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Long-range road geometry estimation using moving
vehicles and road-side observations

Lars Hammarstrand, Maryam Fatemi, Ángel F. García-Fernández, and Lennart Svensson

Abstract—This paper presents an algorithm for estimating the
shape of the road ahead of a host vehicle equipped with the
following onboard sensors: a camera, a radar and vehicle internal
sensors. The aim is to accurately describe the road geometry up to
200 m ahead in highway scenarios. This purpose is accomplished
by deriving a precise clothoid-based road model for which we
design a Bayesian fusion framework. Using this framework the
road geometry is estimated using sensor observations on the
shape of the lane markings, the heading of leading vehicles
and the position of road side radar reflectors. The evaluation
on sensor data shows that the proposed algorithm is capable
of capturing the shape of the road well, even in challenging
mountainous highways.

Index Terms—Road geometry, Bayesian Estimation, Advanced
driver assistance systems.

I. INTRODUCTION

Advanced driver assistance systems (ADAS) aim at pro-
viding drivers with a safer and more convenient driving
experience. These systems monitor the current traffic situation
and support the driver in dangerous situations by generating a
warning, or by autonomously intervening in order to prevent
an accident or to mitigate its consequences. It is crucial for
ADAS systems to make informed decisions in a timely manner
since they are designed to act prior to an accident. As such,
some of these systems need knowledge of the shape of the
road to be able to make a decision. Among other things, road
geometry helps the system to answer important questions, e.g.
‘Is the vehicle in front in my lane?”.

Estimates of the road geometry are typically based on
observations from different sensors as for instance camera,
radar and lidar. In the case of vision-based systems, the
road geometry is estimated by detecting visual cues like lane
markings and road edges. A survey of such methods can be
found in [1] and [2]. Although this type of system can give
accurate estimates close to the host vehicle (approx. up to 60
m) in many situations, issues such as worn-out lane markings,
adverse weather or ambient light, can cause serious difficulties.
Additionally, these systems suffer from poor effective resolu-
tion of the lane markings at far distances [3]. Radar-based
systems, on the other hand, can sense objects up to longer
distances and are less sensitive to both weather and ambient
light. The radar-only systems typically estimate the road using
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observations of stationary objects by the road. Examples of
such systems are presented in [4]–[6]. For lidar based systems,
an overview can be found in [7] which discusses both online
and offline methods for road extraction from lidar data. The
main strength with lidar based systems is that they are able to
detect lane markings [8] as well as road boundaries [9], [10].
Its drawbacks are, similar to vision based systems, weather
sensitivity and limited detection range (typically 60 m).

Clearly, radar and vision based systems provide comple-
mentary information and fusing the two can lead to increased
accuracy and robustness. For example, in [11], lane marking
measurements from a camera are fused with measurements of
road boundaries from a radar sensor. In other works, radar
observations of leading vehicles are incorporated into the
fusion system to improve performance [12]–[16]. In [17], we
propose a fusion algorithm that, in addition the above, takes
stationary road side radar observations in to account.

The above mentioned online methods, except [17], focus
on estimating the near-range road geometry, approximately up
to 60 m. The focus on near-range stems from two limiting
factors, camera and lidar sensors do not give observations at
farther distances and/or limited flexibility in the road model
used. In this paper, we estimate the far-range road geometry,
up to 200 m ahead of the host vehicle, in highway scenarios
by using observations of lane markings coming from a camera
sensor and observations leading vehicles and road side objects
from a radar-camera fusion system. Furthermore, we propose
a flexible clothoid-based segmented road model, where the
segments are connected in a manner that ensures G2-continuity
along the curve. In addition to estimating the road geometry
we also estimate road-side barriers. Besides simplifying the
inference, knowledge of the road barriers can be useful in
subsequent threat assessment algorithms as the barriers /
boundaries indicate the edges of a driving corridor.

The differences of this paper compared to [17] are in the
proposed road model, how we treat the stationary road-side
radar measurements and more extended evaluations. More
specifically, the proposed clothoid-based road model in this
paper allows for calculating continuous curvature and heading
along the road. The road in [17] was modeled by discrete
points, therefore, we could only directly access the curvature at
discrete points along the road. Moreover, in [17] the guard rail
measurements are preprocessed and we make hard decisions
regarding which measurements are generated by the guard
rails and which are clutter. Based on data analysis, where
we identify the guard rail posts as strong radar reflectors,
we instead form a probabilistic model of the guard rail
observations. Using this model in a probabilistic multiple
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hypothesis framework we can avoid discarding measurements
by making hard decisions and, hence, more efficiently use
the available information. We evaluate our algorithm using
real data recorded in different types of highways, i.e., straight
and winding highways as well as highways belonging to the
curvier end of the spectrum.

II. PROBLEM FORMULATION AND SYSTEM DESCRIPTION

This paper considers the problem of online estimation of the
shape of the road, i.e., the geometry of the road, up to 200m
ahead of a host vehicle in highway scenarios using onboard
sensors. More specifically, we consider a vehicle fitted with a
forward-looking dual-mode radar, a forward-looking camera
and internal vehicle sensors such as wheel speed sensors,
gyroscopes and accelerometers. While the internal sensors
measure the movement of the host vehicle, the camera is
capable of tracking the lane markings as well as detecting and
classifying leading vehicles. The radar observes the position
and velocity of other vehicles as well as stationary road-side
objects, e.g. guard rail posts. The information about leading
vehicles is pre-processed by the radar-camera system to give
fused estimates of their velocity and position.

A. Assumptions and limitations

As this paper focuses on highways and a given sensor
setup, to make the problem more concise we introduce a set
of simplifying assumptions. Firstly, the scope is limited to
estimating the shape of a single road, i.e., intersections, exits
and forks are not described by the system until the host vehicle
has actually left the current road. Many interesting scenarios
are not dependent on handling multiple roads, however; this
limitation can cause some confusion as, e.g., a leading vehicle
taking an exit.

Secondly, as we do not considering forks or exits, our
proposed methods can not readily be applied to other types
of roads, e.g., rural or inner-city roads. In addition, we make
other assumptions about the behavior of other vehicles and
stationary radar detections that are not valid in these scenarios.
For these types of roads and at these short distances, it
is probably quite sufficient to mainly rely on lane marking
measurement from the camera system as studied in [1], [2].

Thirdly, we assume that the road geometry can be described
in a flat 2D plane, i.e., no slope information is considered. This
is a common assumption applied in much of the road geometry
estimation literature, see [18]–[21]. The main reason that we
do not include it here, however, is that slope information is
not present in the sensor observations available. Having access
to such observations via detailed maps, 3D laser scanners or
stereo camera systems would clearly motivate introducing the
third dimension in the geometry model. Not considering slope
information limits the estimation accuracy in hilly roads.

Lastly, as is common in this field, the sensors pre-process
(filter) their measurements. However, as we do not receive
any error covariance nor have insight into these filters we are
limited to treat the observations as measurements instead of
estimates in our fusion system. We further assume that there
exists a fusion system like the one described in [22] and
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Figure 1. Two Cartesian coordinate systems, one fixed global, (xg, yg), and
one local moving coordinate frame attached to the host vehicle, (xl

k, y
l
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used in, e.g., [6], [23], [24] capable of handling asynchronous
sensor data and estimating the host vehicle state. Moreover,
as the the estimate of the host vehicle state (velocity and
acceleration) from this system has negligible uncertainty in
comparison to the uncertainty in the road geometry [25] we
regard the host vehicle state as a control input to our models.

