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Abstract

Information-theoretic formulations of the private information retrieval (PIR) problem have
been investigated under a variety of scenarios. Symmetric private information retrieval (SPIR)
is a variant where a user is able to privately retrieve one out of K messages from N non-
colluding replicated databases without learning anything about the remaining K — 1 messages.
However, the goal of perfect privacy can be too taxing for certain applications. In this paper,
we investigate if the information-theoretic capacity of SPIR (equivalently, the inverse of the
minimum download cost) can be increased by relaxing both user and DB privacy definitions.
Such relaxation is relevant in applications where privacy can be traded for communication
efficiency.

We introduce and investigate the Asymmetric Leaky PIR (AL-PIR) model with different
privacy leakage budgets in each direction. For user privacy leakage, we bound the probability
ratios between all possible realizations of DB queries by a function of a non-negative constant
€. For DB privacy, we bound the mutual information between the undesired messages, the
queries, and the answers, by a function of a non-negative constant 6. We propose a general
AL-PIR scheme that achieves an upper bound on the optimal download cost for arbitrary e
and §. We show that the optimal download cost of AL-PIR is upper-bounded as D*(¢,0) <
1+ ﬁ — 2. Second, we obtain an information-theoretic lower bound on the download

NE-T_71"
cost as D*(e,d) > 1 + NeLl — (Nee)f(,l_l. The gap analysis between the two bounds shows

that our AL-PIR scheme is optimal when € = 0, i.e., under perfect user privacy and it is optimal

—€

Nee— for any € > 0 and § > 0.

within a maximum multiplicative gap of

1 Introduction

In the era of big data and data analytics, users who access a plethora of online services face serious
privacy risks. Their online behavior and data access patterns can be analyzed to reveal sensitive

personal information and breach their privacy [1]. One possible solution to such data leakages is
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to retrieve information privately by executing a private information retrieval (PIR) protocol. In a
PIR protocol, the identity of the message retrieved by the user remains secret from the database(s).
This is typically achieved at the expense of an increased communication cost to ensure that the
desired message remains hidden among others. In the pioneering work by Chor et al. |1], the authors
considered one-bit long messages. The overhead was calculated as the sum of the queries sent by
the user (upload cost) and the answers provided by the database (download cost). Under arbitrarily
large messages, the download cost becomes the dominant factor of the PIR overhead. This allows
the PIR rate to be defined as the ratio of the message size to the number of downloaded bits. The
maximum of these rates is referred to as the PIR capacity and its reciprocal as the download cost.

Since the introduction of the PIR problem in [1], an extensive body of works have investigated
efficient PIR schemes that yield either computational [2H5] or information-theoretic privacy guar-
antees [6H42]. The former achieves privacy assuming computational limitations at the DBs, where
cryptographic assumptions are invoked to preserve privacy such that NP-hard computations are re-
quired to reveal the requested message identity. In information-theoretic PIR, the DBs are assumed
to be computationally unbounded, thus achieving a higher level of assurance. Perfect privacy is
guaranteed if the queries do not reveal any information about the desired message (privacy) and
the answers are sufficient to recover it (decodability). An intuitive PIR solution is to download all
K messages from a database. In fact, this is the only way to guarantee perfect privacy in the single
database case. However, privacy comes at an impractical communication overhead.

Review of Recent Progress on Information-Theoretic PIR: A practical way to increase
the PIR capacity is to consider a distributed storage system (DSS) of N databases. Shah. et al. [6]
proposed a PIR scheme that achieves a rate of 1 — % when K messages are replicated across IV
non-colluding databases. Later, Sun and Jafar |7] characterized the PIR capacity for any N and K
as (14+1/N+1/N2+...+1/NE-1)~1 The original scheme introduced in [7] achieves capacity when
the message size L is allowed to grow as a function of N and K. Subsequently, they characterized
the PIR capacity for a fixed message size [§]. Since the appearance of the fundamental result of Sun
and Jafar 7], numerous important and practically relevant variations of PIR have been considered.

Multi-round PIR allows multiple rounds of communication between the user and databases.
While interaction does not increase capacity, it can reduce the storage overhead at each database
[10]. Sun and Jafar [11] considered the robust PIR problem where M — N out of a total of M > N
databases fail to respond to user queries. Additionally, they characterized the capacity when T" < N
databases collude and share the received queries. Tajeddine et al. |12] considered MDS-PIR for
coded databases where each message is separately coded using an (N, M) MDS code. Banawan and
Ulukus [13| derived the coded PIR capacity for arbitrary N, M, and K. Wang and Skogland [14]
showed that the PIR capacity remains 1 — & even if each message is coded. In [15] and [16], the
scenario of N MDS-coded databases with T" colluding ones was presented. However, the capacity of
this case is still an open problem (for other variants of MDS-PIR, see [17-20]). In [21] and [22], the
case of multi-message PIR, where the user can use one query to request more than one messages, was
investigated. Banawan and Ulukus [23] characterized the PIR capacity with Byzantine databases
where any subset of databases can be adversarial and respond untruthfully. In [24], Tajeddine et

al. studied the same model but in the presence of colluding databases. Banawan and Ulukus [25]



studied PIR through a wiretap channel, where an eavesdropper tries to decode the content sent
through the channel. Other variants of PIR in the presence of eavesdroppers are studied in [26], [27].

The problem of PIR was also studied when the user has a cache or side-information, which can
be useful in increasing PIR capacity [28-32]. PIR from storage-constrained databases was studied
in [33143,/44], where capacity was characterized under the assumption of uncoded storage across
databases. Recently, Tian et al. [34] proposed a new capacity-achieving scheme with an optimal
message size of N —1 and a minimum upload cost. Other lines of work considered different privacy
requirements from the original PIR model in [7]. The problem of symmetric PIR (SPIR) was studied
in [9], where the user must be able to retrieve the message of interest privately (user privacy), while
at the same time the databases must avoid any information leakage about the remaining K — 1
messages (DB privacy). The SPIR optimal download cost was characterized as % with common
randomness at least o = ﬁ bits per desired message bits. Latent-variable PIR was considered
recently in [45], where privacy is required for a latent variable describing a predefined user attribute.
Additional interesting variants of PIR can be found in [35-H42].

The novel coding schemes and fundamental ideas developed in the above works have also helped
in advancing other problems beyond PIR. For instance, an interesting connection between blind in-
terference alignment (BIA) and PIR was studied in [46] showing that a good BIA scheme translates
to a good PIR protocol. Secure and private distributed matrix multiplication has been considered
in [47H551] addressing the problem of computing a product of two matrices with some constraints
on the identity of the product matrices and/or the information content in the matrices. Jia and
Jafar [17] showed the connection of the secure and private distributed matrix multiplication to one
variation of the MDS-PIR problem. Recently, the problem of private set intersection (PSI) was
studied in [52] from a PIR perspective and capacity results were obtained.

Relaxing Privacy Metrics for PIR: The above works have all focused on perfect privacy,
either for the user (as in PIR), or for both the user and the DBs (as in SPIR). The perfect privacy
requirement usually comes at the expense of high download cost and does not allow tuning the PIR
efficiency and privacy according to the application requirements. In scenarios of frequent message
retrieval, trading user or DB privacy for communication efficiency could be desirable. Ideally,
one would select a desired leakage level and then design a leakage-constrained PIR scheme that
guarantees such privacy while maximizing the PIR capacity.

A few previous works have introduced privacy definitions that relax the notion of perfect privacy.
Asonov et al. replaced privacy with the concept of repudiation [53]. The repudiation property is
achieved if some uncertainty remains about the desired message. However, this metric does not
provide any information-theoretic privacy guarantees, as repudiation is satisfied even if the retrieved
message can be identified with almost certainty. Recently, Toledo et al. [54] adopted a game-based
differential privacy definition to increase the PIR capacity at the expense of bounded privacy loss.
However, their privacy definition only captures the privacy of the submitted queries. The authors
propose several schemes that hide the query identity and study their cost. Although the query
privacy can be thought of as functional equivalent to information-theoretic PIR in some cases, it
does not satisfy the perfect privacy definition.

In our prior work, we introduced the Leaky PIR (L-PIR) where a bounded amount of leakage



is allowed about the message identity [55]. We adopted a concept similar to differential privacy to
bound the leakage as a function of a non-negative constant €. The leakage in privacy is achieved by
constructing multiple biased “retrieval paths” across databases where each path realizes one query
per database. Lin et al. |56,|57] relaxed user privacy by allowing bounded mutual information
between the queries and the corresponding requested message index. Unlike [56,/57], which deal
with the average leakage (measured by mutual information), the L-PIR model in [55] satisfies the
privacy leakage constraints strictly for all possible query/message index combinations, and thus
provides stronger privacy guarantees.

