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Abstract—The paper develops a novel two-layer 

hierarchical classifier that increases the accuracy of 

traditional transportation mode classification 

algorithms. The study also enhances classification 

accuracy by extracting new frequency domain 

features. Many researchers have obtained these 

features from Global Positioning System (GPS) data; 

however, this data was excluded in our study, as the 

system use might deplete the smartphone’s battery 

and signals may be lost in some areas. Our proposed 

two-layer framework differs from previous 

classification attempts in three distinct ways: (1) the 

outputs of the two layers are combined using Bayes’ 

rule to choose the transportation mode with the 

largest posterior probability; (2) the proposed 

framework combines the new extracted features with 

traditionally used time domain features to create a 

pool of features; (3) a different subset of extracted 

features is used in each layer based on the classified 

modes. Several machine learning techniques were 

used, including k-nearest neighbor, classification and 

regression tree, support vector machine, random 

forest, and a heterogeneous framework of random 

forest and support vector machine. Results show that 

the classification accuracy of the proposed 

framework outperforms traditional approaches. 

Transforming the time domain features to the 

frequency domain also adds new features in a new 

space and provides more control on the loss of 

information. Consequently, combining the time 

domain and the frequency domain features in a large 

pool and then choosing the best subset results in 

higher accuracy than using either domain alone. The 

proposed two-layer classifier obtained a maximum 

classification accuracy of 97.02%. 

 
Index Terms—transportation mode recognition, 

cellular phone sensor data, urban computing, 

machine learning algorithms, hierarchical 

framework 

I. INTRODUCTION 

he application of smartphones to data 

collection has recently attracted researchers’ 

attention. Smartphone applications (apps) have 

been developed and effectively used to collect data 

from smartphones in many sectors. In the 

transportation sector, researchers can use 

smartphones to track and obtain information such 

as speed, acceleration, and the rotation vector from 

the built-in Global Positioning System (GPS), 

accelerometer, and gyroscope sensors [1]. These 

data can be used to recognize the user’s 

transportation mode, which can be then be utilized 

in a number of different applications, as shown in 

Table I. 
TABLE I 

TRANSPORTATION MODE DETECTION APPLICATIONS [2] 

Application Description 

Transportation 

Planning 

Instead of using traditional approaches 

such as questionnaires, travel diaries, 

and telephone interviews [3, 4], the 
transportation mode information can be 

automatically obtained through 

smartphone sensors. 

Safety Knowing the transportation mode can 

help in developing safety applications. 
For example, violation prediction 

models have been studied for passenger 

cars and bicycles [5, 6]. 
Environment Physical activities, health, and calories 

burned, and carbon footprint associated 

with each transportation mode can be 
obtained when the mode information is 

available [7]. 

Information 
Provision 

Traveler information can be provided 
based on the transportation mode [4, 8].  

 

In this study, we investigated the possibility of 

improving the overall accuracy of transportation 

mode detection by proposing a new hierarchical 

framework classifier and by looking for a new 

features set. This paper makes two major 

contributions to the body of transportation 

research. First, it proposes a two-layer hierarchical 

framework in which a) the first layer contains one 

multi-classifier using the data set of the five 

transportation modes, and b) the second layer 

consists of 10 binary classifiers, each of which is 

specialized in only one pair of modes, and uses a 

features subset that discriminates between this pair. 

Second, new frequency domain features were 

extracted and pooled with the traditionally-used 

time domain features. 

Following the introduction, this paper is 
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organized into six sections. First, the approaches, 

features, and machine learning techniques of 

previous studies are reviewed. Next, the data set 

and the extracted features are described. Third, 

background is presented on the machine learning 

techniques applied in this study. Next, the proposed 

framework is presented. In the fifth section, details 

are provided on the data analysis used to detect 

different transportation modes. Finally, the paper 

concludes with a summary of new insights and 

recommendations for future transportation mode 

recognition research. 

II. RELATED WORK 

Researchers have developed several approaches 

to discriminate between transportation modes 

effectively using mobile phones [9,10] or visual 

tracking [11]. Machine learning techniques have 

been used extensively to build detection models 

and have shown high accuracy in determining 

transportation modes. Supervised learning methods 

such as K-Nearest Neighbor (KNN) [12], Support 

Vector Machines (SVMs) [7, 13-17], Decision 

Trees [3, 4, 7, 8, 14, 18], and Random Forests (RFs) 

[12], have all been employed in various studies. 

These studies have obtained different classifying 

accuracies. There are several factors that affect the 

accuracy of detecting transportation modes, such as 

the monitoring period (positive association), 

number of modes (negative association), data 

sources, motorized classes, and sensor positioning 

[2, 12]. 

However, one of the most critical factors that 

affects the accuracy of mode detection is the 

machine learning framework classifier. The 

framework that usually uses one layer of 

classification algorithm as in [4, 7] could be refered 

to as traditional framework; whereas the hierarchal 

framework uses more than one layer of 

classification algorithm.  