B. Notation and road geometry definition

In order to estimate the road geometry we first need to
clearly define it. As in [17], we use the following definition
of the road geometry:

The geometry of the road is defined as the shape of
the middle of the host vehicle’s lane.

That is, for a given time instance k, we assume that there exists
a mathematical expression for the current shape (geometry) of
the middle of the host vehicle’s lane. Further, the geometry
description is parameterized using a time varying road state
vector, rk, which is defined in Section III-A.

The geometry is expressed in a local Cartesian coordinate
system, (xlk, y

l
k), attached to the middle of the rear axle of the

host vehicle with its x-axis pointing in the direction of travel,
as depicted in Figure 1. Note that this local coordinate frame
is fixed to the host vehicle and thus moves with it. The pose of
this local coordinate frame is expressed in a stationary global
Cartesian coordinate system as (xh

k, y
h
k) and ψh

k. The time
index k will be used throughout this paper to refer to a time
instance tk for which the kth measurement in total (from any
of the sensors) was taken. As the sensors are asynchronous,
the time between two measurements Tk = tk − tk−1 is not
constant.

C. Road observations

The onboard sensors deliver three different types of obser-
vations on the road geometry. The camera sensor detects and
estimates the shape of the lane markings, both the radar and
the camera detect moving vehicles and the radar gives us sta-
tionary detections from road-side objects. These observations
are described in more detail below.

1) Lane marking observations: If present and detected by
the camera system, the shapes of the left and right lane
markings closest to the host vehicle are described using third
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degree polynomials. The polynomials are given in the local
vehicle coordinate frame (xl

k, y
l
k) as,

yl
k = l0k + l1kx

l
k + l2k(xl

k)2 + l3k(xl
k)3 (1)

yr
k = r0k + r1kx

l
k + r2k(xl

k)2 + r3k(xl
k)3 (2)

for the left lane marking and the right lane marking, respec-
tively. Roughly every 100 ms, the camera system delivers the
polynomial coefficients for each side, zl

k = [l0k, l
1
k, l

2
k, l

3
k]T

and zr
k = [r0k, r

1
k, r

2
k, r

3
k]T , independently of each other. Ad-

ditionally, each coefficient vector is coupled with a confidence
value (between 0 and 3) and an indication of the maximum
distance for which the polynomials (1) – (2) are valid, denoted
xl

max and xr
max, respectively.

2) Object observations: The radar-camera fusion system
delivers object estimates every 25 ms. Based on their speed
over-ground and camera classification, these estimates are
divided into two categories, moving/stationary vehicles or
stationary unclassified objects. The latter category typically
includes stationary road-side objects reflecting radar energy,
such as guard-rail posts. We denote the vehicle estimates as
zv
k and the stationary detections as zs

k.
For the ith detected vehicle, the fusion system provides the

following description,

zv,i
k = [xik, y

i
k, φ

i
k, v

i
k]T (3)

where [xik, y
i
k] is the position of the vehicle in the local

coordinate frame, φik is its heading direction and vik is its
speed over-ground.

For the stationary objects the description is simply given as
the position in the local coordinate frame.

D. Estimation problem

The aim is to estimate the geometry of the road (including
uncertainty) using the available observations from the onboard
sensors. More specifically, we want to recursively calculate the
posterior density of the road state, p(rk|z1:k), where z1:k is
the set of all observations up to the current time index k.

III. ROAD MODEL

We define and motivate our proposed model of the road
in Section III-A, derive approximations to make the model
suitable in a filtering framework in Section III-B and finally
compare our approximation with the commonly used third-
degree polynomial model in Section III-C.

A. Exact road model

Roads are typically built in a manner which ensures a
smooth ride for the road users. Among other things, there
should be no abrupt changes in the road curvature. To accom-
modate this, it is common to construct roads where straight
sections are connected with constant curvature segments using
a transition curve, i.e., a curve with linearly changing curvature
[26]. Our proposed model is based on this notion.

In the most general form, the 2D geometry of the road can
be described using a 2-dimensional parametric curve cr(s)
expressed in arc length s (distance along the road), as

cr(s) =

[
xr(s)
yr(s)

]
(4)

where (xr(s), yr(s)) is the position of the road at arc length s
in the local coordinate system. The parameters used to describe
cr(·) are collected in the road state rk. That is, if we know rk
we also know the shape of the road. Below, we will introduce
how we propose to model (4) and consequently how we choose
to parameterize the road state.

We propose to model the road using connected segments
fixed to the road. Fixing the model to the road rather than
to the vehicle, which is a common modeling choice, allows
more efficient use of our observations. As the road model in
large parts is static rather than dynamically changing with the
movement of the host vehicle, there is no need to add process
noise in order to account for changes in the road.

Each segment in our model is described using a parametric
curve (clothoid) of length L that has a linearly changing
curvature as a function of s. The curvature of the ith-segment,
denoted κir(s), is thus expressed as

κir(s) = κi0 + κi1s, (5)

where κi0 is the initial curvature of the segment and κi1 is its
curvature change rate. As a consequence of (5), the heading
of the road in each segment, ϕir(s), is described as

ϕir(s) = ϕi0 + κi0s+
κi1
2
s2 (6)

where ϕi0 is the initial heading of the road at the start of the
ith segment. From (6) we can finally describe the geometry
of the ith segment using the following integral

[
xir(s)
yir(s)

]
=

[
xi0
yi0

]
+

ˆ s

0

[
cos(ϕir(t))
sin(ϕir(t))

]
dt (7)

where (xi0, y
i
0) are the initial coordinates of the ith segment.

Using (7) we can describe the geometry of each segment in
the road model. In order for the segments to align smoothly,
the segments should be connected such that the complete road
has G2-continuity (2nd order geometric), i.e., the position,
heading and curvature of two connected segments should be
equal at the intersection. This is ensured by introducing the
following constraints on the initial conditions,

κi0 = κi−10 + κi−11 L (8)

ϕi0 = ϕi−10 + κi−10 L+ κi−11 L2/2 (9)

xi0 = xi−1r (L) (10)

yi0 = yi−1r (L) (11)

Note that, as the initial curvature, heading and position are
fixed, the only free parameter for each segment is the constant
curvature change rate.

As we are only interested in the describing the road 200
meters ahead of the host vehicle it is sufficient that we
consider the N closest segments such that NL ≥ 200. Let
us denote the indices of these segments as i1, i2 . . . , iN and
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Figure 2. Illustration of the road model, state parametrization and process model. The road is characterized by initial offset yoff
k , initial heading ϕk , initial

curvature κ0,k and curvature change rate of each segment κi11 , ..., κ
iN
1 . The left barrier is assumed to be parallel to the road and characterized by the initial

offset dlk .

the corresponding curvature change rates as κi11 , κ
i2
1 , . . . , κ

iN
1 .

Note that, as the curvature change rates describe a fixed part of
the road and are assumed constant for each segment, the length
of each segment, L, needs to be chosen such that the model
is flexible enough to capture changes in the curvature change
rate. Furthermore, as we have no prior knowledge regarding
where the curvature change rate changes so we need to account
for this as well. For the scenarios covered in this paper we have
chosen L = 50 m and N = 5.

