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Abstract

A new type of spatially coupled low-density parity-check (SC-LDPC) codes motivated by practical storage

applications is presented. SC-LDPCL codes (suffix ’L’ stands for locality) can be decoded locally at the level

of sub-blocks that are much smaller than the full code block, thus offering flexible access to the coded information

alongside the strong reliability of the global full-block decoding. Toward that, we propose constructions of SC-

LDPCL codes that allow controlling the trade-off between local and global correction performance. In addition to

local and global decoding, the paper develops a density-evolution analysis for a decoding mode we call semi-global

decoding, in which the decoder has access to the requested sub-block plus a prescribed number of sub-blocks

around it. SC-LDPCL codes are also studied under a channel model with variability across sub-blocks, for which

decoding-performance lower bounds are derived.1

Keywords: Codes with locality, coding for memories, density evolution (DE), iterative decoding, multi-sub-block

coding, spatially coupled low-density parity-check (SC-LDPC) codes.

I. INTRODUCTION

Spatial coupling (SC) of low-density parity-check (LDPC) codes is an extremely useful technique to construct

block codes with superior correction capability and efficient decoders. These properties make spatially coupled

LDPC (SC-LDPC) codes attractive for implementation and deployment in real systems. In this paper, we endow

SC-LDPC codes with an additional desired property: the ability to access and decode sub-blocks much smaller than

the full code block. This property is especially needed in memory and storage systems that require flexible access

(a.k.a. random access) to small data units alongside high data reliability.

SC-LDPC codes were extensively studied recently and were shown to have many desired properties. For example,

in [1] it was proven that SC-LDPC codes achieve capacity universally on memoryless binary symmetric channels

under belief propagation (BP) decoding due to a phenomenon called threshold saturation; in [2] it was exemplified

that the minimum distance of protograph-based SC-LDPC codes grows linearly with the block length without

compromising in thresholds; [3] showed that typical protograph-based SC-LDPC codes present linear-growth of the

size of minimal trapping sets. These properties imply good bit-error rate (BER) performance in the waterfall and

error floor regions, for the BP decoder. Moreover, the special structure of SC-LDPC codes, where bits participating

in a particular parity-check equation are spatially close to each other, renders a locality property that can be exploited

to implement low-latency high-throughput belief-propagation based decoders; such decoders are pipelined decoders

[4], [5] and window decoders [6], [7], [8].

When used in data-storage applications, where decoding failures imply data-losses, an error-correcting code must

protect against extremely high noise levels (although most noise instances are much milder), requiring very large

block lengths and complex decoding, thus degrading the latency and throughput of the device. A possible solution

to this problem is sub-block-access codes [9], [10] that enable decoding small sub-blocks (i.e., local decoding)

for fast read access, while providing a high data-reliability “safety net” decoding over the large code block (i.e.,

global decoding). Formally, in a sub-block-access code, a code block of length N is divided into M sub-blocks

of length n each. Each sub-block is a codeword of one code, and the concatenation of the M sub-blocks forms a

1Part of the results of this paper was presented at the 2018 International Symposium on Turbo Coding and the 2019 International Symposium

on Information Theory.
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codeword of another (stronger) code. In this paper, we construct SC-LDPC codes with this sub-block structure that

offer sub-block decoding capabilities; we call these codes SC-LDPCL codes (suffix ’L’ stands for locality). The

key to achieving this is designing spatially coupled protographs that have suitable correction performance under a

variety of access-locality modes.

A. Contributions

Our main scope in this paper is SC-LDPCL codes constructed by coupling regular protographs. The analysis

focuses on the binary erasure channel (BEC), but can be readily extended to other channels, e.g. via extrinsic-

information transfer (EXIT) [11] functions. Moreover, the constructed codes are simulated over the BEC and over

the additive white Gaussian noise (AWGN) channel, performing as predicted by the theoretical analysis. The paper

is organized as follows. In Section III, we derive bounds on decoding thresholds of protographs and show that

existing protograph-based SC-LDPC codes do not enable sub-block access, in the sense that the decoding threshold

of such access is zero. These results help characterize the design measures needed for non-trivial sub-block decoding

performance, which lead to a construction offering a tradeoff between local and global decoding performance. In

Section IV, we suggest a new BP-based decoding strategy we call semi-global (SG) decoding, in which in addition

to the requested sub-block, the decoder has access to some prescribed number of sub-blocks around it. This section

derives (and simplifies) a density-evolution analysis of semi-global decoding for the construction in Section III.

In Section V, we examine the performance of SG decoding and show that it exhibits a significant complexity

reduction compared to global decoding, while costing only a small fraction in the threshold. We then consider a

practically motivated data-storage model in which variability is introduced to the channel quality (as motivated by

recent empirical studies [12], [13]). Using lower bounds we derive on decoding success probabilities, we show that

SG decoding is highly motivated by this model. Finally, in Section VI we generalize our SC-LDPCL construction

(which in Section III is restricted to memory 1), and suggest a richer family of SC-LDPCL codes, including codes

with two-dimensional coupling. We then discuss SG decoding over these codes.

B. Related Work

SC-LDPC codes date back to 1999 [4], and have been studied extensively in the past decade. Many protograph-

based [14] constructions of SC codes were suggested (see [2] and references therein) including reshaping and

enhancing SC codes for improved asymptotic and finite-length performance [15]. More recent contributions propose

multi-dimensional spatially coupled LDPC codes for global performance improvements [15], [16], [17], [18], and

for special channel models [19], [20]. As far as we know, none of this previous work constructed codes that enable

sub-block access. Furthermore, decoding of our codes is operationally different since in the local and semi-global

modes we seek decoding only a single target sub-block.

The semi-global decoding mode we propose and study in this paper resembles sliding-window decoders [7],

[8] that were suggested for channels with memory (e.g. bursty and Gilbert-Elliott channels) and parallel channels

(see [6] and [19], respectively). Our work differs from these prior works since the semi-global decoder accesses

the codeword differently from the window decoder, for the purpose of reaping latency and complexity benefits.

The semi-global access mode also motivates analysis over channels with sub-block variability [21], which are not

addressed by prior work.

A large body of work has been devoted to codes that possess certain locality properties, including locally

recoverable codes [22], [23] and regenerating codes [24]; the former codes target the problem of reducing the

number of nodes needed to recover a failed node, and the latter are designed to reduce the repair bandwidth. Both

of these types assume an error model in which every node (sub-block in our context) is either fully known or fully

erased. However, in many applications a finer error model is assumed, i.e., a few errors in each sub-block. We

consider this model and suggest sub-block access with a certain level of data protection, combined with increased

data-reliability access with full-block access. Earlier work on sub-block-access codes includes multi-block Reed-

Solomon codes in [9] and sub-block-access LDPC codes in [10]. The former suggests algebraic constructions and

properties, and the later deals with ordinary (i.e., not spatially coupled) LDPC codes. As we will see later, using

SC-LDPC codes as our underlying code renders new design trade-offs and decoding strategies that are motivated

by practical storage applications.
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II. PRELIMINARIES

A. Protograph Based LDPC Codes

An LDPC protograph is a (small) bipartite graph G = (V ∪ C, E), where V =
{
v1, . . . , v|V|

}
, C =

{
c1, . . . , c|C|

}
,

and E are the sets of variable nodes (VNs), check nodes (CNs), and edges, respectively. For every VN v ∈ V ,

we denote by dv its edge degree. Similarly, we write dc for the edge degree of a CN c ∈ C. A Tanner graph

is generated from a protograph G by a lifting (”copy-and-permute”) operation specified by a lifting parameter L
(for more details see [14] and [2]). The design rate of the derived LDPC code is independent of L and given by

RG = 1 −
∣
∣C
∣
∣/
∣
∣V
∣
∣. If we let L → ∞, then we can analyze the performance of the BP decoder on the resulting

ensemble of Tanner graphs via density evolution on the original protograph. Formally, for the BEC we have:

Fact 1. Let G = (V ∪ C, E) be an LDPC protograph, let v ∈ V be a variable node of degree dv, and let c ∈ C be

a check node of degree dc. Let {ev1, e
v
2, . . . , e

v
dv
} be the set of all edges connected to v, and let {ec1, e

c
2, . . . , e

c
dc
} be

the set of all edges connected to c. Consider a transmission over the BEC(ǫ), of a codeword from a binary linear

code that corresponds to a random Tanner graph lifted from G with lifting parameter L, denoted by GL. For every

i ∈ {1, 2, . . . , dv}, let xℓ (e
v
i ) and uℓ (e

v
i ) be the fraction of evi -type edges in lifted graph GL that carry VN-to-CN

and CN-to-VN erasure messages, respectively, after ℓ BP iterations. Similarly, for every j ∈ {1, 2, . . . , dc}, let

xℓ
(
ecj
)

and uℓ
(
ecj
)

be the fraction of ecj-type edges in GL that carry VN-to-CN and CN-to-VN erasure messages

after ℓ BP iterations. Then, as L → ∞

xℓ (e
v
i , ǫ) = ǫ ·

∏

1≤i′≤dv

i′ 6=i

uℓ (e
v
i′) , (1a)

uℓ
(
ecj
)
= 1−

∏

1≤j′≤dc

j′ 6=j

(
1− xℓ−1

(
ecj′
))

, (1b)

x−1 (e
v
i ) = u−1

(
ecj
)
= 1. (1c)

Moreover, as L → ∞ the probability that v is erased after ℓ BP iterations is given by

Pℓ(v, ǫ) = ǫ
∏

1≤i≤dv

uℓ (e
v
i ) . (2)

The BP decoding threshold of an LDPC protograph G is defined by

ǫ∗BP (G) = sup{ǫ ∈ [0, 1] : lim
ℓ→∞

Pℓ(v, ǫ) = 0, ∀v ∈ V}. (3)

For simplicity of notations, in the rest of the paper, we remove the subscript BP from the threshold notation.

A protograph G = (V ∪ C, E) is frequently represented through a bi-adjacency matrix HG , where the VNs in

V are indexed by the columns of HG , the CNs in C by the rows, and an element in HG represents the number

of edges connecting the corresponding VN and CN. In this matrix representation, we write ǫ∗ (HG) to denote the

(BP) decoding threshold defined in (3). If the protograph is (l, r)-regular (every VN and CN are of degree l and

r, respectively), then we write ǫ∗(l, r) to denote its threshold.

B. SC-LDPC Codes

An (l, r)-regular SC-LDPC protograph is constructed by coupling together a number of (l, r)-regular protographs

and truncating the resulting chain. This coupling operation introduces a convolutional structure to the code, which

can be visualized through the matrix representation of the protograph. Let B = 1l×r be an all-ones base matrix

representing an (l, r)-regular LDPC protograph, and let {Bτ}
T
τ=0 be binary matrices such that B =

∑T
τ=0Bτ (in

this paper, we consider only binary B matrices). Coupling a limitless number of copies of B amounts to diagonally

placing copies of
(
B0;B1; · · · ;BT

)
(’;’ represents vertical concatenation) as in Figure 1(b). By truncating the

infinite matrix in Figure 1(b) at some width, and removing all-zero rows, a spatially coupled LDPC protograph

is constructed. This truncation results in a small number of terminating CNs (of low degree), which effectuates a

decrease in design rate and an increase in the decoding threshold, compared to the code ensemble corresponding to

the base matrix B. However, as the length of the coupled chain increases, the design rate of the coupled protograph
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Fig. 1: (a) The (3, 6)-regular SC-LDPC protograph from Example 1. (b) The infinite matrix representing the

protograph coupling operation.

converges to the design rate of the underlying code ensemble, while its BP threshold exhibits a phenomenon known

as threshold saturation [1], whereby it converges to the maximum a-posteriori (MAP) threshold of the underlying

code ensemble.