An additional important consideration is the 

domain of the extracted features. Features are 

generally extracted from two different domains: (1) 

the time domain, features of which have been used 

widely in many studies [4, 12, 15, 16, 19, 20]; and 

(2) the frequency domain, features of which have 

been used in some studies [7, 15]. Both methods 

have achieved a significant, high accuracy. Table 

III summarizes the obtained accuracies and factors 

for some of the aforementioned studies. Note that 

no direct comparison can be made between the 

studies listed in Table III because the factors 

considered and the data sets used varied from study 

to study. 

In this study, we will mainly focus in the effect 

of two factors on the accuracy of transportation 

mode detection; namely the framework classifier 

and extracted features. 

Most of the proposed methods in the most recent 

studies rely on the using of the GPS data, which do 

not take into account the limitations of GPS 

information. GPS service is not available or may be 

lost in some areas, which results in inaccurate 

position information. Moreover, the GPS system 

use might deplete the smartphone’s battery. Thus, 

this paper focuses on proposing a new detection 

framework using machine learning techniques and 

extract new features based on data obtained from 

smartphone sensors including accelerometer, 

gyroscope, and rotation vector, without GPS data. 

III. DATA SET 

A. Data Collection 

The data set used is available at the Virginia 

Tech Transportation Institute (VTTI) and was 

collected by Jahangiri and Rakha [12] using a 

smartphone app (two devices were used: a Galaxy 

Nexus and a Nexus 4) [12]. The app was provided 

to 10 travelers who work at VTTI to collect data for 

five different modes: driving a passenger car, 

bicycling, taking a bus, running, and walking. The 

data were collected from GPS, accelerometer, 

gyroscope, and rotation vector sensors and stored 

on the devices at the application’s highest possible 

frequency. Data collection was conducted on 

different workdays (Monday through Friday) and 

during working hours (8:00 a.m. to 6:00 p.m.). 

Several factors were considered to collect realistic 

data reflecting natural behaviors. No specific 

requirement was applied in terms of sensor 

positioning other than carrying the smartphone in 

different positions that they normally do, to make 

sure the data collection is less dependent on the 

sensor positioning. The data were collected on 

different road types with different speed limits in 

Blacksburg, Virginia, and some epochs may reflect 

traffic jam conditions occurring in real-world 

conditions. The collection of thirty minutes of data 

over the course of the study for each mode per 

person was considered sufficient. 

For the purpose of comparing data with data 

from previous studies [2, 12], the extracted features 

were considered to have a meaningful relationship 

with different transportation modes. Furthermore, 

features that might be extracted from the absolute 

values of the rotation vector sensor were excluded. 
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Additionally, in order to allow this framework to 

be implemented in cases where no GPS data were 

available, features that might be extracted from 

GPS data were also excluded. 

B. Time Domain Features 

From the time window 𝑡, time domain features 

were created by applying the measures in Table II. 

These measures were applied using the 

measurements of the data array 𝑥𝑖
𝑡  and its 

derivative 𝑥𝑖
𝑡̇ for the 𝑖𝑡ℎ feature from time window 

𝑡. This resulted in 165 time domain features: out of 

the 18 measures presented in in Table II, all the 18 

measures were applied to accelerometer and 

gyroscope sensor values; 7 measures were applied 

to rotation vector sensor values; 16 measures were 

applied to the summation values from 

accelerometer and gyroscope sensors; 4 measures 

were applied to the summation values from rotation 

vector sensor. As a result, the total number of 

features reached 18(6)  +  7(3)  +  16( 2)  +
 4(1)  =  165 features [12]. 

 
TABLE II  

MEASUREMENTS OF TIME DOMAIN FEATURES [12]. 

No. Measure No Measure 

1 𝑚𝑒𝑎𝑛(𝑥𝑖
𝑡 ) 10 𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑥𝑖

𝑡) 

2 𝑚𝑎𝑥(𝑥𝑖
𝑡 ) 11 𝑚𝑒𝑎𝑛(𝑥𝑖

𝑡̇ ) 

3 𝑚𝑖𝑛(𝑥𝑖
𝑡 ) 12 𝑚𝑎𝑥(𝑥𝑖

𝑡̇  ) 

4 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑥𝑖
𝑡 ) 13 𝑚𝑖𝑛(𝑥𝑖

𝑡̇ ) 

5 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛(𝑥𝑖
𝑡 ) 14 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑥𝑖

𝑡̇ ) 

6 𝑟𝑎𝑛𝑔𝑒(𝑥𝑖
𝑡 ) 15 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛(𝑥𝑖

𝑡̇ ) 

7 𝐼𝑛𝑡𝑒𝑟𝑞𝑢𝑎𝑟𝑡𝑖𝑙𝑒 𝑟𝑎𝑛𝑔𝑒(𝑥𝑖
𝑡 ) 16 𝑟𝑎𝑛𝑔𝑒(𝑥𝑖

𝑡̇ ) 