Further, the geometry of the road is expressed in the local
coordinate frame and, thus, it changes as the car moves. To
relate the road to the position of the host vehicle we require
the initial position (0, yoff

k ), heading ϕk and curvature κ0,k at
the current position of the car. Note that, by setting the initial
position to (0, yoff

k ) we assume that the current representation
of the road starts at the rear axle of the host vehicle (local
coordinate frame). The road state also includes the width of
the host lane and is defined as:

rk = [yoff
k , ϕk, κ0,k, κ

i1
1 , . . . , κ

in
1 , w

lane
k ]T . (12)

In order to preserve the description of the geometry when
the host performs a lane change (the road geometry gets shifted
a lane width), it is convenient to have dynamic segment lengths
denoted, `ik, for i = i1 . . . iN . The dynamic segment lengths
are compensated both for the movement of the host1 as well as
if the host makes a lane change. Nevertheless, as we assume
that the dynamics of the host vehicle is known, this quantity
is known and does not need to be included in the state vector.
More details is given in Section IV.

B. Approximative road model

In order to use this road model in a filter it is convenient to
have a closed-form solution to (7). However, the integral in (7)
does not have an analytical solution. Thus, we propose to ap-
proximate the trigonometric functions in (7) using third-order
Taylor series expansion around s = L/2. Although there exist
more accurate approximations of (7) [27] - [28], numerical

1For example, if the vehicle as moved d m since last time, the first segment
needs to be shortened d m.

comparison shows that a third-order Taylor expansion is less
computationally complex and yields sufficient accuracy for
relevant road shapes, see Figure 3. That is, the limiting factor
regarding segment length is not the numerical accuracy of
the approximation but rather how long the constant curvature
change rate assumption is accurate.

Let x̃ir(s) and ỹir(s) be the approximated Cartesian positions
of the ith segment resulting from the Taylor expansion, which
is detailed in Appendix A. With these approximations, the
parametric curve can be described as

c̃r(s) =

N∑

j=1

[
x̃
ij
r (∆si)

ỹ
ij
r (∆si)

]
χAi

(s) (13)

where χAi(s) is an indicator function which is one if s is in the
intervall Ai =

[∑i−1
n=1 `

n
k ,
∑i
n=1 `

n
k

]
and ∆si = s−

∑i−1
n=1 `

n
k .

Similarly, the heading, ϕr(s), and curvature, κr(s), of the road
are given by

ϕr(s) =

N∑

j=1

ϕir(∆s
i)χAi

(s) (14)

κr(s) =

N∑

j=1

κir(∆s
i)χAi

(s) (15)

where ϕir(·) is given by (6) and κir(·) is given by (5).
In addition, to be able to relate the stationary road side

observations from the radar to the shape of the road, we
propose to include a barrier model in our state representation.
We assume that the road barrier can be modeled as parallel
to the middle of the host lane with a constant offset over the
observable region. That is, we introduce a barrier state vector

bk = [el
k, d

l
k, e

r
k, d

r
k]T (16)

where dl
k and dr

k are the lateral distance from the middle of
the host lane to left and right barrier, respectively. In contrast
to the road, the left and right barrier are not always present. To
treat the existence / nonexistence of the barriers we introduce
the indicator variables el

k ∈ {0, 1} and er
k ∈ {0, 1}, which if

set to 1 indicates the existence of the respective barrier.
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C. Comparison to the linear cubic polynomial model

A commonly used geometry model in the lane tracking
literature is to describe the shape of the lane markings using
a cubic polynomial [29]

[
xr(x)
yr(x)

]
=

[
x0
y0

]
+

[
x

φ0x+ c0
2 x

2 + c1
6 x

3

]
(17)

where xr and yr are the x- and y-coordinates of the road in the
local coordinate frame, and φ0 ≈ ϕ0, c0 ≈ κ0 and c1 ≈ κ1.
The approximation is basically performed using the small
angle approximation for trigonometric functions (first order
Taylor expansion around s = 0) on (7) and approximating the
arc length as the x-component. For a full derivation of this
approximation, see [29], [30]. The main advantages with this
model is that its fairly accurate when describing roads up to 60
m [31] and when the change in heading angle is smaller than
about 15 degrees [30]. Furthermore, as the model is linear in
its parameters which allows for simple estimation. However,
as investigated in [32] the polynomial model is unsuitable in a
fusion framework as small errors in the higher oder parameters
can lead to large errors in the low order parameters.

Less investigated, however, is the use of this model to
describe segments in a segmented road model and the physical
interpretability of its model parameters. As such, we proceed
to compare the accuracy of the model given by (17) with our
proposed road model (13) in these aspects. In the comparison
we use a reference clothoid road model (7) having two segment
with L = 100 m, y0 = x0 = 0, ϕ0 = 0. The parameters κ0,
κ11 and κ21 are set to follow zero mean Gaussian distributions
describing curvy highways with respective standard deviations
of 1/750 m−1 in curvature and 5 · 10−5 m−2 in curvature
change rate.

The accuracy of the two approximative models is evaluated
using Monte Carlo simulations where we draw the parameters
describing the true clothoid from the parameter distribution
above. To get a comparison of the physical interpretability of
the models, the same parameter values are used in both the
approximative models as for the true clotoid. For simulation i
with road state ri, the modeling error of (13) is calculated as

εi(s) = ||c̃ri(s)− cri(s)||2 (18)

and similarly for (17). The mean error over the simulations
of each model is depicted in Figure 3 together with the error
variance. It is clear from the results that the cubic polynomial
model suffers from propagating modeling errors and is not
able to accurately describe the road up to 200 m ahead, while
the more accurate model approximation is able to keep the
error bounded to at most around 1 cm. It is also clear that the
physical interpretability of the parameters in the polynomial
model is limited in this scenario.

IV. PROCESS MODEL

The describe the process model for the road state, we
divided it into two parts. The first part describes the road in
relation to the host vehicle (first three states), whereas the
second part describes the actual shape of the current road
segments. The process model for the former is presented in

Figure 3. Monte Carlo comparison between two 2-segment road models
having segment lengths 100 m, using the linear cubic model (above) and
a 4th order nonlinear model (below). Both are evaluated against a reference
clothoid having the same length and parameters. The mean error (Euclidian
distance at arc-length s) and error variance is calculated for roads having
parameters drawn from the following parameter densities, ϕ0 = 0, κ0 ∼
N (0, (1/750)2) and κ1 ∼ N (0, (5 · 10−5)2).

Section IV-A and the latter in Section IV-B. Additionally, we
describe how to compensate the road state in the event that
the host makes a lane change in Section IV-C.

A. Host fixed process model

The first three elements of our state vector (yoff
k , ϕk and

κ0,k), describe the road relative to the current pose of the host
vehicle. To describe their process model we, thus, need to
compensate for the host movement.

The position and orientation of the host vehicle in a fixed
global coordinate system are received from the fusion system.
These parameters, at previous and current time stamps, are
denoted by (xh

k−1, y
h
k−1, ψ

h
k−1) and (xh

k, y
h
k, ψ

h
k), respectively.