Throughout most of this paper, we consider (l, r)-regular SC-LDPC protographs with memory T = 1 (Sec-

tions III–IV). The results are then extended to higher-memory codes in Section VI.

Example 1. Figure 1(a) illustrates a spatially coupled (3, 6) protograph with 18 VNs. The protograph is generated

by B0 = (1 1 0 0 0 0 ; 1 1 1 1 0 0 ; 1 1 1 1 1 1) , and B1 = 13×6 − B0. The design rate of the coupled protograph

is R = 0.389, and the BP threshold is 0.512. Figure 1 will serve as a basis for a running example in the paper.

III. SUB-BLOCKED SC-LDPC CODES

Consider a coupled protograph G = (V ∪ C, E) (in the rest of the paper, this notation will refer to the coupled

protograph). To obtain a sub-blocked SC-LDPC code (as done in [10] without spatial coupling), we divide V into

M > 1 disjoint sets {Vm}Mm=1, and refer to V as the code block and to the M subsets {Vm}Mm=1 as sub-blocks

(SBs). In what follows, let H = HG be a bi-adjacency matrix representing the coupled protograph G, and let

m ∈ {1, 2, . . . ,M} be a SB index. When decoding SB m locally, all of the VNs outside the sub-block are treated

as erasures; hence only CNs connected inside sub-block m are relevant to local decoding. We call these CNs local

checks (LCs). CNs that are not LCs are called coupling checks (CCs).

Definition 1.

1) If VN j ∈ V belongs to SB m, we write j ∈ Vm.

2) CN i ∈ C is said to be an LC in SB m if and only if {j : Hi,j = 1} ⊆ Vm, and we write i ∈ Cm.

3) The local protograph of SB m is the sub-graph Gm = (Vm ∪ Cm, Em), where Em is the set of edges in E that

connect between VNs in Vm and CNs in Cm.

4) The global and local BP decoding thresholds are given by ǫ∗G , ǫ∗ (G) and ǫ∗m , ǫ∗ (Gm) , respectively.

Example 2. Let G be the coupled protograph from Example 1 (see Figure 1(a)). If we divide V into M = 3 equally

sized SBs, then V1 = {1, 2, 3, 4, 5, 6}, V2 = {7, 8, 9, 10, 11, 12}, V3 = {13, 14, 15, 16, 17, 18}, and C1 = {1, 2, 3},

C2 = {6}, C3 = {9, 10, 11}. The local protographs G1,G2 and G3 are illustrated in Figure 2. The local decoding

thresholds in this case are all zero, i.e., ǫ∗1 = ǫ∗2 = ǫ∗3 = 0. As we will see later, zero local thresholds are a general

phenomenon in SC-LDPC codes, unless proper design measures are taken.
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G1 G2 G3

Fig. 2: The local protographs from Example 2.

A. Zero Local Threshold

In this subsection, we state results concerning thresholds of sub-block protographs induced by the coupling

process. Giving an explicit analytical expression is, in general, not an easy task since many densities should be

tracked. Instead, bounds on the threshold are derived. We show that these results imply that the local thresholds in

SC-LDPC protographs are zero, unless some specific design measures (which we address later) are taken.

Lemma 1. Let H be a bi-adjacency matrix representing a protograph G = (V ∪ C, E). Let J ⊆ {1, 2, . . . ,
∣
∣V
∣
∣}

and I ⊆ {1, 2, . . . ,
∣
∣C
∣
∣} be sets of column and row indices, respectively, and let HJ (resp. H(I)) be the sub-matrix

consisting of the columns (resp. rows) of H indexed by J (resp. I). Then,

ǫ∗
(

H(I)
)

≤ ǫ∗ (H) ≤ ǫ∗ (HJ ) . (4)

Proof. See Appendix A.

The scope of the next lemma is a protograph that has poor BP performance. This protograph appears as a

sub-graph in many SC-LDPC protographs, and its properties strongly affect local decoding.

Lemma 2. For p ≥ 1, let A be a p× p lower triangular matrix with a full-ones diagonal, i.e.,

A =










1 0 · · · 0 0
a2,1 1 · · · 0 0

...
...

. . .
...

...

ap−1,1 ap−1,2 · · · 1 0
ap,1 ap,2 · · · ap,p−1 1










,

where ai,j ∈ N for i > j. Let c ∈ N
p be a column vector. Then, the threshold of (c | A) is zero, where the symbol

| represents horizontal concatenation.

Proof. We first prove the case where ai,j = 1 for every i > j, and c = 1, i.e., a full-ones column vector. In this

case, the protograph represented by (c | A) is illustrated in Figure 3, where the lower and upper edge connections

correspond to c and A, respectively, and labels are given inside nodes (VN p + 1 corresponds to the first column

in (c | A)).
Let ǫ ∈ (0, 1], and for every ℓ ≥ 1, i ∈ {1, . . . , l} and j ∈ {1, . . . , p + 1}, let xℓ(i, j, ǫ) (resp. uℓ(i, j, ǫ)) denote

the erasure rate of a VN j → CN i (resp. CN i → VN j) message in iteration ℓ. In view of (1a)–(1b), since VN p is

of degree 1, then xℓ(p, p, ǫ) = ǫ for every ℓ. Thus, uℓ(p, j, ǫ) > ǫ for every iteration ℓ and VN j 6= p. Consequently,

xℓ(p− 1, p − 1, ǫ) > ǫ2 and uℓ(p− 1, j, ǫ) > ǫ2 for every ℓ and j 6= p− 1. Similarly, we get by induction that for

every iteration ℓ

xℓ(j, j, ǫ) > ǫ
∏p

i=j+1 ǫ
2p−i

= ǫ2
p−j , ∀1 ≤ j ≤ p. (5)



6

1 2 · · · p − 1 p

1 2 p − 1 p

p + 1

· · ·

Fig. 3: The protograph represented by (c | A) in Lemma 2 in the full-ones case.

This implies that for every iteration ℓ and CN i ∈ {1, . . . , p}, uℓ(i, p + 1, ǫ) > ǫ2
p−i

, so for every iteration, the

erasure rate of VN p+ 1 is bounded below by

Pℓ(p+ 1, ǫ) > ǫ
∏p

i=1 ǫ
2p−i

= ǫ2
p

> 0 .

(6)

Since this holds for every ǫ ∈ (0, 1], then the threshold is zero.

We now relax the assumptions that ai,j = 1 for every i > j and that c = (c1, . . . , cp) = 1, and consider the

general case. For every VN j ∈ {1, 2, . . . , p − 1} (lower part in Figure 3), let sj =
∑p

i=j+1 ai,j2
p−i. The same

arguments above hold with modification in (5) and (6) given by

xℓ(j, j) > ǫ
∏p

i=j+1 ǫ
ai,j2p−i

= ǫ1+sj
, ∀1 ≤ j ≤ p. (7)

and

Pℓ(p + 1, ǫ) > ǫ
∏p

i=1 ǫ
ci(1+si)

> 0 ,
(8)

respectively.

Theorem 3. Let H be a binary bi-adjacency matrix representing an (l, r)-regular SC-LDPC protograph G =
(V ∪ C, E) constructed by truncating the infinite matrix in Figure 1(b), and suppose V is divided into M > 1 SBs.

If there are no two rows in (B0;B1) that are all ones, then

ǫ∗m = 0, 2 ≤ m ≤ M − 1.

If in addition, the partitioning is done via the cutting-vector method [25], then ǫ∗1 = ǫ∗M = 0.

Theorem 3 states a negative result on sub-block locality in existing SC-LDPC codes, and motivates a construction

of multi-sub-block SC-LDPC codes which we address later.

Remark 1. Recall that the matrix B is an l-by-r all-ones matrix. The “no two full rows” property of the matrices

{Bτ}
1
τ=0 in Theorem 3 holds in many SC-LDPC protographs in the literature, since it induces high global thresholds.

In fact, the family of protographs covered by Theorem 3 is larger than it may seem in a first look. For example,

the (l, r) SC-LDPC ensemble from [2, Definition 3] with l = gcd(l, r), is included in Theorem 3.

Proof of Theorem 3. Consider first non-termination sub-blocks, i.e., m ∈ {2, 3, . . . ,M − 1}. Since the base matrix

B is an all-ones matrix, then any row in (B0;B1) that is not full ones has ones outside of the SB boundaries,

i.e., the corresponding check node is connected to an erasure; thus, the local decoder cannot use this check-node.

Consequently, the local code has at most one local check node. This leads to a zero threshold.

Now, consider sub-block m = 1 whose (local) protograph is represented by B0. Assume cutting-vector par-

titioning, and let ξ = (ξ1, ξ2, . . . , ξl−1, ξl) be the cutting vector, such that for every i ∈ {1, 2, . . . , l − 1, l},
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ξi ∈ {1, 2, . . . , r} and 1 ≤ ξ1 < ξ2 < · · · < ξl−1 < ξl ≤ r. In addition, let ξ0 = 0 and ξl+1 = r + 1.

Since l ≤ r − 1 (else the rate is zero), then there exists i ∈ {1, . . . , l + 1} such that ξi − ξi−1 ≥ 2. Let

I = max{1 ≤ i ≤ l + 1: ξi − ξi−1 ≥ 2}. If I = l + 1, then ξl ≤ ξl+1 − 2 = r − 1, and the rightmost

column of B0 is a zero column, which leads to a zero threshold. Else, let B̃0 be the sub-matrix consisting of

columns ξI − 1 upto r of B. Note that B̃0 is in the form of
(

0

c | A

)

,

where 0 is a zero matrix, and (c | A) is in the form of Lemma 2. Thus, ǫ∗(B̃0) = 0, which combined with Lemma 1

implies that ǫ∗(B0) = 0, i.e., the threshold of sub-block m = 1 is zero. The proof that ǫ∗(B1) = 0 follows in a

similar way, so the threshold of sub-block M is also zero.

Corollary 4. If l = 2, then no (l, r)-regular SC-LDPC protograph can have a non-zero local decoding threshold.

Proof. If B = 12×r , for some r ≥ 3, then any decomposition of B into 2 non-zero matrices results in the “no two

full rows” condition in Theorem 3.

B. A SC-LDPCL construction

Motivated by Theorem 3, we introduce a construction of (l, r)-regular SC-LDPC protographs having sub-block

locality. The inputs to the construction are: the degrees (l, r) (in view of Corollary 4, we assume that l ≥ 3),

the number of SBs M , and a new coupling parameter t ∈ {1, 2, . . . , l − 2}; the resulting protograph is an (l, r, t)
spatially coupled protograph with M SBs, each consisting of r variable nodes. As we will see, t serves as a design

tool to control the trade-off between local and global decoding thresholds.

Construction 1 (SC-LDPCL). Let A1 be a t× r matrix given by

1 0

1 1 0

1 1 1 0
...

...
...

. . .
...

1 1 1 · · · 1 0























0
A1 = ,

where 1 and 0 are length-
⌊

r
t+1

⌋

all-one row vector and length-
(

r − t
⌊

r
t+1

⌋)

all-zero row vector, respectively. Let

A2 be an all-ones (l − t)× r matrix. We build the (l, r, t) protograph as in Figure 1(b) with memory T = 1, and

M copies of
(
B0;B1

)
on the diagonal, where B0 =

(
A1;A2

)
and B1 = 1l×r −B0.