8 𝑠𝑖𝑔𝑛𝐶ℎ𝑎𝑛𝑔𝑒(𝑥𝑖
𝑡 ) 17 𝐼𝑛𝑡𝑒𝑟𝑞𝑢𝑎𝑟𝑡𝑖𝑙𝑒 𝑟𝑎𝑛𝑔𝑒(𝑥𝑖

𝑡̇  ) 

9 𝑒𝑛𝑒𝑟𝑔𝑦(𝑥𝑖
𝑡 ) 18 𝑠𝑖𝑔𝑛𝐶ℎ𝑎𝑛𝑔𝑒(𝑥𝑖

𝑡̇ ) 

C. Frequency Domain Features 

Jahangiri and Rakha [12] collected readings 

from the mobile sensors at a frequency of almost 

25 Hz. Because the output samples of the sensors 

were not synchronized, the authors implemented a 

linear interpolation to build continuous signals 

from the discrete samples. Consequently, they 

sampled the constructed sensor signals at 100 Hz 

and divided the output of each sensor in each 

direction (𝑥, 𝑦, and 𝑧)  into non-overlapping 

windows of 1-s width. Finally, the features used for 

mode recognition were extracted from each 

window. These features were mainly traditional 

statistics such as mean, minimum, and maximum. 

The use of these features achieved a good accuracy 

in mode recognition. 

However, some information loss was expected 

because of the usage of the summary statistics. 

Summary statistics consist of some descriptive 

statistics analysis for variability, center tendency, 

and distribution, such as mean, range, and variance. 

Summary statistics occasionally fail to detect the 

correlations, and extract optimal information and 

define probabilities [21, 22].  

Since each window is considered as a signal in 

the time domain, we transferred each signal into the 

frequency domain using the short-time Fourier 

transform. Fourier transform converts the time 

function into a sum of sine waves of different 

frequencies, each of which represents a frequency 

component. The spectrum of frequency 

components is the frequency domain 

representation of the signal. Further, the 

component frequencies, which are spread across 

the frequency spectrum, are represented as peaks in 

the frequency domain. These peaks represent the 

most dominant frequencies in the signal. However, 

a frequency domain can also include information 

on the phase shift that could be applied to each 

sinusoid in order to be able to recombine the 

frequency components to recover the original time 

signal. In that sense, after transforming the time 

domain signal to the frequency domain and 

neglecting the phase information, we visually 

inspected the resultant spectrum and found that 

most of the information was provided by the first 

20 resulted components, which means the highest 

20 magnitude of that signal in the frequency 

domain.  

In this study, we used the magnitude of these 20 

components as the new frequency independent 

features. Transforming the time domain into the 

frequency domain not only adds new transferred 

features from an original space (i.e., time) to a new 

space (i.e., frequency), but also imposes more 

control on the loss of information. While the time 

domain represents the signal changes over time, the 

frequency domain add to the time domain features: 

how much of the signal lies within each given 

frequency band over a range of frequencies. As a 

result, some of the expected loss in the information 

about signal changes in the time domain features 

(because of the usage of the summary statistics) 

might be substituted by extracting features from the 

frequency domain. This process resulted in the 

addition of another 180 features extracted from the 

frequency domain to the data set (i.e., 345 features 

pooled in total).  
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TABLE III.  
SUMMARY OF SOME PAST STUDIES [2]. 

Accuracy 

(%) 

Features 

Domain 

Machine 

Learning 

Framework 

Monitoring 

Period 

No. of 

Modes 
Data Sources 

More than 

One 

Motorized 

Mode? 

Sensor 

Positioning 
Data Set Study 

97.31 Time Traditional 4 s 3 Accelerometer Yes No requirements 
Not 

mentioned 
[16] 

93.88 Frequency Traditional 
5 s, 50% 

overlap 
6 Accelerometer Yes/No 

Participants were 
asked to keep 

their device in 

the pocket of 
their non-

dominant hip 

Collected 
from 4 

participants 

[15] 

93.60 
Time and 

frequency 
Traditional 1 s 5 

Accelerometer 

GPS 
No No requirements 

Collected 
from 16 

participants 

[7] 

93.50 Time Traditional 30 s 6 
GPS, 

GISa maps 
Yes No requirements 

Collected 

from 6 

participants 

[4] 

95.10 Time Traditional 1 s 5 
Accelerometer, 
gyroscope, 

rotation vector 

Yes No requirements 
Collected 
from 10 

participants 

[12] 

91.60 Time Traditional Entire trip 11 
GPS, 
GIS maps 

Yes No requirements 

Two different 
data sets, one 

of which 
included 1,000 

participants 

[20] 

96.32 Time Hierarchical 1 s 5 
Accelerometer, 
gyroscope, 

rotation vector 

Yes No requirements 
Collected 
from 10 

participants 

[2] 

a GIS: Geographic Information System 

 

IV. METHODS 

This section describes the feature selection 

algorithm and the machine learning classifiers used in 

the proposed hierarchical framework.  