We denote the starting position of the road at the previous
time stamp by (xg,rk−1, y

g,r
k−1) and the current time stamp by

(xg,rk , yg,rk ). These coordinates are illustrated in Figure 2. The
traveled distance along the road is approximated as

dk =
√

(xg,rk − x
g,r
k−1)2 + (yg,rk − y

g,r
k−1)2. (19)

Note that, it is assumed that the road starts at the rear-axle
of the host vehicle. Due to short prediction lengths, typically
around 0.5 m, the starting point of the road at the current time
can accurately be estimated using a linear approximation of
the road. This approximation is used to find the point where
the road intersects the y-axis of the local coordinate system
at time k. As a result, the starting point of the road at time k
can be expressed as

[
xg,rk
yg,rk

]
= A−1b (20)

where

A =

[
− tan(ψhk−1 + ϕk−1) 1
− tan(ψhk + π

2 ) 1

]

b =

[
yg,rk−1 − x

g,r
k−1 tan(ψhk−1 + ϕk−1)

yhk − xhk tan(ψhk + π
2 )

]
.
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Finally, we describe the process model of yoff
k , ϕk and κ0,k as

yoff
k+1 =

[
− sin(ψh

k) cos(ψh
k)
] [ xg,rk − xh

k

yg,rk − yh
k

]
+ νyk

ϕk+1 = ϕr(dk)− (ψh
k − ψh

k−1) + νϕk
κ0,k+1 = κr(dk) + νκk (21)

where ϕr(·) and κr(·) are described by (14) and (15), re-
spectively. Further, νκk ∼ N (0, σ2

κ), νyk ∼ N (0, σ2
y) and

νϕk ∼ N (0, σ2
ϕ) are independent noise processes accounting

for the uncertainties in the approximated quantities.

B. Road fixed process model
As previously stated, the road model consists of n connected

segments each describing the geometry of a specific fixed part
of the road in front of the host vehicle.

When the host vehicle drives over a segment joint, the
passed segment is removed and a new segment is appended at
the end. As such, the curvature change rates are shifted to the
left to make room for the new segment, i.e., ij := ij+1 ∀j =
1 . . . N − 1 and iN := iN + 1. The curvature change rate for
the new segment is modelled as

κiN1 = ρ
κ
iN−1
r (L)

L
+ νκ1

k (22)

where νκ1

k ∼ N (0, σ2
κ1

) is a random variable describing the
dynamics of the curvature change rate in the new segment.
The ρ-factor is used to model how much the road straightens
after the appended segment. Setting this factor in the interval
[−1, 0) will limit the curvature of the last segment and prevent
the estimate to overshoot. For example, setting ρ = −1 would
would result in an expected curvature at the end of the last
segment that is zero (straight), i.e., E{κiNr (L)} = 0.

The time evolution of the width of the host vehicle lane and
the distances to the left and right barrier are assumed to be
constant with some small noise perturbation

wlane
k+1 = wlane

k + νwk (23)

dl
k+1 = dl

k + νlk. (24)
dr
k+1 = dr

k + νrk. (25)

where νwk ∼ N (0, σ2
w), νlk ∼ N (0, σ2

b ), and νrk ∼ N (0, σ2
b ).

Furthermore, as barriers can appear and disappear we need to
describe the probability of these events. The former is modeled
using a birth probability, pb, and the latter with a probability
of survival, ps.

C. Lane change compensation
When the host vehicle changes lane, the road model needs to

be translated to describe the middle of the new lane instead of
the old one. The translation is performed by finding a parallel
clothoid laterally adjusted by ±wlane

k , where the sign depends
on the type of lane change. Using similar procedure as in [33],
we can find a mapping that gives us a parallel clothoid with
a lateral offset ∆y2. We denote this mapping as

[r̃k, b̃k ˜̀i1
k , . . . ,

˜̀iN
k ] = g(rk, `

i1
k , . . . , `

iN
k ,∆y) (26)

2In this case ∆y = ±wlane
k (depending in the lane change) but we define

it more general here as we will need it later.

where r̃k is the road state of the translated road and
˜̀i1
k , . . . ,

˜̀iN
k are the new segment lengths such that the roads

are parallel and the segment transitions are still at the same
place on the road. More detail on this mapping is given in
Appendix B.

V. MEASUREMENT MODELS

In this section we present the measurements models used for
the different information sources, i.e., lane marking measure-
ments, estimates of moving vehicles and stationary road-side
observations.

A. Lane marking observations
As discussed in [32], the polynomial parameter space is not

suitable for fusion. However, a sufficient, and more convenient
description of the information in the lane marking measure-
ments is obtained by sampling the polynomials (1) and (2) at
four points. Thus, we propose to sample the left and right lane
marking polynomials at four points chosen equidistantly from
0 to xl

max or xr
max

3, respectively. Let us denote a concatenated
vector of the samples from left lane as pl

k and from right lane
as pr

k and the corresponding sampling distances as sl
k and sr

k.
For the road state to describe the lane geometry of the left

and right lane markings as given by the camera, it needs to
be translated by half a lane width to the left or to the right,
respectively. Denoting rk translated by −wlane

k /2 using (26) as
r̃l
k and similarly rk translated by wlane

k /2 as r̃r
k, the sampled

lane marking polynomial can be described as

pl
k = c̃l

r̃(s
l
k) + ηl

k(sl
k) (27)

pr
k = c̃r

r̃(s
r
k) + ηr

k(sr
k) (28)

where c̃l
r̃(·) and c̃r

r̃(·) is the position of the left and right
lane markings at the given distances along the road and
ηl
k(sl

k) ∼ N (0,Rl
k(sl

k)) and ηr
k(sr

k) ∼ N (0,Rr
k(sr

k))
are distance dependent measurement noise processes.

B. Moving vehicle observations
A vehicle traveling on a road has two main options; either

it follows its lane or it changes lane by making a lane change
or taking an exit. Vehicles following the road are in large
respect having the same heading as the road at their current
position. In this paper we want to use this fact, together with
radar-camera observations on the heading of leading vehicles,
to gain knowledge about the road geometry.

Given that the jth observed vehicle is following its lane, its
expected heading observation can be described as

φjk = ϕr(s(x
j
k, y

j
k)) + ηφk (s(xjk, y

j
k)) (29)

where ϕr(·) is given by (14), s(xjk, y
j
k) is the arc length

to the point on the road that is closest to the vehicle and
ηφk (s(xjk, y

j
k)) ∼ N (0, σ2

φ(s(xjk, y
j
k))) is a distance dependent

measurement noise process.
Note that (29) is a linear function of the state rk and is only

valid for vehicles following their lane. How we treat vehicles
not following their lane is covered in Section VI.

3Recall that xl
max or xr

max are given by the sensor as the maximum distance
that the polynomial accurately describe the left and right lane geometry.
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Figure 4. Radar observations of guard-rail posts (red stars) together with the
true centerline of the host vehicle’s lane (black) and host vehicle position
(blue car).

C. Stationary observations

The radar sensor delivers observations on the position of
stationary objects that reflect radar energy. Examples of such
objects are vegetation, banks on the side of the road or the
posts holding the guard-rails. In fact, when present, the guard-
rail posts are quite strong radar reflectors which also give
information regarding the geometry of the road as shown in
Figure 4. Obviously, there is information in these guard-rail
measurements that we can exploit in order to better estimate
thew shape of the road.

The stationary measurement vector, zs
k, can thus contain

informative observations from the left and right guard-rail,
we denote these zl

k and zr
k, respectively, as well as less

informative non-barrier measurements, we denote these as znb
k .