In another recent work, Guo et al. [58] considered the problem of SPIR with perfect user privacy
and relaxed DB privacy. DB privacy was relaxed by allowing a bounded mutual information (no
more than §) between the undesired messages, the queries, and the answers received by the user.
Similar to the original work on SPIR in [9], SPIR with relaxed DB privacy in [58] requires sharing
common randomness among DBs and comes at the expense of a loss in the PIR capacity.

Summary of contributions— We investigate a three-way tradeoff between user privacy, DB
privacy, and the communication efficiency of PIR. We study the problem of Asymmetric Leaky
PIR (AL-PIR) where some information about the identity of the desired message is allowed to leak
to the DBs, and some information about the undesired messages is allowed to leak to the user.
The goal is to trade privacy in both directions for achieving gains in PIR capacity, thus making
PIR more communication-efficient. For user privacy, we adopt the metric introduced in our prior
work [55], where the privacy bound is determined as a function of a non-negative constant e. For
bounding DB privacy, we adopt a mutual information-based leakage metric to be bounded by a

non-negative constant . We next summarize the main contributions:

e We propose an AL-PIR scheme that satisfies the leakage budgets in both directions for ar-
bitrary values of (€,0), an arbitrary number of K messages, and an arbitrary number of

N databases. The achievable download cost of this scheme is given by D(e,d) = 1 + ﬁ -

de€
NE-T-1°

on the capacity) of the AL-PIR. We use an alternate perfect privacy PIR scheme that follows

This cost also represents an upper bound on the optimal download cost (lower bound

a path-based approach, where a user’s query is equivalent to selecting one of several possible
paths across databases. A path is defined as a set of queries, one per database, that achieves
decodability, however different paths incur different download costs. We leverage this cost
imbalance to introduce leakage through the idea of biasing the path selection probabilities. A
path giving a lower download cost can be used more frequently compared to higher download
cost paths. This biasing introduces user privacy leakage. The path selection probabilities are
chosen to minimize the download cost while satisfying the privacy budget, measured by €. To
achieve DB privacy, our scheme requires sharing common randomness among databases. We
combine the path-based approach with the ideas of the scheme presented in [58] to arrive at
our general AL-PIR scheme. In particular, achieving a DB privacy leakage of no more than

1 e+ NE-1-1 ¢

0L bits, requires common randomness given by ( N1~ T NK=T3

an upper bound on the optimal common randomness size.

)L bits, which represents

e We present a converse proof to obtain a lower bound on the optimum download cost (upper
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Figure 1: Asymmetric leaky private information retrieval (AL-PIR) problem.

bound on capacity). This bound is characterized by D*(e,d) > 1 + N;il — (Nee)?(—lfl' The

upper and lower bounds are shown to match each other at extreme values of epsilon (e = 0;

e — 00) and for any 6. Moreover, we show through gap analysis that our upper and lower
“ for any € > 0 and § > 0.

bounds are within a maximum multiplicative gap of &

e We derive a lower bound on the optimal required common randomness at the databases. This

bound characterizes that achieving a DB privacy leakage of no more than §L bits, requires

. 1 (Ne )K71 .
shared randomness of size no less than (joe— — Ver) #=1—70)L bits.

e We investigate the tradeoffs AL-PIR variations in both sides of leakage as special cases of our
general (e,0) AL-PIR scheme. In particular, we show a three-way tradeoff between download
cost, user privacy, and DB privacy, such that enhancing one of them would be at the expense
of the other two. We also show matching results for the following special cases for our derived
bounds on the AL-PIR model: a) perfect user privacy (original PIR) [7], b) perfect user and
DB privacy (SPIR) [9], ¢) Leaky user privacy (L-PIR) [55], and d) perfect user privacy and
leaky DB privacy .

2 System Model: Asymmetric Leaky PIR

We study the PIR problem illustrated in Figure [l We consider N databases DB, DBs,..., DBy
and K independent messages Wy, Wy, ..., Wi, each of size L bits, such that

K
H(Wy, Wa, -, W) = > H(Wy), (1)
k=1
H(Wy)=H(W,)=-.--=H(Wkg) = L. (2)
A wuser interested in privately retrieving Wy, k € [1 : K ] sends NN separate queries ng), S S\If)

to each of the N DBs, where Qgg) denotes the query sent to the nth database (DB,), n € [1: N],

!Notation: Through this work, we use the notation [1: X] to represent the set of integers from 1 to X.



when retrieving message Wi. The N DBs are assumed to be replicated and non-colluding, i.e.,
they store all the K messages and they do not share the queries received from the user. We also
assume the DBs are interested in achieving privacy, i.e., the user must only decode the requested
message subject to a leakage constraint. To achieve DB privacy, the N DBs are allowed to share
common randomness denoted by a random variable S of size «L bits, i.e., H(S) = aL. Moreover,
S is not known to the user.

Upon receiving lek), the nth database generates the corresponding answer A,(lk) as a determin-

istic function of the query Q%k), the K messages, and the shared common randomness S, i.e.,
H (APIQW, Wh,..., Wi, S) = 0. 3)

The user must be able to decode the desired message Wy, upon receiving the answers from the N
databases. Formally, the AL-PIR scheme must satisfy the following correctness, user privacy, and

DB privacy constraints.

Correctness: Given queries Q[(f:)N] 2 {ng), ceey (k)}, the user must be able to decode the

desired message Wy, with probability of error P., by collecting the corresponding answers A[(f:)N] =

{Agk), e ,AEI\;)} from the N DBs, i.e.,
H (WilQ{ Alfly, ) = o(L)L, (4)

where o(L) is any function that approaches zero as L — co. o(L) is set to zero if P, is required to
be exactly zero.
0—DB privacy: In the original SPIR formulation [9], the authors assume no leakage to the

user about the undesired messages. For a desired message Wy, perfect DB privacy is satisfied if
k k
I <W[1:K]\k5Q[(1:)N]aA[(1:)N]> =0, Vke[l:K], (5)

where Wiy g\« L (Wi,...,Wi_1, Wiy1,..., W) is the set of all messages except Wj,. In this work,
we relax this condition by assuming a general leaky DB privacy constraint. The leaked information
about the undesired messages must be bounded as,

I(W[LK}\k; Q[(k) A(k)

D Ay 6L, VEe[1: K], (6)

where § > 0 is a non-negative constant.

e—user privacy: Under perfect user privacy, the privacy constraints are expressed as,

(A%kl),Qgﬁ)’Wh o 7WK) ~ (A(k2)7Q(k2)7W17 e 7WK)7 Vkl,kg S [1 : K] (7)

n n

This guarantees that the submitted queries are always independent of the message index. The

previous constraint can be alternatively expressed as,

(AR QUWo) ~ (A% Q)W ), Vi, ko € [1: K], (8)



where W, is any subset of the K messages, i.e., Wq C {W1,...,Wgk}. In this work, the privacy
constraint is relaxed such that given any subset Wq of the K messages, the following likelihood

ratio is bounded as follows:

PrQEY =7, ASY = 5 [Wo) _
PriQ* =m AllY = |Wq} ~

where m and ~ represent any possible realizations for the queries and answers, respectively and e

65, Vki, ko € [1:K], VnG[I:N], (9)

is a non-negative constant. Unlike perfect user privacy constraint which ensures that queries and
answers are independent of the message index, the leaky privacy definition allows some queries and
answers to be used more frequently when certain messages are retrieved. By setting ¢ = 0, the

e—user privacy definition in @D becomes equivalent to the perfect privacy constraint in .

Other leaky user privacy definitions: To relax DB privacy, we adopt the mutual information
metric in [58]. On the other hand, we use the probability metric we introduced in [55] to bound
the leakage of user privacy. The latter metric strictly satisfies the privacy constraint for all possible
query/message index combinations. We note that there are other weaker metrics one can use for
relaxing user privacy. In [56], Lin et al. proposed a metric i that gives a bound on the average
privacy leakage over all databases for a desired message index given by a random variable 6 € [1 : K]
such that,

1 N
LS e < (10

n=1

Jia et al. introduced the following privacy constraint [4§],
HARD W, W) — HAR Wy, ... W) =pL, Vke[l:K], VYnell:N], (11)

where parameter p controls the leakage budget, with 0 < p < % In contrast to our e-user privacy
definition in @, both of the metrics provide average privacy guarantees, i.e., they bound the
average privacy leakage over all possible retrieval schemes. This means that the privacy leakage is
allowed to exceed the required bound in the case of individual message retrievals. In this work, we
extend the definition in to investigate the scenario when the distribution of the sent queries and
the corresponding answers is allowed to depend on the requested message index within predefined
limits. Also, the AL-PIR model satisfies the e—user privacy definition strictly over all possible
realizations of answers and queries. This ensures that leakage is always within the allowed budget

€ for all individual message retrievals.