A. K-Nearest Neighbor (KNN) 

KNN is a common algorithm in supervised learning 

that classifies the data points based on the K nearest 

points. K is a user parameter that can be determined 

using different techniques. The test observation (i.e., 

𝑦𝑗
𝑡𝑒𝑠𝑡) is classified by taking the majority vote of the 

classes of the K nearest points (i.e., 𝑦𝑗
𝑡𝑟𝑎𝑖𝑛), as shown 

in Equation (1) [23]. 

𝑦
𝑗
𝑡𝑒𝑠𝑡 =

1

𝐾
∑ 𝑦

𝑗
𝑡𝑟𝑎𝑖𝑛

𝑋𝑗
𝑡𝑟𝑎𝑖𝑛∈𝑁𝐾

 (1) 

  

where, 𝑦
𝑗
𝑡𝑒𝑠𝑡 is the class of the testing data; 𝑦

𝑗
𝑡𝑟𝑎𝑖𝑛 is the 

class of the training data; 𝑋𝑗
𝑡𝑟𝑎𝑖𝑛 is the testing data; and 

𝐾 is the number of classes. 

B. Classification and Regression Tree (CART) 

The CART algorithm was introduced in the early 

1980s by Olshen, and Stone [24]. This algorithm is a 

type of decision tree where each branch represents a 

binary variable. At each split, the CART algorithm 

trains the tree using a greedy algorithm. Different 

splits are tested, and the split with the lowest cost is 

chosen. After many splits, each branch will end up in 

a single output variable that is used to make a single 

prediction. The CART algorithm will stop splitting 

upon reaching a certain criterion. The two most 

common stopping criteria are setting a minimum count 

of the training instances assigned to each leaf and 

choosing a pruning level that produces the highest 

accuracy. 

C. Support Vector Machines (SVMs) 

The SVM algorithm is a supervised learning 

technique that is used to classify the data by 

maximizing the gap between classes. The SVM 

algorithm attempts to find the hyperplane (i.e., splitter) 

that gives the largest minimum distance to the training 

data as given in Equation (2). The SVM tries to find 

the weight (𝑤) that produces the largest margin around 

the hyperplane (see Equation (2)), while satisfying the 

two constraints (see Equations (3) and (4)) [25]. 

min
𝑤,𝑏,𝜉

(
1

2
𝑤𝑇𝑤 + 𝐶 ∑ 𝜉

𝑛

𝑁

𝑛=1

) 
(2) 

subject to: 
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𝑦
𝑛
(𝑤𝑇𝜙(𝑥𝑛) + 𝑏) ≥ 1 − 𝜉

𝑛
 , 𝑛 = 1, … , 𝑁 (3) 

𝜉
𝑛

≥ 0 , 𝑛 = 1, … , 𝑁 (4) 

where, 

𝑤  
Parameters to define the decision 

boundary between classes 

𝐶  Penalty parameter 

𝜉
𝑛
  

Error parameter to denote margin 

violation 

𝑏  Intercept associated with the hyperplanes 

𝜙(𝑥𝑛)  
Function to transform data from X space 

into some Z space 

𝑦𝑛  Target value for 𝑛𝑡ℎ observation 

D. Random Forest (RF) 

Breiman proposed RF as a new classification and 

regression technique in supervised learning [26]. The 

RF method randomly constructs a collection of 

decision trees in which each tree chooses a subset of 

features to grow, and the results are then obtained 

based on the majority votes from all trees. The number 

of decision trees and the selected features for each tree 

are user-defined parameters. The reason for choosing 

only a subset of features for each tree is to prevent the 

trees from being correlated. RF was applied in this 

study to select the best subset of features to be used in 

classification, as this technique offers several 

advantages. For example, it runs efficiently on large 

datasets and can handle many input features without 

the need to create extra dummy variables, and it ranks 

each feature’s individual contribution in the model 

[26, 27]. 

V. PROPOSED FRAMEWORK 

As many features could be used to discriminate 

between transportation modes, we applied feature 

selection to choose the subset of features with the 

highest importance. The subset of selected features, 

which is used in the classifiers, depends on the 

classified modes. This implies that the subset of 

features selected to discriminate between all modes 

will be different from the subset of features selected to 

discriminate between only two modes. In this study, 

RF was used to select the best 100-feature subset for 

each classifying step. Selected features were scaled so 

that the feature values were normalized to be within 

the range of [−1, 1]. 
Fig. 1 shows the importance of features in different 

ranks for all the modes combined and for different 

pairs of modes. The least important feature is ranked 

0.1, the highest is ranked 2.2, and 0 when the features 

are not included.  Fig. 1 also illustrates that the most 

important feature of one pair of modes may be 

different for other pairs and that its rank within mode 

pairs may also vary. It is noteworthy that the car-run 

and the car-walk pairs have lower scores as compared 

to the other (most of the features have a score of 0.5, 

which is shown in dark blue). It appears that the values 

of some selected features for pairs containing walk and 

run modes are more likely to overlap. RF ranks each 

feature’s individual contribution in the model 

relatively, which means the overlap would affect the 

score of the individual features but not the overall 

classification accuracy using the entire subset of 

features. The overlap occurs between the features in 

some level of dimensionality and could be separable 

in the higher dimensions with high accuracy. 

