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Bent Partitions, Vectorial Dual-Bent Functions and Partial Difference Sets†
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Abstract

Bent partitions of V
(p)
n are quite powerful in constructing bent functions, vectorial bent functions and

generalized bent functions, where V
(p)
n is an n-dimensional vector space over Fp, n is an even positive

integer and p is a prime. It is known that partial spreads is a class of bent partitions. In [4], [18], two

classes of bent partitions whose forms are similar to partial spreads were presented. In [3], more bent

partitions Γ1,Γ2,Γ
•
1,Γ

•
2,Θ1,Θ2 were presented from (pre)semifields, including the bent partitions given

in [4], [18]. In this paper, we investigate the relations between bent partitions and vectorial dual-bent

functions. For any prime p, we show that one can generate certain bent partitions (called bent partitions

satisfying Condition C) from certain vectorial dual-bent functions (called vectorial dual-bent functions

satisfying Condition A). In particular, when p is an odd prime, we show that bent partitions satisfying

Condition C one-to-one correspond to vectorial dual-bent functions satisfying Condition A. We give an

alternative proof that Γ1,Γ2,Γ
•
1,Γ

•
2,Θ1,Θ2 are bent partitions in terms of vectorial dual-bent functions.

We present a secondary construction of vectorial dual-bent functions, which can be used to generate

more bent partitions. We show that any ternary weakly regular bent function f : V
(3)
n → F3 (n even) of

2-form can generate a bent partition. When such f is weakly regular but not regular, the generated bent

partition by f is not coming from a normal bent partition, which answers an open problem proposed in

[4]. We give a sufficient condition on constructing partial difference sets from bent partitions, and when

p is an odd prime, we provide a characterization of bent partitions satisfying Condition C in terms of

partial difference sets.
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I. INTRODUCTION

Boolean bent functions were introduced by Rothaus [21] and were generalized to p-ary bent

functions by Kumar, Scholtz and Welch [15], where p is an arbitrary prime. Due to applications

of p-ary bent functions in cryptography, coding theory, sequence and combinatorics, they have

been extensively studied. We refer to surveys [5], [17] and a book [19] on p-ary bent functions

and their generalizations such as vectorial bent functions and generalized bent functions.

In [10], Çeşmelioğlu et al. introduced vectorial dual-bent functions, which is a special class

of vectorial bent functions. In [7], [8], [22], vectorial dual-bent functions were used to construct

partial difference sets. In particular, Wang and Fu [22] showed that for certain vectorial dual-bent

functions F : V
(p)
n → V

(p)
s (where V

(p)
n is an n-dimensional vector space over the prime field

Fp), the preimage set of any subset of V
(p)
s for F forms a partial difference set.

Very recently, bent partitions of V
(p)
n were introduced [4], [18], which are quite powerful in

constructing bent functions, vectorial bent functions and generalized bent functions. The well-

known partial spreads is a class of bent partitions. In [18], Meidl and Pirsic for the first time

presented two classes of bent partitions for p = 2 different from partial spreads. In [4], Anbar and

Meidl generalized the contributions in [18] to the case of p being odd and gave the corresponding

two classes of bent partitions for odd p. In [3], Anbar, Kalaycı and Meidl presented more bent

partitions Γ1,Γ2,Γ
•
1,Γ

•
2,Θ1,Θ2 from (pre)semifields, including the bent partitions given in [4],

[18]. In [2], Anbar, Kalaycı and Meidl showed that any union of elements in the bent partition

given in [4], [18] forms a partial difference set. In terms of constructing partial difference sets,

certain vectorial dual-bent functions and certain bent partitions seem to play the same role.

Therefore, it is interesting to investigate the relations between vectorial dual-bent functions

and bent partitions. In this paper, we show that by using certain vectorial dual-bent functions

(called vectorial dual-bent functions satisfying Condition A), we can construct bent partitions

of V
(p)
n with certain properties (called bent partitions satisfying Condition C) for any prime

p. Particularly, when p is an odd prime, we prove that bent partitions of V
(p)
n with Condition

C one-to-one correspond to vectorial dual-bent functions satisfying Condition A. In terms of

vectorial dual-bent functions, we provide an alternative proof that Γ1,Γ2,Γ
•
1,Γ

•
2,Θ1,Θ2 given

in [3] are bent partitions. We provide a secondary construction of vectorial dual-bent functions,

which can be used to generate more bent partitions. We prove that any ternary weakly regular

bent function f : V
(3)
n → F3 (n even) of 2-form can generate a bent partition. In the special case
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that f is weakly regular but not regular, the generated bent partition by f is not coming from

a normal bent partition, which answers an open problem proposed in [4]. By using vectorial

dual-bent functions as the link between bent partitions and partial difference sets, we give a

sufficient condition on constructing partial difference sets from bent partitions. When p is an

odd prime, we provide a characterization of bent partitions satisfying Condition C in terms of

partial difference sets.

The rest of the paper is organized as follows. In Section II, we state some needed results on

vectorial dual-bent functions and bent partitions. In Section III, we present relations between

certain bent partitions and certain vectorial dual-bent functions. In Section IV, we give a sec-

ondary construction of vectorial dual-bent functions, which can be used to generate more bent

partitions. In Section V, we present relations between certain bent partitions and certain partial

difference sets. In Section VI, we make a conclusion.

II. PRELIMINARIES

In this section, we state some basic results on vectorial dual-bent functions and bent partitions.

First, we fix some notations used throughout this paper.

• p is a prime.

• ζp = e
2π

√
−1

p is a complex primitive p-th root of unity. Note that ζ2 = −1.

• Fpn is the finite field with pn elements.

• Fn
p is the vector space of the n-tuples over Fp.

• V
(p)
n is an n-dimensional vector space over Fp.

• 〈·〉n denotes a (non-degenerate) inner product of V
(p)
n . In this paper, when V

(p)
n = Fpn ,

let 〈a, b〉n = Trn1 (ab), where a, b ∈ Fpn , Trnk (·) denotes the trace function from Fpn to

Fpk , k | n; when V
(p)
n = Fn

p , let 〈a, b〉n = a · b =
∑n

i=1 aibi, where a = (a1, . . . , an), b =

(b1, . . . , bn) ∈ Fn
p ; when V

(p)
n = V

(p)
n1 ×· · ·×V

(p)
nm (n =

∑m

i=1 ni), let 〈a, b〉n =
∑m

i=1〈ai, bi〉ni
,

where a = (a1, . . . , am), b = (b1, . . . , bm) ∈ V
(p)
n .

• For any set A ⊆ V
(p)
n and u ∈ V

(p)
n , let χu(A) =

∑

x∈A χu(x), where χu denotes the

character χu(x) = ζ
〈u,x〉n
p .

A. Vectorial dual-bent functions

A function F : V
(p)
n → V

(p)
s is called a vectorial p-ary function, or simply p-ary function

when s = 1. The Walsh transform of a p-ary function f : V
(p)
n → Fp is the complex valued
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function defined by

Wf(a) =
∑

x∈V
(p)
n

ζf(x)−〈a,x〉n
p , a ∈ V (p)

n . (1)

A p-ary function f : V
(p)
n → Fp is called bent if |Wf(a)| = p

n
2 for all a ∈ V

(p)
n . Note that

when f is a Boolean bent function, that is, p = 2, then n must be even since in this case, Wf is

an integer valued function. A vectorial p-ary function F : V
(p)
n → V

(p)
s is called vectorial bent

if all component functions Fc : V
(p)
n → Fp, c ∈ V

(p)
s \{0} defined as Fc(x) = 〈c, F (x)〉s are bent.

It is known that if F : V
(p)
n → V

(p)
s is vectorial bent, then s ≤ n

2
if p = 2, and s ≤ n if p is

an odd prime. If f : V
(p)
n → Fp is bent, then so are cf, c ∈ F∗

p, that is, any p-ary bent function

is vectorial bent. For F : V
(p)
n → V

(p)
s , the vectorial bentness of F is independent of the inner

products of V
(p)
n and V

(p)
s . The Walsh transform of a p-ary bent function f : V

(p)
n → Fp satisfies

that for any a ∈ V
(p)
n , when p = 2, we have

Wf (a) = 2
n
2 (−1)f

∗(a), (2)

and when p is an odd prime, we have

Wf(a) =







±p
n
2 ζf

∗(a)
p if p ≡ 1 (mod 4) or n is even,

±
√
−1p

n
2 ζf

∗(a)
p if p ≡ 3 (mod 4) and n is odd,

(3)

where f ∗ is a function from V
(p)
n to Fp, called the dual of f . A p-ary bent function f : V

(p)
n → Fp

is called weakly regular if Wf(a) = εfp
n
2 ζ

f∗(a)
p , where εf is a constant independent of a,

otherwise f is called non-weakly regular. In particular, if εf = 1, f is called regular. The (non-

)weakly regularity of f is independent of the inner product of V
(p)
n and if f is weakly regular,

εf is independent of the inner product of V
(p)
n . By (2), all Boolean bent functions are regular.