The resulting coupled protograph G has rM VNs and lM + t CNs, so the design rate is RG = 1− l
r −

t
rM . For

every m ∈ {2, . . . ,M − 1}, the local graph Gm is represented by A2 which is (l− t, r)-regular, and for m = 1 and

m = M , the local graph Gm is represented by
(
A1;A2

)
and

(
A2; Ā1

)
, respectively, where Ā1 is the complement

of A1. Thus, for every m ∈ {2, . . . ,M − 1}, ǫ∗m = ǫ∗(l − t, r) > 0, and Lemma 1 implies that for m ∈ {1,M},

ǫ∗m ≥ ǫ∗(l − t, r) > 0, where ǫ∗(l − t, r) is the BP threshold of the (l − t, r)-regular LDPC code ensemble (i.e.,

uncoupled). In general, due to termination check nodes, SBs 1 and M have better local thresholds than the SBs

{2, . . . ,M − 1}.

Remark 2. The codes constructed by Construction 1 have memory T = 1. In Section VI we give a generalized

construction for T ≥ 1.

Example 3. Figure 4 illustrates the (3, 6, 1) SC-LDPCL protograph with M = 3 SBs. In this case, we have

A1 =
(
1 1 1 0 0 0

)
, the design rate is R = 0.4444, and the thresholds are: ǫ∗G = 0.4772, ǫ∗1 = ǫ∗3 = 0.4298,

and ǫ∗2 = 0.2 (ǫ∗2 corresponds to the (2, 6)-regular ensemble). Note that the global-threshold loss compared to the

ordinary (3, 6) SC-LDPC protograph from Example 1, which does not enable sub-block decoding, is 6.97%, while

the design rate increases by 12.46% (these differences diminish as the number of sub-blocks increases).
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coupling checks

(a)

B0 =





1 1 1 0 0 0
1 1 1 1 1 1
1 1 1 1 1 1





B1 =





0 0 0 1 1 1
0 0 0 0 0 0
0 0 0 0 0 0





(b)

Fig. 4: (a) The (3, 6, 1) SC-LDPCL protograph with M = 3 SBs; (b) the partition according to Construction 1

with l = 3, r = 6, t = 1.

The coupling parameter t serves as a design tool that controls the trade-off between the local and global thresholds.

More precisely, t designates the number of CCs connecting adjacent sub-blocks: when t is small, more CNs are

LCs, and the local threshold is higher on the expense of a lower global threshold; when t is large, the situation is

reversed: global threshold is higher and local threshold is reduced. If one takes t = 0, there are no CCs and the

resulting protograph consists of M uncoupled (l, r)-regular protographs, and if one takes t = l− 1, the protograph

is strongly coupled and there is only one LC (i.e., no locality). In view of the triviality of these extreme values,

we restrict t ∈ {1, 2, . . . , l − 2} in Construction 1.

The matrices A1 and A2 in Construction 1 specify the t coupling and l− t local checks connections, respectively.

Together, they describe the partition and coupling of a regular (l, r) protograph as described in Section II-B. When

we construct sub-block locality SC-LDPC codes from local protographs, A2 has to be the matrix 1(l−t)×r , else the

corresponding rows are no longer local checks (because a zero in A2 implies a one in B1 that connects the check

to the sub-block on the left). Other local codes are possible if we allow non-regular protographs, which is not the

scope of this paper. In contrast, the structure of A1 does not affect the locality property of the code. The specific

choice of A1 in Construction 1 is known as the “cutting vector” approach [25], and one can use other partitions

such as in [26] for A1 to optimize the performance. We explore more partitions that induce sub-blocked SC codes

in Section VI.

Example 4. Table I details the design rates and thresholds of the (4, 16, t) SC-LDPCL protographs for t ∈
{0, 1, 2, 3}, with M = 12 SBs. The table exemplifies the role of t in trading off local and global performance (note

that the table includes the extreme values of t = 0, 3). Further, sub-blocks 1 and 6 show better local thresholds

than sub-blocks 2, 3, 4, 5, and this difference is more prominent with higher t values. This phenomenon is due to t
terminating check nodes in the first and last sub-blocks, which increase the local threshold compared to the inner

sub-blocks. The parameter t also affects the code design rate, as expressed by the right-most column.

TABLE I: Thresholds and design rates for (4, 16, t) SC-LDPCL protographs.

t ǫ∗1 ǫ∗2, . . . , ǫ
∗

11 ǫ∗12 ǫ∗G R

0 0.1931 0.1931 0.1931 0.1931 0.75

1 0.2036 0.1568 0.2036 0.2119 0.7438

2 0.1995 0.0667 0.2142 0.2313 0.7375

3 0 0 0 0.2455 0.7313
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Fig. 5: BEC global-decoding simulations of three

(4, 8, t) SC-LDPCL codes: t = 1 (solid-green-

circles), t = 2 (dotted-red-squares), and t = 3
(dashed-blue-triangles). All codes are of total length

n = 15000 with M = 3 sub-blocks.
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Fig. 6: BEC local-decoding simulations of three

(4, 8, t) SC-LDPCL codes: t = 1 (solid-green-

circles), t = 2 (dotted-red-squares), and t =
3 (dashed-blue-triangles), that are (3, 8)-regular,

(2, 8)-regular and (1, 8)-regular, respectively. All

sub-blocks are of length n = 5000

Example 5. Figures 5 and 6 show BEC performance of global and local decoding, respectively, of three SC-LDPCL

codes constructed by Construction 1 with degrees l = 4, r = 8, number of sub-blocks M = 3, lifting parameter

L = 625 and t = 1, 2, 3 (SB and full-block lengths are 5, 000 and 15, 000, respectively); local decoding is done

on SB 2 which is a (4 − t, 8)-regular code for t = 1, 2, 3. When t = 3 we get the ordinary SC-LDPC (4, 8)
code (i.e., no locality); indeed the top curve in Figure 6 (dashed-blue-triangles) shows that this code has poor

local-decoding performance (the output BER is approximately the channel parameter ǫ). The other options t = 1
(solid-green-circles) and t = 2 (dotted-red-squares) have much better local-decoding performance, where t = 1 is

superior to t = 2, but less attractive in global decoding plotted in Figure 5.

Example 6. Figures 7 and 8 show AWGN performance – global and local, respectively – of codes generated

from the (4, 8, t) protographs with t = 1, 2, 3. The code has M = 9 sub-blocks, and the lifting parameter is

L = 208 (SB and full-block lengths are 1, 664 and 14, 976, respectively); local decoding is done on SB 2 which

is a (4 − t, 8)-regular code for t = 1, 2, 3. As in the BEC plots, the AWGN plots exemplify the global-vs.-local

trade-off introduced by the t parameter in Construction 1. Moreover, due to rate loss, the strongly coupled code

(t = 3) has worse local performance than the uncoded scheme. Note that we used Construction 1 without further

optimization for the AWGN channel. While there is room for optimizing the protograph for any specific channel, we

simulate AWGN without further optimization to show the general behavior of different parameters, in particular,

that the local performance is extremely bad if no design measures are taken.

IV. SEMI-GLOBAL DECODING

In this section, we suggest a decoding strategy called semi-global (SG) decoding, in which the decoder decodes a

target SB m ∈ {1, 2, . . . ,M} with the help of additional d neighbor SBs. d is a parameter that bounds the number

of additional SBs read for decoding one SB; hence, the smaller d is, the faster access the code offers for single

SBs. As exemplified later, the SG mode has a substantial complexity advantage over the global mode with a very

small cost in threshold.

Consider a SC-LDPCL protograph with M > 1 SBs; assume that the user is interested in SB m ∈ {1, . . . ,M}.

We call SB m the target. In SG decoding, the decoder uses d helper SBs to decode the target in two phases: the

helper phase, and the target phase. In the former, helper SBs are decoded locally, incorporating information from

other previously decoded helper SBs. In the latter, the target SB is decoded while incorporating information from

its neighboring helper SBs.
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Fig. 7: AWGN global-decoding simulations of three

(4, 8, t) SC-LDPCL codes (t = 1, 2, 3) with lifting

factor L = 208, full-block length 14976, and M = 9
sub-blocks.
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Fig. 8: AWGN local-decoding simulations of the

codes from Figure 7; sub-blocks are of length 1664.

t = 1, 2, and 3 correspond to (3, 8), (2, 8), and

(1, 8)-regular codes, respectively.

m m+ 1 m+ 2m− 1m− 2 . . .step 1 . . .

m m+ 1 m+ 2m− 1m− 2 . . .step 2 . . .

helper

phase

m m+ 1 m+ 2m− 1m− 2 . . .step 3 . . .
target

phase

Fig. 9: Example of SG decoding with target SB m ∈ [1 : M ], and d = 4; the steps are shown from top to bottom.

The gray SBs are those that are decoded in a given step, and the arrows represent information passed between

sub-blocks.

Example 7. Figure 9 exemplifies SG decoding with d = 4 helper SBs. The helper phase consists of decoding

helpers m−2 and m+2 locally, and decoding helpers m−1 and m+1 using the information from helpers m−2
and m+2, respectively. In the target phase, SB m is decoded using information from both SB m− 1 and m+1.

Note that semi-global decoding resembles window decoding of SC-LDPC codes (see [6], [7], [8]) but differs in: 1)

for a given target, there is no overlap between two window positions, which decreases latency and complexity, and

2) decoding can start close to the target SB (i.e., not necessarily at the first or last SBs), allowing low-latency access

to sub-blocks anywhere in the block. The SC-LDPCL protographs we propose for SG decoding are constructed

with built-in structure to enable these distinctions.

The complexity reduction of SG decoding, compared to global decoding, comes from both specifying d < M ,

and from the fact that messages between sub-blocks are exchanged in one direction only. To see this, consider the

(3, 6, 1) SC-LDPCL protograph in Figure 4(a), and assume SG-decoding of target SB 2 with helpers SBs 1 and 3
(i.e., d = 2). In the helper phase, we decode SB 1 and 3 locally – possibly in parallel – so the coupling checks are

erased, and the decoder ignores all edges connected to them. In the target phase, the coupling checks are no longer

erased, but they send information towards the target SB only. As a result, the six protograph edges connecting the

coupling checks to SBs 1 and 3 do not participate in SG decoding.

Semi-global decoding is highly motivated by the locality property of sub-blocks in SC-LDPCL codes (SBs can

be decoded locally), the spatial coupling of SBs (SBs can help their neighbor SBs), and by practical channels in
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storage devices, i.e., channels with variability [12], [13]. Later, in Section V-C, we study the performance of SG

decoding over such a channel.

A. SG Density-Evolution Analysis

We now perform an exact density-evolution analysis for target and helper SBs during SG erasure decoding. Due

to the protograph’s edge-regular structure, the general density-evolution equations in (1a)–(1c) can be reduced,

yielding a simpler method to evaluate their performance. We denote the incoming (resp. outgoing) edges carrying

messages to (resp. from) a helper SB by δI (resp. δO). Note that for termination helpers, i.e., the endpoint sub-

blocks, we have δI = 0. The incoming messages to the target SB from the left-side and right-side helper SBs

are denoted by δL and δR, respectively. Note that δO of some helper is either δI of the next helper, or one of

the incoming messages to the target, δL or δR (see Figure 10 below). With a slight abuse of notation, we also

use δI δO, δL, δR to mark the erasure probabilities carried on these edges. Since in the SG mode we decode SBs

sequentially, then incoming erasure probabilities δL, δR, δI remain fixed during each decoding step.

