputation targets. The black crosses represent
the observed values, while the green shade is the quantiles
between 5% and 95%. As the figure shows, sensors #1 and #4
exhibit minimal instances of missing data, while sensors #3
and #5 show a continuous pattern of missing values spanning
approximately an hour. Moreover, in more extreme cases, i.e.,
sensor #2, there is a complete absence of usable observed
value for two hours. It is also apparent that our FastSTI-4
shows positive results in most cases. For instance, sensor #5
can utilize its temporal feature observations and leverage the
spatial correlation features from neighboring sensors to predict
missing values. Indeed, it is crucial to emphasize that sensor
#2, despite lacking observed values for two hours and thus

not having access to its temporal correlation information, can
still rely on observed data from spatial neighboring sensors
to estimate the missing values. This highlights the capability
of our FastSTI to achieve relatively satisfactory imputation
results.

VI. CONCLUSION AND FUTURE WORK

In this paper, we investigate the challenges of spatiotem-
poral traffic data imputation in real-life scenarios, proposing
our FastSTI model. FastSTI utilizes a higher-order pseudo-
numerical methodology for a conditional diffusion model to
enhance imputation accuracy. Furthermore, we demonstrate
the effectiveness of incorporating conditional information
through GCN variants (Diff-GCN) to serve as feature prior
knowledge, capturing the spatiotemporal correlations. To ac-
celerate the imputation process and fit real-life applications, we
introduce the utilization of a variance schedule to reduce the
sampling iterations of the diffusion model. The effectiveness
of the proposed FastSTI in addressing real-world data miss-
ing scenarios is substantiated by experiments, showcasing its
accelerated imputation time and competitive performance in
imputation tasks.

In FastSTI, our primary focus is on a single feature attribute:
traffic speed or flow. Traffic conditions are also influenced by
various other factors, such as weather, Points of Interest (POI),
and unexpected events. More attributes can be considered in
the process of missing data estimation. Exploring this idea
further could be a notable topic for future researchers.
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probabilistic time series imputation,” in International conference on
artificial intelligence and statistics. PMLR, 2020, pp. 1651–1661.

[25] H. Qin, X. Zhan, Y. Li, X. Yang, and Y. Zheng, “Network-wide traffic
states imputation using self-interested coalitional learning,” in Proceed-
ings of the 27th ACM SIGKDD conference on knowledge discovery &
data mining, 2021, pp. 1370–1378.

[26] P.-A. Mattei and J. Frellsen, “Miwae: Deep generative modelling and
imputation of incomplete data sets,” in International conference on
machine learning. PMLR, 2019, pp. 4413–4423.

[27] J. Yoon, J. Jordon, and M. Schaar, “Gain: Missing data imputation using
generative adversarial nets,” in International conference on machine
learning. PMLR, 2018, pp. 5689–5698.

[28] Y. Yuan, Y. Zhang, B. Wang, Y. Peng, Y. Hu, and B. Yin, “Stgan: Spatio-
temporal generative adversarial network for traffic data imputation,”
IEEE Transactions on Big Data, vol. 9, no. 1, pp. 200–211, 2022.

[29] J. Chen, S. Zhang, X. Chen, Q. Jiang, H. Huang, and C. Gu, “Learn-
ing traffic as videos: a spatio-temporal vae approach for traffic data
imputation,” in International Conference on Artificial Neural Networks.
Springer, 2021, pp. 615–627.

[30] T. W. Richardson, W. Wu, L. Lin, B. Xu, and E. A. Bernal, “Mcflow:
Monte carlo flow models for data imputation,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2020, pp. 14 205–14 214.

[31] E. A. Brempong, S. Kornblith, T. Chen, N. Parmar, M. Minderer,
and M. Norouzi, “Denoising pretraining for semantic segmentation,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2022, pp. 4175–4186.

[32] J. Austin, D. D. Johnson, J. Ho, D. Tarlow, and R. van den Berg, “Struc-
tured denoising diffusion models in discrete state-spaces,” Advances
in Neural Information Processing Systems, vol. 34, pp. 17 981–17 993,
2021.

[33] A. Ramesh, P. Dhariwal, A. Nichol, C. Chu, and M. Chen, “Hierarchical
text-conditional image generation with clip latents,” arXiv preprint
arXiv:2204.06125, 2022.

[34] J. Song, C. Meng, and S. Ermon, “Denoising diffusion implicit models,”
International Conference on Learning Representations, 2021.

[35] T. Karras, M. Aittala, T. Aila, and S. Laine, “Elucidating the design
space of diffusion-based generative models,” Advances in Neural Infor-
mation Processing Systems, 2022.

[36] G. Wanner and E. Hairer, Solving ordinary differential equations II.
Springer Berlin Heidelberg New York, 1996, vol. 375.

[37] T. Salimans and J. Ho, “Progressive distillation for fast sampling of dif-
fusion models,” International Conference on Learning Representations,
2021.

[38] L. Liu, Y. Ren, Z. Lin, and Z. Zhao, “Pseudo numerical methods for
diffusion models on manifolds,” International Conference on Learning
Representations, 2022.

[39] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Van-
dergheynst, “The emerging field of signal processing on graphs: Ex-
tending high-dimensional data analysis to networks and other irregular
domains,” IEEE signal processing magazine, vol. 30, no. 3, pp. 83–98,
2013.

[40] B. Yang, Y. Kang, Y. Yuan, X. Huang, and H. Li, “St-lbagan: Spatio-
temporal learnable bidirectional attention generative adversarial net-
works for missing traffic data imputation,” Knowledge-Based Systems,
vol. 215, p. 106705, 2021.

[41] Y. Li, R. Yu, C. Shahabi, and Y. Liu, “Diffusion convolutional recurrent
neural network: Data-driven traffic forecasting,” International Confer-
ence on Learning Representations, 2018.

[42] Z. Kong, W. Ping, J. Huang, K. Zhao, and B. Catanzaro, “Dif-
fwave: A versatile diffusion model for audio synthesis,” arXiv preprint
arXiv:2009.09761, 2020.

[43] S. Guo, Y. Lin, N. Feng, C. Song, and H. Wan, “Attention based spatial-
temporal graph convolutional networks for traffic flow forecasting,” in
Proceedings of the AAAI conference on artificial intelligence, vol. 33,
no. 01, 2019, pp. 922–929.

[44] J. E. Matheson and R. L. Winkler, “Scoring rules for continuous
probability distributions,” Management science, vol. 22, no. 10, pp.
1087–1096, 1976.

[45] A. W. Mulyadi, E. Jun, and H.-I. Suk, “Uncertainty-aware variational-
recurrent imputation network for clinical time series,” IEEE Transactions
on Cybernetics, vol. 52, no. 9, pp. 9684–9694, 2021.


	Introduction
	Related Work
	Spatiotemporal Traffic Data Imputation
	Diffusion Models
	Numerical Methods

	Preliminaries
	Methodology
	Masking Strategy of Imputation Targets
	Conditional Diffusion Model
	Training Procedure
	Conditional Pseudo-Numerical Methods
	Accelerated Imputation.

	Experiments
	Datasets
	Evaluation Metrics
	Implementation Details
	Baselines
	Imputation Performance
	Time Performance
	Ablation Study on Imputation Performance
	Hyperparameter Analysis
	Case Study

	Conclusion and Future Work
	References