If f is a p-ary weakly regular bent function, then the dual f ∗ of f is also weakly regular bent

with (f ∗)∗(x) = f(−x) (see [9]).

In 2018, Çeşmelioğlu et al. [10] introduced vectorial dual-bent functions.

Definition 1. A vectorial p-ary bent function F : V
(p)
n → V

(p)
s is called vectorial dual-bent

if there exists a vectorial bent function G : V
(p)
n → V

(p)
s such that (Fc)

∗ = Gσ(c) for any

c ∈ V
(p)
s \{0}, where (Fc)

∗ is the dual of the component function 〈c, F (x)〉s and σ is some

permutation over V
(p)
s \{0}. The vectorial bent function G is called a vectorial dual of F and

denoted by F ∗.

January 3, 2023 DRAFT
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It is known in [10] that the property of being vectorial dual-bent is independent of the inner

products of V
(p)
n and V

(p)
s . Note that for a vectorial dual-bent function, its vectorial dual is not

unique since being vectorial bent and vectorial dual-bent for a function is a property of the

vector space consisting of all component functions (see Remark 1 of [10]). For example, if a

p-ary function f (seen as a vectorial function into V
(p)
1 , p odd) is vectorial dual-bent under any

fixed inner product, then its dual f ∗ is unique, but its vectorial dual is not unique since for any

c ∈ F∗
p, cf ∗ is a vectorial dual of f . A p-ary function f : V

(p)
n → Fp is called an l-form if

f(ax) = alf(x) for any a ∈ F∗
p and x ∈ V

(p)
n , where 1 ≤ l ≤ p− 1 is an integer. By the results

in [7], [22], we have the following proposition.

Proposition 1 ( [7], [22]). A p-ary function f with f(0) = 0 is a weakly regular vectorial dual-

bent function if and only if f is a weakly regular bent function of l-form with gcd(l−1, p−1) = 1.

In particular, a p-ary function f is a weakly regular vectorial dual-bent function with (cf)∗ = cf ∗

for any c ∈ F∗
p if and only if f is a weakly regular bent function of (p− 1)-form.

In the rest of this subsection, we recall an important class of p-ary bent functions, called

Maiorana-McFarland bent functions.

• Let f : Fpn × Fpn → Fp be defined as

f(x, y) = Trn1 (αxπ(y)) + g(y),

where α ∈ F∗
pn , π is a permutation over Fpn and g : Fpn → Fp is an arbitrary function.

Then f is bent and is called a Maiorana-McFarland bent function. The dual f ∗ of f is

f ∗(x, y) = Trn1 (−π−1(α−1x)y) + g(π−1(α−1x)). (4)

All Maiorana-McFarland bent functions are regular (see [15]).

B. Bent partitions

Very recently, the concept of bent partitions of V
(p)
n were introduced [4], [18].

Definition 2. Let n be an even positive integer, K be a positive integer divisible by p.

• Let Γ = {A1, . . . , AK} be a partition of V
(p)
n . Assume that every function f for which every

i ∈ Fp has exactly K
p

of sets Aj in Γ in its preimage, is a p-ary bent function. Then Γ is

called a bent partition of V
(p)
n of depth K and every such bent function f is called a bent

function constructed from bent partition Γ.
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• Let Γ = {U,A1, . . . , AK} be a partition of V
(p)
n . Assume that every function f with the

following properties is bent:

(1) Every c ∈ Fp has exactly K
p

of the sets A1, . . . , AK in its preimage set;

(2) f(x) = c0 for all x ∈ U and some fixed c0 ∈ Fp.

Then we call Γ a normal bent partition of V
(p)
n of depth K.

Bent partitions are very powerful in constructing bent functions, vectorial bent function and

generalized bent functions. In this paper, we focus on the relations between bent partitions and

vectorial bent functions.

Proposition 2 ( [4]). Let Γ = {A1, . . . , Aps} be a bent partition of V
(p)
n . Then every function

F : V
(p)
n → V

(p)
s such that every element i ∈ V

(p)
s has the elements of exactly one of the sets

Aj , 1 ≤ j ≤ ps, in its preimage, is a vectorial bent function.

It is known that partial spreads is a class of bent partitions (for instance see Section 2 of [4]). In

[4], [18], two classes of explicit bent partitions different from partial spreads were presented. In

[3], bent partitions Γ1,Γ2,Γ
•
1,Γ

•
2,Θ1,Θ2 were presented from certain (pre)semifields, including

the bent partitions given in [4], [18]. We will recall bent partitions Γ1,Γ2,Γ
•
1,Γ

•
2,Θ1,Θ2 given

in [3]. First, we need to introduce some basic knowledge on (pre)semifields.

Definition 3. Let ◦ be a binary operation defined on (V
(p)
n ,+) such that

(i) x ◦ y = 0 implies x = 0 or y = 0,

(ii) (x+ y) ◦ z = (x ◦ z) + (y ◦ z), (z ◦ (x+ y) = (z ◦ x) + (z ◦ y), respectively),

for all x, y, z ∈ V
(p)
n . Then (V

(p)
n ,+, ◦) is called a right (left, respectively) prequasifield. If

(V
(p)
n ,+, ◦) is a right and a left prequasifield, then it is called a presemifield. If (V

(p)
n ,+, ◦) is

a presemifield for which there is an element e 6= 0 such that e ◦ x = x ◦ e = x for all x ∈ V
(p)
n ,

then it is called a semifield.

Let P = (Fpn,+, ◦) be a presemifield. Then one can obtain presemifields P • = (Fpn,+, •)
and P ⋆ = (Fpn,+, ⋆) from P , where • and ⋆ are given by

x • y = y ◦ x for all x, y ∈ Fpn,

and

Trn1 (z(x ◦ y)) = Trn1 (x(z ⋆ y)) for all x, y, z ∈ Fpn ,

January 3, 2023 DRAFT
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respectively. The presemifield P ⋆ is called the dual of P . Let s be a positive divisor of n.

If x ◦ (cy) = c(x ◦ y) holds for any x, y ∈ Fpn, c ∈ Fps , then P is called right Fps-linear.

Each presemifield P = (Fpn,+, ◦) can induce a semifield P ′ = (Fpn,+, ∗) via the following

transformation: choose any α ∈ F∗
pn and give ∗ by

(x ◦ α) ∗ (α ◦ y) = x ◦ y for all x, y ∈ Fpn.

By Lemma 2 of [3], if P is right Fps-linear, then P ′ is also right Fps-linear. The finite field Fpn

is a right Fps-linear semifield (that is, ◦ is the field multiplication). For more right Fps-linear

(pre)semifields, see Section 3 of [3].

Now we recall bent partitions Γ1,Γ2,Γ
•
1,Γ

•
2,Θ1,Θ2 given in [3].

• Let n, s be positive integers satisfying s | n and gcd(pn−1, ps+p−1) = 1. Set u = ps+p−1,

and let d be an integer with du ≡ 1 mod (pn − 1). Let P = (Fpn,+, ◦) be a (pre)semifield

such that its dual P ⋆ = (Fpn,+, ⋆) is right Fps-linear. For given x ∈ Fpn , if x = 0, then let

ηx = 0, and if x 6= 0, then let ηx be given by x ⋆ η−1
x = 1.

• Define

Ut = {(x, t ◦ xu) : x ∈ F∗
pn} if t ∈ Fpn, and U = {(0, y) : y ∈ Fpn}.

Let i0 ∈ Fps be an arbitrary element. Define

Γ1 = {Ai, i ∈ Fps}, (5)

where Ai =
⋃

t∈Fpn :Trns (t)=i Ut if i 6= i0, Ai0 =
⋃

t∈Fpn :Trns (t)=i0
Ut

⋃

U .

• Define

U•
t = {(x, xu ◦ t) : x ∈ F∗

pn} if t ∈ Fpn, and U = {(0, y) : y ∈ Fpn}.

Let i0 ∈ Fps be an arbitrary element. Define

Γ•
1 = {A•

i , i ∈ Fps}, (6)

where A•
i =

⋃

t∈Fpn :Trns (t)=i U
•
t if i 6= i0, A

•
i0
=

⋃

t∈Fpn :Trns (t)=i0
U•
t

⋃

U .

• Define

Vt = {(t ◦ xd, x) : x ∈ F∗
pn} if t ∈ Fpn, and V = {(x, 0) : x ∈ Fpn}.

Let i0 ∈ Fps be an arbitrary element. Define

Γ2 = {Bi, i ∈ Fps}, (7)

January 3, 2023 DRAFT
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where Bi =
⋃

t∈Fpn :Trns (t)=i Vi if i 6= i0, Bi0 =
⋃

t∈Fpn :Trns (t)=i0
Vi

⋃

V .