Decoding of sub-graphs with incoming and outgoing erasure rates was considered in a recent parallel work

[15, Section 3.D], for the purpose of inter-connecting sub-chains of SC-LDPC codes. In this work, smaller units

(sub-blocks) are inter-connected, and for the purpose of enabling efficient decoding of a single target sub-block.

Toward that, we derive compact density-evolution (DE) equations and perform threshold analysis for decoding the

target.

Consider a helper SB. From the structure of the (l, r, t) SC-LDPCL protographs in Construction 1, there are t
incoming messages δI = (δI,1, . . . , δI,t), and t outgoing messages δO = (δO,1, . . . , δO,t). For every i ∈ {1, . . . , t},

the coupling check (CC) receiving δI,i (resp. sending δO,i) is denoted by cI,i (resp. cO,i); see Figure 10. When the

decoder tries to decode a helper SB, the CCs {cO,i}
t
i=1 cannot help, and the decoder ignores the edges connected

to them; the edges that participate in the iterative-decoding procedure are edges connected to local checks (LCs)

and edges connected to CCs {cI,i}
t
i=1 only. When the decoder finishes decoding the helper, it calculates δO via

the edges connected to {cO,i}
t
i=1. In view of Construction 1, for every i ∈ {1, . . . , t}, cI,i (resp. cO,i) is connected

to r− i
⌊

r
t+1

⌋

(resp. i
⌊

r
t+1

⌋

) VNs in a helper SB. Despite the multiplicity of edges connected to cI,i and cO,i, the

one-directionality of the decoding algorithm allows us to consider a single (combined) constant input message δI,i
and a single (combined) constant output message δO,i .

In the target SB, only few adjustments of the above are needed. First, we have two active incoming messages δL
and δR, and we now mark the coupling check connected to δL,i, δR,i by cL,i, cR,i, respectively. In view of these

observations, we formally define the semi-global graph GSG as follows.

Definition 2 (Semi-global graph: target). Let G be a (l, r, t)-SC-LDPCL protograph constructed by Construction 1.

The semi-global graph corresponding to G, GSG = (V ∪ C, E), is a bipartite graph equipped with a VN labeling

function LV : V → {1, 2, . . . , t + 1}, an edge labeling function LE : E →
{
1, 2, . . . , (t+ 1)2

}
, and 2t incoming

edges {δR,1, . . . , δR,t}, and {δL,1, . . . , δL,t} such that:

1) V = {v1, v2, . . . , vr} is a set of r VNs.

2) C is a set of l + t CNs: l − t of them are local checks (LCs), t of them are right coupling checks (RCCs),

and another t are left coupling checks (LCCs).

3) We mark the 2t coupling checks as cR,1, . . . , cR,t, and cL,1, . . . , cL,t. For every i ∈ {1, 2, . . . , t}, cR,i (resp.

cL,i) is connected to an incoming edge δR,i (resp. δL,i).
4) The edges in E are determined by Construction 1. There is one edge between every LC and every VN.

For every i ∈ {1, 2, . . . , t}, cR,i is connected to r − i
⌊

r
t+1

⌋

VNs: one edge to each VN vj , where j ∈
{

1 + i
⌊

r
t+1

⌋

, . . . , r − 1, r
}

, and for every i ∈ {1, 2, . . . , t}, cL,i is connected to i
⌊

r
t+1

⌋

VNs: one edge to

each VN vj , where j ∈
{

1, 2, . . . , i
⌊

r
t+1

⌋}

.

5) For every k ∈ {1, 2, . . . , t+ 1} and every VN v ∈ V , LV(v) = k if v is connected to k − 1 RCCs.

6) For every edge e = {v, c} ∈ E , if LV(v) = k then,

LE(e) =







k , c is a LC ,
sk,t + i , c = cR,i ,
vk,t + i , c = cL,i ,
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Fig. 10: The (3, 6, 1) semi-global graph GSG (with node and edge labels) as described in Definition 2; dotted edges

do not participate during SB decoding, except in sending messages to cO at the end.

where sk,t , t+ 1 + (k−1)(k−2)
2 , and vk,t , 2t+ 1 + t(t−1)

2 + (k−1)(2t−k)
2 .

Remark 3. Definition 2 refers to the target SB. The helper graph is similar with the only difference that t of

the incoming edges (in right helpers {δL,1, . . . , δL,t} and in left helpers {δR,1, . . . , δR,t}) turn into outgoing edges

{δO,1, . . . , δO,t}, and the checks connected to them do not participate during the SB’s decoding, except in sending

the final message to the neighbor SB at the end of the SB decoding. This yields t2+3t+2
2 edge labels (in contrast to

(t+ 1)2 edge labels in Definition 2).

Example 8. Figure 10 illustrates the semi-global graph corresponding to the (l = 3, r = 6, t = 1) SC-LDPCL

protograph, with the target on the right and the helper on the left. Node labels are drawn inside nodes, and edge

labels are drawn on edges; there are t+ 1 = 2 VN labels in both graphs, (t + 1)2 = 4 edge labels in the target

SB, and t2+3t+2
2 = 3 edge labels in the helper SB. In the helper SB, the outgoing coupling check cO is connected

with dotted edges emphasizing the fact that it does not participate in the iterative decoding algorithm.

Since edges with the same labels are connected to VNs and CNs of the same degree, then in terms of density

evolution, in any iteration, the erasure fraction of edges e1, e2 ∈ E coincide if LE(e1) = LE(e2). This structure is

the key observation for simplifying the DE equations in (1a)–(1c) for the semi-global graph. Figure 11 illustrates

the node and edge labels in a SG target graph, and shows the edge-label indexing of the DE equations that we

derive in the following.

Recall the indices sk,t and vk,t from Definition 2, and define w ,

⌊
r

t+1

⌋

. sk,t and vk,t are indices used below

to capture the inter-sub-block coupling connectivity of Construction 1. Let x
(LE(e))
ℓ and u

(LE(e))
ℓ be the VN to

CN and CN to VN erasure-message fractions, respectively, over an edge e ∈ E . We start with x
(j)
0 = 1 for all

j ∈ {1, 2, . . . , (t+1)2} just before the first iteration. In view of Definition 2 (see also Figure 11), for every iteration

ℓ ≥ 1, and every node label k ∈ {1, . . . , t + 1}, the fractions of erasure messages emanating from a VN labeled

by k are given by

x
(k)
ℓ = ǫ ·

(

u
(k)
ℓ

)l−t−1
k−1∏

j=1

u
(sk,t+j)
ℓ

t∏

j=k

u
(vk,t+j)
ℓ ,

x
(sk,t+i)
ℓ = ǫ ·

(

u
(k)
ℓ

)l−t
k−1∏

j=1

j 6=i

u
(sk,t+j)
ℓ

t∏

j=k

u
(vk,t+j)
ℓ , ∀i ∈ {1, 2, . . . , k − 1} ,

x
(vk,t+i)
ℓ = ǫ ·

(

u
(k)
ℓ

)l−t
k−1∏

j=1

u
(sk,t+j)
ℓ

t∏

j=k

j 6=i

u
(vk,t+j)
ℓ , ∀i ∈ {k, k + 1, . . . , t} ,

(9)
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/
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Fig. 11: The node and edge labels of an SG graph (target) GSG corresponding to an (l, r, t) SC-LDPCL protograph:

k ∈ {1, . . . , t + 1} is a VN label and i ∈ {1, . . . , t} is a CC index, sk,t , t + 1 + (k−1)(k−2)
2 , vk,t , 2t + 1 +

t(t−1)
2 + (k−1)(2t−k)

2 and w ,

⌊
r

t+1

⌋

. Node labels are drawn inside nodes, and edge labels appear in parenthesis.

where the product over an empty set is defined to be 1, and the fractions of erasure messages from any LC are

u
(k)
ℓ = 1−

(

1− x
(k)
ℓ−1

)w−1 (

1− x
(t+1)
ℓ−1

)r−tw
t∏

j=1

j 6=k

(

1− x
(j)
ℓ−1

)w
, ∀k ∈ {1, 2, . . . , t} ,

u
(t+1)
ℓ = 1−

(

1− x
(t+1)
ℓ−1

)r−tw−1
t∏

j=1

(

1− x
(j)
ℓ−1

)w
.

(10)

Further, for every i ∈ {1, 2, . . . , t}, the erasure-message fractions from cR,i and from cL,i are given by

u
(sk,t+i)
ℓ = 1− (1− δR,i)

(

1− x
(sk,t+i)
ℓ−1

)w−1 (

1− x
(st+1,t+i)
ℓ−1

)r−tw

·

t∏

j=i+1

j 6=k

(

1− x
(sj,t+i)
ℓ−1

)w
, ∀k ∈ {i+ 1, . . . , t},

u
(st+1,t+i)
ℓ = 1− (1− δR,i)

(

1− x
(st+1,t+i)
ℓ−1

)r−tw−1
t∏

j=i+1

(

1− x
(sj,t+i)
ℓ−1

)w
,

(11)

and

u
(vk,t+i)
ℓ = 1− (1− δL,i)

(

1− x
(vk,t+i)
ℓ−1

)w−1
i∏

j=1

j 6=k

(

1− x
(vj,t+i)
ℓ−1

)w
, ∀k ∈ {1, 2, . . . , i} , (12)

respectively.

Consider now a helper SB. The differences from the target-SB DE analysis are that 1) half of the incoming

messages are disabled (i.e. are erasures), and 2) we need to calculate the outgoing erasure fraction. Assume a

helper SB to the right of the target, corresponding to substituting δL = 1 in (12); the other option of a left helper

is symmetric with δR = 1. Substituting in (12),

u
(vk,t+i)
ℓ = 1, ∀ℓ ≥ 0, ∀k ∈ {1, . . . , t}, ∀i ∈ {k, . . . , t},
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so the first two equations in (9) change to

x
(k)
ℓ = ǫ ·

(

u
(k)
ℓ

)l−t−1
k−1∏

j=1

u
(sk,t+j)
ℓ ,

x
(sk,t+i)
ℓ = ǫ ·

(

u
(k)
ℓ

)l−t
k−1∏

j=1

j 6=i

u
(sk,t+j)
ℓ , ∀i ∈ {1, 2, . . . , k − 1} .

(13)

For better clarity the reader may skip to subsection IV-B where equations (9)–(13) are given for the special case

t = 1.

Lemma 5. For every semi-global graph and every edge label j ∈ {1, 2, . . . , (t + 1)2}, the sequences x
(j)
ℓ , u

(j)
ℓ

defined in (9)–(13) are monotonically non-increasing in ℓ and are bounded in [0, 1].

Proof. Follows by a mathematical induction on ℓ; details are left to the reader.

In view of Lemma 5, for every edge label j ∈ {1, 2, . . . , (t+1)2}, we define the limits x(j) = lim
ℓ→∞

x
(j)
ℓ , u(j) =

lim
ℓ→∞

u
(j)
ℓ . When the decoder finishes decoding a helper SB (successfully or not), it sends messages to the next SB.

The t erasure fractions of these messages are encapsulated in δO = (δO,1, . . . , δO,t) (see Figure 10). Similarly to

(13), the third equation in (9) becomes

x(vk,t+i) = ǫ ·
(

u(k)
)l−t

k−1∏

i=1

u(sk,t+i) .