 
Fig. 1. Importance of features for different pairs of modes. 

 

This study proposes a new approach to detect 

transportation modes. Two layers are applied as a 

hierarchical framework. The first layer consists of 

only a one multiclass classifier to discriminate 

between the five modes, and the second layer consists 

of a pool of 10 binary classifiers, which are used to 

discriminate between only two modes. The output of 

each classifier (in the first or the second layer) is the 

probability of each mode given the test data. The first 

layer is trained using the RF-selected 100 features to 

return the corresponding modes with the highest (𝑖) 

and the second highest (𝑗) probabilities (𝑀(1) ∈ {𝑖, 𝑗}). 

These two modes are the candidates for input to the 

second layer. Each classifier in the second layer is 

trained using a different set of RF-selected 100 

features, specialized to differentiate between only the 

two modes of interest, to return one mode of the 

highest probability (𝑀(2) ∈ {𝑖}). Bayesian principles 

are used in this framework to combine the output of 

the two layers. In that sense, the transportation mode 

with the largest posterior probability is chosen, given 

that the output of the first layer is the prior probability 

and the output of the second layer is the likelihood.  

In the first layer, the probability that 𝑀(1) ∈ {𝑖} is 

the true mode (𝑇) in a one-layer traditional framework 

(i.e.,  𝑝(𝑀(1) ∈ {𝑖}|𝑇)) equals 𝑃(1) . However, the 

probability that 𝑀𝑖
(1)

 or 𝑀𝑗
(1)

 (where 𝑖 ≠ 𝑗) is the true 

mode ( 𝑇 ) in the two-layer proposed framework 

(i.e.,  𝑝(𝑀(1) ∈ {𝑖, 𝑗}|𝑇) ) equals 𝑃(1) + ∆ . 
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Consequently, the proposed framework improves the 

potential to obtain the true mode by selecting two 

modes instead of only one in the first layer. The second 

layer consists of a pool of 10 binary classifiers (𝑘). 

Thus, the probability that one mode, out of the two 

candidates from the first layer, is the true mode 

(i.e., 𝑝(𝑀(2) ∈ {𝑖})) equals 𝑐 ∑ 𝑃𝑘
(2)10

𝑘=1 . The constant 

𝑐  equals 
1

𝑘
 if the data are assumed to be balanced. 

Consequently, the output of the framework can be 

formulated using the total law of probability, as shown 

in Equation (5): 

 

𝑝(𝑀(1) ∈ {𝑖, 𝑗}, 𝑀(2) ∈ {𝑖}, 𝑇) = 

∑ 𝑝(𝑀(2) ∈ {𝑖}|𝑀(1) ∈ {𝑖, 𝑗}) 𝑝(𝑀(1) ∈ {𝑖, 𝑗}|𝑇)𝑝(𝑇) (5) 

= ∑ 𝑃𝑘
(2)

10

𝑘=1

× (𝑃(1) + ∆) × 𝑐  

= (𝑃(1) + ∆)[1 − (1 − 𝑐 ∑ 𝑃𝑘
(2)

10

𝑘=1

)]  

substituting (1 − 𝑐 ∑ 𝑃𝑘
(2)10

𝑘=1 ) by the summation of the 

errors in the second layer (𝑐 ∑ 𝑒𝑘
(2)10

𝑘=1 ); 

= 𝑃(1) + ∆ − (𝑃(1) + ∆)𝑐 ∑ 𝑒𝑘
(2)

10

𝑘=1

  

In fact, this term ∆ − (𝑃(1) + ∆)𝑐 ∑ 𝑒𝑘
(2)10

𝑘=1  is the 

difference between the output of using a one-layer 

traditional framework and the output of using the two-

layer proposed framework. Hence, if this term is 

greater than zero, then there is an additional amount to 

probability resulting from using a one-layer traditional 

framework. In that case, results from the proposed 

framework are better than the traditional framework. 

This can be formulated as shown in Equation (6). 

∆ − (𝑃(1) + ∆) ∑ 𝑒𝑘
(2)

10

𝑘=1

> 0 (6) 

∆> 𝑃(1)(1 − 𝑐 ∑ 𝑃𝑘
(2)

10

𝑘=1

)/𝑐 ∑ 𝑃𝑘
(2)

10

𝑘=1

  

This implies that if ∆  is greater than the term 

[𝑃(1)(1 − 𝑐 ∑ 𝑃𝑘
(2)10

𝑘=1 )/𝑐 ∑ 𝑃𝑘
(2)10

𝑘=1 ] , then the two-

layer framework is beneficial. In order to examine 

that, we need to estimate 12 parameters from the data: 

∆, 𝑃(1), 𝑎𝑛𝑑 𝑃𝑘
(2)