• Define

V •
t = {(xd ◦ t, x) : x ∈ F∗

pn} if t ∈ Fpn, and V = {(x, 0) : x ∈ Fpn}.

Let i0 ∈ Fps be an arbitrary element. Define

Γ•
2 = {B•

i , i ∈ Fps}, (8)

where B•
i =

⋃

t∈Fpn :Trns (t)=i V
•
i if i 6= i0, Bi0 =

⋃

t∈Fpn :Trns (t)=i0
V •
i

⋃

V .

• Define

Xt = {(tηdx, x) : x ∈ F∗
pn} if t ∈ Fpn, and X = {(x, 0) : x ∈ Fpn}.

Let i0 ∈ Fps be an arbitrary element. Define

Θ1 = {Si, i ∈ Fps}, (9)

where Si =
⋃

t∈Fpn :Trns (t)=i Xt if i 6= i0, Si0 =
⋃

t∈Fpn :Trns (t)=i0
Xt

⋃

X .

• Define

Yt = {(x, tηux) : x ∈ F∗
pn} if t ∈ Fpn, and Y = {(0, y) : y ∈ Fpn}.

Let i0 ∈ Fps be an arbitrary element. Define

Θ2 = {Ti, i ∈ Fps}, (10)

where Ti =
⋃

t∈Fpn :Trns (t)=i Yt if i 6= i0, Ti0 =
⋃

t∈Fpn :Trns (t)=i0
Yt

⋃

Y .

Remark 1. In the finite field case, that is, ◦ and ⋆ are the field multiplication, then Γ1 = Γ•
1 =

Θ2,Γ2 = Γ•
2 = Θ1, which reduces to the two classes bent partitions given in [4], [18].

Remark 2. In fact, for the parameter u in the bent partitions Γ1,Γ
•
1,Γ2,Γ

•
2,Θ1,Θ2, one can

consider the more general form u ≡ pj mod (ps − 1) by the proofs in [3].

III. RELATIONS BETWEEN CERTAIN BENT PARTITIONS AND CERTAIN VECTORIAL

DUAL-BENT FUNCTIONS

Throughout this section, we consider bent partitions and vectorial dual-bent functions satisfy-

ing the following conditions, respectively.

Condition C: Let n be an even positive integer, s be a positive integer with s ≤ n
2
. Let

Γ = {Ai, i ∈ V
(p)
s } be a bent partition of V

(p)
n which satisfies that F∗

pAi = Ai for all i ∈ V
(p)
s

January 3, 2023 DRAFT
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and all bent functions f constructed from Γ are regular (that is, εf = 1) or weakly regular but

not regular (that is, εf = −1). We denote by ε = εf for all bent functions f constructed from Γ.

Condition A: Let n be an even positive integer, s be a positive integer with s ≤ n
2
. Let

F : V
(p)
n → V

(p)
s be a vectorial dual-bent function with (Fc)

∗ = (F ∗)c, c ∈ V
(p)
s \{0} for a

vectorial dual F ∗ of F and all component functions being regular or weakly regular but not

regular, that is, εFc
, c ∈ V

(p)
s \{0} are all the same. We denote by ε = εFc

for all c ∈ V
(p)
s \{0}.

It is easy to see that the known bent partitions, including partial spreads and Γi,Γ
•
i ,Θi, i = 1, 2

defined by (5)-(10), all satisfy F∗
pAi = Ai, i ∈ V

(p)
s . By the results in [3], [11], [14], all bent

functions constructed from partial spreads and Γi,Γ
•
i ,Θi, i = 1, 2 are regular. Thus, the known

bent partitions all satisfy Condition C with ε = 1. Moreover, when p = 2, it is easy to see that

Condition C is trivial for any bent partition of V
(2)
n of depth powers of 2. In this section, we

present relations between bent partitions satisfying Condition C and vectorial dual-bent functions

satisfying Condition A. First, we need a lemma.

Lemma 1. Let n be an even positive integer, s be a positive integer with s ≤ n
2
, and F : V

(p)
n →

V
(p)
s . Then the following two statements are equivalent.

(1) F is a vectorial dual-bent function satisfying Condition A.

(2) There exist pairwise disjoint sets Wi ⊆ V
(p)
n , i ∈ V

(p)
s with

⋃

i∈V
(p)
s

Wi = V
(p)
n and a

constant ε ∈ {±1} (ε = 1 if p = 2) such that for any nonempty set I ⊆ V
(p)
s ,

χu(DF,I) = pn−sδ{0}(u)|I|+ εp
n
2
−s(psδWI

(u)− |I|), u ∈ V (p)
n , (11)

where DF,I = {x ∈ V
(p)
n : F (x) ∈ I}, WI =

⋃

i∈I Wi, and for any set S, δS denotes the

indicator function of S.

Proof. By Proposition 3 of [22] (Note that although Proposition 3 of [22] only considers the

case of p being odd, p = 2 also holds), for any u ∈ V
(p)
n , i ∈ V

(p)
s we have

χu(DF,i) = pn−sδ{0}(u) + p−s
∑

c∈V
(p)
s \{0}

WFc
(−u)ζ−〈c,i〉s

p , (12)

where DF,i = {x ∈ V
(p)
n : F (x) = i}.
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(1) ⇒ (2): If F is a vectorial dual-bent function satisfying Condition A (Note that if p = 2,

then ε = 1 since all Boolean bent functions are regular), then

χu(DF,i) = pn−sδ{0}(u) + εp
n
2
−s

∑

c∈V
(p)
s \{0}

ζ (Fc)∗(−u)−〈c,i〉s
p

= pn−sδ{0}(u) + εp
n
2
−s

∑

c∈V
(p)
s \{0}

ζ (F
∗)c(−u)−〈c,i〉s

p

= pn−sδ{0}(u) + εp
n
2
−s

∑

c∈V
(p)
s \{0}

ζ 〈c,F
∗(−u)−i〉s

p

= pn−sδ{0}(u) + εp
n
2
−s(psδ{0}(F

∗(−u)− i)− 1).

(13)

Define Wi = {x ∈ V
(p)
n : F ∗(−x) = i}, i ∈ V

(p)
s . Then Wi

⋂

Wj = ∅ for any i 6= j and
⋃

i∈V
(p)
s

Wi = V
(p)
n . By (13), for any nonempty set I ⊆ V

(p)
s and u ∈ V

(p)
n we have

χu(DF,I) =
∑

i∈I

χu(DF,i)

=
∑

i∈I

pn−sδ{0}(u) + εp
n
2
−s(psδWi

(u)− 1)

= pn−sδ{0}(u)|I|+ εp
n
2
−s(psδWI

(u)− |I|).

(2) ⇒ (1): By the assumption on Wi, i ∈ V
(p)
s , we have that for any x ∈ V

(p)
n , there exists a

unique i ∈ V
(p)
s such that x ∈ Wi. Define G : V

(p)
n → V

(p)
s by

G(x) = i if − x ∈ Wi.

By the definition of G, for any u ∈ V
(p)
n , i ∈ V

(p)
s we have

χu(DF,i) = pn−sδ{0}(u) + εp
n
2
−s(psδ{0}(G(−u)− i)− 1). (14)

For any c ∈ V
(p)
s \{0},

WFc
(−u) =

∑

x∈V
(p)
n

ζ 〈c,F (x)〉s+〈u,x〉n
p

=
∑

i∈V
(p)
s

∑

x∈V
(p)
n :F (x)=i

ζ 〈c,i〉s+〈u,x〉n
p
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=
∑

i∈V
(p)
s

ζ 〈c,i〉sp χu(DF,i)

=
∑

i∈V
(p)
s \{G(−u)}

ζ 〈c,i〉sp (pn−sδ{0}(u)− εp
n
2
−s) + (pn−sδ{0}(u) + εp

n
2
−s(ps − 1))ζ 〈c,G(−u)〉s

p

= (pn−sδ{0}(u)− εp
n
2
−s)

∑

i∈V
(p)
s

ζ 〈c,i〉sp + εp
n
2 ζGc(−u)

p

= εp
n
2 ζGc(−u)

p .

(15)

By (15) and the assumption that ε = 1 if p = 2, F is a vectorial bent function with εFc
= ε

and (Fc)
∗ = Gc for any c ∈ V

(p)
s \{0}. Since Fc is a weakly regular bent function, we have that

Gc = (Fc)
∗ is also weakly regular bent and G is vectorial bent. Thus, F is vectorial dual-bent

with εFc
= ε and (Fc)

∗ = (F ∗)c for any c ∈ V
(p)
s \{0}, where F ∗ = G, that is, F satisfies

Condition A.

Based on Lemma 1, we have the following theorem.

Theorem 1. Let F : V
(p)
n → V

(p)
s be a vectorial dual-bent function satisfying Condition A.

Define

Ai = DF,i, i ∈ V (p)
s ,

where DF,i = {x ∈ V
(p)
n : F (x) = i}. Then Γ = {Ai, i ∈ V

(p)
s } is a bent partition satisfying

Condition C.