Moreover, for every i ∈ {1, 2, . . . , t} , cO,i is connected to VNs labeled by k ∈ {1, 2, . . . , i} with w edges, thus

the outgoing erasure fraction from cO,i to the next SB is given by

δO,i = 1−

i∏

k=1

(

1− x(vk,t+i)
)w

. (14)

Theorem 6 (Semi-global density evolution). Let GSG be a semi-global graph corresponding to a SB in an (l, r, t)
SC-LDPCL protograph, let ǫ be the channel erasure probability in this SB, and let δL, δR be the incoming erasure

fractions from neighbor SBs. For every edge label j ∈
{
1, 2, . . . , (t+ 1)2

}
, let x

(j)
ℓ be the fraction of VN-to-CN

erasure messages over any edge e ∈ E labeled with LE(e) = j, at iteration ℓ of the BP decoding algorithm over

a lifted random Tanner graph, as the lifting parameter tends to infinity. Then, for a target SB, x
(j)
ℓ is given by

equations (9)–(12), and for a helper SB it is given by equations (10), (11), and (13). Furthermore, for a helper

SB, for every i ∈ {1, 2, . . . , t} δO,i is given by (14).

B. The t = 1 Case

In view of Definition 2, if t = 1, then there are (t+1)2 = 4 different edge types in the target semi-global graph

(see Figure 10). However, as shown below, it is sufficient to track only 2 edge types. This simplification renders a

two-dimensional graphical representation of the density-evolution equations.

Substituting t = 1 into (9)–(12) yields 4 density-evolution equations, namely (note the scalar δL, δR)

x
(1)
ℓ = ǫ

[

1−
(

1− x
(1)
ℓ−1

)w−1 (

1− x
(2)
ℓ−1

)r−w
]l−2 [

1−
(

1− x
(4)
ℓ−1

)w−1
(1− δL)

]

,

x
(2)
ℓ = ǫ

[

1−
(

1− x
(1)
ℓ−1

)w (

1− x
(2)
ℓ−1

)r−w−1
]l−2 [

1−
(

1− x
(3)
ℓ−1

)r−w−1
(1− δR)

]

,

x
(3)
ℓ = ǫ

[

1−
(

1− x
(1)
ℓ−1

)w (

1− x
(2)
ℓ−1

)r−w−1
]l−1

,

x
(4)
ℓ = ǫ

[

1−
(

1− x
(1)
ℓ−1

)w−1 (

1− x
(2)
ℓ−1

)r−w
]l−1

,

(15)
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where w =
⌊
r
2

⌋
. Since x(3) and x(4) both depend solely on x(1) and x(2), then we can substitute the last two

equations into the first two equations, and get that for a fixed erasure probability ǫ and fixed incoming erasure

messages δL, δR, the quantities x
(1)
ℓ and x

(2)
ℓ are functions of x

(1)
ℓ−1, x

(1)
ℓ−2, x

(2)
ℓ−1 , and x

(2)
ℓ−2, written as

x
(1)
ℓ = f̃

(

ǫ, δL, x
(1)
ℓ−1, x

(1)
ℓ−2, x

(2)
ℓ−1, x

(2)
ℓ−2

)

, ℓ ≥ 2

x
(2)
ℓ = g̃

(

ǫ, δR, x
(1)
ℓ−1, x

(1)
ℓ−2, x

(2)
ℓ−1, x

(2)
ℓ−2

)

, ℓ ≥ 2

x
(1)
1 = x

(2)
1 = ǫ,

x
(1)
0 = x

(2)
0 = 1.

(16)

The functions f̃ and g̃ are both continuous and monotonically non-decreasing, so by taking the limit ℓ → ∞ in

(16) and marking x(k) = lim
ℓ→∞

x
(k)
ℓ , k ∈ {1, 2}, we get a two-dimensional fixed-point characterization:

x(1) = f̃
(

ǫ, δL, x
(1), x(1), x(2), x(2)

)

, f
(

ǫ, δL, x
(1), x(2)

)

,

x(2) = g̃
(

ǫ, δR, x
(1), x(1), x(2), x(2)

)

, g
(

ǫ, δR, x
(1), x(2)

)

.
(17)

In [10], a 2-D fixed-point characterization for ordinary (i.e. non spatially coupled) LDPC codes was derived. In

contrast to the derivations above that consider SG decoding, in [10] the analyzed decoding mode is global decoding,

and consequently neither δR nor δL appear in the analysis.

Remark 4. Equation (17) refers to the target SB. If one considers a helper SB, one should set δL (or δR) to 1. In

this case, from (15) we get
(
x(4)/ǫ

)l−2
=
(
x(1)/ǫ

)l−1
, which together with (14) implies that the outgoing erasure

fraction is given by

δO = 1−
(

1− x(4)
)⌊ r2⌋

= 1−

(

1− ǫ
(
x(1)

ǫ

) l−1
l−2

)⌊ r2⌋

.

Example 9. Figure 12 exemplifies equation (16) and (17) (solid black and dashed colored, respectively) for the

(3, 6, 1) SC-LDPCL protograph (see Figure 10(target)). In both plots, ǫ = 0.5 and δL = 0.3, while in the left one

δR = 0.3 and in the right δR = 0.5. As seen in the plots, if the f -curve (dotted blue) intersects the g-curve (dashed

red), then the iterative process halts and fails. If the two curves do not intersect then the erasure fractions x
(1)
ℓ and

x
(2)
ℓ approach zero as iterations proceed, and decoding succeeds.

V. SEMI-GLOBAL PERFORMANCE ANALYSIS

In this section, we analyze the SG decoding performance of SC-LDPCL codes over the BEC. First, we wish to

compare the global and SG modes in terms of thresholds and complexity. Evidently, the threshold and complexity

induced by the SG mode depend on the number of helpers d; the larger d is, the higher the threshold and complexity

are. Note that unlike global decoding, each SG decoding instance aims to recover one target sub-block requested

to be read from the entire codeword. This difference enables the complexity reduction of SG decoding compared

to global decoding.

Remark 5. For simplicity, we assume for the rest of this section that t+ 1 divides r, i.e.,

w ,

⌊
r

t+1

⌋

= r
t+1 . (18)

This assumption means that the SG graph GSG from Definition 2 is symmetric in the sense that the degrees and

connectivity of coupling checks {cR,1, . . . , cR,t} are identical to those of {cL,1, . . . , cL,t} (see Section III-B).



16

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

x(1)

x
(2
)

ǫ = 0.5, δL = 0.3, δR = 0.3

0 0.1 0.2 0.3 0.4 0.5

x(1)

ǫ = 0.5, δL = 0.3, δR = 0.5

DE x(1) = f(ǫ, δL, x
(1), x(2)) x(2) = g(ǫ, δR, x

(1), x(2))

Fig. 12: A graphical representation of the SG density-evolution equations in (15). We used the (l = 3, r = 6, t = 1)
SC-LDPCL protograph and an erasure probability of ǫ = 0.5. The incoming erasure messages for the left figure

are δL = 0.3, δR = 0.3, where the density-evolution curve converges to the origin, indicating a decoding success.

On the right-hand figure we have δL = 0.3, δR = 0.5, which leads to a halt in the BP process at (x(1), x(2)) =
(0.318, 0.348).

A. SG Decoding Complexity

We assume a fixed lifting parameter for the code, and a fixed number of BP iterations in any step of SG decoding

performed over a subgraph of G; hence, to evaluate complexity we count the number of edges participating in the

entire decoding process. We assume an (l, r, t) SC-LDPCL protograph with M SBs, each consisting of r VNs (i.e.,

a total count of Mr VNs in the protograph). In what follows, we mark by χG and χSG the complexity of global

and SG decoding, respectively.

In view of Construction 1, there are Mlr edges in the SC-LDPCL protograph, so the global-decoding complexity

is given by χG = Mlr. In view of Definition 2 (see also Figure 10), in every helper SB the number of edges

participating in decoding is (l− t)r+
∑t

i=1(r− iw), and in the target SB that number is (l− t)r+2
∑t

i=1(r− iw).
Since w = r

t+1 , for SG decoding with d helper SBs we get

χSG = d

(

lr −
wt(t+ 1)

2

)

+ (l + t)r − wt(t+ 1)

= d

(

lr −
rt

2

)

+ lr,

and the complexity reduction is given by (see next sub-section for a numerical example)

1−
χSG

χG
= 1−

d(l − t
2) + l

Ml
. (19)

B. SG Decoding Thresholds

Motivated by (19), we now study the thresholds of SG decoding. We define ǫ∗SG(m,d) as the maximum over

ǫ ∈ [0, 1] such that SG decoding successfully decodes a target SB m ∈ {1, . . . ,M} using d neighbor helper

SBs (see Figure 9 for d = 4). Using the SG density-evolution equations in (9)–(14), we can easily calculate this

threshold. Figure 13 illustrates SG thresholds ǫ∗SG(m = 6, d) of the (5, 12, t ∈ {1, 2, 3}) SC-LDPCL protographs

with M = 11 SBs and a classical SC-LDPC protograph with the same length and degrees but without locality (i.e.,

t = l − 1 = 4) as a function of d. For every t ∈ {1, 2, 3}, the curve starts (d = 0) from the local threshold of that

code ǫ∗6 (see Definition 1), steeply increases due to adjacent helpers (d = 2), and ends (d = 10) close to the global
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Fig. 13: ǫ∗SG(m = 6, d) for (5, 12, t ∈ {1, 2, 3}) protographs with M = 11 SBs.

threshold of that code ǫ∗G due to terminating SBs (d = M − 1 = 10). For the no-locality code, the local threshold

(d = 0) is zero, as Theorem 3 predicts, and the SG thresholds for d > 0 are significantly lower than those of the

locality-enabled constructions (t ∈ {1, 2, 3}). Moreover, in contrast to the locality-enabled constructions, starting

from termination in the no-locality code does not increase the threshold.

In view of Figure 13, it appears that the main advantage in SG decoding of SC-LDPCL codes is due to immediate

adjacent helpers where d = 2, and due to the end-point helpers. While this is true for the fixed-erasure-probability

channel assumed here, in the next sub-section we show that under channels with variability, it is beneficial to use

intermediate values of d as well.

Note that the global threshold of the (5, 12, t = 3) protograph with M = 11 is ǫ∗G = 0.375 while ǫ∗SG(5, 10) =
0.361. Thus the threshold reduction is only 3.7%. On the other hand, (19) implies that for t = 3 the complexity

reduction for d = 10 equals 1 − 1
55

(
10
(
5− 3

2

)
+ 5
)
= 27%; hence we see a substantial decrease in complexity

with only a small loss in threshold.

Example 10. Figure 14 shows simulation results for semi-global decoding over the BEC. The plots compare

(5, 12, t) SC-LDPCL codes (t ∈ {1, 2, 3}) with five decoding modes: local, semi-global with d = 2, 8, 10, and

global decoding. As seen in the plots, SG decoding with d = 10 helpers performs very close to global decoding.

Further, for low values of d the t = 1 code is superior while for high values of d, the t = 3 is superior, as

predicted by our threshold calculations. Finally, the main advantage in SG decoding comes from the adjacent

helpers (i.e., most significant improvement when switching from local decoding to SG with d = 2), and from

termination sub-blocks (d = 10 helpers).