, where 𝑘 = 1,2, … ,10 . One 

reasonable method is to formulate the likelihood 

function of the classifier output as Bernoulli 

distribution because it is either one or zero, whereas 

the prior function for each the 12 parameters is 

formulated as a Beta distribution because it takes on 

any value between zero and one. This means that the 

prior domain is from zero to one [0,1]. Consequently, 

the problem can be viewed as a Beta-Bernoulli model: 
𝑓(𝑦𝑖𝑗|𝑝𝑗)~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑖(𝑝𝑗) 

where 𝑦𝑖𝑗 ∈ {1,0} is output 𝑖 for classifier 𝑗 and 𝑝𝑗 ∈

[0,1] 
𝑓(𝑝𝑗)~𝐵𝑒𝑡𝑎(𝑎, 𝑏) 

where the values of constants 𝑎 and 𝑏 are chosen in 

which the knowledge of the prior is equal (i.e., 

𝐸[𝑝𝑗] = 0.5). 

𝑓 (𝑝𝑗|𝑦𝑗1, 𝑦𝑗1, … , 𝑦𝑗𝑁𝑗
) ∝ 

{∏ 𝑝𝑗

𝑦𝑗𝑖

𝑁𝑗

𝑖=1

(1 − 𝑝𝑗)
1−𝑦𝑗𝑖

}
𝛤(𝑎 + 𝑏)

𝛤(𝑎)𝛤(𝑏) 
𝑝𝑗

𝑎−1(1 − 𝑝𝑗)
𝑏−1

 

the above equation can be simplified as: 

𝑓 (𝑝𝑗|𝑦𝑗1, 𝑦𝑗1, … , 𝑦𝑗𝑁𝑗
) ∝ 

𝛤(𝑎 + 𝑏)

𝛤(𝑎)𝛤(𝑏) 
{𝑝𝑗

∑ 𝑦𝑖+𝑎−1
𝑁𝑗
𝑖=1 (1 − 𝑝𝑗)

𝑁𝑗−∑ 𝑦𝑖+𝑏−1
𝑁𝑗
𝑖=1 } 

by removing the constants 
𝛤(𝑎+𝑏)

𝛤(𝑎)𝛤(𝑏) 
 from the above 

equation, the kernel of the posterior is a Beta 

distribution with the parameters shown as: 

𝑓 (𝑝𝑗|𝑦𝑗1, 𝑦𝑗1, … , 𝑦𝑗𝑁𝑗
) ~𝐵𝑒𝑡𝑎 (∑ 𝑦𝑖 + 𝑎

𝑁𝑗

𝑖=1

, 𝑁𝑗 − ∑ 𝑦𝑖 + 𝑏

𝑁𝑗

𝑖=1

) 

From the above equation we can estimate the 

expectation 𝐸 [𝑓 (𝑝𝑗|𝑦𝑗1, 𝑦𝑗1, … , 𝑦𝑗𝑁𝑗
)] of each 

parameter, as shown in Equation (7): 

𝐸 [𝑓 (𝑝𝑗|𝑦𝑗1, 𝑦𝑗1, … , 𝑦𝑗𝑁𝑗
)] =

∑ 𝑦𝑖 + 𝑎
𝑁𝑗

𝑖=1

𝑎 + 𝑏 + 𝑁𝑗
 (7) 

Each of the required parameters can be estimated 

using Equation (7). However, Equation (5), Equation 

(6), and the corresponding results are based on a two-

layer framework. As the number of layers in the 

framework increases, more parameters are required to 

be estimated and the model will be relatively more 

complicated. In addition, adding layers to the 

framework would increase the computational time. 

Yet, this does not mean that adding layers is costly, so 

we recommend first estimating the parameters related 

to the number of layers one will choose, then decide 

upon that. 

VI. DATA ANALYSIS AND RESULTS 

This section discusses the results of the machine 

learning techniques used in this study, which were 

developed in MATLAB. 

A. K-Nearest Neighbors Algorithm (KNN) 

In this study, KNN was used to identify the mode 

from the five possible transportation modes in the first 

layer and the two modes in the second layer. The 

optimal K was chosen after testing different numbers 
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of K versus the overall classification accuracy. To 

select the best model at each value of K, a 10-fold 

cross-validation was performed, and the average 

highest accuracy among the 10 folds was chosen. As 

shown in Fig. 2, a higher classification accuracy was 

achieved using the pooled features in the proposed 

hierarchical framework than using only the time 

domain features in the same framework. Additionally, 

using only the time domain features, the proposed 

hierarchical framework outperformed traditional KNN 

classification using pooled features. The optimal K 

was found to be 7, with a highest accuracy of 95.49%. 

 
Fig. 2. Classification accuracy for KNN in different cases at 

different neighbors. 

B. Classification and Regression Tree (CART) 

Ten folds for the cross-validation process were 

applied for each pruning level, ranging from two to 20, 

and the average was taken as a comparison value with 

other pruning levels. Fig. 3 provides a comparison 

between time domain features, frequency domain 

features, and pooled features for traditional CART and 

CART using the proposed framework under different 

pruning levels. The figure shows that the proposed 

framework using pooled features (compared to the 

same applied approach using traditional CART) 

produces the highest accuracy among all other cases 

(93.52%) at six pruning levels. Fig. 3 also shows that 

the classification accuracy of using only frequency 

domain features in the proposed framework approach 

(compared to the same approach using traditional 

CART) is lower than using the proposed approach and 

only time domain features. 