Proof. By Lemma 1 and its proof, for any i ∈ V
(p)
s and u ∈ V

(p)
n ,

χu(Ai) = χu(DF,i) = pn−sδ{0}(u) + εp
n
2
−s(psδ{0}(F

∗(−u)− i)− 1),

where ε = 1 if p = 2 since all Boolean bent functions are regular. For any union S of ps−1 sets

of {Ai : i ∈ V
(p)
s }, we have

χu(S) =







pn−1δ{0}(u) + εp
n
2
−1(p− 1), if AF ∗(−u) ⊆ S,

pn−1δ{0}(u)− εp
n
2
−1, if AF ∗(−u) * S.

(16)

Let f be an arbitrary function such that for every j ∈ Fp, there are exactly ps−1 sets Ai in Γ in

its preimage. Define g(u) = f(AF ∗(−u)). Note that g is a p-ary function from V
(p)
n to Fp. Then

by (16), we have

χu(Df,j) =







pn−1δ{0}(u) + εp
n
2
−1(p− 1), if j = g(u),

pn−1δ{0}(u)− εp
n
2
−1, if j 6= g(u).

(17)
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By (17), for any u ∈ V
(p)
n we have

Wf (−u) =
∑

x∈V
(p)
n

ζf(x)+〈u,x〉n
p

=
∑

j∈Fp

ζjp
∑

x∈V
(p)
n :f(x)=j

ζ 〈u,x〉np

=
∑

j∈Fp

ζjpχu(Df,j)

=
∑

j∈Fp\{g(u)}

ζjp(p
n−1δ{0}(u)− εp

n
2
−1) + ζg(u)p (pn−1δ{0}(u) + εp

n
2
−1(p− 1))

= (pn−1δ{0}(u)− εp
n
2
−1)

∑

j∈Fp

ζjp + εp
n
2 ζg(u)p

= εp
n
2 ζg(u)p .

(18)

By (18) and ε = 1 if p = 2, f is a weakly regular bent function with εf = ε and f ∗(x) = g(−x).

Let

Wj = {u ∈ V (p)
n : g(u) = j}, j ∈ Fp,

then Wj, j ∈ Fp are pairwise disjoint and
⋃

j∈Fp
Wj = V

(p)
n . By (17), for any u ∈ V

(p)
n and

nonempty set J ⊆ Fp we have

χu(Df,J) = pn−1δ{0}(u)|J |+ εp
n
2
−1(pδWJ

(u)− |J |), (19)

where Df,J = {x ∈ V
(p)
n : f(x) ∈ J}, WJ =

⋃

j∈J Wj . By (19) and Lemma 1, f is vectorial dual-

bent with (cf)∗ = c(βf ∗), c ∈ F∗
p for some β ∈ F∗

p (since all vectorial duals of f are cf ∗, c ∈ F∗
p).

Let c = 1, we obtain β = 1, that is, f is vectorial dual-bent with (cf)∗ = cf ∗, c ∈ F∗
p. By

Proposition 1, f is a (p − 1)-form. In particular, Fc is a (p − 1)-form for any c ∈ F∗
ps , which

yields that F (αx) = F (x) for any α ∈ F∗
p and F∗

pAi = Ai, i ∈ V
(p)
s . Hence, Γ is a bent partition

satisfying Condition C.

By Theorem 1, we have the following corollary.

Corollary 1. Let n be an even positive integer. Let f : V
(p)
n → Fp be a weakly regular bent

function of (p − 1)-form, then {Df,j, j ∈ Fp} is a bent partition of V
(p)
n , where Df,j = {x ∈

V
(p)
n : f(x) = j}.

Proof. By Proposition 1, f is a weakly regular vectorial dual-bent function with (cf)∗ = cf ∗.

Since n is even, εcf = εf for all c ∈ F∗
p (see Theorem 1 of [6]). Then by Theorem 1, the

conclusion holds.
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A bent partition Γ = {A1, . . . , AK} of depth K is called coming from a normal bent partition

if there is U ⊆ Ai for some i such that {U,A1, . . . , Ai−1, Ai\U,Ai+1, . . . , AK} is a normal bent

partition. In [4], there is an open problem: Do bent partitions exist which are not coming from

a normal bent partition of depth K > 2? In the following, we provide a positive answer for

this open problem. By the definition of l-form, a ternary function f is a 2-form if and only if

f(x) = f(−x). Let n be an even positive integer. If f : V
(3)
n → F3 with f(x) = f(−x) is a

ternary weakly regular but not regular bent function (that is, εf = −1), then by Corollary 1,

{Df,0, Df,1, Df,2} is a bent partition of depth 3. There exist such ternary bent functions f , for

instance see [7], [17]:

•

f(x) = Trn1 (αx
2), x ∈ F3n , (20)

where n is even, α ∈ F∗
3n is a square element if 4 | n, and α ∈ F∗

3n is a non-square element

if 4 ∤ n;

•

f(x) = Trn1 (ax
3n−1

4
+3m+1), x ∈ F3n , (21)

where n = 2m, m odd, a = α
3m+1

4 for a primitive element α of F3n ;

•

f(x) = Trn1 (α(x
33k+32k−3k+1 + x2)), x ∈ F3n, (22)

where n = 4k for an arbitrary positive integer k, α ∈ F∗
32k ;

•

f(x, y, z) = (g(x)− h(x))z2 + yz + g(x), (x, y, z) ∈ F3n × F3 × F3, (23)

where n is even, g and h are distinct bent functions constructed by (20) or (22) if 4 | n, g

and h are distinct bent functions constructed by (20) or (21) if 4 ∤ n.

For any ternary weakly regular but not regular bent function f : V
(3)
n → F3 (n even) with

f(x) = f(−x), the corresponding bent partition {Df,0, Df,1, Df,2} is not coming from a normal

bent partition by Theorem 4 (i) of [4], which provides a positive answer for the above open

problem proposed in [4]. We first recall Theorem 4 (i) of [4] and then give an example to

illustrate this fact.

Lemma 2 ( [4]). Let Γ = {U,A1, . . . , AK} be a normal bent partition of V
(p)
n . Then |U | = p

n
2

and |Aj | = pn−p
n
2

K
, 1 ≤ j ≤ K.
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Example 1. Let f : F34 → F3 be defined by f(x) = Tr41(x
2). Then f is ternary weakly regular

bent with f(x) = f(−x) and εf = −1. By Corollary 1, {Df,0, Df,1, Df,2} is a bent partition.

By the result of Nyberg [20], for any weakly regular p-ary bent function g : V
(p)
n → Fp with

n even, we have {|Dg,i|, i ∈ Fp} = {pn−1 + εfp
n
2
−1(p− 1), pn−1 − εfp

n
2
−1}. For our example,

|Df,0| = 21, |Df,1| = |Df,2| = 30. By Lemma 2, it is easy to see that {Df,0, Df,1, Df,2} can not

be from a normal bent partition.

In the following, based on Theorem 1, we give an alternative proof that Γi,Γ
•
i ,Θi, i = 1, 2

defined by (5)-(10) given in [3] are bent partitions.

Let s, n be positive integers with s | n, u be an integer with u ≡ pj0 mod (ps − 1) for some

0 ≤ j0 ≤ s− 1 and gcd(u, pn − 1) = 1, and let d be an integer with du ≡ 1 mod (pn − 1). Let

P = (Fpn,+, ◦) be a (pre)semifield such that its dual P ⋆ = (Fpn,+, ⋆) is right Fps-linear. For

given x ∈ Fpn , if x = 0, then let ηx = 0, and if x 6= 0, then let ηx be given by x ⋆ η−1
x = 1 (For

convention we set η−1
0 = ηp

n−2
0 = 0). For any α ∈ F∗

pn and i0 ∈ Fps, define

F (x, y) = Trns (αa(x, y)) + i0(1− xpn−1), (x, y) ∈ Fpn × Fpn, (24)

where for given (x, y), if x = 0, then a(x, y) = 0, and if x 6= 0, then a(x, y) is given by

a(x, y) ◦ xu = y, and

F •(x, y) = Trns (αa
•(x, y)) + i0(1− xpn−1), (x, y) ∈ Fpn × Fpn, (25)

where for given (x, y), if x = 0, then a•(x, y) = 0, and if x 6= 0, then a•(x, y) is given by

xu ◦ a•(x, y) = y, and

G(x, y) = Trns (αb(x, y)) + i0(1− yp
n−1), (x, y) ∈ Fpn × Fpn, (26)

where for given (x, y), if y = 0, then b(x, y) = 0, and if y 6= 0, then b(x, y) is given by

b(x, y) ◦ yd = x, and

G•(x, y) = Trns (αb
•(x, y)) + i0(1− yp

n−1), (x, y) ∈ Fpn × Fpn, (27)

where for given (x, y), if y = 0, then b•(x, y) = 0, and if y 6= 0, then b•(x, y) is given by

yd ◦ b•(x, y) = x, and

M(x, y) = Trns (αη
−u
x y) + i0(1− xpn−1), (x, y) ∈ Fpn × Fpn, (28)

and

N(x, y) = Trns (αxη
−d
y ) + i0(1− yp

n−1), (x, y) ∈ Fpn × Fpn. (29)
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Proposition 3. Let F, F •, G,G•,M,N be defined as above. Then they are all vectorial dual-bent

functions satisfying Condition A with ε = 1.