C. Analysis Over the Sub-Block Varying BEC

We now consider a channel model originally proposed in [21], in which the channel parameter varies between sub-

blocks. This channel fits many data-storage systems, where bits of the same sub-block (e.g., on the same physical

memory page) suffer from a certain noise level, but across sub-blocks the noise levels may vary considerably

due to differences in operating or manufacturing conditions such as cell wear, temperature, etc. [12], [13]. Let

M ∈ N be the number of SBs in the code, let E1, E2, . . . , EM be i.i.d. random variables taking values in [0, 1],
and let F be the cumulative distribution function (CDF) of Em, i.e., for every m ∈ {1, 2, . . . ,M} and x ∈ [0, 1],
F (x) = Pr (Em ≤ x). In the channel introduced in [21], all of the bits of SB m are transmitted over the same

channel, which in our case is the BEC(Em); in other words, first Em is realized, and then the bits of SB m pass

through the BEC(Em). The standard BEC, where the erasure probability ǫ is constant, is a special case of the

sub-block varying BEC where F (x) is the step function at x = ǫ.
Semi-global decoding is highly motivated by this channel, since even if the target SB suffers a high erasure

rate, and local decoding fails, potentially the helpers have low erasure rates. Subsequently, the decoded helpers can

send sufficient information toward the target SB in order to successfully decode it at the target phase. Note that

the decoder has no information about the channel state, i.e., the instantaneous channel parameters are not known



18

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4
10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

ǫ

T
ar

g
et

-S
B

B
E

R

t = 1 t = 2 t = 3
Local

SG d = 2
SG d = 8
SG d = 10
Global

Fig. 14: BEC SG-decoding performance of three (5, 12, t) SC-LDPCL codes (dotted, dashed and solid for t = 1, 2
and 3, respectively) with M = 11 sub-blocks corresponding to Figure 13; the target is sub-block number six. The

plots refer to five decoding modes: local (orange), SG with d = 2 helpers (yellow), SG with d = 8 (purple), SG

with d = 10 (green), and global decoding (blue).

during decoding. In case that this side information is available at the decoder, then other semi-global scheduling

schemes (i.e., other than the symmetric scheme described in Section IV) could result in better performance.

Sliding-window decoders and multi-dimensional spatially coupled (MD-SC) codes were suggested for channels

with memory (e.g. bursty and Gilbert-Elliott channels) and parallel channels (see [6], [20], [19]). Our work differs

from these previous works since 1) semi-global decoding differs from window decoding (as explained above), 2) in

contrast to MD-SC codes where entire SC chains are connected, SC-LDPCL codes connect short locally decodable

sub-blocks, and 3) the channel model we consider differs from those previously considered and better fits the setup

where sub-blocks are mapped to distinct physical storage units. All of these distinctions lead to a new analysis

which we perform in the following.

Definition 3. For every even j and δ1, δ2 ∈ [0, 1]t, we define pj (δ1, δ2) as the asymptotic (as the lifting parameter

tends to infinity) SG-decoding success-probability to decode a target SB m with d = j helpers:
j
2 helper SBs to the

right (i.e. larger indices than the target) and
j
2 helpers to the left, where δ1 and δ2 are the t erasure probabilities

incoming from the SB left to SB m− j
2 and from the SB right to SB m+ j

2 , respectively.

In general, pj(δ1, δ2) is a function of both the protograph and the channel-parameter’s CDF F (·). Regardless

of the protograph or channel, we expect pj(δ1, δ2) to be monotonically non-decreasing with j. In the following

analysis, we assume that the protograph is large enough, such that no helper SB is among the first or last SBs

(i.e., no termination). Given an even number of helper SBs d, our goal is to evaluate pd (1, 1), and the intermediate

values of pj (δ1, δ2), with j ∈ {0, 2, . . . , d} and δ1, δ2 ∈ [0, 1], will help us track probabilities along the SG process.

Definition 4. Let δ1, δ2 ∈ [0, 1]t. We define:

1) ǫ∗ (δ1, δ2) as the target’s threshold given that the incoming erasure probabilities are δL = δ1, and δR = δ2
(see Figure 10(target))

2) ∆: [0, 1]× [0, 1]t → [0, 1]t as the helper function that calculates the outgoing erasure probabilities δO given

a SB erasure probability ǫ and incoming erasure probabilities δI (see Figure 10(helper)), i.e.,

(δO,1, . . . , δO,t) = ∆ (ǫ, δI,1, . . . , δI,t) .
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3) ∆k : [0, 1]
k × [0, 1]t → [0, 1]t as the recursive function, k ∈ N

+:

∆1 (ǫ, δI) = ∆ (ǫ, δI) (20a)

∆j (ǫ1, . . . , ǫj, δI) = ∆j−1 (ǫ1, . . . , ǫj−1,∆(ǫj, δI)) , j ≥ 2. (20b)

Remark 6. The functions ǫ∗(·), and ∆(·, ·) from Definition 4 are deterministic functions that depend on the semi-

global graph GSG, although this dependence is not written explicitly.

Remark 7. If we remove the assumption in (18), then we will have to replace ∆ in items 2)+3) of Definition 4

with two functions: right-to-left and left-to-right. Since we assume symmetry, then these two functions coincide and

we refer to them both as ∆(·, ·).

Theorem 7. For every varying-erasure channel, and every even j ≥ 0,

p0(δ1, δ2) = Pr (E < ǫ∗(δ1, δ2)) ,

pj (δ1, δ2) = E [pj−2 (∆ (E1, δ1) ,∆(E2, δ2))] , j ≥ 2.
(21)

where E,E1, E2 are i.i.d. random variables representing the channel parameter, and E[·] is the expectation of its

argument over the choices of E1, E2.

Proof. See Appendix B.

Theorem 7 provides an exact recursive expression for pj (δ1, δ2). However, this calculation depends on the

stochastic argument Ei of ∆(Ei, ·), and in some cases, such as if the channel parameter is a continuous random

variable, it is hard to evaluate the expectation in (21). To go around this difficulty, we derive a provable lower

bound on pj (δ1, δ2) by quantizing the erasure-rate domain.

Theorem 8. Let F (·) be the CDF of a varying BEC channel, let δ1, δ2 ∈ [0, 1]t and K ∈ N, and let 0 = e0 < e1 <
e2 < . . . < eK = 1 be a partition of [0, 1]. For every j even indices i =

(
i−j/2, . . . , i−1, i1, . . . , ij/2

)
∈ {1, . . . ,K}j ,

let

yi(δ1, δ2) , ǫ∗
(
∆j/2

(
ei−1

, . . . , ei−j/2
, δ1
)
,∆j/2

(
ei1 , . . . , eij/2, δ2

))
. (22)

Then,

pj(δ1, δ2) ≥
∑

i∈{1,2,...,K}j

F
(
yi(δ1, δ2)

)
j/2
∏

k=−j/2

k 6=0

[F (eik)− F (eik−1)] . (23)

Proof. See Appendix C.

Note that unlike (21), evaluating the right-hand side of (23) only uses deterministic arguments in closed-form

(F ) and recursive (yi) functions.

Remark 8. For any given d, increasing the parameter K tightens the bound in (23). On the other hand, increasing K
increases the calculation complexity (finer quantization). Through the parameter K, one can control this tightness-

vs.-complexity trade-off.

Remark 9. Although the bound in Theorem 8 holds for every choice of K and {ei}
K−1
i=1 , it is preferable to have

at least ǫL , ǫ∗(1, 1) and ǫS , ǫ∗(1, 0) as points of calculation since they capture success in the extreme case

where previously decoded helpers completely fail (ǫL: helpers from both sides fail, ǫS: helpers from one side fail).

For example, one may set

e = (0, ǫL, ǫL + ξL, . . . , ǫS , ǫS + ξS, . . . , 1) , (24)

where ξL = ⌊K2 ⌋(ǫS − ǫL) and ξS =
⌊
K
2

⌋
(1− ǫS).

In order to further reduce calculation complexity, we state the next lower bound. Similar to the definition of

pj(δ1, δ2), we denote by p̂j(δ) the SG success probability when all j helper SBs are at one side of the target, either

all left or all right of it, given that the farthest helper from the target has input erasure-probability vector δ.
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Proposition 9. For every even j ≥ 2,

pj(1, 1) ≥ P 2
L · pj−2 (0, 0) + 2PL(1− PL)pj−2 (1, 0) + (1− PL)

2 pj−2 (1, 1) , (25)

pj(δ1, δ2) ≥ PL ·
(

1− p̂ j

2
−1(δ1)

)

·
(

1− p̂ j

2
−1(δ2)

)

+ PS ·
(

p̂ j

2
−1(δ2)

(

1− p̂ j

2
−1(δ1)

)

+ p̂ j

2
−1(δ1)

(

1− p̂ j

2
−1(δ2)

))

+ PD · p̂ j

2
−1(δ1) · p̂ j

2
−1(δ2)

(26)

where

PL , Pr (E < ǫ∗(1, 1)) , PS , Pr (E < ǫ∗(1, 0)) , PD , Pr (E < ǫ∗(0, 0)) . (27)

Proof. See Appendix D.

In view of (21) and (27), we have for j = 0,

p0(1, 1) = PL, p0(1, 0) = p0(0, 1) = PS , p0(0, 0) = PD. (28)

Proposition 9 leads to a simple way to lower bound pj(1, 1): first calculate the exact values for j = 0 in (28), and

then use the recursive bounds in (25)–(26) to lower bound pj(1, 1). For example for j = 2 we get from (26)

p2(1, 1) ≥ P 2
L · p0 (0, 0) + 2PL(1− PL)p0 (1, 0) + (1− PL)

2 p0 (1, 1)

= P 2
LPD + 2PL(1− PL)PS + (1− PL)

2 PL .

Lower bounds on p̂j(·) can be derived similarly to the bound in Proposition 9; we omit the details here. To

show an application of the bounds in Theorem 8 and Proposition 9, we next use them to evaluate the balanced

semi-global strategy proposed in Section IV (evaluated by pj(1, 1)) in comparison to the one-sided semi-global

strategy (evaluated by p̂j(1)).

Example 11. Figure 15 compares between the success probability of SG-decoding when applying the balanced

strategy (pj(1, 1)) and when applying the one-sided strategy (p̂j(1)). The plots refer to (l = 5, r = 12, t ∈ {1, 2, 3})
SC-LDPCL protographs over the varying erasure channel BEC(E), E ∼ Unif[0, 0.4] (the uniform distribution is

given as a concrete example for computing the bounds; our results in Theorem 8 and Proposition 9 are derived for

any distribution). As seen in Figure 15, the balanced strategy (solid-blue curves) performs better than the one-sided

strategy (dotted-black curves) for every value of t = 1, 2, 3 and every j ∈ {2, 4, 6, 8, 10}. The bounds are computed

according to Theorem 8 and Proposition 9. We used Theorem 8 to get a lower bound for j = 2, with K = 40 and

the partition in (24); for the higher values of j we used Proposition 9.

Figure 15 also exemplifies the trade-off between locality and coupling in SC-LDPCL protographs (as seen in

Figure 13 for the standard erasure channel). If j = 0 (local decoding), it is preferable to use the t = 1 protograph

which is highly localized. However, if j ≥ 6, the t = 3 protograph, which is strongly coupled, is superior. In the

range j ∈ {2, 4}, the t = 2 protograph is superior.

VI. GENERALIZED CONSTRUCTIONS

The family of SC-LDPCL protographs introduced in Section III and analyzed in Section IV share a common

property in which sub-blocks are connected only to their adjacent neighbors. This follows from Construction 1,

which uses memory T = 1, i.e., the base matrix B is decomposed into two matrices: B0 and B1. In general, T
can be greater than 1. In this section, we present a generalization of Construction 1 to T ≥ 1. This generalization

enriches the family of SC-LDPCL codes and enables additional SG-decoding strategies.