Unfortunately, the radar observations that we receive are
not labeled as barrier or non-barrier measurements. To handle
this data association uncertainty we propose to introduce the
data association hypothesis set H. Each hypothesis Hi ∈ H
is defined as the 4-tuple

Hi = 〈λi, nil , nir , ninb〉 (30)

where λi is a mk×1 data association vector, where mk is the
number of observations, and nil , n

i
r and ninb are the number

of left, right and non-barrier observations, respectively. Given
the data association vector, the vector, zs

k can be sorted into
three sub-vectors containing observations on the right barrier,
zr
k, the left barrier, zl

k and non-barrier, znb
k . In the following

sections we derive the conditional models for these vectors.
1) Guard-rail observations: Note that in [17], we only

considered the lateral displacement and resorted to rules and
heuristics to account for the longitudinal distribution. In this
paper we instead propose a complete statistical model covering
both dimensions. For the sake of brevity, we present the model
for a single generic (left or right) barrier measurement vector
denoted zb

k, as the descriptions of left and right barrier are
completely analogous. Further, without loss of generality, we
assume that the measurements in zb

k are sorted in ascending
longitudinal position along the barrier.

The probabilistic relationship between guard-rail observa-
tions and the road is more easily modelled with respect to the
longitudinal distance and lateral displacement along the road.

Let us introduce vik and sik as the lateral and longitudinal
coordinate of barrier measurement zb,i

k in a curved coordinate
system aligned with the barrier. In this curved coordinate
frame, the lateral position of the ith barrier observation can
simply be modeled as

vik = ηv,i
k (31)

where ηv,i
k ∼ N (0, σ2

v ) model lateral measurement uncertainty.
That is, we model the barrier measurements as being on the
barrier and lateral deviations are modeled as measurement
noise.

The longitudinal distribution of the barrier observations is,
however, a bit more intricate. Clearly it dependents on the
probability of detecting each individual guard-rail post and,
consequently, how much of the barrier that is visible to the
radar. Let [smin, smax] be the interval4 for which the barrier is
in the field-of-view of the sensor. Further, let us assume that
the guard-rail posts are positioned every δp meters and that
each post is detected independently with probability PD. Using
this, the longitudinal coordinate of the ith barrier measurement
is described as

sik = si−1k +miδp+ ηs,ik (32)

where s0k = smin, mi ∼ Geo(PD) is a geometrically distributed
random variable modeling the number of guard-rail posts
that pass between consecutive detection by the radar and
ηs,i
k ∼ N (0, σ2

s ) models measurement noise uncertainty as
well as uncertainty in δp. As a consequence of the geometrical
distribution of mi, the number of barrier measurements, nb,
is binomial distributed according to

nb ∼ Binomial(blbk/δpc, PD) (33)

where b·c is the floor function and lbk is the visible length of the
barrier. From this procedure we can describe the longitudinal
position of nb barrier observations in the curved road-aligned
coordinate system.

Being able to describe the ith barrier measurement in
the barrier aligned coordinates, vik and sik, we now want to
describe in the local coordinate system, zb,i

k . The longitudinal
axis of the barrier aligned coordinate system is given in the lo-
cal coordinate system by (13) parameterized by a barrier road
state, denoted rb

k. This barrier road state is found by translating
rk using (26) with ∆y set to either dl

k or dr
k depending on

which barrier to describe. Further, let us denote the resulting
barrier clothoid as c̃b

r(s), i.e. the clothoid parameterized with
rb
k. Using the resulting barrier aligned coordinate system, zb,i

k

can now be described as

zb,i
k = c̃b

r(s
i
k) + rot(ϕr(sik))

[
εi,sk

εi,vk + vik

]
(34)

where rot(·) is a 2D-rotation matrix and ϕr(s) is the head-
ing of the road at distance s given by (14). The terms
εi,sk ∼ N (0, σ2

ε) and εi,vk ∼ N (0, σ2
ε) are introduced to

4These limits can be found by transforming respective barrier description
to polar coordinates (sensor coordinates) and threshold w.r.t. the field-of-view
of the sensor.
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describe modeling and approximation errors in the transform
and is much smaller then both ηv,i

k and ηs,i
k .

From (34) we can relate the measurement to its barrier
aligned coordinates. To describe the measurement model, how-
ever, we need to describe the likelihood of the road and barrier
state given the barrier measurements, i.e., p(zb

k|rk,bk,Hj).
If we, for brevity, omit conditioning on the data association
hypothesis except the number of barrier measurements njb, this
likelihood can be expressed as,

p(zb
k

∣∣njb, rk,bk)

=

ˆ
p(zb

k

∣∣sk,vk, rk,bk)p(sk,vk
∣∣njb, rk,bk)dsk dvk

=

ˆ
p(zb

k

∣∣sk,vk, rk,bk)p(vk)p(sk
∣∣njb, rk,bk)dsk dvk

=

ˆ [∏
i

ˆ
p(zb,i

k

∣∣sik, vik, rk,bk)p(vik)dvik

]

× p(sk
∣∣njb, rk,bk)dsk (35)

where sk = [s1k, . . . , s
nj

b
k ]T and vk = [v1k, . . . , v

nj
b

k ]T . Addi-
tionally, p(zb,i

k

∣∣sik, vik, rk,bk) is given by (34) and p(vik) by
(31). The latter part, p(sk

∣∣njb, rk,bk), can be expressed using
Bayes’ rule,

p(sk|njb, rk,bk) =
Pr
{
njb|sk

}
p(sk|rk,bk)

Pr
{
njb|rk,bk

} . (36)

where p(sk|rk,bk) is given by (32) and Pr
{
njb|rk,bk

}
by

(33). The remaining component, Pr
{
njb|sk

}
, is simply one for

all valid hypotheses, i.e., when the number of observations in
sk are njb, and zero otherwise.

To simplify the likelihood expression in (35) even further,
we note that using (32)
ˆ
p(zb,i

k

∣∣sik, vik, rk,bk)p(vik)dvik

=

ˆ
N
(
zb,i
k ; c̃b

r(s
i
k), rot(ϕr(sik))Σεrot(ϕr(sik))T

)

×N
(
vik; 0, σ2

v

)
dvik

= N
(
zb,i
k ; c̃b

r(s
i
k),Σz(sik)

)
(37)

where Σε = diag{σ2
ε , σ

2
ε} and

Σz = rot(ϕr(sik))

[
σ2
ε 0

0 σ2
ε + σ2

v

]
rot(ϕr(sik))T

Furthermore, as σε is very small, (37) is only significant
whenever zb,i

k is very close to fr,b(s
i
k, 0), i.e., when sik is

close to distance to the measurement along the barrier. Thus,
we propose to introduce ŝik, as the closest longitudinal distance
to the measurement, which is calculated as

ŝik = argmin
s
||zb,i

k − c̃b
r(s)||. (38)

Assuming that σ2
ε is sufficiently small we can approximate

(37) as a Dirac-delta in the s-dimension and, consequently,
the remaining integral in (35) can be approximated as

p(zb
k

∣∣rk,bk) ∝∼[∏

i

N
(
zb,i
k ; c̃b

r(s
i
k),Σz

(
ŝik
))
]

× p(ŝk
∣∣njb, rk,bk) (39)

where p(ŝk
∣∣njb, rk,bk) is given by (37) using

ŝk = [ŝ1k, . . . , ŝ
nb
k ]. Further, the mean of each Gaussian

in (39) is dependent on the related measurement according
to (38). Consequently, each mean is always the point on the
barrier which is closest to the respective measurement. As
such, moving the measurement along the barrier will influence
the Gaussians, i.e., the Gaussians are flat (uninformative)
along the barrier (s-dimension) and does not depend on
the variance in that dimension (σ2

ε ). This is, however, a
convenient form in order to use standard tools to perform the
measurement update.