Communication Cost: To evaluate the performance of the AL-PIR scheme, we adopt the Shan-
non theoretic formulation where the message size is assumed to be arbitrarily long and therefore,
the upload cost is negligible compared to the download cost [7]. In this case, the AL-PIR rate is the
reciprocal of the download cost D(e, §), which characterizes the total information bits the user has
to download to retrieve one desired message bit. Let D, s be the total number of downloaded bits

to retrieve message Wy, for some € and ¢, and L be the size of the desired message. The normalized



download cost is given by,
k
DE,(; — ZnH(Ag ))
L H(Wy)
We say that the pair (L, D, 5) is achievable if there exists an AL-PIR scheme that satisfies the
correctness, DB privacy, and user privacy conditions in , @, and @D, respectively, and can

D(e,9) =

(12)

retrieve a message of size L bits by downloading a total of D, s bits. Our goal is to find the optimal
download cost D*(e, d) such that

D*(e,6) = min{D.s/L : (L, D, ) is achievable}. (13)
The capacity of the AL-PIR C*(e, d) is the reciprocal of D* (e, 9),
C*(e,0) =max{L/D.; : (L, D.s) is achievable}. (14)

Optimal common randomness size: We are also interested in characterizing the fundamental
limits of common randomness S needed to be stored at the databases. In general, the common
randomness size « is a function of the privacy budget parameters (¢, ). Therefore, in the following
discussion, we use the notation H(S) = «(e,0)L. We define a*(¢,d) as the minimum common
randomness size that satisfies the correctness, DB privacy, and user privacy conditions in , @,

and @D, respectively, i.e.,

o*(e,6) = min{a(e,6) : (), (6)), and (9) are satisfied}. (15)

3 Main Results and Discussion

In this section, we present our main results on the optimal download cost and the required amount
of shared randomness for AL-PIR. Given desired privacy budgets ¢ and § for the user and DB

privacy leakage, respectively, we state our main results in the following Theorems.

Theorem 1 Define di(€,8) := 1+ A — %. For N > 2 and shared randomness S with size
H(S) > ai(e,0)L, where

1 e+ NE-1_1
ap(e,0) = N1 — S 0 09 <a(), (16)
0, o> 51(6),

the optimal download cost of AL-PIR, satisfying both the e—user privacy and 6— DB privacy defi-

nitions, is upper-bounded by

D*(e,8) < DVB(e,5) = § &0 0=0<ale), (17)
T ’ di(e,61(€)), &> &1(e).

In and , 01(€) is the mazimum DB privacy leakage (when no common randomness is

required, i.e., ay(€,0) = 0) which is a function of the allowed user privacy leakage €, and is given
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Figure 2: The achievable download cost for our AL-PIR scheme when N = K = 2 as a function of
€ for different values of §.
by,

NE-1_1
N —1)(ef + NE-1 1)’
(

di(€) = (18)
The proof of Theorem [I]is presented in Section |4 As a result of Theorem [1], we have the following

remark.

Remark 1 The required size of shared randomness for our achievability scheme, as given by aq (€, )
mn , yields an upper bound on the optimal size of minimum shared randomness o*(e€,0) as
defined in (15), i.e., a*(€,0) < ai(e,d). Moreover, a1 (€, d) is also sufficient to satisfy (€',0") privacy
constraints, such that € > € and &' > 6. In other words, if a given amount of common randomness

is sufficient to satisfy (e€,0) privacy, then it is also sufficient if the privacy budgets are increased.

In Figure [2| we show the effect of € and ¢ on the download cost for the case when N = K = 2.
We can observe the following: a) the download cost is a monotonically decreasing function of the
privacy budgets € and &; b) as e approaches infinity, which corresponds to no user privacy, the
achieved download cost approaches 1; ¢) for € = 0 (perfect user privacy) and as § approaches zero
(perfect DB privacy), the achieved download cost is 2 which matches the case of SPIR studied in [9]
where the optimal download cost is % = 2; and d) for 6 > d1(€) = 1/(e+1) (or € > In(1/s — 1)),

the download cost is only a function of € (the line corresponding to 6 = 0.4).



Theorem 2 Define da(e,d) := 1+ NeLl — (Nes)?{*l—l' For N > 2, and shared randomness S with
size H(S) > ag(e,d)L, where

L e 5 0<6<6
012(6, 6) _ ) Nes—1 (Ne)k=1-1 = — 2(6)’ (19)
0, o> (52(6),

the optimal download cost of AL-PIR subject to e—user privacy and 6— DB privacy is lower-bounded
by

D*(Q(S) > DLB(E’ 5) _ dQ(e, (5), 0<o< (52(6), (20)
da(€,62(€)), 0 > da(e),
where
bafe) = Ve (21)

(Ne€¢ — 1)(Nec)K-1"

Furthermore, the optimal size of common randomness satisfying e—user privacy and 6— DB privacy

is lower-bounded by o*(e,0) > aa(e, ).

The proof of Theorem [2]is presented in Section [5] We note that the results in Theorems [I] and
hold for N > 2 DBs. In the following proposition, we characterize the capacity for the case of

one database.

Proposition 3 The optimal download cost D*(e,0) for N =1 and for any 0 < € < 0o is given by:

D*(e,0) = (22)

The above result shows that the problem of AL-PIR for one database is degenerate. In particular,
to satisfy the e-user privacy constraint, any query/answer pair has to be requested to retrieve each
of the K messages with non-zero probability. Since N = 1, the only solution is to download all
messages, i.e., a download cost of K. However, upon downloading all K messages, the leakage about
the remaining (K — 1) messages is fixed and given by 6 = K — 1. Hence, if the DB privacy budget
is § < (K —1), the AL-PIR problem is infeasible and the capacity is 0, i.e., D*(¢,d < K — 1) = o0.
We prove Proposition [3] in Appendix
In the next Corollary, we show that our proposed scheme in Theorem [I]is information-theoretically

optimal for perfect user privacy, i.e., ¢ = 0, and is optimal within a maximum multiplicative gap

N]\il for any (e,0). The proof of the corollary is presented in Appendix

—€

ratio of

Corollary 1 The multiplicative gap ratio between the upper and lower bounds on the download cost
of the AL-PIR, given by Theorems[1] and[3, respectively, is bounded as follows:
DUB(e,§) N —e€

DIB(es) = N1 (23)
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Figure 3: Lower and upper bounds of AL-PIR for different values of N, K and § as € increases.

In Figure [3| we show the upper and lower bounds on the download cost of the AL-PIR and the
numerical multiplicative gap ratio, as a function of system parameters (N, K, ¢€,d). Specifically, in
Figure[3p, we set the allowed DB privacy leakage to the maximum leakage, i.e., § > max(d1(€), d2(€))
as defined in (no shared randomness required for this case). This gives the results of the L-
PIR model considered in [55]. As the number of messages increases, both upper and lower bounds
increase, whereas both decrease with N. This happens as increasing N increases the number
of bits that can be utilized as a side information to retrieve the desired message. On the other
hand, increasing K adds an overhead on any retrieval scheme to satisfy the privacy by considering
the symmetry among downloaded bits from different messages. We observe a similar trend for
the multiplicative gap ratio as well. In Figure Bb, we fix the value of the DB privacy leakage to
§ = 4 x 107°. This choice insures that § < min(d;(e), d2(€)) for all € € [0 : 10] considered in the
plots. We note that while increasing K does not have significant impact on the bounds, both the
download cost and multiplicative gap ratio decrease with N. Moreover, we observe that the bounds
match when € = 0, i.e., when perfect user privacy is required, and when € — 00, i.e., no user privacy
is required.

The generality of the AL-PIR problem formulation allows us to recover several existing results

11



on PIR as special cases of Theorems [I| and [2] These cases are discussed in the following remark.