In addition to generalizing the construction to larger memory parameters, we extend in this section SC-LDPCL

codes beyond the 1-dimensional chain of the classical SC-LDPC codes. The structure of the resulting codes is

similar to existing multi-dimensional SC-LDPC codes [16], [17], [15], [18], [19], [20], but as in the 1-dimensional

case, our codes enable the extra feature of decoding a requested target sub-block by accessing only a small number

of sub-blocks around it in the array.
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Fig. 15: Lower bounds on pj(1, 1) and p̂j(1) for the (5, 12, t ∈ {1, 2, 3}) SC-LDPCL protographs over the

BEC(E), E ∼ Unif[0, 0.4].

A. Generalized Construction

Construction 2. Let 3 ≤ l < r and T ≥ 1 be integers, and let t ∈ {1, 2, . . . , l − 2}. Let P ∈ {0, . . . , T}l×r such

that

P (i, j) = 0, ∀ t < i ≤ l, 1 ≤ j ≤ r . (29)

Set l × r matrices B0, . . . , BT such that for every τ ∈ {0, . . . , T}, Bτ (i, j) = 1 if P (i, j) = τ , and Bτ (i, j) = 0
otherwise. Construct a coupled protograph H by diagonally placing B0, . . . , BT in H as in Figure 1(b).

P (i, j) is an index matrix used to specify the graph coupling. All-zero rows in P correspond to local checks

(LCs) in the constructed protograph, and mixed rows correspond to coupling checks (CCs). Note that (29) assures

sub-block access: the local graph is an (l − t, r)-regular graph, with l − t ≥ 2. We next show some examples of

protograph classes constructed by Construction 2; the classes differ in their inter-sub-block connections.

Example 12. Let 4 ≤ l, T ∈ {2, . . . , l − 2}, t = T , and w =
⌊

r
t+1

⌋

. Set

P (i, j) =







0 , t < i ≤ l ,
0 , 1 ≤ i ≤ t, 1 ≤ j ≤ iw ,
i , 1 ≤ i ≤ t, iw < j ≤ r .

For example, for l = 4, r = 8, t = T = 2 we have

P =







0 0 1 1 1 1 1 1
0 0 0 0 2 2 2 2
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0







. (30)

In the above example, every coupling check (CC) connects two sub-blocks: the current sub-block, represented

by 0 entries in CC rows, and the τ -th sub-block away, represented by the entries τ > 0.

We can consider another partition, in which coupling checks connect more than two sub-blocks. As we show

later, this choice can lead to better global decoding thresholds.

Example 13. For l, r, T and t as in Construction 2, let w =
⌊

r
t+1

⌋

and qi =
⌊
r−iw
T

⌋
, 1 ≤ i ≤ t. Set

P (i, j) =







0 , t < i ≤ l ,
0 , 1 ≤ i ≤ t, 1 ≤ j ≤ iw ,
τ , 1 ≤ i ≤ t, iw + (τ − 1)qi < j ≤ iw + τqi ,

,
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TABLE II: Global thresholds of design rates for (4, 8, 2) SC-LDPCL protographs.

(A) (B) (C) (D)

R 0.49 0.485 0.48 0.47

ǫG 0.4657 0.4715 0.4864 0.4602

where τ > 0. For example, for l = 4, r = 8, t = T = 2 we get

P =







0 0 1 1 1 2 2 2
0 0 0 0 1 1 2 2
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0







. (31)

In (31), rows 1 and 2 in P specify CCs that connect three sub-blocks (i.e., m, m+ 1,m+ 2).

Further, we present a partition that generates a two-dimensional SC-LDPCL protograph, in which each sub-block

is connected to 4 adjacent sub-blocks: to the right, left, up and down. This structure can be valuable for two-

dimensional storage topologies. The construction is based on a partition matrix P that has two CCs: one containing

zeros and ones (i.e., connecting SBs horizontally), and the other containing zeros and T ’s (vertical connection).

Example 14. Let l ≥ 4, let r = 4K for some integer K ≥ l
4 , and let T > 2 = t. Set

P (i, j) =







0 , t < i ≤ l ,
0 , i = 1,

(
1 ≤ j ≤ 1

4r OR 3
4r < j ≤ r

)
,

0 , i = 2, 1
2r < j ≤ r ,

1 , i = 1, 1
4r < j ≤ 3

4r ,
T , i = 2, 1 ≤ j ≤ 1

2r .

,

For example, consider l = 4, r = 8, T = 5, t = 2,. Then,

P =







0 0 1 1 1 1 0 0
0 0 0 0 5 5 5 5
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0







. (32)

Consider four (l = 4, r = 8, t = 2)-regular SC-LDPCL protographs: (A) a protograph constructed by Con-

struction 1; (B), (C) protographs constructed from (30) and (31), respectively; (D) a two-dimensional protograph

constructed according to (32). Assume that all protographs have M = 25 sub-blocks. The local graphs are (2, 8)-
regular (except for terminating sub-blocks), so the local thresholds of protographs (A)–(D) coincide and equal

ǫL = 0.1429. Table II details the design rate and global threshold for each of these protographs. The best rate-

threshold trade-off (i.e., smallest gap 1− ǫG −R) is achieved by protograph (C).

B. Semi-Global Decoding

Generalized constructions with T ≥ 2 can also use the semi-global decoding strategy described in Section IV,

with added flexibility in the scheduling of helper decoding. Since in the general case the protographs structure is

not a simple chain, the semi-global decoder needs to specify which d helper sub-blocks are decoded, and at what

order. Further, SG-decoding analysis should be revised since the information flows differently. In view of these

observations, we define the inter-sub-block graph. This graph captures the connections between sub-blocks in the

coupled protograph while suppressing the intra-sub-block connections (local checks and edges), and the exact node

degrees.

Definition 5 (inter-sub-block graph). Let G be an SC-LDPCL protograph with M sub-blocks. The inter-sub-block

graph GISB = (V, E) corresponding to G consists of |V| = M nodes, each describing a sub-block in G. An

(undirected) edge e ∈ E connects sub-blocks {mi} ⊂ V if there exists a coupling check in G that is connected to

variable nodes belonging to sub-blocks {mi}.
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(D)(C)

. . .

(B)

. . .

(A)

. . .

Fig. 16: Inter-sub-block graphs for the (4, 8, 2) protographs (A), (B), (C), and (D) from Example 15

Remark 10. To simplify the presentation, and since for SG decoding we are interested in the inter-sub-block

connection, Definition 5 absorbs local checks into their sub-block node, and coupling checks into edges connecting

sub-block nodes.

Remark 11. It is possible that a coupling check in the protograph connects more than two sub-blocks, as in (31).

In this case, GISB is a hyper-graph, i.e., edges connect sets of nodes. These kind of edges are drawn as split lines

in the following graph illustrations.

Example 15. Figure 16 illustrates the inter-sub-block graphs for the (A), (B), (C), and (D) protographs listed

in Table II. (A) is a simple chain; (B) introduces more memory and connectivity between sub-blocks; (C) is a

hyper-graph in which some edges (CCs) connect three nodes; (D) is a grid graph.

Consider the inter-sub-block graph in Figure 16(D), and assume the target SB is located in the grid’s center.

There are many SG helper schedules to decode the target, each exhibiting a different threshold and complexity

(see Section V-B for the definition of SG thresholds and complexities). For example, we can choose to decode

helpers along the vertical line crossing the target SB (this will be better than the horizontal line since the vertical

line ends in termination), similarly to the one-dimensional chain in Section IV; we call this the vertical schedule.

Alternatively, one can access helpers on both the vertical and horizontal lines crossing the target; we call this the

cross schedule. Another schedule is the diamond schedule, in which helper SBs sharing the same (Manhattan)

distance from the target SB are decoded in parallel, and in order of decreasing distances from the target. There are

many more possible schedules for two-dimensional protographs like protograph D (in contrast to the simple chain

in protograph A, where we have only one direction). We compare the three schedules presented above: vertical,

cross, and diamond, illustrated in Figures 17(a), (b), and (c), respectively.

Using the density-evolution equations derived in Section IV-A, the thresholds of all schedules are calculated and

listed in Table III for the two-dimensional (4, 8, 2) protograph with M = 49 sub-blocks (i.e, a 7 × 7 grid). In

addition, Table III lists the number of helpers decoded, as a measure of decoding complexity.

Remark 12. The diamond and cross schedules offer more parallelism compared to the vertical schedule, and hence

reduce latency. For example, if d = 4, then the vertical schedule requires three decoding steps (two helper steps,

and one target step), while the cross and diamond schedules require only two steps.
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(a) (b) (c)

Fig. 17: Three SG schedules over the D protograph from Figure 16. SBs with same color are decoded in parallel

(white SBs are not decoded at all, the gray SB is the target): (a) vertical; (b) cross; (c) diamond.

TABLE III: A comparison between three SG schedules over the (l = 4, r = 8, t = 2) 7× 7 grid protograph graph.

Steps (latency) Vertical Cross Diamond

Helpers Threshold Helpers Threshold Helpers Threshold

1 2 0.2639 4 0.3084 4 0.3084

2 4 0.2791 8 0.3163 12 0.3421

3 6 0.3108 12 0.3175 24 0.3496

4 36 0.3734

5 44 0.3740

6 48 0.3760

APPENDIX A

PROOF OF LEMMA 1

We start with a generalization of (1a)–(1c) that is useful for the forthcoming analysis. Consider the case where

each VN v ∈ V is transmitted through an erasure channel with a different erasure probability ǫv. In this case, we

say that ǫ =
(
ǫ1, ǫ2, . . . , ǫ |V|

)
is an erasure constellation, and (1a) and (2) are replaced with

xℓ (e
v
i , ǫv) = ǫv ·

∏

1≤i′≤dv

i′ 6=t

uℓ (e
v
i′) , Pℓ(v, ǫv) = ǫv

∏

1≤i≤dv

uℓ (e
v
i ) . (33)

Lemma 10. Let G = (V ∪ C, E) be a protograph, and let ǫ1 =
(
ǫ1,1, ǫ1,1, . . . , ǫ1,|V|

)
and ǫ2 =

(
ǫ2,1, ǫ2,1, . . . , ǫ2,|V|

)

be erasure constellations such that ǫ1 � ǫ2, i.e., for every v ∈ V , ǫ1,v ≤ ǫ2,v. Then,

Pℓ(v, ǫ1,v) ≤ Pℓ(v, ǫ2,v), ∀v ∈ V, ∀ℓ ≥ 0 .

Proof. The proof follows by induction on ℓ and by the monotonicity (in the second argument) of xℓ (e
v
i , ǫv) and

Pℓ(v, ǫv) in (33). Details are left to the reader.

Corollary 11. If ǫ1 � ǫ2 and for every v ∈ V , lim
ℓ→∞

Pℓ(v, ǫ2,v) = 0, then for every v ∈ V , lim
ℓ→∞

Pℓ(v, ǫ1,v) = 0.