Proof. We only prove the result for F and M since the proofs for F •, G,G• are similar to the

proof for F , and the proof for N is similar to the proof for M .

• For F :

For any c ∈ F∗
ps , we have

Fc(x, y) = Trn1 (cαa(x, y)) + Trs1(ci0)(1− xpn−1).

For any c ∈ F∗
ps and (w, v) ∈ Fpn × Fpn , we have

WFcu
(w, v) =

∑

x∈F∗
pn

∑

y∈Fpn

ζTrn1 (c
uαa(x,y))−Trn1 (wx+vy)

p + ζTrs1(c
ui0)

p

∑

y∈Fpn

ζ−Trn1 (vy)
p

=
∑

x∈Fpn

∑

y∈Fpn

ζTrn1 (c
uαa(x,y))−Trn1 (wx+vy)

p + pn(ζTrs1(c
ui0)

p − 1)δ{0}(v)

= Wh(w, v) + pn(ζTrs1(c
ui0)

p − 1)δ{0}(v),

where h(x, y) = Trn1 (c
uαa(x, y)). For given x ∈ Fpn , if x = 0, then let λx = 0, and if

x 6= 0, then let λx be given by x ⋆ λ−1
x = α (For convention we set λ−1

0 = λpn−2
0 = 0). Define

ρ(x) = λ−d
x . Then ρ is a permutation over Fpn . For any x ∈ F∗

pn , set z = ρ−1(c−1x). Then

λ−d
z = ρ(z) = c−1x. By du ≡ 1 mod (pn − 1), we have λ−1

z = c−uxu. Since z 6= 0 and P ⋆ is

right Fps-linear, we have α = z ⋆ λ−1
z = z ⋆ (c−uxu) = c−u(z ⋆ xu), that is, ρ−1(c−1x) ⋆ xu =

αcu for any x 6= 0. Thus, when x 6= 0, Trn1 (c
uαa(x, y)) = Trn1 (a(x, y)(ρ

−1(c−1x) ⋆ xu)) =

Trn1 (ρ
−1(c−1x)(a(x, y) ◦ xu)) = Trn1 (ρ

−1(c−1x)y). When x = 0, by a(0, y) = ρ−1(0) = 0, we

have Trn1 (c
uαa(x, y)) = Trn1 (ρ

−1(c−1x)y) = 0. Hence, h(x, y) = Trn1 (ρ
−1(c−1x)y), which is a

Maiorana-McFarland bent function and by (4),

Wh(w, v) = pnζ−Trn1 (cwρ(v))
p .

Therefore, for any c ∈ F∗
ps,

WFcu
(w, v) = pn(ζ−Trn1 (cwρ(v))

p + (ζTrs1(c
ui0)

p − 1)δ{0}(v))

= pnζ−Trn1 (cwρ(v))+Trs1(c
ui0)(1−vp

n−1)
p .

(30)

By (30) and ud ≡ 1 mod (pn − 1), we have that for any c ∈ F∗
ps , Fc is a regular bent function

with

(Fc)
∗(x, y) = −Trn1 (c

dxρ(y)) + Trs1(ci0)(1− yp
n−1)

= −Trn1 (c
dpj0 (xρ(y))p

j0 ) + Trs1(ci0)(1− yp
n−1).
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Since u ≡ pj0 mod (ps − 1) and du ≡ 1 mod (pn − 1), we have d ≡ ps−j0 mod (ps − 1) and

thus (cd)p
j0 = c for any c ∈ F∗

ps. Therefore, F is a vectorial bent function with εFc
= 1 and

(Fc)
∗ = Hc for all c ∈ F∗

ps , where

H(x, y) = −Trns ((xρ(y))
pj0 ) + i0(1− yp

n−1) = −(Trns (xρ(y)))
pj0 + i0(1− yp

n−1).

Since Fc is regular bent, we have that (Fc)
∗ = Hc is also regular bent and H is vectorial bent.

Thus, F is vectorial dual-bent with εFc
= 1 and (Fc)

∗ = (F ∗)c for all c ∈ F∗
ps , where F ∗ = H ,

that is, F satisfies Condition A.

• For M :

For any c ∈ F∗
ps ,

Mc(x, y) = Trn1 (cαη
−u
x y) + Trs1(ci0)(1− xpn−1).

Similar to the discussion for F , for any c ∈ F∗
ps and (w, v) ∈ Fpn × Fpn we have

WMc
(w, v) = Wg(w, v) + pn(ζTrs1(ci0)

p − 1)δ{0}(v),

where g(x, y) = Trn1 (cαη
−u
x y). Let π(x) = η−u

x , then π is a permutation over Fpn . Since g is a

Maiorana-McFarland bent function, then by (4),

Wg(w, v) = pnζ−Trn1 (wπ−1(c−1α−1v))
p .

For any given y ∈ F∗
pn , set π−1(c−1α−1y) = z. Then c−1α−1y = π(z) = η−u

z . By ud ≡
1 mod (pn − 1), we have η−1

z = c−dα−dyd. Since z 6= 0 and P ⋆ is right Fps-linear, we have

1 = z ⋆ η−1
z = z ⋆ (c−dα−dyd) = c−d(z ⋆ α−dyd), that is, π−1(c−1α−1y) ⋆ α−dyd = cd. For given

(x, y) ∈ Fpn × Fpn , if y = 0, then let r(x, y) = 0, and if y 6= 0, then let r(x, y) be given by

r(x, y)◦α−dyd = x. When v 6= 0, we have Trn1 (wπ
−1(c−1α−1v)) = Trn1 (π

−1(c−1α−1v)(r(w, v)◦
α−dvd)) = Trn1 (r(w, v)(π

−1(c−1α−1v) ⋆ α−dvd)) = Trn1 (c
dr(w, v)) = Trn1 (c(r(w, v))

pj0 ). When

v = 0, since π−1(0) = 0 and r(w, 0) = 0, we have Trn1 (wπ
−1(c−1α−1v)) = Trn1 (c(r(w, v))

pj0 ) =

0. Thus, −Trn1 (wπ
−1(c−1α−1v)) = −Trn1 (c(r(w, v))

pj0) and

WMc
(w, v) = pn(ζ−Trn1 (c(r(w,v))p

j0 )
p + (ζTrs1(ci0)

p − 1)δ{0}(v))

= pnζ−Trn1 (c(r(w,v))p
j0 )+Trs1(ci0)(1−vp

n−1)
p ,

which implies that M is a vectorial dual-bent function with εMc
= 1 and (Mc)

∗ = (M∗)c for all

c ∈ F∗
ps , where

M∗(x, y) = −Trns ((r(x, y))
pj0) + i0(1− yp

n−1),
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that is, M satisfies Condition A.

By Theorem 1 and Proposition 3, we have that {DF,i, i ∈ Fps}, {DF •,i, i ∈ Fps}, {DG,i, i ∈
Fps}, {DG•,i, i ∈ Fps}, {DM,i, i ∈ Fps} and {DN,i, i ∈ Fps} are bent partitions. It is easy to

verify that

DF,i =























⋃

t∈Fpn :Trns (αt)=i

Ut, if i 6= i0,

⋃

t∈Fpn :Trns (αt)=i0

Ut

⋃

U, if i = i0,

, DF•,i =























⋃

t∈Fpn :Trns (αt)=i

U•
t , if i 6= i0,

⋃

t∈Fpn :Trns (αt)=i0

U•
t

⋃

U, if i = i0,

,

DG,i =























⋃

t∈Fpn :Trns (αt)=i

Vt, if i 6= i0,

⋃

t∈Fpn :Trns (αt)=i0

Vt

⋃

V, if i = i0,

, DG•,i =























⋃

t∈Fpn :Trns (αt)=i

V •
t , if i 6= i0,

⋃

t∈Fpn :Trns (αt)=i0

V •
t

⋃

V, if i = i0,

,

DM,i =























⋃

t∈Fpn :Trns (αt)=i

Xt, if i 6= i0,

⋃

t∈Fpn :Trns (αt)=i0

Xt

⋃

X, if i = i0,

, DN,i =























⋃

t∈Fpn :Trns (αt)=i

Yt, if i 6= i0,

⋃

t∈Fpn :Trns (αt)=i0

Yt

⋃

Y, if i = i0,

where

Ut = {(x, t ◦ xu) : x ∈ F∗
pn} if t ∈ Fpn , and U = {(0, y) : y ∈ Fpn},

U•
t = {(x, xu ◦ t) : x ∈ F∗

pn} if t ∈ Fpn, and U = {(0, y) : y ∈ Fpn},

Vt = {(t ◦ xd, x) : x ∈ F∗
pn} if t ∈ Fpn, and V = {(x, 0) : x ∈ Fpn},

V •
t = {(xd ◦ t, x) : x ∈ F∗

pn} if t ∈ Fpn, and V = {(x, 0) : x ∈ Fpn},

Xt = {(tηdx, x) : x ∈ F∗
pn} if t ∈ Fpn, and X = {(x, 0) : x ∈ Fpn},

Yt = {(x, tηux) : x ∈ F∗
pn} if t ∈ Fpn, and Y = {(0, y) : y ∈ Fpn}.