Remark 2 (Connections to state-of-the-art results) From Theorems (1] and[3, the lower and
upper bounds on the optimal download cost D*(e,d) for any (€,9) can be used to derive the following
prior results.

e No user privacy and perfect DB privacy (¢ — 00,0 = 01(e = 00) = da(e — o0) = 0).
From the shared randomness bounds (16) and , when € — oo and § = 0, we get that a*(e —
00,0) = a1(e = 00,0) = ag(e = 00,0) = 0, i.e., no shared randomness is needed. Substituting the
e and § values in the download cost bounds and (20), we get DYB(e — 00,6 = 0) = DIB(e —
00,0 = 0) = 1, meaning that the upper and lower bounds are matching and give an optimal download
cost of D*(e — 00,0 = 0) = 1. That is, AL-PIR is achieved by only downloading the requested file
from any of the databases.

e Perfect user privacy and mazimum leakage on DB privacy [7] (¢ = 0,5 = 01(e =
0) = d2(e = 0) = A/,ﬁf%(l]v—jl)) We obtain the original PIR result in [7] for perfect user privacy
leakage € = 0. For this special case, we get the optimal required shared randomness characterized by
a*(e,0) = ai(e,0) = aa(e,0) = 0, i.e., no shared randomness is needed. Using the bounds in
and , we obtain matching upper and lower bounds, giving an optimal download cost of

NK_1—1 NK—l_l NK—1_1
(6 07 NK_l(N_l)) (6 07 NK_l(N—l)) (6 07 NK_l(N—l))
1
=1+ 5+ e (24)

e Perfect user privacy and DB privacy [9] (e = 0,0 = 0). By settinge =0, 6 = 0 in
Theorems (md@, we obtain the SPIR results in [9] where the optimal required shared randomness
is given by a*(0,0) = a1(0,0) = a2(0,0) = w5 and the optimal download cost is obtained using

the bounds in and as

1
D*(e=0,0=0)=D!P(e=0,6=0)=D"B(e=0,0=0)=1+ Y1 (25)
e Leaky user privacy and maximum leakage on DB privacy [55]. We obtain the L-PIR
results in [55] for any level of user privacy leakage € and a DB privacy leakage § > max (61 (€), d2(€)),
where the optimal required shared randomness is given by a*(e,0) = ay(€,d) = aa(e,d) = 0 and the

bounds on the optimal download cost are obtained using and as

D*(e,8) > D¥B(e, d5(e)) = 1 +

Nee T T (Neoyk—T

NE-1_1
(N —1)(ef + NK-1 — 1)’

D*(e,8) < DYB(e,6,(e)) = 1 + (26)

e Perfect user privacy and Leaky DB privacy [58] (e = 0,0). For perfect user privacy

e = 0 and DB privacy leakage characterized by 0, we obtain the results in (58], where the optimal

K-1
N )

required shared randomness is characterized by a*(0,0) = a1(0,6) = a2(0,8) = 1 + NE-T T
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and the optimal download cost is obtained using the bounds in and as

N o

D*(GZO,(;):DLB(e:O,(S):DUB(G:Oa(S): N1 — NEI_T

(27)

4 Proof of Theorem (1} : Upper Bound on D*(¢, ) for the AL-PIR

The leakage in user privacy is achieved using the path-based approach introduced in our previous
work [55]. A retrieval path is equivalent to a set of queries across databases that guarantee decod-
ability. Possible retrieval paths have different download costs. The probability of selecting each
path is chosen to minimize the download cost while satisfying the privacy budget, measured by e,
which is a process referred to as path biasing. First, we give the following example for N = K = 2

to describe the idea of path biasing to achieve e—user privacy leakage with DB Privacy leakage

(0> 61(€)).

4.1 AL-PIR Example for N =2, K =2, and privacy leakage (¢,0 > d;(¢))

Consider the simplest non-trivial PIR setting with N = 2 DBs and K = 2 messages denoted by Wy
and Ws. To motivate the construction of AL-PIR, we first recall the perfect PIR scheme proposed
by Sun and Jafar in [7]. Assume that the messages W1 = {a1,...,a4} and Wo = {by,...,bs}, are
each L = 4 bits long. Figure 4| shows a retrieval structure for W; using the scheme in |7]. The main
idea is that one can use coding and leverage side information from the other database to reduce the
download cost to 3/2. We highlight that the shown bit indices represent one possible permutation
of the real indices. Thus, Wj retrieval can be obtained through multiple bit structures that are
selected uniformly and have an equal download cost of 3/2.

In Figure [5|, we show an alternative PIR scheme in which the requested message can be down-
loaded via sequences of structures that give unequal download cost. In particular, when the user

wants to retrieve message W1, it picks one of the four possible queries/paths:

e Path Py:(0, W1): Send no request to DBy and request Wi from DBs. This path/query has a
download cost of L bits.

e Path Py:(W1,0): Request Wi from DB; and send no request to DBy. This path has a
download cost of L bits.

e Path Ps3:(Wo, W1 @ Ws): Request Wo from DBy and W; @ Wy from DBs. This path has a
download cost of 2L bits.

e Path Py:(W; @& Wy, Ws): Request Wi @ Wy from DB; and Wy from DBg. This path has a
download cost of 2L bits.

Paths P; and P, which have lower download cost, are selected with probability p, whereas higher
download cost paths P53 and Py are selected with probability g. From the total probability theorem,

we have
2p+2¢=1. (28)
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DB 1 DB 2

Retrieve a b a b
Message W, as & b as® b

Figure 4: The original PIR scheme in [7] for N =2, K =2, and L = 4.

Download Cost/path

Path Probability )R 1 DB 2
p ﬂ I Wl L Low
: |
Retrieve 4! | g L -
Message W, q . Wo oW O W, 2L | High
Cost
q . W] 69 W2 N W2 2 L Paths

Figure 5: AL-PIR scheme for N =2, K = 2, general ¢, and § > d;(¢).

The answer of DB,, can take four different structures, m, 1,..., 7, 4. These structures represent
the element addition of all possible subsets of {W7, W5}. Note that the selection probability of any
structure 7, j, j € [1 : 4] equals the selection probability of all paths containing that structure.
Also, there is one path per message that contains each structure m, ;. For example, 719 = {W;} is
paired with 7y 2 = {0} to retrieve W1, or it can be paired with 7y 3 = {W; & W} for Wy retrieval.
Let the path selection probabilities be uniform, i.e., p = ¢ = i. Thus, each structure is selected
with probability %, irrespective of the requested message index. It is straightforward to show that
this probability assignment satisfies the perfect privacy definition in . Moreover, although the
cost varies per path, the uniform path selection yields an optimal average download cost of 3/2.
Therefore, this path-based PIR scheme is also optimal and matches the result of Sun and Jafar |7]
for perfect privacy.

Improving the download cost via path biasing (achieving e—user privacy). The
leaky privacy definition in @ together with the path-based scheme described above, lead us to
consider schemes that bias the path selection process for retrieving desired messages. We next
show that this helps reduce the average download cost for any non-zero e. Intuitively, if we assign
higher selection probability to paths with lower download cost than the average (for example L),
an overall lower cost can be achieved at the expense of some bounded loss of privacy due to the
biasing. The question we pose is whether there are values p # ¢ that yield an average download
cost less than % and simultaneously satisfy the e—user privacy definition in @D The probability

PT{QS) = W,Ag) = v|Wgq} can be expressed as
Pr{QY) = m, AY = 7|Wa} = Pr{Q}) = nf[Wo}Pr{A}) =1|Q}) ==, Wa}.  (29)

The term Pr{Qg) = w|Wgq} depends on the path selection probability. To provide privacy, for
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any answer to a specific structure 7, the term Pr{Ag) = 7|Qg) = m, Wq} should be constant
independently of the requested message. To meet the privacy definition in @, it is sufficient to

show that the possible structures to each query satisfy:

Pr(m, j|i = 1)

Pr(mo i = 2) <ef, Vne{l,2}, jell:4], (30)

where Pr(m, j|i = k), is the probability of retrieving structure m, ; when the desired message is k.

Based on the scheme in Figure [5, there are two cases for each structure m, ;:

(i) my,; is used to recover Wi and Wy with the same probability either p or ¢, then

P(mn, li =1)

Plrgli=2) (31

which clearly satisfies @

(ii) mp; is selected with different probabilities p and ¢ to retrieve W; and Ws, respectively, and
vice versa. Then, p and ¢ must satisfy
P li=1
e €< M _P < €. (32)
Pr(m,;li=2) ¢
Invoking the fact that the sum of path probabilities must equal one, we use to substitute by
q = 0.5 — p and rewrite as

< e, 33
05—p ¢ (33)
This gives us the following inequality,
66
< 34
=950 e (34)

Therefore, we can pick p that satisfies (34) with equality, and then select ¢ = 0.5 — p, as a valid
choice of path selection probabilities which satisfy the e—user privacy constraint.

Computing the download cost D(e,d > d(¢€)). Since our scheme is symmetric with respect
to messages, the same download cost is obtained for the retrieval of message W) or message Whs.

Then, the average download cost can be written as

> i1 Pr{P =P;} Dp,

D(e,6 > d(€)) = i ;

(35)

where Pr{P = P;} € {p,q} is the probability that path P; is chosen and Dp, is the cost of path
Pj. From Figure 5, we know that Dp, = Dp, = L, and Dp, = Dp, = 2L. Hence, D(e,0 > 0(€))

equals

_ 2xpxL+2xqgx(2L)
B L

D(e, 0 > 6(¢))

=2p+4q

15



@2—2;0

Yy @ 36
- m7 ( )
where (a) follows from (28)), and (b) follows from (34)). Hence, the download cost of this scheme
(when p = €“/2(1+¢%)), can be rewritten as
3 e —1

D*(e,0 > d1(e)) = = —

2 AT 1) (37

which is lower than %, the optimal download cost under perfect privacy. Note that a lower cost cab
be achieved for any e.