To conclude, the resulting barrier likelihood in (39) is
divided into two parts, the first part capturing the lateral
displacement of each measurement in relation to the barrier
aligned coordinate system. Using (34), the corresponding
measurement model can be formed as

zb,i
k = c̃b

r(ŝ
i
k) + rot(ϕr(ŝik))

[
εi,sk

εi,vk + vik

]
(40)

The second part describes the longitudinal displacement along
the barrier and is modelled by (32). Note that, (32) is mainly
dependent on the state through how large part of the barrier is
with in the field of view of the sensor. As a consequence, this
factor can be viewed as more of a weighting factor promoting
data association hypothesis where the barrier measurements
are evenly distributed along the barrier.

2) Non-barrier observations: Assuming that the jth sta-
tionary observation is generated by a non-barrier object, it can
be described by

zs,jk ∼ Unif(FOV ) (41)

where FOV is the field-of-view of the radar having volume V .
Further, the number of non-barrier observations are assumed
to be Poisson distributed according to

nnb ∼ Poisson(V βnb) (42)

where βnb is the intensity of non-barrier observations.

VI. POSTERIOR CALCULATION AND GAUSSIAN
APPROXIMATION

In this section we derive the sought posterior using the
process model proposed in Section III and the observation
models derived in Section V. However, in order to incor-
porate the information from the barrier observations we do
not calculate p(rk+1|z1:k+1) directly. Instead we calculate
the joint posterior of the road state and the barrier state,
p(rk+1,bk+1|z1:k+1). To calculate this posterior, we assume
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that we have a joint posterior from the previous time instance
approximated as a Gaussian hierarchical model on the form

p(rk,bk|z1:k) ≈[
δ[el

k]δ[er
k](1− pl

k|k)(1− pr
k|k)N (rk; r̂k|k,Pk|k)

]

+
[
δ[¬el

k]δ[er
k]pl

k|k(1− pr
k|k)

×N ([rk, d
l
k]T ; [r̂k|k, d̂

l
k|k]T ,Pl

k|k)
]

+
[
δ[el

k]δ[¬er
k](1− pl

k|k)pr
k|k

×N ([rk, d
r
k]T ; [r̂k|k, d̂

r
k|k]T ,Pr

k|k)
]

+
[
δ[¬el

k]δ[¬er
k]pl

k|kp
r
k|k

×N ([rk, d
l
k, d

r
k]T ; [r̂k|k, d̂

l
k|k, d̂

r
k|k]T ,Plr

k|k)
]

(43)

where r̂k|k, Pk|k is the mean and covariance of the road state
given all measurements up to time k, Similarly, d̂l

k|k and d̂r
k|k

are the mean position of the left and right barrier, respectively,
and Pl

k|k, Pr
k|k and Plr

k|k are the covariances for the road
state extended with distance to left, right and both barriers.
Further, δ[·] is the Kronecker delta and pl

k|k and pr
k|k are the

probabilities that there exist a barrier to the left and the the
right, respectively, given all previous observations.

The calculation of the updated pdf, p(rk+1,bk+1|z1:k+1),
and updated existence probabilities is performed in two steps,
first a prediction step as described in Section VI-A followed
by an observation specific update step described in Sections
VI-B - VI-D.

A. Predicted density
The predicted density, p(rk+1,bk+1|z1:k) is calculated us-

ing the Chapman-Kolmogorov equation:

p(rk+1,bk+1|z1:k) =
∑

el
k,e

r
k

ˆ
p(rk+1,bk+1|rk,bk)

× p(rk,bk|z1:k)drkddl
kddr

k (44)

where p(rk+1,bk+1|rk,bk) is the transition density defined
by the state process model described in Section IV. Note that,
due to the nonlinearities in, e.g., c̃r(·), there is no analytical
solution to (44). Instead we resort to a Gaussian approximation
using the square-root Unscented Transform (UT) [34] using the
cubature rule [35].

Note that the resulting Gaussian approximation is on the
same form as (43) but with predicted means, covariances
and barrier existence probabilities. The existence probabilities
of the left barrier is predicted using the birth and survival
probabilities as

pl
k+1|k =

{
pb, if el

k = 0

psp
l
k|k, if el

k = 1
(45)

That is, if the barrier did not exist in the previous time instance,
it exists now with probability pb, and if it existed in the
previous time instance, it will still be present with a probability
reduced by a factor ps. The existence probability of the right
barrier is found analogously and the predicted probability of
non-existence is simply the complement of (45).

B. Lane measurement posterior
Assuming that we have a Gaussian approximation of the

predicted density in (44), we want to calculate an updated
density using the geometry information in the lane marking
polynomials given by the camera sensor. Additionally, we want
to compensate the road state if the host vehicle has performed
a lane change since the last lane marking observation. A lane
change is easily identified by detecting jumps in the zeroth-
order coefficient of the lane marking polynomials in the order
of wlane

k . When detected, the translated road state is given by
the procedure described in Section IV-C.

The posterior that is calculated using lane marking obser-
vations is found as a Gaussian approximation of

p(rk+1,bk+1|z1:k, zl
k+1, z

r
k+1) ∝

p(zl
k+1|rk+1)p(zr

k+1|rk+1)p(rk+1,bk+1|z1:k) (46)

where the likelihoods p(zl
k+1|rk+1) and p(zr

k+1|rk+1) are
given by (27) and (28), respectively. Note that since the
likelihoods are non-linear we use the update step in the square-
root CKF [35] to perform the Gaussian approximation of (46).

C. Moving vehicle posterior
As mentioned in Section V-B we only consider the vehicles

that are deemed to follow their lane. To determine which
vehicles are following their lane we use gating, where the
Mahalanobis distance between the measurement heading of
the vehicle is compared to the predicted heading of the road
at the same location. If this distance is greater than a threshold,
in our case 2.25, the vehicle is classified as not following the
road and not considered in the update.

Observations passing through the gate are used to update
the predicted density as

p(rk+1,bk+1|z1:k, zv
k+1) ∝∏

j∈G
p(φjk+1|rk+1)p(rk+1,bk+1|z1:k) (47)

where G is the set of observation indices passing through the
gate and p(φjk+1|rk+1) is defined in (29), Note that (29) is a
linear function of the state and, as such, can be solved exactly
using the Kalman filter update equations.

D. Stationary observations posterior
To calculate the posterior using the stationary observations

we need to consider the data association uncertainty regarding
which observations originated from the left and right barrier
and which are non-barrier measurements. To handle this
uncertainty we introduced the hypothesis set H in Section
V-C. The posterior can, thus, be calculated as

p(rk+1,bk+1|z1:k, zs
k+1) =∑

Hi∈H
p(rk+1,bk+1|Hi, z1:k, zs

k+1)Pr
{
Hi|z1:k, zs

k+1

}
,

(48)

where p(rk+1,bk+1|Hi, z1:k+1) is the conditional posterior
having no data association uncertainty and Pr

{
Hi|z1:k+1

}
is

the posterior probability of the ith hypothesis. Below we derive
the expressions of each of these posteriors.
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1) Conditional posterior: Using the data association vector
λi we can partition the stationary observations, zs

k+1, into the
three sub-vectors, zl

k+1, zr
k+1 and znb

k+1. Using these vectors
and Bayes’ rule the conditional posterior can be expressed as

p(rk+1,bk+1|Hi, z1:k, zs
k+1) ∝ p(zl

k+1|rk+1,bk+1,Hi)
× p(zr

k+1|rk+1,bk+1,Hi)p(znb
k+1|Hi)p(rk+1,bk+1|z1:k).