 
Fig. 3. Classification accuracy for CART in different cases at 

different pruning levels. 

C. Support Vector Machine (SVM) 

SVM was applied in the proposed framework using 

time domain, frequency domain, and pooled features. 

A 10-fold cross-validation was applied to develop a 

single model. The results show that using pooled 

features improved the average overall classification 

accuracy from 96.10% to 97.00%. The overall 

accuracy for using only the frequency domain features 

was the lowest at 93.92%. Table IV presents the 

overall classification accuracy for the 10-fold testing 

applying the proposed SVM framework.  

 
TABLE IV  

OVERALL CLASSIFICATION ACCURACY FOR THE SVM USING TIME 

DOMAIN, FREQUENCY DOMAIN, AND POOLED FEATURES. 

Fold 
Time domain 

features (%) 

Frequency 

domain features 

(%) 

Pooled 

features 

(%) 

1 

2 
3 

4 

5 
6 

7 

8 
9 

10 

96.04 

96.32 
95.88 

96.10 

95.98 
96.02 

96.38 

95.71 
96.32 

96.25 

93.78 

93.65 
92.90 

93.04 

94.01 
94.79 

93.62 

94.57 
94.52 

94.28 

97.12 

97.31 
96.88 

97.32 

96.76 
96.81 

96.98 

96.93 
97.01 

96.91 

Average 96.10 93.92 97.00 

 

The confusion matrix applying SVM in the proposed 

framework using pooled features is given in Table V. 

The precision for run mode was the highest, and the 

precision for bus mode was the lowest. However, the 
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recall was the lowest for run mode and highest for 

bike mode. 

 
TABLE V  

CONFUSION MATRIX FOR SVM USING POOLED FEATURES 
  

Actual  

Bike Car Walk Run Bus Precision 

P
r
e
d

ic
te

d
 Bike 97.13 0.52 1.17 0.40 0.58 97.33 

Car 0.66 93.57 0.16 0.13 3.06 95.88 

Walk 0.92 0.08 93.59 0.92 0.29 97.68 

Run 0.37 0.05 0.93 92.82 0.20 98.36 

Bus 0.92 2.42 0.40 0.32 93.11 95.81 

 Recall 97.13 93.57 93.59 92.82 93.11  

 

D. Random Forest (RF) 

We ran the RF with different numbers of trees to 

investigate the impact of the number of trees on the 

classification accuracy. A number of trees ranging 

from 200 to 400 was chosen, as the highest benefit 

was expected to be gained in this range according to 

previous studies (see more details in Elhenawy, 

Jahangiri, and Rakha; Jahangiri and Rakha [2, 12]). 

Applying RF in the proposed framework using 

pooled features resulted in the highest classification 

accuracy of 96.24% at 200 trees, as illustrated in Fig. 

4. Fig. 4 also illustrates that applying RF using a 

traditional approach for classification with pooled 

features produces higher accuracy than the RF using 

the proposed classification framework with only time 

domain features. 

 

 
Fig. 4. Classification accuracy for RF in different cases at different 

number of trees. 

 

A comparison between time domain, frequency 

domain, and pooled features was carried out using the 

RF method in the proposed framework, as shown in 

Table VI. The results demonstrate that using the 

pooled features improved the overall classification 

accuracy from 95.61% to 96.24%. 

 
TABLE VI  

OVERALL CLASSIFICATION ACCURACY FOR RF USING TIME 

DOMAIN, FREQUENCY DOMAIN, AND POOLED FEATURES 
 

Fold 
Time domain 

features (%) 

Frequency 

domain features 

(%) 

Pooled 

features 

(%) 

1 
2 

3 

4 
5 

6 

7 
8 

9 

10 

95.95 
95.73 

95.61 

95.37 
95.51 

95.56 

95.67 
95.78 

95.49 

95.47 

94.15 
94.34 

93.91 

94.02 
93.85 

94.09 

93.82 
93.64 

94.18 

93.78 

96.35 
96.59 

96.07 

96.22 
96.24 

96.30 

96.23 
96.13 

96.39 

95.88 

Average 95.61 93.98 96.24 

 

Table VII shows the confusion matrix for the RF 

proposed framework using pooled features. The run 

mode has the highest precision and the bus mode has 

the lowest precision.   