Computing DB privacy leakage §. We have shown in the above example that the biased
selection probability of the path-based scheme can trade user privacy for lower download cost. We
now calculate the DB privacy leakage. From the above leaky construction, we can show that
(1) 3 e —1

o) = D(€0=01(e)) x L= SL -

H(4 27 2 + 1)L

(38)

(1)

Similarly, the average size H (A[1;2

}’WQ) of answers given W5 is known and can be expressed as

4
H(AR, W) =Y Pr{P =P;} Dp w,
j=1
=2XpXL+2xqgxL=1L, (39)

where Dp_yy, is the cost of path P; when W is given. This makes the DB privacy leakage, or the
information revealed about W, equal to
ef—1

1
) = H(A,) = HA[, W2) > SL— 5oL = 0i(0)L. (40)

I .A(l)
(Wa; 2(e€ + 1)

[1:2]
We highlight that this construction can achieve a lower DB privacy leakage compared to the per-
fect privacy scenario in 7] where I(Wa; A[(ll:)Q]) = L/2, without the need for any shared randomness.
However, this construction cannot fulfill the DB privacy constraint if 6 < d;1(e). In the follow-
ing example, we introduce a construction that can satisfy any DB privacy requirement with the

utilization of the common randomness.

4.2 AL-PIR example with N =2, K =2, e =In(1.5), and § = %/15

Figure |§| shows an example of a possible AL-PIR scheme with N = 2, K = 2, ¢ = In(1.5), and
d = 4/15. We observe that the allowed DB privacy leakage 0 is less than d;(€),

4 1 e -1
15 =0 < 0 =3~ 50y 0 (41)
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b

eSS | b b —laenes Zﬁ; 2L | High
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Figure 6: AL-PIR scheme for N =2, K =2, e = In(1.5), and ¢ = 4/15.

Now, assume that each of the two messages is of size L = 3 bits, W1 = {a1,az2,a3} and Wy =

{b1, b2, b3}. To satisfy the §—DB privacy condition, we include the least required amount of shared
randomness S that has a size of a1(e, §)L, where a1(e, d) is computed from ([16]):

1 €+ NEK-1 1 L
_ L =~ —1 bit. 42
N1 NET 1 J) bit (42)

a1(6,5)L = ( 3

Each message is divided into two parts as follows: W is divided into Wl(l) = {a1} (size of S = L/3),
and W = {ay,a3}; and Wy is divided into W) = {b;}, and Wi? = {by, bs}.

Suppose that the user wants to retrieve Wi. The user can use any of the four possible paths
shown in Figure where a path is defined as a query set Q[(f )N] which satisfies, together with its
corresponding answer, the correctness and privacy constraints. However, these paths have different
download costs. The first two paths have a cost of 4L/3 bits, whereas the other two paths have a cost
of 2L bits. The correctness of the scheme is straightforward, the XOR addition of the two structures
forming each path results in getting a1, as, and a3. To reduce the download cost by trading user
privacy, similar to the previous example, we select the lower cost paths with probability p = 0.3,
whereas the higher cost paths are assigned a probability ¢ = 0.2. These selection probabilities are
chosen such that both e—user privacy and §—DB privacy conditions are satisfied. As we will discuss
later in more details, the ratio describing e—user privacy leakage in @D is given by the maximum
ratio between the probabilities of selecting different paths, represented here as p/q = 1.5 = e°.

When W is requested by the user, the DB privacy leakage is described as the information user
can decode about Ws. We notice that the first two paths in Figure [5| do not reveal any information
about Wy, while using the other two paths, the user can decode the two bits W2(2) = {b2,b3}. This

gives the average DB privacy leakage as

L 4
D) =2x03x0+2x02x2=08=08x = =—L=0L. (43)

A _
TWa; Apy 315

[

Hence, this achieves the §—DB privacy condition. The average number of downloaded bits for this
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scheme is
D.s=2x0.3x4+2x0.2x6=4.8 bits, (44)

which yields a download cost of
4
D(e=1In(1.5),0 = B) = 48/3 = 1.6. (45)

We highlight that this scheme clearly improves the download cost in comparison to the perfect
SPIR, which has a download cost of N/N—1 = 2, at the expense of some loss in user and DB privacy.
4.3 General (¢,0) AL-PIR Construction

In this section, we generalize the AL-PIR scheme in the previous examples for arbitrary values of
N, K, and asymmetric privacy leakage characterized by the pair (e,d). Assume there are K > 2
messages, W1, ..., Wg. Consider a random permutation of the databases indices. Let each message
Wi, be divided into two parts Wy = {W,gl), W,gQ)} such that

HWM) = (N = Dau(e, 6)L, (46)

HW?)=L— (N —1)ay(e, )L, (47)

where a1 (€,0) is the minimum required amount of shared randomness for the AL-PIR scheme to

ensure the —DB privacy and computed as

€ K-1
a1(€,0) = max <0, ! N ! 5)

N-1  NEK-1_71

e€ K—1_
_ Nl—l - ]J(fjlg—l,l ! 67 0< d < 51(6)7 (48)

0, d > 01 (6)
Furthermore, let each W,E,l) and W,E?) be divided into N — 1 equal sub-packets,

1 1 1
W = wl), Wi (49)

2 2 2
W = (w2, WA (50)

such that for all £ € [1: N~ 1], HW,})) = a1(e,6)L, H(WS2)) = (541 —ai(e, 6)) L. For instance,
in the example of Figure |§| where a(€,0) = 1/3 and L = 3 bits, W7 is divided into Wl(l) ={a1} of
size 1 bit, and Wl(Q) = {az, a3} of size 2 bits.

For a requested message W;, the DBs mask I/V,gl)’s7 ke [l: K]\, with the secret key S. The
content of W,gQ)’s may be allowed to leak to the user. To retrieve a required message W;, the user
first selects one of the possible retrieval paths across the N DBs. Any path is formed by a set
of N queries, Q[(f )N], which are submitted to the respective DBs. The selected path has to fulfill
two requirements: (i) the path correctly recovers Wj; (ii) the N submitted queries satisfy both the
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e—user privacy and §—DB privacy conditions. The user sends the following query vector to DB,
7Tn7i:(.Tl,...,SL‘i_l,(SUi+n)N,ﬂ§i+1,...,$K), JIkG[OiN—l], k‘E[l:K], (51)

where (z; + n)n denotes (z; +n) (mod N). This K x 1 vector gives the indices of the K message
bits, one bit for each message, that should be included in the answers. The design of 7, ; makes sure
that all submitted queries 7, ;’s include the same indices of all undesired messages, and different
indices of the required W;. Then, the identical undesired bits, within the N collected answers, can

be utilized to decode the desired bits. After DB,, receives the query my, ;, it responds with answer

'Yn(ﬂ'n,i)a

1 2
Yn(Tni) { @ Wk ax D S Wz( 2: +n)N @ Wk o OW; (ﬂ)ﬂri‘”)N} (52)
ke[L:K]\i ke[ K]\i

where @ represents the summation via XOR operation. We denote by W,glo) and W,gQO) the null or
the empty set (). This response ensures protecting all W,Sg)’s by encoding them with S. We observe
that once one of the N queries is designed, i.e., the indices x;’s are chosen, the remaining N — 1
queries are deterministic functions of these chosen indices. As x; € [0: N — 1] for any k € [1 : K],
each m,; can be represented by N K different vectors. Each of these vectors creates one possible
path to retrieve W;. Thus, for a specific permutation of DBs indices, we have NX possible paths
in general. For the example in Figure @ there are N¥ = 4 paths for the retrieval of W;. The first
retrieval path is created from the queries m; ; = (0,0), and 721 = (1,0) with corresponding answers
Yi(m11) = {S,0}, and va(me1) = {a1 @ S, {ag, ag}}. A general form for one possible path is shown
in Figure[7]
Analysis of Correctness: The user can decode the sub-messages Wi(é) and Wi(j), Vel

N — 1], of the requested message (W;,) using the information retrieved from DBs N — x; and
(N + ¢ —z;)n as follows

{Wi(é),Wﬁ)} = YN—z; (TN = xi,i) B YN +t—a; (T(Nl—as) n1i)

={ P wlesewl), @ w2 ew?)

ke[1:K]\i ke[1: K]\t
of{ @ wlesow) P W ewd
ke[1:K]\i ke[1:K]\i
= {wiy ewy). Wi ew?}
= {Wi(,?’ Wz(?} (53)

Proof of e—user privacy: We note that the total download cost for each path is not fixed,

but it depends on the choice of z’s, k € [1 : K]. Then, we have two types of paths:

e Lower cost paths ( Vk € [1: K]\ i, xx =0):

Generally, N possible paths belong to this case, those created from queries m,; where x; =
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Figure 7: One path of the AL-PIR scheme that retrieves W; with x; = N — 1.