(49)

That is, the conditional posterior is updated using three inde-
pendent likelihoods, where p(znb

k+1|Hi) =
∏
j p(z

nb,j
k+1|Hi) is

given by (41) and is just a scaling factor as its independent of
the states.

For the barrier likelihoods in (49), the observation model in
(40) is non-linear so (49) is approximated using the update-
step in the square-root CKF to calculate its first two moments.
Further, the longitudinal likelihoods described by (32) is only
dependent on the states through the visibility lengths of the
barriers and in the filter implementation these are approxi-
mated using the visibility length of the mean state. As this
dependence is weak, this approximation has little effect on
the calculated conditional posterior.

2) Posterior hypothesis probability: To complete (48) we
need to derive an expression for the posterior hypothesis
probability. Using Bayes’ rule,

Pr
{
Hi|z1:k+1

}
∝ p(zk+1|Hi, z1:k)Pr

{
Hi|z1:k

}
(50)

where the hypothesis likelihood

p(zk+1|Hi, z1:k) =ˆ
p(zk+1|Hi, rk+1,bk+1)p(rk+1,bk+1|z1:k)drk+1dbk+1

(51)

is approximated as a Gaussian density as an intermediate step
in the sq-CKF approximation of (49).

Remaining is the prior on Hi, which can be found by
dividing the hypothesis set into its parts giving the following
expression,

Pr
{
Hi|z1:k

}
= Pr

{
λi, nil , n

i
r , n

i
nb|z1:k

}

= Pr
{
λi|nil , nir , ninb

}

× Pr
{
nil |z1:k

}
Pr
{
nir |z1:k

}
Pr
{
ninb

}
. (52)

The first term in (52) is simply a combinatoric related to how
many ways one can choose nil + nir + ninb terms of different
types, i.e.,

Pr
{
λi|nib, nir , ninb

}
=

(
nib + nir + ninb

nib

)−1(
nir + ninb
nir

)−1

(53)

Again, as Pr
{
nib|z1:k

}
and Pr

{
nir |z1:k

}
are similar, for brevity

we express them using a the more generic nib covering both
models. The term Pr

{
nib|z1:k

}
can be partitioned as

Pr
{
nib|z1:k

}
=
∑

eb,i
k+1

Pr
{
nib|z1:k, e

b,i
k+1

}
Pr
{
eb,i
k+1|z1:k

}
(54)

where Pr
{
nib|z1:k, e

b,i
k+1

}
is approximately given by (33) for

eb,i
k+1 = 1. On the other hand, if the barrier does not exist it is
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Figure 5. Results of the Hough-transform performed on the stationary
observations (black stars). Each curve represents a cubic polynomial used
to generate the hypothesis set H.

one for nib = 0 and zeros otherwise. The predicted existence
probabilities in (54) is calculated as

Pr
{
eb,i
k+1|z1:k

}
=

{
pb
k+1|k , if eb,i

k+1 = 1

(1− pb
k+1|k) , if eb,i

k+1 = 0
(55)

Finally, the probability of number of clutter measurements
Pr
{
ninb

}
is given by the model in (42).

3) Gaussian approximation: Using the procedure in Sec-
tion VI-D1 and Section VI-D2 results in a Gaussian mixture
approximation of (48). To return to the same form as the prior,
we approximate the mixture with one Gaussian density having
the same first two moments. Note that the posterior existence
probability can be found by marginalizing out the other state
variables from the posterior density in (48).

4) Hypothesis generation: Due to a large number of station-
ary obseravations, it is computationally intractable to consider
the all hypotheses. To limit the hypotheses to only the most
likely, we propose to segment the stationary observations using
the Hough-transform [37].

To restrict the parameter span in the Hough-transform, we
introduce three sub-segmentations, each targeting a specific
type of hypothesis, namely, both barriers exist, only the left
barrier exists and only the right barrier exists. To describe the
shape of each candidate we use cubic polynomials in the local
Cartesian coordinate frame. For single barrier hypotheses we
use a single cubic polynomial and for dual barrier hypotheses
we use two having separate zeroth order coefficients (offset)
but sharing higher order coefficients.

The data association hypotheses are generated by selecting
the Hough-candidates that received the highest vote in respec-
tive category. For each candidate, the observations intersecting
the left or right Hough-curve are sorted as left or right barrier
observations, respectively, and the remaining observations are
selected as non-barrier. To ensure that all hypotheses are
unique, candidates that generate an identical hypothesis to
one already selected are removed. In total nh hypotheses are
selected in each category. Figure 5 shows an example of the
shape of the hypothesis generated using the Hough-transform.

E. Filter structure and initialization

The filter is initialized when the host vehicle speed is above
70 kph and we receive observations on both left and right lane
markings. The filter is initiated using a Gaussian prior r̂0|0 and
P0|0 and performing the update as described in Section VI-B.
A summary of the algorithm is given in Algorithm 1.
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Figure 6. Normalized histogram of the curvatures in the first (above) and
second (below) data set.

The algorithm is implemented in Matlab and is not opti-
mized for speed. Executing the code on a MacBook Pro (early
2011) with a 2,7 GHz Intel Core i7 resulted in the following
computational times for the different parts: prediction (4 ms),
update with lane marking measurements (22 ms), update with
moving objects (14 ms) and update with stationary objects
(103 ms). Clearly, the update with stationary objects is the
most computationally demanding part of the algorithm mainly
due to the non-linear measurement update and handling mul-
tiple hypothesis.

if The filter has been initialized then
Prediction;
if Lane marking measurements received then

Update with lane markings (Sec. VI-B);
end
if Objects measurements received then

if Other vehicles exist then
Update with moving vehicles (Sec. VI-C);

end
if Stationary Objects Exist then

Update with stationary objects (Sec. VI-D);
end

end
else

Initialize the filter;
end
Algorithm 1: Pseudo-code of the filtering algorithm.

VII. EXPERIMENTAL RESULTS

In this section we assess the performance of our filter on
two sets of log files. The first includes measurements from
highways where the road varies from straight to winding,
which is the same set used for evaluations in [17]. The
second set is recorded along a highway in a mountainous
area. The data in this set is more curvy and presents some
very challenging highway scenarios. A histogram over the
curvatures in the different data sets can be viewed in Figure
6. We evaluate the estimation accuracy using combinations of
our three observation sources, leading vehicles, stationary road
side detections and lane marking measurements.

We use two measures of performance. Both measures are
based on error in the estimated position of the road sampled
every 20 m up to 200 m ahead of the host vehicle by
calculating the Euclidian distance to the true position of the
road at the same distances. The first measure is the root mean

squared error (RMSE) where the squared error is calculated
after each time step (update cycle) and at each distance and
the RMSE is taken over time. As some ADAS applications
are interested in positioning leading vehicles in or out of
lane, in the second measure of performance, we calculate the
percentage of time steps where the error is below an average
lane width denoted ω. For the calculations we assume that
ω = 3.5m. The same calculation has been performed for half
a lane width. The ground truth of the road is obtained in [17].