Let ǫ > ǫ∗ (HJ ). In view of (3), there exists a set of VNs J ′ ⊆ J such that

lim
ℓ→∞

Pℓ(v, ǫ) > 0, ∀v ∈ J ′. (34)
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We now continue to the proof of Lemma 1. Assume w.l.o.g that J = {1, 2, . . . ,
∣
∣ J

∣
∣ } (else, permute the columns

in H). Consider erasure constellations given by

ǫ1 = (ǫ, . . . , ǫ
︸ ︷︷ ︸
∣
∣ J
∣
∣

, 0, . . . , 0
︸ ︷︷ ︸
∣
∣ V
∣
∣ −
∣
∣ J
∣
∣

), (35a)

ǫ2 = (ǫ, ǫ, . . . . . . . . . , ǫ
︸ ︷︷ ︸

∣
∣ V
∣
∣

). (35b)

In what follows, we prove that ǫ ≥ ǫ∗ (H). Assume to the contrary that ǫ < ǫ∗ (H). Since ǫ1 � ǫ2, Corollary 11

implies that

lim
ℓ→∞

Pℓ(v, ǫ1,v) = 0, ∀v ∈ V. (36)

In addition, applying the DE equations in (1b) and (33) on the protograph corresponding to H with the erasure

constellation ǫ1 is equivalent to applying the DE equations in (1a) and (1b) on the protograph corresponding HJ

over the BEC(ǫ), thus (36) implies that for every v ∈ J , limℓ→∞ Pℓ(v, ǫ) = 0 in contradiction to (34). Hence,

ǫ ≥ ǫ∗ (H). Since this is true for all ǫ > ǫ∗ (HJ ), we deduce that ǫ∗ (H) ≤ ǫ∗ (HJ ).
Similarly, let ǫ > ǫ∗ (H), and let v ∈ V be a VN in the protograph corresponding to H such that

lim
ℓ→∞

Pℓ(v, ǫ) > 0. (37)

Since uℓ(e
v
t ) in (2) is less than 1 for every t ∈ {1, 2, . . . , dv} and every iteration ℓ, then

P
(I)
ℓ (v, ǫ) ≥ Pℓ(v, ǫ), ∀ℓ ≥ 0, (38)

where P
(I)
ℓ is the probability that v is erased after ℓ BP iterations over the protograph corresponding to H(I).

Combining (37) and (38) implies that limℓ→∞ P
(I)
ℓ (v, ǫ) > 0, thus ǫ > ǫ∗

(
H(I)

)
. Since this is true for every

ǫ > ǫ∗ (H), then ǫ∗
(
H(I)

)
≤ ǫ∗ (H).

APPENDIX B

PROOF OF THEOREM 7

The j = 0 case follows from the definition of ǫ∗(δ1, δ2). For j ≥ 2, assume the target SB is indexed by m. Let

Xj,δ1,δ2 be an indicator random variable that equals 1 if and only if SG decoding with j SBs succeeds given that

the incoming erasure rates to SB m+ j (resp. m− j) are δ1 (resp. δ2), i.e.,

pj (δ1, δ2) = E
[
Xj,δ1,δ2

]
. (39)

By the tower rule for expectations,

E
[
Xj,δ1,δ2

]
= E

[
E
[
Xj,δ1,δ2

∣
∣ E−j , E+j

]]
, (40)

where E−j and E+j are the random variables corresponding to the erasure probability of SBs m− j and m+ j,

respectively. In view of the assumption in (18), given E−j = ǫ1, E+j = ǫ2 we have that the outgoing erasure rates

from SB m+ j (resp. m− j) towards SB m+ j − 1 (resp. m− j + 1) are ∆(ǫ1, δ1) (resp. ∆(ǫ2, δ2)). Hence

E
[
Xj,δ1,δ2

∣
∣ E−j, E+j

]
= pj−2 (∆ (E−j, δ1) ,∆(E+j, δ2)) . (41)

Combining (39)–(41) completes the proof.
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APPENDIX C

PROOF OF THEOREM 8

We prove by induction on (even) j. For j = 0 we get from (21),

p0(δ1, δ2) = F (ǫ∗(δ1, δ2)) . (42)

In addition, (20a) implies that yi(δ1, δ2) = ǫ∗(δ1, δ2), which combined with (42) yields p0(δ1, δ2) = F
(
ǫ∗(yi(δ1, δ2)

)
.

This proves the j = 0 case. Consider j > 0, let j′ = j − 2, and assume that (23) holds for j′. In view of (21) and

the induction assumption we have

pj(δ1, δ2) =E
[
pj′(∆

(
E−j/2, δ1

)
,∆(E+j/2, δ2)

]

≥E

∑

i′∈{1,2,...,K}j′

F
(
yi′(∆

(
E−j/2, δ1

)
,∆(E+j/2, δ2)

)
j′/2
∏

k=−j′/2

k 6=0

[F (eik)− F (eik−1)]

=
∑

i′∈{1,2,...,K}j′

E
[
F
(
yi′(∆

(
E−j/2, δ1

)
,∆(E+j/2, δ2)

)]
j′/2
∏

k=−j′/2

k 6=0

[F (eik)− F (eik−1)] .

(43)

Let XA be an indicator random variable that equals 1 if and only if the event A occur. Since for every δ, ∆(ǫ, δ) is

monotonically non-decreasing in ǫ, then F
(
yi′(∆

(
E−j/2, δ1

)
,∆(E+j/2, δ2)

)
is monotonically non-increasing in

E−j/2 and E+j/2. Thus, for every i′ ∈ {1, 2, . . . ,K}j
′

,

E
[
F
(
yi′(∆

(
E−j/2, δ1

)
,∆(E+j/2, δ2)

)]
= E

K∑

i−j/2=1

K∑

ij/2=1

XE−j/2∈(ei−j/2−1,ei−j/2
]XE+j/2∈(eij/2−1,eij/2 ]

· F
(
yi′(∆

(
E−j/2, δ1

)
,∆(E+j/2, δ2)

)

≥

K∑

i−j/2=1

K∑

ij/2=1

E

[

XE−j/2∈(ei−j/2−1,ei−j/2
]XE+j/2∈(eij/2−1,eij/2 ]

]

· F
(
yi′(∆

(
ei−j/2

, δ1
)
,∆(eij/2 , δ2)

)

=

K∑

i−j/2=1

K∑

ij/2=1

[
(F
(
ei−j/2

)
− F

(
ei−j/2−1

)]
·
[
(F
(
eij/2

)
− F

(
eij/2−1

)]

· F
(
yi′(∆

(
ei−j/2

, δ1
)
,∆(eij/2 , δ2)

)
.

(44)

In view of (20b) and (22),

yi′
(
∆
(
ei−j/2

, δ1
)
,∆(eij/2 , δ2)

)
= yi (δ1, δ2)) . (45)

Combining (43)–(45) completes the proof.

APPENDIX D

PROOF OF PROPOSITION 9

Let j′ = j
2 , and let E+j′ and E−j′ be the erasure-probability random variables of sub-blocks m+ j′ and m− j′,

respectively. In view of (21), since ∆(·, ·) ≤ 1,

pj(1, 1) = E [pj−2 (∆(E−j′ , 1)) , (∆(E+j′ , 1))]

≥ Pr(E−j′ < ǫL, E+j′ < ǫL)pj−2 (0, 0)

+ Pr(E−j′ ≥ ǫL, E+j′ < ǫL)pj−2 (1, 0)

+ Pr(E−j′ < ǫL, E+j′ ≥ ǫL)pj−2 (0, 1)

+ Pr(E−j′ ≥ ǫL, E+j′ ≥ ǫL)pj−2 (1, 1)

= P 2
L · pj−2 (0, 0) + 2PL(1− PL)pj−2 (1, 0) + (1− PL)

2 pj−2 (1, 1) ,
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where the last equality is due to the symmetry assumption in (18).

Next, let D−j′,+j′ be the event of successful SG decoding of a target sub-block m with d = 2j′ helper sub-blocks.

For every k ∈ {0, 1, . . . , j′} (resp. k ∈ {−j′, . . . ,−1, 0}), let δ
(k)
R (resp. δ

(k)
L ) be the input erasure rate to sub-block

m+ k from the right (resp. left) during SG decoding. Then, according to our definitions,

pj(δ1, δ2) ,Pr
(

D−j′,+j′
∣
∣ δ

(−j′)
L = δ1, δ

(+j′)
R = δ2

)

=Pr
(

D−j′,+j′
∣
∣ δ

(−j′)
L = δ1, δ

(+j′)
R = δ2, δ

(0)
L = 0, δ

(0)
R = 0

)

· Pr
(

δ
(0)
L = 0, δ

(0)
R = 0

∣
∣ δ

(−j′)
L = δ1, δ

(+j′)
R = δ2

)

+Pr
(

D−j′,+j′
∣
∣ δ

(−j′)
L = δ1, δ

(+j′)
R = δ2, δ

(0)
L 6= 0, δ

(0)
R = 0

)

· Pr
(

δ
(0)
L 6= 0, δ

(0)
R = 0

∣
∣ δ

(−j′)
L = δ1, δ

(+j′)
R = δ2

)

Pr
(

D−j′,+j′
∣
∣ δ

(−j′)
L = δ1, δ

(+j′)
R = δ2, δ

(0)
L = 0, δ

(0)
R 6= 0

)

· Pr
(

δ
(0)
L = 0, δ

(0)
R 6= 0

∣
∣ δ

(−j′)
L = δ1, δ

(+j′)
R = δ2

)

Pr
(

D−j′,+j′
∣
∣ δ

(−j′)
L = δ1, δ

(+j′)
R = δ2, δ

(0)
L 6= 0, δ

(0)
R 6= 0

)

· Pr
(

δ
(0)
L 6= 0, δ

(0)
R 6= 0

∣
∣ δ

(−j′)
L = δ1, δ

(+j′)
R = δ2

)

.

(46)

In view of (27), we have

Pr
(

D−j′,+j′
∣
∣ δ

(−j′)
L = δ1, δ

(+j′)
R = δ2, δ

(0)
L = 0, δ

(0)
R = 0

)

= PD,

Pr
(

D−j′,+j′
∣
∣ δ

(−j′)
L = δ1, δ

(+j′)
R = δ2, δ

(0)
L 6= 0, δ

(0)
R = 0

)

≥ PS ,

Pr
(

D−j′,+j′
∣
∣ δ

(−j′)
L = δ1, δ

(+j′)
R = δ2, δ

(0)
L = 0, δ

(0)
R 6= 0

)

≥ PS ,

Pr
(

D−j′,+j′
∣
∣ δ

(−j′)
L = δ1, δ

(+j′)
R = δ2, δ

(0)
L 6= 0, δ

(0)
R 6= 0

)

≥ PL,

(47a)

and since we assumed symmetry of sub-blocks in (18), then

Pr
(

δ
(0)
L = 0, δ

(0)
R = 0

∣
∣ δ

(−j′)
L = δ1, δ

(+j′)
R = δ2

)

= p̂j−1(δ1)pj′−1(δ2)

Pr
(

δ
(0)
L 6= 0, δ

(0)
R = 0

∣
∣ δ

(−j′)
L = δ1, δ

(+j′)
R = δ2

)

= (1− p̂j′−1(δ1)) p̂j′−1(δ2)

Pr
(

δ
(0)
L = 0, δ

(0)
R 6= 0

∣
∣ δ

(−j′)
L = δ1, δ

(+j′)
R = δ2

)

= p̂j′−1(δ1) (1− p̂j′−1(δ2))

Pr
(

δ
(0)
L 6= 0, δ

(0)
R 6= 0

∣
∣ δ

(−j′)
L = δ1, δ

(+j′)
R = δ2

)

= (1− p̂j′−1(δ1)) (1− p̂j′−1(δ2)) .

(47b)

Combining equations (46) and (47a)–(47b) yields (26).
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