0,1,...,N — 1. In this case, we have

Weatv-ei) ={ @ Wigosewl), @ wihowldl={s0}, (54)

ke[1:K]\i ke[1:K|\i

i.e., we only download the secret key S of size a(€,d)L from DBy_ mz Whereas, for other
databases, all structures download data of the form {Wi( ) @S, Wi it } each of size NL T
bits. In total for these type of paths, the user needs to download (N — 1)5%; + ai1(e,8)L =

(1 4+ ai1(€,0))L bits from all DBs.

e Higher cost paths (3 k € [1: K]\ i,xx # 0):
For this case, there are N¥ — N possible paths. Here, all requested query structures are of

size ﬁ bits, and the user needs to download %L bits in total from all DBs.

Without loss of generality, we assign probabilities p and g, where p > ¢, to higher cost and
lower cost paths, respectivelyﬂ such that

Nxp+(NE-N)xqg=1. (55)

We can see that any query 7, ; with certain x;’s can be used to recover any desired message. This
is obtained by requesting that query with other N —1 queries that share the same z’s of the K —1
remaining messages. This is crucial to satisfy the e—user privacy requirements because accessing
a structure does not eliminate any of the message possibilities. Furthermore, each structure is
selected to retrieve W; with the same probability of selecting the path coming through it, either p
or ¢. Similar to (29), Pr{ng) =, Al = v|Wq} can be expressed as

Pr{QY) = 1, AV = v|Wgq} = Pr{Q)) = n[Wq} Pr{A}) = 7|Q) = 7, Wq}. (56)

The term Pr{Agf) = fy]Q,(f) = 7, Wq} is also a constant, independent of the requested message.

Thus, to meet the definition in @, we show that possible structures of each query satisfy:

Pr( =ki)
PI‘(ﬂ'nl”L = kg)

< e, Vn, kl,kQE[l K] (57)

2Due to symmetry, paths belonging to the same type are assigned the same probability. Assigning different
probabilities does not improve the download cost or the privacy.
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where Pr(my, ;i = k1), is the probability of selecting structure 7, ; when the desired message is Wi, .
The following lemma generalizes the condition in to satisfy e—user privacy for any K. It states

the upper bound on the path biasing that does not violate the e—user privacy.

Lemma 1 To preserve e—user privacy definition of the AL-PIR, the biased probability p has to
satisfy the following inequality

€

< .
P=>Neef NEZN

(58)

Proof: Based on the proposed scheme, each structure m,; can be selected with probability p or ¢,

then P .

s e {2 I <o (59)
Pr(mnili=k2) ~ \p a a'p

As p > ¢, we only need to guarantee that

< e (60)

Substituting in the inequality, we get

NE - N NE - N
R P ( P (61)
¢ (NK-N)g  1-Np
By rearranging the above inequality, we get the following:
66
< . 62
P=Nex NEZN (62)
Equation can be used to find the following equivalent condition:
> (63
1= Nee v NE-N

|

Analysis of —DB privacy: We show that the proposed AL-PIR scheme satisfies the DB
privacy leakage constraint in @ From the previous construction, we categorized the paths into
two groups: (a) N paths of size (1 + ai(e,8))L bits; and (b) NX — N paths of size ;2L bits.

Then, the expected size of the answers, H (Aﬁ) N]) can be expressed as follows:

: N

H(A[(l?N]) = pN(1 4+ aq(e,0))L + g(NF — N)ﬁL

a NK_N

@ pNogl(e,(;)L—l—L—i—ﬁqL

1—pN

(:b)L+pNoz1(e,5)L—|- Nfl L

Lty N (o mlen) L (04

B N-—-1 p N —1 1L€, 3
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where (a) and (b) follow from (5F). We then calculate H (A[(i) N]\W[L &]\i) as follows:
(i) @) (i)
H(AL v Wiikpe) = HWi, A [Wirgy)

b) i

—

= H(W;) + H(S) + H(A[)\ [Wr.sepi, Wi, S)
9 W) + H(S) = (1+ ar(e,0)L, (65)
where (a) follows the correctness property in (4) whereas (b) and (c) hold from the fact that answers

are function of messages and the shared randomness.

Lemma 2 To preserve §—DB privacy for § < 61(€), the biased probability p has to satisfy the

following inequality
€

> .
P=Neer NE-N (66)
Proof: According to and , we can express the DB privacy leakage as
. A®
6L = I(W ki Apping)
_ (@) ()
- H(A[l;N]) - H(A[l;N]|W[1:K]\i)
L 1
=L+———pN|——— L—-(1 L
g (g - ed) L (1 an(e)
(a) 1—-pN
= (pN — 1Dau(e,6)L + N1 L
1
=(1 —PN)(m —ai(€,6))L
(b) , 1 e+ NE-1T 1
:(1—pN)m1n<N_1, NE=T 1 o)L, (67)

where (a) follows from and (b) follows from (48). For the commonly shared randomness S, we
have one of the following two cases:

e No shared randomness is needed (a;(€,d) = 0):
In this case, the condition in (@ can be written as follows,
1—pN_@ NE-1_1

> > _
oLz N -1 L= (N —1)(ef + NE-1 — 1>L d1(e)L, (68)

where step (a) follows by applying the e—user privacy condition obtained in Lemma There-
fore, we obtain the bound on the DB privacy leakage § > 6d;(¢), i.e., DB privacy leakage is
maximized which covers the L-PIR model previously considered in [55]. This case requires
no condition on the biased probability p as the inequality in is achieved for any p. We
highlight that this scheme obtains a better DB privacy compared to the perfect PIR scheme
proposed in [7], without the need to any shared amount of randomness. The latter scheme
causes a leakage of (]\;V_KI;%L bits.
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e Shared randomness is needed (a1(e€,d) > 0):

For any aq(e,d) > 0, we always have

1 e+ NE-1—1
N-1~ ~NET_1 (69)
From , we get the following relation on p:
NE-L 1
1-pN) < ——p——— 7
(L=pN) < R 7 (70)

which leads to the proof of Lemma

[ |
Lemmas (I and [2| lead to the following necessary condition on p to simultaneously satisfy the

e—user privacy and d—DB privacy definitions.

Lemma 3 To preserve e—user privacy and 0—DB privacy, the biased probability p has to satisfy
the following condition with equality

66

~ Nec+ NK _N°

p (71)
Proof: For § < é;(e), the proof follows directly by applying Lemmas 1| and [2, For § > d;(€), the
proof follows from Lemma [I| where we pick the maximum value of the biasing probability p in order
to minimize the download cost, i.e., maximize the probability of picking the paths of lower cost. B

Analysis of download cost: Given that all messages are requested equiprobably, the down-

load cost can be written as,

H(ADN) @ 1

D(e,d) = % @ 1+ﬁ —pN <N_1—a1(6,6))
© 1 , 1 e+ NETT—]
—1+N_1 mem(N_l, NET 1 0
(d) 1 ef

€ K—-1 _
1 e“+ N 1 5)’ (72)

N—1 e+NK1_] Xmm(N—r NE-T 1

where (a) follows from (64), (b) comes from (55), (c) follows (48), and (d) is due to Lemma

According to the size of the available randomness S, we have one of the following two cases:

e No shared randomness is needed (a;(€,d) = 0):
This case corresponds to § > d1(€). The download cost in can be written as follows,

1 € 1 NE-1_1q
D(e,d) =1 - =1
(€)=t g ernr T o1 P o Der o)
NE-1 1 1
+ c F NE-1_1 <N + + NK_1> dy (e, 01(€)) (73)
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e Shared randomness is needed (a1(e€,d) > 0):

For any a;(e,d) > 0, we have

4

N—1~ ~—NE1_] (74)

Then, the download cost in can be re-expressed as
1 e ec+ NE-1—1 NE-1 1

D(e,d) =1 — §=1
(€0) =145 s+ NE-T 1 T NE-T_1 +(N—1)(66+NK—1—1)
1 de€
=1+ = dj(€,0). (75)

N_-1 NE-1_1

Both cases in and yield the upper bound in for the download cost of AL-PIR and
prove Theorem

5 Proof of Theorem [2/: Lower Bound on D*(e, )

Without loss of generality, assume the requested message is Wi. We can bound D*(¢, §) as follows

(1)
(6 (5) Zn 11;( )

1
H(A{ )
L

(1)
(A[l N] |Q[1 N])

- L

| \/

(76)

To further bound D*(e, ), we first state the following two lemmas. Proofs of both lemmas
can be found in the appendices. In Lemma [4] we introduce the relation between the entropy of
answers downloaded to retrieve different messages given a certain message. We emphasize that,
under perfect privacy definitions, the entropy should be exactly the same regardless of the requested
message,

H(AM Wy, Q)Y = H(AF |\ Wy, QF2)),  Vki # ko, n € [1: NJ. (77)
However, this does not hold under the e—user privacy definition.