 
TABLE VII 

CONFUSION MATRIX FOR RF USING POOLED FEATURES 

  
Actual  

Bike Car Walk Run Bus Precision 

P
r
e
d

ic
te

d
 Bike 94.63 0.40 2.59 0.05 0.94 95.96 

Car 0.97 92.54 0.13 0.00 2.78 95.96 

Walk 1.87 0.10 91.74 0.25 0.70 96.92 

Run 0.75 0.05 1.47 90.39 0.57 96.96 

Bus 1.78 2.43 0.13 0.00 91.67 95.48 

 Recall 94.63 92.54 91.74 90.39 91.67  

 

E. Heterogeneous Framework RF-SVM 

We performed a heterogeneous framework in which 

the RF classifier was used in the first layer to classify 

all modes and a binary SVM classifier was applied in 

the second layer. The overall classification accuracy 

improved when using pooled features (from 96.32% to 

97.02%) compared to when using only time domain 

features, as presented in Table VIII. 
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TABLE VIII  
OVERALL CLASSIFICATION ACCURACY FOR RF-SVM USING TIME 

DOMAIN, FREQUENCY DOMAIN, AND POOLED FEATURES. 

 

Fold 
Time domain 

features (%) 

Frequency 

domain features 

(%) 

Pooled 

features 

(%) 

1 

2 
3 

4 

5 
6 

7 

8 
9 

10 

96.51 

96.38 
96.52 

96.26 

96.44 
96.10 

96.12 

96.16 
96.33 

96.36 

94.26 

94.74 
94.78 

94.83 

93.71 
95.17 

95.30 

94.86 
94.49 

94.86 

96.96 

96.91 
96.86 

96.83 

96.97 
96.66 

97.36 

97.11 
97.39 

97.16 

Average 96.32 94.70 97.02 

 
Table IX and Table X provide the confusion matrix 

for applying RF-SVM in the proposed framework 

using time domain features and the pooled features, 

respectively. 

 
TABLE IX 

CONFUSION MATRIX FOR RF-SVM USING TIME DOMAIN FEATURES 

 

 Actual  

Bike Car Walk Run Bus Precision 

P
r
e
d

ic
te

d
 Bike 97.83 0.75 1.32 0.72 2.02 95.39 

Car 0.44 94.74 0.15 0.05 3.84 95.51 

Walk 1.03 0.10 97.61 0.98 0.15 97.80 

Run 0.00 0.00 0.20 97.63 0.05 99.74 

Bus 0.69 4.41 0.73 0.62 93.93 93.50 

 Recall 97.83 94.74 97.61 97.63 93.93  

 

TABLE X 

CONFUSION MATRIX FOR RF-SVM USING POOLED FEATURES 

 

 Actual  

Bike Car Walk Run Bus Precision 

P
r
e
d

ic
te

d
 Bike 96.12 0.34 1.17 0.06 0.71 97.79 

Car 0.69 96.81 0.16 0.01 2.85 96.27 

Walk 1.22 0.10 97.27 0.36 0.44 97.82 

Run 0.65 0.05 1.18 99.54 0.48 97.55 

Bus 1.32 2.70 0.22 0.04 95.52 95.67 

 Recall 96.12 96.81 97.27 99.54 95.52  

VII. CONCLUSIONS AND RECOMMENDATIONS FOR 

FUTURE WORK 

This study proposes a two-layer hierarchical 

framework classifier to distinguish between five 

transportation modes using new extracted frequency 

domain features pooled with traditionally used time 

domain features. The first layer contains a multiclass 

classifier that discriminates between five 

transportation modes and identifies the two most 

probable modes. The second layer consists of binary 

classifiers that differentiate between the two modes 

identified in the first layer. The outputs of the two 

layers are combined using Bayes’ rule to choose the 

transportation mode with the largest posterior 

probability.  

We also investigated the possibility of improving 

the classification accuracy using pooled features in the 

proposed framework by applying a number of 

different classification techniques, including KNN, 

CART, SVM, RF, and RF-SVM. The results showed 

that using pooled features in the proposed framework 

increased the classification accuracy for all of the 

applied classifiers. For the same data, the highest 

reported accuracy was 95.10% using the traditional 

approach for detection, whereas the proposed 

approach in this study achieved an accuracy of 

97.02%. This implies that (a) pooling new features to 

be selected as classifying features increases the 

classification accuracy regardless of the applied 

approach and algorithm, and (b) applying the proposed 

hierarchal framework further increases the 

classification accuracy. In summary, the proposed 

hierarchical framework outperformed the traditional 

approach of applying only a single layer of classifiers. 

Although using pooled features increases the 

classification accuracy, using the new extracted 

features alone (i.e., frequency domain) results in a 

lower accuracy than only using time domain features. 

Transferring time domain into a new space (i.e., 

frequency domain) and using the magnitude of the first 

20 components enhances the control on the 

information loss. This means that combining different 

features together in a big pool and then choosing the 

best subset of features returns better results than using 

one domain of features alone. The heterogeneous 

classifier, using RF in the first layer and SVM in the 

second layer, was found to produce the best overall 

performance. 

As a future recommendation, deep analysis, such as 

Canonical Correlation Analysis, should be used to 

correlate between the features in order to obtain better 

coordinated results. Furthermore, future work should 

investigate the sensitivity of the results to the 

monitoring period and the potential use of GPS data. 
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