A. Parameter values

The settings for the process and measurement noises are
expressed in terms of their standard deviations.
• The process noise parameters are set to σy = 0.4 [m],
σϕ = 0.5[◦], σκ = 10−5[m−1], σκ1 = 2e−6[m−2], σω =
0.0175 [m], σl = 1 [m], σr = 1 [m], pb = 0.1 and ps =
0.95.

• For lane marking measurements with confidence higher
than 2, the measurement noise for left and right lane
marking samples are set analogously to Rl(slk) =
diag([σx, σy(sl,1k ), σx, σy(sl,2k ), ...]) where σx = 0.01 [m]
and σy(s) = 0.0175 + s/10 [m]. The measurement noise
for the heading of a leading vehicle depends on the
longitudinal distance of that vehicle to the host and
is calculated by σφ(s) = 1.75 + 1.5s/100[◦] and the
gate size is set to 2.25σφ. For the barriers we have
σε = 0.2 [m], σv = 1 [m], βnbV = 7.3 and nh = 8.

• For the initialization, the parameters of r̂0|0 are set to
yoff
0 = 0.5(l00+r00), ϕ0 = 0.5(l10+r10), κ0,0 = 0.5(l20+r20),
κi11 = 0.5(l30 + r30) and wlane

0 = l00 − r00 . Additionally, the
parameters of the square root of P0|0 are set to σy0 =
0.5 [m], σϕ0 = 1.5[◦], σκ0 = 0.0001[m−1] and σκ1

0 = 0.

B. Evaluation results for the first data set

In this section we use the first data set to evaluate the
performance of our algorithm. The data contain both straight
and curvy highways, where some of the drive tests are busy
with traffic and others are not. Similarly, guard rails are present
at only parts of the road.

Figure 7 depicts the comparison of the RMSE for the
different distances taken over the whole data set, for three
different scenarios: using only lane marking measurements,
using measurements of lane markings and barriers and using
measuremen ts of lane markings, moving vehicles and barriers.
A comparison between the different cases reveals that the
RMSE improves significantly when we combine barrier and
lane marking measurements, additionally, the best performance
is achieved when we use all three types of measurements.

For the case where we use all three types of measurements,
the percentage of time that the error is below one lane width
and below half a lane width is illustrated in Figure 8. We can
see that the error at 200 m ahead of the host vehicle is below
one lane width 89% of the times, and is below half a lane
width 72% of the times. Moreover, we can see that at 100 m
ahead, the error is below half a lane width 97% of the times.

Finally, Figure 9 depicts the comparison between the per-
formance of our algorithm to the performance of the algorithm
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Figure 7. RMSE taken over the first data set.
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Figure 8. Percentage of time that the error is below a lane width and below
half a lane width for the first data set. All three measurement types are used.

presented in [17], for the case where all three measurement
types have been used. As we can see, the developed algorithm
outperforms the one presented in [17].

C. Evaluation results for the second data set

In this section we use the second data set to evaluate
the performance of our filter. The measurements recorded in
these tests are taken from extremely winding highways going
through several tunnels. Particularly the tunnels proved to be
a challenge, where the concrete tunnel walls act as mirrors for
the radar signal giving rise to persistent detections that seem
to be on the road surface and misleading our barrier model.
Consequently, the RMSE significantly degrades due to this
problem. Figure 10 illustrates the RMSE versus the distance
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Figure 9. Comparison of RMSE (taken over the first data set) between our
algorithm (clothoid-based) and the algorithm presented in [17] (sample-based).
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Figure 11. RMSE for the drive tests in the second data set which do not
include tunnels.

along the road for different drive tests when the complete set
of measurements are used to estimate the road. This figure
clearly depicts the divide between the test drives that include
tunnels and those that do not. This is a specific problem that
could, for example, be tackled by using digital maps and
GPS in order to locate the tunnels. Using such information
we can shutdown the filter in tunnels and initialize it again
after them. In addition, this map information can be used to
improve the estimation of the road geometry if the GPS signal
is accurate enough. To make the evaluation less dependent on
the percentage of tunnels in the data set we have removed the
log files containing the tunnels from the rest of the evaluation.
Figure 11 illustrates the RMSE over all the remaining log files
which do not include tunnels. Three cases are illustrated here,
each depicting how including different types of measurements
affects the error. Further, the percentage of time that the error
is lower than a lane width and lower than half a lane width
for the case where we use all three types of measurements,
is depicted in Figure 12. We can see that 86% of the times
the error at 200 meters is below a lane width and 63% of the
times it is below half a lane width.

VIII. CONCLUSIONS

In this paper a filtering algorithm is derived to estimate
the road geometry 200 m ahead of a host vehicle using the
observations of lane markings, moving vehicles and barriers
(guard rails, where the main focus is on highway scenar-
ios. Two data sets, recorded in different types of highways,
are used to evaluate the performance of the algorithm. The
results indicate that road geometry estimation benefits from
combining observations from camera and radar. Additionally,
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Figure 12. Percentage of the time that the error is below a lane width and
below half a lane width for the drive tests of the second data set which do
not include tunnels. All three measurement types are used.

barrier obseravtions, if present, significantly improve the road
estimation performance for curvy highways.

The results also reveal that the filter is susceptible to
structured noise present in the tunnels. There are different
ways of alleviating this problem. First, one can use sensor
observations to try to detect that we are in a tunnel and adjust
the filter accordingly. Another alternative would be to make
use of a satellite positioning sensor in combination with digital
maps where the presence of tunnels are typically indicated. By
knowing if we are in a tunnel we can trust the stationary radar
observations less in these scenarios. Additionally, if we have
access to digital maps we can use these directly as a prior in
our road geometry filter.

APPENDIX

A. Clothoid approximation

In this paper we use a third-order polynomial Taylor
approximation of the trigonometric functions in (7) around
s = L/2, where L is the length of the segment. The resulting
approximative expressions of the Cartesian coordinates of the
road as a function of arc length s is given

x̃ir (s) = xi0 +

(
Sα̇3

24
− κ1Cα̇

8

)
s4

+


−
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where

S = sin

(
ϕi0 + κi0

L

2
+ κi1

L2

8
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C = cos

(
ϕi0 + κi0

L
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+ κi1
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Note that (56) and (57) are non-linear functions of the state
dependent segment parameters, ϕi0, κi0, and κi1 .

B. Clothoid translation

The mapping (26) is based on the procedure in [33]. As
such, the new road parameters of the parallel clothoid with
lateral offset ∆y is approximated as

ϕ̃0 = ϕ0 (58)

κ̃0 =
1

1
κ0

+ ∆y

κ̃i1 = 2
∆ϕi0

(˜̀i
k)2
− 2

κ̃i0
˜̀i
k

˜̀i
k = `ik −∆y∆ϕi

where ∆ϕi = κi0
˜̀i
k + κi1/2(˜̀i

k)2 and κ̃i0 = κ̃i−10 + κ̃i−11
˜̀i−1
k .

The distance to the left and right barrier must also be
adjusted to reflect the new position of the road by setting the
new barrier distances to

d̃l
k = dl

k ± wlane
k

d̃r
k = dr

k ± wlane
k

where positive shifts are for lane change to the right and
negative are for lane change to the left.
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