Lemma 4 Under the e—user privacy definition, for any ki and ke € [1 : K| and a non-negative

constant €, we have the following inequality
( kl ’WkuQ(kl)) > H(A(kQ)‘Wk kz))’ Vky 7& k2> n e [1 : N] (78)
Using Lemma [4] we get the following recursion lemma.

Lemma 5 For k € [2, K|, we have

k 1 (k k
H( [1N ’W[lk 15 QE )N}) >(1—-o(L))L+ WH( [1‘;1] Wi, Q[l—;fl])) (79)
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Using Lemmas and we bound H ( ]Qﬁ )N ) as follows

(1) 1 N _ 1) (1) (1) (1)
H(A[I:N]|Q[1:N]) = H(Wy, A[l:N]|Q[1:N]) — H(W, |A[1 :N]’ Q[l :N] )
(a)
2 HW, AL QU ) — o(L)L

= H(W1|Q{y)) + (AH)N]WhQH)N) o(L)L

—~
o
=

(1 - o(L)L + HAL W1.QDy)

> (1 - o(L) L+ H(AP|W1, Q)

9 (1= o(L))L + H(AD Wy, QV)
@ 1 )
> (1= o(L)L+ - H(AP[W1,QP), (80)

where (a) is due to the correctness property in (4)), (b) follows from the fact that the message
content is independent of queries, (¢) comes from the fact that the answer AS) is conditionally
independent of the queries submitted to other DBs given the query QS), whereas (d) comes from

Lemma 4] The addition of the previous relation over all possible n’s gives us the following
| N
1 1
H(A[ Q) > N(1 = o(L))L + — > H(AP W1, Q). (81)
n=1
Dividing by N,
(1) (1)
(A[l:N] |Q[1:N])

> (1—o(L))L + (AP W, QP)

>(1—o(L))L+

(AP W1, Q)

1
>(1—o(L))L+ TH(A(f.)N]|W17 Q[(12:)N])

@ (1—o(L))L + N e (AEIQ)N |W1,Q[1N) N1 € (W2|A[1 N]’Wl’Q[l N]) Ol(\fe)eL
=(1—o(L))L + ﬁH(WﬁAﬁNHWh QEiN}) B OJ(\fe)eL

— (1-o(L)) Nl€€H (Wal W1, Q) + LH (AW, W2, Q) — OE\QL
1oL Vot NleeH( Wi Wa, Q) = Oz(ngL

—(1—o(L))L + ﬁ(l —o(L))L + ﬁH(A[LN] W1, Wa, Q) (82)

where (a) comes from the correctness property in (4)), and (b) is due to the message independence.

Following the same iterative process used in [7], and invoking the recursion property in Lemma
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we get

H(AG Q)

1 1 1 (K) (K)
> (1+ Ne T W)(l —o(L))L + (Ner)k 1 H(AG v Wiik), Qi)
(a) (NeS)E-1 -1

Y (1 —o(L))L +

1 (K) (K)
(Ne) K- 1(Net — 1) (1—o(L))L+ Ntk H(A i Wihik), Qprng)y - (83)
where (a) follows from the rule of finite sum of geometric series. Under the L-PIR model presented
in [55], the term H (AEIK ]2,} Wik Q[(lK sz]) is replaced by zero as answers are functions of only the K
messages. However, this does not hold in the presence of common randomness. From the §—DB

privacy definition in @, we get the following:

(K) (K) N _ (K) (K) . A(K) (K)
H(ADN] ’W[I:K]a Q[lN]) - H(A[lN] ‘W[I:Kfl]a Q[l]\/‘]) - I(WKa A[I:N] ’W[I:Kfl]u Q[IN])

(a)
< H(A ff?vﬂwl.K 1 Q) — H(Wk)

K K
= H( [1 N]|Q[1 ]1/]) (Afl )}' W[l-K 1]|Q(1:]2[]) - H(WK)

H(A : Q) = TATR ) QU Wik —ny) — H(Wi)

H(AT Q) — 0L - L, (84)
where (a) follows since all messages are 1ndependent and WK is a deterministic function of AE )}
By symmetry, we can assume that H( |Qf11)N) = ( o N]|Q[1 N]) Then,

(K) (K) (1) (1)
H(A[l;N]‘W[l:K}yQ[l N}) > H<A[1 N] |Q[1;N]) — 0L — L. (85)

Since H(AEQ,”W[LK}, QflKj)V]) > 0, we obtain

H(AG Wi, Q) = max (0, H(AL Q) — 6L~ 1) (86)

Next, we can express using as

(AH)N ’Qu N]

Dividing by L and allowing it to approach oo, we get

eK-1 H(AD, QY
H(A QG R L )+(N63)K1max(0 H(AD 1) 51)‘

L (Ne)K—1(Nec — 1 L

(88)
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Following , the following two inequalities are true

HAD 10V ) Nee)K—1
LN %Ny (Ne) 1
L 2 ey FT(Nee — 1) and, (89)
(1) 1) (1) (1)
H (A @) > 14 (Nef)E=1 -1 N 1 (H(A[1 MIQuiny) 5o (90)
L - (Ne)K=1(Nec —1)  (Ne)K-1 L '
The inequality in can be rearranged as
e\K—1 H A(l) (1) e\K—1
(Nec) —1 H( [1;N}|Q[1;N]) S 14 (Ne) -1 1 G+ 1)
(Nec)k—1 L - (Ne)K—1(Nec —1)  (Ne)k-
_ (Ne9E-1—1 (NeS)K-1 -1 )
- (Nee)K—l (Nee)K 1(N€e _ 1) (Nee)K—l
A(l (1)
H( ’Q[l N]) > 14 1 B 0 ‘ (91)
L Nec—1 (Ne)k-1-1

From and , we get

HAL Q) (NeO)K-1 1 1 5
> - : (92)
L = max (1 T N F T Ne — 1) T Ner 1 T (Ne)R 1= 1>
Substituting by in (76), we can lower bound D* (e, §) as
(Al Q)
D*(e,8) > L LN > DLB(e, 8)
_ (NeS)E-1 -1 1 §
- e <1+(N66)K—1(Ne€—1)’ 1_'—Neﬁ—l (Ne )k=1—1 )" (93)
(Nes)K—-1_1

For a fixed €, D"B(e, §) is monotonically decreasing in § until we reach § = dy(¢) = Ner—T)(Ne ) k=T
at which K1 5

Ne )" = —1 1

(Ve?) =1+ - . (94)
(Ne)K=1(Nec — 1) Nec—1 (Ne9)k-1-1

(Nes)K—l_l

1+

After this point, D™B(e, §) is fixed at the value 1 +
represent DB(e, 0) as

Then, we can alternatively

1+ Nei 1 (Neé)?(*l—l = d2(€7 5)7 0<0< 52(6)7 (95)

N —
1+ wiﬁ()ﬁln da(€,02(€)), 0 > da(e).

D*(e,8) > D'B(e, 8) = {

This proves the lower bound on D*(e, ) in Theorem
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5.1 Required amount of shared randomness

In this section, we prove the lower bound in Theorem[2]on the required amount of shared randomness
to achieve the minimum download cost derived in . From the 6—DB privacy in @, given a
requested message Wy, we get

oL = I( [1 N]’ Qu SUELLE K]\k)
= I(A[(l)N]v W K]\k\@ N)
= H(A| : QL) = H AR g Wiy Q)
= H(A! i N]\Q[l N]) H(Wy, [1:N]|W[1:K}\k7 QEL)N]) + H(Wk\AEf:)N], Wik QE?N])
@ (AffN Q) = H (Wi, A [Winage, Q) + o L)L
= H(4] i INIQUN = HWelWiase, Q) = H(A[y Wik, Qfylyy) + o(L)L
= H(A] : Q) = L = H(AR Wik, Q) + o(L)L
= H(Af [1 Q) — (1= o(L)L — H(Aff?N Wik 8, Q) — 1083 Al Wiy, Qi)
2 (Al i DalQU) = (1= o(L)L = I(S; A (Wi, QP
= H(4A] i N]\Q[l W) = (1= o(D)L = H(S|Wp.x, Q) + H(SIAL ) Wi, Q)
< H(A @) = (1= o(L)L = H(S) + H(S|A ) Wik, Q')
> H(4| [1: N]|Q[1 N]) (1—o(L))L — H(S), (96)
where (a) follows from the correctness property, (b) comes from the fact that answers are function

of the K messages and the common randomness S, and (¢) is because the common randomness S

is independent of the K messages. Dividing by L, allowing it to approach oo, and substituting by

in , we get

1 ) H(S)
5> 1 _ oW
“ T Nee—1 (Nec)k=1 -1 L
1 ) H(S)
- - - . 97
Nec—1  (Nes)K-1 -1 L (97)
Rearranging the inequality, we get the following bound on «(e, ),
H(S) 1 )
T (6 6) Nee — 1 (Nee)K—l -1 o 5’ (98)

which is also a valid bound on the optimal common randomness a*(e,d). Then, following that
a*(e,0) > 0, we obtain the following bound,