For the above bent partitions from vectorial dual-bent functions F, F •, G,G•,M,N , by set-

ting α = 1, u = ps + p − 1 with gcd(u, pn − 1) = 1, then we can obtain bent partitions

Γ1,Γ
•
1,Γ2,Γ

•
2,Θ1,Θ2 defined by (5)-(10) respectively. Thus by the above analysis, we provide

an alternative derivation that Γ1,Γ
•
1,Γ2,Γ

•
2,Θ1,Θ2 are bent partitions.

When p is an odd prime, we show that the converse of Theorem 1 also holds.

Theorem 2. Let p be an odd prime. Let Γ = {Ai, i ∈ V
(p)
s } be a bent partition of V

(p)
n satisfying

Condition C. Define F : V
(p)
n → V

(p)
s by

F (x) = i if x ∈ Ai.

Then F is a vectorial dual-bent function satisfying Condition A.
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Proof. Since F∗
pAi = Ai for any i ∈ V

(p)
s , all bent functions constructed from Γ are (p−1)-form.

When s = 1, the conclusion follows from Proposition 1. In the following, we consider the case

of s ≥ 2.

Let f be an arbitrary bent function constructed from Γ. By Lemma 3.4 of [13], for any

u ∈ V
(p)
n and j ∈ Fp we have

χu(Df,j) =







pn−1δ{0}(u) + εp
n
2
−1(p− 1), if f ∗(u) = j,

pn−1δ{0}(u)− εp
n
2
−1, if f ∗(u) 6= j,

(31)

where Df,j = {x ∈ V
(p)
n : f(x) = j}, j ∈ Fp. For any fixed u ∈ V

(p)
n , since

{χu(Df,j), j ∈ Fp} = {pn−1δ{0}(u) + εp
n
2
−1(p− 1), pn−1δ{0}(u)− εp

n
2
−1}

for any bent function f constructed from Γ, we have that for any fixed u ∈ V
(p)
n , there exists a

unique G(u) ∈ V
(p)
s such that χu(Ai), i 6= G(u) are all the same and χu(Ai) 6= χu(AG(u)), i 6=

G(u). Note that G is a function from V
(p)
n to V

(p)
s . Moreover by (31), for any fixed u ∈ V

(p)
n

we have

χu(Ai) =







pn−sδ{0}(u) + εp
n
2
−s(ps − 1), if i = G(u),

pn−sδ{0}(u)− εp
n
2
−s, if i 6= G(u).

(32)

Define

Wi = {u ∈ V (p)
n : G(u) = i}, i ∈ V (p)

s .

Then obviously Wi, i ∈ V
(p)
s are pairwise disjoint and

⋃

i∈V
(p)
s

Wi = V
(p)
n . By (32), for any

u ∈ V
(p)
n and nonempty set I ⊆ V

(p)
s we have

χu(DF,I) =
∑

i∈I

χu(Ai) = pn−sδ{0}(u)|I|+ εp
n
2
−s(psδWI

(u)− |I|), (33)

where DF,I = {x ∈ V
(p)
n : F (x) ∈ I}, WI =

⋃

i∈I Wi. By (33) and Lemma 1, the conclusion

holds.

When p is an odd prime, from Theorems 1 and 2 we obtain a characterization of bent partitions

satisfying Condition C in terms of vectorial dual-bent functions.

Theorem 3. Let p be an odd prime. Let Γ = {Ai, i ∈ V
(p)
s } be a partition of V

(p)
n , where n is

even, s ≤ n
2
. Define F : V

(p)
n → V

(p)
s as

F (x) = i if x ∈ Ai.

Then Γ is a bent partition satisfying Condition C if and only if F is a vectorial dual-bent function

satisfying Condition A.
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IV. CONSTRUCTING BENT PARTITIONS FROM VECTORIAL DUAL-BENT FUNCTIONS

In this section, we construct bent partitions from vectorial dual-bent functions.

The following theorem provides a secondary construction of vectorial dual-bent functions,

which can be used to generate more bent partitions.

Theorem 4. Let n,m, s be positive integers for which n is even and s ≤ n
2
, s | m, s 6= m. For

any i ∈ Fps , let F (i; x) : V
(p)
n → Fps be a vectorial dual-bent function with ((F (i; x))c)

∗ =

((F (i; x))∗)c and ε(F (i;x))c = ε for any c ∈ F∗
ps, where (F (i; x))∗ is a vectorial dual of F (i; x)

and ε ∈ {±1} is a constant independent of i, c. Let α, β ∈ Fpm be linearly independent over Fps .

Let R be a permutation over Fpm with R(0) = 0 and T : Fps → Fps be an arbitrary function.

Define H : V
(p)
n × Fpm × Fpm → Fps as

H(x, y1, y2) = F (Trms (αR(y1y
pm−2
2 ));x) + Trms (βR(y1y

pm−2
2 )) + T (Trms (αR(y1y

pm−2
2 ))).

Then H is a vectorial dual-bent function satisfying Condition A and Γ = {Ai, i ∈ Fps} is a bent

partition satisfying Condition C, where Ai = {(x, y1, y2) ∈ V
(p)
n ×Fpm ×Fpm : H(x, y1, y2) = i}.

Proof. Denote

d(y) = Trms (βR(y1y
pm−2
2 )), e(y) = Trms ((β − α)R(y1y

pm−2
2 )), y = (y1, y2) ∈ Fpm × Fpm.

For any c ∈ F∗
ps and (a, b) = (a, b1, b2) ∈ V

(p)
n × Fpm × Fpm , we have

WHc
(a, b)

=
∑

x∈V
(p)
n

∑

y=(y1,y2)∈Fpm×Fpm

ζ
Trs1(cF (d(y)−e(y);x))+Trs1(cd(y))+Trs1(cT (d(y)−e(y)))
p ζ

−〈a,x〉n−Trm1 (b1y1+b2y2)
p

=
∑

i∈Fps

∑

y=(y1,y2)∈Fpm×Fpm :d(y)−e(y)=i

∑

x∈V
(p)
n

ζ
Trs1(cF (i;x))+Trs1(cd(y))+Trs1(cT (i))
p ζ

−〈a,x〉n−Trm1 (b1y1+b2y2)
p

= p−s
∑

i∈Fps

W(F (i;x))c(a)ζ
Trs1(cT (i))
p

∑

y=(y1,y2)∈Fpm×Fpm

ζ
Trs1(cd(y))−Trm1 (b1y1+b2y2)
p

∑

j∈Fps

ζ
Trs1(cj(i−(d(y)−e(y))))
p

= p−s
∑

i∈Fps

W(F (i;x))c(a)ζ
Trs1(cT (i))
p

∑

j∈Fps

ζ
Trs1(ijc)
p

∑

y=(y1,y2)∈Fpm×Fpm

ζ
Trs1(c((1−j)d(y)+je(y)))−Trm1 (b1y1+b2y2)
p .

By Theorem 3 of [10], for any j ∈ Fps , J(j; y) = (1−j)d(y)+je(y) is a partial spread vectorial

dual-bent function with ε(J(j;y))c = 1 and ((J(j; y))c)
∗ = ((1−j)d∗(y)+je∗(y))c for any c ∈ F∗

ps ,
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where d∗(y) = Trms (βR(−yp
m−2

1 y2)), e
∗(y) = Trms ((β − α)R(−yp

m−2
1 y2)). Therefore,

WHc
(a, b)

= pm−s
∑

i∈Fps

W(F (i;x))c(a)ζ
Trs1(cT (i))
p

∑

j∈Fps

ζ
Trs1(ijc)
p ζ

Trs1(c((1−j)d∗(b)+je∗(b)))
p

= pm−sζ
Trs1(cd

∗(b))
p

∑

i∈Fps

W(F (i;x))c(a)ζ
Trs1(cT (i))
p

∑

j∈Fps

ζ
Trs1(cj(i−(d∗(b)−e∗(b))))
p

= pmζ
Trs1(cd

∗(b))
p W(F (d∗(b)−e∗(b);x))c(a)ζ

Trs1(cT (d∗(b)−e∗(b)))
p

= εp
n
2 +mζ

((F (Trms (αR(−b
pm−2
1 b2));x))c)

∗(a)+Trs1(cTrms (βR(−b
pm−2
1 b2)))+Trs1(cT (Trms (αR(−b

pm−2
1 b2))))

p

= εp
n
2 +mζ

((F (Trms (αR(−b
pm−2
1 b2));x))

∗)c(a)+Trs1(cTrms (βR(−b
pm−2
1 b2)))+Trs1(cT (Trms (αR(−b

pm−2
1 b2))))

p .