. 1 (Ne)
> = —
a*(e,0) > as(e,d) = max <O, Ne—1 ~ (Ne)k-1= 15)
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(Nee)K—l
_ Nel—l o (Nee)K-1—1 5’ 0 < 0 < 52(6)’ (99)

0, 0> 0o (6),
which completes the proof of the lower bound on the optimal common randomness size in Theorem 2]

6 Conclusions

We studied the AL-PIR problem that relaxes the perfect privacy requirements for both user and DB
privacy. The allowed leakage is asymmetric allowing for different privacy leakage in each direction.
We showed that allowing privacy leakage provides an opportunity to improve the optimal download
cost. We introduced an AL-PIR scheme that gives an upper bound on the optimal download cost
for arbitrary leakage budgets. We investigated possible tradeoffs that stem by adjusting the level

of privacy at both user and DB sides. We further obtained a lower bound on the download cost

N—e~€
N—-1 >

i.e., our AL-PIR scheme is optimal for perfect user privacy, e = 0, and is optimal within a gap of

and showed that the multiplicative gap between the upper and lower bounds is bounded by

N
at most ;=5 for any .
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Appendix A Proof of Corollary

We first notice that for any € > 0, we have 01 (€) > d2(€). This follows as we can express dj (¢, 1 (€)) =
1461 (€) and da(e, d2(€)) = 1+02(€). Then, from Theorems|[I]and[2and for any § > max (61 (€), d2(€)),
D*(€,0) can be bounded as follows

1+ 83(e) = da(e, 62(€)) = D¥B(e,0) < D*(e,0) < DYB(€,6) = dy(€,61(e)) =1+ d1(e),  (100)

which proves that 0;(e) must be greater than or equal d2(€) for any value of € > 0.
Following that, we can write the multiplicative gap ratio between the upper and lower bounds
on D*(e,d) given in ((17) and as follows:

,
(=120
@ 0 <0(e);

DYP(e, 0) N (Q=12(e)5

DB (c.5) ~ | mlo—uon@ 02(€) <9 <ale), (101)

71(€)=72(€)d1(€)
095 0 = 01(e),
where we have 71(€) = 1+ g1y, 72(€) = xrSr—y, 73(€) = 1+ spt—y, and 7a(€) = (k== Then,
we can upper bound (|101)) as follows,
71(6)=y2(€)d
M ~v3(e)—va(€)d’ o< 62(6)7
DUB(e, 0)

IN

(102)

71(€)—2(€)d2(€)
@5t 0 = 0a(e)-

r1(€)=y2(e)d e 71(€)va(e)

) .
For any 9, we have the bound YO8 < 730 valid when NORC < 1. We can prove that

~—

% < 1 in the following:
1 1 NE-1_1 _
Y1(€)va(e) _ (1+ N—1)(Ne€)K—1—1 _ __N-T -2 _ Zszo2 N* e <2<, (103)
v (1+ g griry el o (Ne)k T T

for any € > 0 with equality when ¢ = 0. Eventually, we can bound the multiplicative gap ratio for

any value of § as

DYB(e,6) _m(e) l4+xg N—e©

— = . 104
DIB(e,0) = () 1+l  N-1 (104)

IN

Appendix B Proof of Lemma

Assume that A%kl) the answer of any DB,,, given any requested message k1 € [1 : K], can take

one of T different structures. Each of them is requested by a certain query, i.e., Q%kl) also takes T'
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different forms. Let m; and (m;) be the ¢ form that Qgﬁ) and Agﬁ) can take, respectively. Then,
H(Aglkl)]Wkl,Q&kl)) can be written as

t=1
1 T
=~ ST PH@QU = ) H(AL = 5(m) W)
et
t=1
1 T
- ; PI‘(Q%kQ) = Wt)H(Ach) = ’7(7rt)|Wk1a Q7(1k2) = 7Tt)
t=1
1

where (a) follows from the fact that the entropy of certain answer structure ~y(m;) is independent
of the requested message, it only depends on the query form m;. Whereas, (b) comes from the
definition in @ and the corresponding interpretation in .

Appendix C Proof of Lemma
We can bound H(Aff:)N”W[l:k_l], Qfﬁ)m) as follows:

H(AE{C;)]V} Wiik—1]5 QE?N])

@ BAD Wiy Q) + BWLAR ) Wiy @) — o(L)L
= H (W, Aff:)m Wiik—115 fo:)N]) —o(L)L

= H(Wi[ W1, Qi) + H(A [ Wirag, Q) — o(L)L

= L+ H(A[ ) Wi, Q) — o(L)L

= (1= o(L)) L+ H(A Wiy, Q)

> (1= o(L)L + H(AP Wi, Q)

Y (1= o(L) L+ HAD Wiy, @B, Wne[1: N, (106)

where (a) is due to the correctness property in ([4)), and (b) comes from the fact that the answer
Aglk) is conditionally independent of the queries submitted to other DBs given the query Q,(Ik). By
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adding the relation in (106 over all possible n’s and dividing by IV, we get the following:

N
1
H(Af [ Wie-11, Q) = (1= o( D)L + Z H(AD Wi, QF)
n=1

—
s}
~

> (1-o(L Wi, Q)
= (1-o(L)) N ZH Wi, Qay)
> (1= o(L)L + ~— H(A A Wi, Q) (107)

N €

where (a) follows using similar steps as in the proof of Lemma

Appendix D Proof of Proposition

Here, we prove the bound in proposition [3| for N = 1. We show that the relaxed privacy conditions
have no benefits when there is only one database even if we ignore the DB privacy leakage constraint

(0 = K —1). Assuming that the requested message is Wi, we lower bound D s as follows:

Des = H(AY) > H(4"10")
= H(W, AT 1QY) - HwlAT, Q1)
D Hm Q) + H(AP W1, Q) - o(L)L
= (1—o(L))L + H(AM w1, Q) (108)
where (a) follows the correctness property in . Let there be T different structures, m1,..., 7,

the query sent to the databases can take. For each structure my, ¢ € [1 : T, the answer is on the

form of v(m¢) then we get, for j € [2: K],
H(AM W1, Q) — H(AY w1, Q)
- (H(Aﬁ”, miQ") - Hme)) - (B, mIQ?) - Q)
(A", w1 — HW)) — (H(AY, WAlQ) — H(W))

H(A1 QM) — H(AY, wh QYY)
= H(AP Q) + Hwy |A§”,Q§”>— <<”|Q“>>— HwW, AP, Q)

—

a

2 7 AYIQM) + o(L) — Z Pr(QY) = m)H(Wy|AY), Q) = m)

=

T
= HAV QW) +o(L) - H Z HWAY = y(r)),  (109)

where (a) also comes from . We emphasize from the user privacy constraint in @ that all queries

or structures must be requested with non-zero probability, otherwise the constraint in @ can not
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be met. This dictates that v(m;), the answer of any structure 7, has to fulfill the decodability

conditions, i.e.,

H(WA ALY = 5(m)) = o(L). (110)

As the form of the answer ~(m;) is the same regardless of the requested message, this implies that
HW|AY) = (m)) = HW |4} = 5(m)) = o(L). (111)
From and , we get the following
H(A W1, Q") = H(AY W1, @) + H(APIQ)Y) - H(AY|Q). (112)
Assuming the symmetry across all messages, we have
(AP QYY) = H(AP|QY), vjel2: K. (113)
Using this fact, we have
HAD W, QW) = H AV Wy, Q) vie2: K. (114)

This allows us to write D, s as follows

Des > (1-o(L))L + H(AP W, Q)
= (1 - o(L)L + H(Wa, AP W1, Q1)) — H(W, AP, w1, Q1)
= (1—o(L))L+ H(Wa, AP W1, Q) — o(L)L
=(1- 2o<L>>L+H<W2|@1> HAD W1, Ws, Q)
= 2(1 — o(L))L + H(AP 1wy, Wy, Q). (115)

Completing the proof inductively using equations (109) to (114)), we get

Des > (K —1)(1 — o(L)L + HAS Wik, Q1)
= (K = 1)1 — o(L)L + HWie, AR Wi g1, @) — HWic| A%, Wise_1y, Q1)
— (K = 1)(1 — o(L))L + H(Wie, A" Wiy, @) = o(L)

W (K —1)(1 = o(L) L + HWic W1, Q) + H(AF Wiy, Q) — o)

> K(1—o(L))L, (116)

where (a) comes from the fact that the answer must be a function of the K messages. Dividing by

L and taking the limit L — oo, we arrive at the desired lower bound:

D*(e,8) > K. (117)
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