(34)

Note that ε = 1 if p = 2 since all Boolean bent functions are regular. By (34), H is a vectorial

bent function with (Hc)
∗ = Gc and εHc

= ε for any c ∈ F∗
ps , where

G(a, b1, b2) = (F (Trms (αR(−b
pm−2
1 b2));x))

∗(a) + Trms (βR(−b
pm−2
1 b2)) + T (Trms (αR(−b

pm−2
1 b2))).

Since Hc is weakly regular bent, we have that Gc = (Hc)
∗ is also weakly regular bent and G is

vectorial bent. Thus, H is vectorial dual-bent with (Hc)
∗ = (H∗)c and εHc

= ε for any c ∈ F∗
ps ,

where H∗ = G, that is, H satisfies Condition A. By Theorem 1, the partition Γ generated from

H is a bent partition satisfying Condition C.

The following explicit construction of bent partitions is an immediate result of Proposition 3

and Theorem 4.

Theorem 5. Let n,m, s be positive integers with s | n, s | m, s 6= m, and ui, i ∈ Fps be

integers for which for any i ∈ Fps , ui ≡ pji mod (ps − 1) for some 0 ≤ ji ≤ s − 1 and

gcd(ui, p
n − 1) = 1. For any i ∈ Fps , let di be an integer with uidi ≡ 1 mod (pn − 1), and

Pi = (Fpn,+, ◦i) be a (pre)semifield for which its dual P ⋆
i is right Fps-linear. For any i ∈ Fps ,

let F (i; x1, x2) : Fpn × Fpn → Fps be an arbitrary vectorial dual-bent function constructed by

Proposition 3 with u = ui, d = di, P = Pi. Let α, β ∈ Fpm be linearly independent over Fps , R

be a permutation over Fpm with R(0) = 0 and T : Fps → Fps be an arbitrary function. Define

H : Fpn × Fpn × Fpm × Fpm → Fps as

H(x1, x2, y1, y2) = F (Trms (αR(y1y
pm−2
2 ));x1, x2) + Trms (βR(y1y

pm−2
2 )) + T (Trms (αR(y1y

pm−2
2 ))).

Then

Γ = {Ai, i ∈ Fps}

is a bent partition satisfying Condition C, where

Ai = {(x1, x2, y1, y2) ∈ Fpn × Fpn × Fpm × Fpm : H(x1, x2, y1, y2) = i}.
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Remark 3. With the same notation as in Theorem 4. Note that in Theorem 4, by setting vectorial

dual-bent functions H constructed by Theorem 5 as building blocks (that is, as F (i; x)), we can

obtain more explicit vectorial dual-bent functions which can generate more bent partitions by

Theorem 4.

We give an example by using Theorem 5.

Example 2. Let p = 3, s = 4, n = m = 8. Let α be a primitive element of F38 and β = 1, R be

the identity map and T = 0. For any i ∈ F34 , let

F (i; x1, x2) =







Tr84(x
−89
1 x2), if i ∈ F∗

34 ,

T r84(x1x
−83
2 ), if i = 0.

Then

H(x1, x2, y2, y2) = (Tr84(αy1y
6559
2 ))80(Tr84(x

−89
1 x2 − x1x

−83
2 )) + Tr84(x1x

−83
2 + y1y

6559
2 ),

and Γ = {DH,i, i ∈ F34} is a bent partition satisfying Condition C, where DH,i = {(x1, x2, y1, y2) ∈
(F38)

4 : H(x1, x2, y1, y2) = i}.

V. RELATIONS BETWEEN BENT PARTITIONS AND PARTIAL DIFFERENCE SETS

In this section, by taking vectorial dual-bent functions as the link between bent partitions and

partial difference sets, we give a sufficient condition on constructing partial difference sets from

bent partitions. When p is an odd prime, we characterize bent partitions satisfying Condition C
in terms of partial difference sets.

Definition 4. Let (G,+) be a finite abelian group of order v and D be a subset of G with k

elements. Then D is called a (v, k, λ, µ) partial difference set of G, if the expressions d1 − d2,

for d1 and d2 in D with d1 6= d2, represent each nonzero element in D exactly λ times, and

represent each nonzero element in G \ D exactly µ times. When λ = µ, then D is called a

(v, k, λ) difference set.

Note that if D is a partial difference set of G with −D = D, then so are D∪{0}, D \ {0}, G \D
(see [16]). There is an important tool to characterize partial difference sets in terms of characters.
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Lemma 3 ( [16]). Let G be an abelian group of order v. Suppose that D is a subset of G with

k elements which satisfies −D = D and 0 /∈ D. Then D is a (v, k, λ, µ) partial difference set

if and only if for each non-principal character χ of G,

χ(D) =
β ±

√
∆

2
,

where χ(D) =
∑

x∈D χ(x), β = λ− µ, γ = k − µ,∆ = β2 + 4γ.

When p is an odd prime or s ≥ 2, we give the value distribution of vectorial dual-bent

functions satisfying Condition A.

Proposition 4. Let F : V
(p)
n → V

(p)
s be a vectorial dual-bent function satisfying Condition A,

where p is odd or s ≥ 2. Then

|DF,F (0)| = pn−s + εp
n
2
−s(ps − 1), |DF,i| = pn−s − εp

n
2
−s if i 6= F (0).

Proof. Note that if f is a weakly regular p-ary bent function, then for any a ∈ Fp, f − a is

a weakly regular bent function with (f − a)∗ = f ∗ − a and εf−a = εf . Since F is a vectorial

dual-bent function with (Fc)
∗ = (F ∗)c, c ∈ V

(p)
s \{0}, we have that F (x) − F (0) is a vectorial

bent function and for any c ∈ V
(p)
s \{0},

((F − F (0))c)
∗ = (Fc)

∗ − 〈c, F (0)〉s = (F ∗)c − 〈c, F (0)〉s = (F ∗ − F (0))c,

which implies that F (x)− F (0) is a vectorial dual-bent function with ((F − F (0))c)
∗ = (F ∗ −

F (0))c and ε(F−F (0))c = ε for any c ∈ V
(p)
s \{0}. By the proof of Theorem 1, F (ax) = F (x) for

any a ∈ F∗
p and thus F (x) = F (−x). By Corollary 1 of [22] (Note that although Corollary 1 of

[22] only considers the case of p being odd, the conclusion of Corollary 1 of [22] also holds

for p = 2, s ≥ 2), we have

|DF−F (0),0| = pn−s + εp
n
2
−s(ps − 1), |DF−F (0),i| = pn−s − εp

n
2
−s if i 6= 0,

that is,

|DF,F (0)| = pn−s + εp
n
2
−s(ps − 1), |DF,i| = pn−s − εp

n
2
−s if i 6= F (0).

In the following, we give a characterization of vectorial dual-bent functions satisfying Con-

dition A in terms of partial difference sets.
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Theorem 6. Let n be an even positive integer, s be a positive integer with s ≤ n
2
, and F :

V
(p)
n → V

(p)
s . The following two statements are equivalent.

(1) F is a vectorial dual-bent function satisfying Condition A.

(2) When p = 2, s = 1, then the support supp(F ) of F defined as supp(F ) = {x ∈ V
(2)
n :

F (x) = 1} is a (2n, 2n−1 ± 2
n
2
−1, 2n−2 ± 2

n
2
−1) difference set, and when p is odd or s ≥ 2,

then for any nonempty set I ⊆ V
(p)
s , DF,I\{0} is a (pn, k, λ, µ) partial difference set for which

−DF,I = DF,I and if F (0) ∈ I , then

k = pn−s|I|+ εp
n
2
−s(ps − |I|)− 1,

λ = pn−2s|I|2 + εp
n
2
−s(ps − |I|)− 2,

µ = pn−2s|I|2 + εp
n
2
−s|I|,

(35)

and if F (0) /∈ I , then

k = pn−s|I| − εp
n
2
−s|I|,

λ = pn−2s|I|2 + εp
n
2
−s(ps − 3|I|),

µ = pn−2s|I|2 − εp
n
2
−s|I|,

(36)

where DF,I = {x ∈ V
(p)
n : F (x) ∈ I} and ε ∈ {±1} is a constant (ε = 1 if p = 2).

Proof. It is easy to see that a Boolean function F is a vectorial dual-bent function satisfying

Condition A if and only if F is bent, that is, Condition A is trivial for any Boolean bent function.

By the well-known result that a Boolean function F : V
(2)
n → F2 is bent if and only if its support

supp(F ) = {x ∈ V
(2)
n : F (x) = 1} is a (2n, 2n−1± 2

n
2
−1, 2n−2 ± 2

n
2
−1) difference set (see [11]),

the conclusion obviously holds for p = 2, s = 1. In the following, we prove the conclusion for

p being odd or s ≥ 2.

(1) ⇒ (2): By the proof of Theorem 1, F (−x) = F (x), that is, −DF,I = DF,I . For any

u ∈ V
(p)
n \{0}, with the same argument as in the proof of Theorem 2 of [22],

χu(DF,I) =







εp
n
2 − εp

n
2
−s|I|, if F ∗(−u) ∈ I,

−εp
n
2
−s|I|, if F ∗(−u) /∈ I.

where ε = 1 if p = 2 since all Boolean bent functions are regular.

If F (0) ∈ I , then |DF,I\{0}| = |DF,I |−1 and χu(DF,I\{0}) = χu(DF,I)−1. By Proposition 4,

|DF,I\{0}| = (|I|−1)(pn−s−εp
n
2
−s)+(pn−s+εp

n
2
−s(ps−1)−1) = pn−s|I|+εp

n
2
−s(ps−|I|)−1.

By Lemma 3, DF,I\{0} is a (pn, k, λ, µ) partial difference set, where k, λ, µ are given in (35).
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If F (0) /∈ I , then |DF,I\{0}| = |DF,I | and χu(DF,I\{0}) = χu(DF,I). By Proposition 4,

|DF,I\{0}| = |I|(pn−s− εp
n
2
−s). By Lemma 3, DF,I\{0} is a (pn, k, λ, µ) partial difference set,

where k, λ, µ are given in (36).

(2) ⇒ (1): By Lemma 3, for any u ∈ V
(p)
n and nonempty set I ⊆ V

(p)
s we have

χu(DF,I) = pn−sδ{0}(u)|I|+ εp
n
2 − εp

n
2
−s|I| or χu(DF,I) = pn−sδ{0}(u)|I| − εp

n
2
−s|I|. (37)

For any i ∈ V
(p)
s , define Wi = {u ∈ V

(p)
n : χu(DF,i) = pn−sδ{0}(u) + εp

n
2 − εp

n
2
−s}, where

DF,i = {x ∈ V
(p)
n : F (x) = i}. We claim that Wi

⋂

Wi′ = ∅ for any i 6= i′ and
⋃

i∈V
(p)
s

Wi = V
(p)
n .

Indeed, if there exist i 6= i′ such that Wi

⋂

Wi′ 6= ∅, that is, there exists u ∈ V
(p)
n such that

χu(DF,i) = χu(DF,i′) = pn−sδ{0}(u) + εp
n
2 − εp

n
2
−s, then χu(DF,i

⋃

DF,i′) = 2pn−sδ{0}(u) +

2εp
n
2 − 2εp

n
2
−s, which contradicts with (37). Thus, Wi

⋂

Wi′ = ∅ for any i 6= i′. If there exists

u ∈ V
(p)
n such that u /∈ Wi for any i ∈ V

(p)
s , that is, χu(DF,i) = pn−sδ{0}(u) − εp

n
2
−s for

any i ∈ V
(p)
s , then χu(V

(p)
n ) =

∑

i∈V
(p)
s

χu(DF,i) = pnδ{0}(u) − εp
n
2 , which contradicts with

χu(V
(p)
n ) =

∑

x∈V
(p)
n

ζ
〈u,x〉n
p = pnδ{0}(u). Thus,

⋃

i∈V
(p)
s

Wi = V
(p)
n . By the above analysis, we

have

χu(DF,I) = pn−sδ{0}(u)|I|+ εp
n
2
−s(psδWI

(u)− |I|), (38)

where WI =
∑

i∈I Wi. By (38) and Lemma 1, F is a vectorial dual-bent function satisfying

Condition A.

The following theorem provides a sufficient condition on constructing partial difference sets

from bent partitions.

Theorem 7. Let n be an even positive integer and s be a positive integer with s ≤ n
2
. Assume

that Γ = {Ai, i ∈ V
(p)
s } is a bent partition of V

(p)
n for which the function F : V

(p)
n → V

(p)
s

defined by

F (x) = i if x ∈ Ai

is a vectorial dual-bent function satisfying Condition A. Then when p = 2, s = 1, A0 and A1 are

(2n, 2n−1± 2
n
2
−1, 2n−2 ± 2

n
2
−1) difference set and (2n, 2n−1∓ 2

n
2
−1, 2n−2 ∓ 2

n
2
−1) difference set,

respectively, and when p is odd or s ≥ 2, for any nonempty set I ⊆ V
(p)
s , AI\{0} =

⋃

i∈I Ai\{0}
is a (pn, k, λ, µ) partial difference set, where (k, λ, µ) are given in (35) if 0 ∈ AI and (k, λ, µ)

are given in (36) if 0 /∈ AI .
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Proof. Note that if D is a (v, k, λ) difference set of a finite abelian group G, then G\D is a

(v, v − k, v − 2k + λ) difference set of G (for instance see [12]). Then the result follows from

Theorem 6.

Remark 4. By Proposition 3, the bent partition Γ1 (resp. Γ2, Γ•
1, Γ•

2, Θ1, Θ2) satisfies the

condition in Theorem 7. By Theorem 7, any union of sets from Γ1 (resp, Γ2, Γ
•
1, Γ

•
2, Θ1, Θ2)

forms a partial difference set. Thus, the results given in Corollary 15 of [1] on constructing

partial difference sets from Γ1 (resp. Γ2, Γ
•
1, Γ

•
2, Θ1, Θ2) (which includes the results given in

Theorem 2 of [2] on constructing partial difference sets from Γ1, resp. Γ2, in the finite field)

can also be illustrated by our results.

Since the bent partitions constructed in Theorem 5 satisfy the condition in Theorem 7, we

have the following corollary from Theorem 7.

Corollary 2. Let Γ = {Ai, i ∈ Fps} be a bent partition constructed by Theorem 5. Then when

p = 2, s = 1, A0 and A1 are (2n, 2n−1 ± 2
n
2
−1, 2n−2 ± 2

n
2
−1) difference set and (2n, 2n−1 ∓

2
n
2
−1, 2n−2 ∓ 2

n
2
−1) difference set, respectively, and when p is odd or s ≥ 2, for any nonempty

set I ⊆ Fps , AI\{0} =
⋃

i∈I Ai\{0} is a (pn, k, λ, µ) partial difference set, where (k, λ, µ) are

given in (35) with ε = 1 if 0 ∈ AI and (k, λ, µ) are given in (36) with ε = 1 if 0 /∈ AI .

We give an example by Corollary 2.

Example 3. Let Γ = {DH,i, i ∈ F34} be the bent partition constructed in Example 2. By Corol-

lary 2, DH,i is a (1853020188851841, 22876791923520, 282470988879, 282429005040) partial difference

set for any i ∈ F∗
34 , DH,0\{0} is a (1853020188851841, 22876834970240, 282472051759, 282430067922)

partial difference set, (DH,0

⋃

DH,1)\{0} is a (1853020188851841, 45753626893760, 1129760129761,

1129719208806) partial difference set.

When p is an odd prime, we immediately obtain the following characterization of bent

partitions of V
(p)
n satisfying Condition C from Theorems 3 and 6.

Theorem 8. Let p be an odd prime. Let Γ = {Ai, i ∈ V
(p)
s } be a partition of V

(p)
n , where n is

even and s ≤ n
2
. Then the following two statements are equivalent.

(1) Γ is a bent partition satisfying Condition C.

(2) For any nonempty set I ⊆ V
(p)
s , AI\{0} =

⋃

i∈I Ai\{0} is a (pn, k, λ, µ) partial difference
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set with −AI = AI , where (k, λ, µ) are given in (35) if 0 ∈ AI and (k, λ, µ) are given in (36)

if 0 /∈ AI .

VI. CONCLUSION

In this paper, we investigated relations between bent partitions and vectorial dual-bent functions

(Theorems 1, 2, 3) and gave some new constructions of bent partitions satisfying Condition C
(Corollary 1, Theorems 4 and 5). We illustrated that for any ternary weakly regular bent function

f : V
(3)
n → F3 (n even) with f(x) = f(−x) and εf = −1, the generated bent partition by f

is not coming from a normal bent partition (see Example 1), which answers an open problem

proposed in [4]. By taking vectorial dual-bent functions as the link between bent partitions and

partial difference sets, we give a sufficient condition on constructing partial difference sets from

bent partitions (Theorem 7). When p is an odd prime, we characterized bent partitions satisfying

Condition C in terms of partial difference sets (Theorem 8).
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