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Abstract

We introduce a fundamental lemma called the Poisson matching lemma, and apply it to prove one-shot achievability results for
various settings, namely channels with state information at the encoder, lossy source coding with side information at the decoder,
joint source-channel coding, broadcast channels, distributed lossy source coding, multiple access channels, channel resolvability
and wiretap channels. Our one-shot bounds improve upon the best known one-shot bounds in most of the aforementioned settings
(except multiple access channels, channel resolvability and wiretap channels, where we recover bounds comparable to the best
known bounds), with shorter proofs in some settings even when compared to the conventional asymptotic approach using typicality.
The Poisson matching lemma replaces both the packing and covering lemmas, greatly simplifying the error analysis. This paper
extends the work of Li and El Gamal on Poisson functional representation, which mainly considered variable-length source coding
settings, whereas this paper studies fixed-length settings, and is not limited to source coding, showing that the Poisson functional
representation is a viable alternative to typicality for most problems in network information theory.

I. INTRODUCTION

The Poisson functional representation was introduced by Li and El Gamal [1] to prove the strong functional representation
lemma: for any pair of random variables (X,Y ), there exists a random variable Z independent of X such that Y is a function
of (X,Z), and H(Y |Z) ≤ I(X;Y ) + log(I(X;Y ) + 1) + 4. The lemma is applied to show various one-shot variable-length
lossy source coding results, and a simple proof of the asymptotic achievability in the Gelfand-Pinsker theorem [2].

In this paper, we introduce the Poisson matching lemma, which gives a bound on the probability of mismatch between
the Poisson functional representations applied on different distributions, and use it to prove one-shot achievability results for
various settings, namely channels with state information at the encoder, lossy source coding with side information at the
decoder, joint source-channel coding, broadcast channels, distributed lossy source coding, multiple access channels, channel
resolvability and wiretap channels. The Poisson matching lemma can replace both the packing and covering lemmas (and
generalizations such as the mutual covering lemma) in asymptotic typicality-based proofs. The one-shot bounds in this paper
subsume the corresponding asymptotic achievability results by straightforward applications of the law of large numbers.

Various non-asymptotic alternatives to typicality have been proposed, e.g. one-shot packing and covering lemmas [3], [4],
stochastic likelihood coder [5], likelihood encoder [6] and random binning [7]. However, these non-asymptotic approaches
generally require more complex proofs than their asymptotic counterparts, whereas proofs using the Poisson matching lemma
can be even simpler than asymptotic proofs.

Our approach is better than the conventional asymptotic approach using typicality (and previous one-shot results, e.g. [3],
[5]), in the following ways:

1) We can give one-shot bounds stronger than the best known one-shot bounds in many settings discussed in this paper,
with the exception of channel coding, multiple access channels, channel resolvability and wiretap channels, which are
included for demonstration purposes, where we recover bounds comparable to the best known bounds.

2) Our proofs work for random variables in general Polish spaces.
3) To the best of our knowledge, for the achievability in the Gelfand-Pinsker theorem [2] (for channels with state information

at the encoder) and the Wyner-Ziv theorem [8], [9] (for lossy source coding with side information at the decoder), our
proofs are significantly shorter than all previous proofs (another short proof of the achievability in the Gelfand-Pinsker
theorem is given in [1], though it is asymptotic). Using our approach, we can also greatly shorten the proof of the
achievability of the dispersion in joint source-channel coding [10].

4) Our proofs only use the Poisson matching lemma introduced in this paper, which replaces both the packing and covering
lemmas in proofs using typicality. The Poisson matching lemma can also be used to prove a soft covering lemma. Hence
the Poisson matching lemma can be the only tool needed to prove a wide range of results in network information theory.

5) Our analyses usually involve fewer (or no) uses of sub-codebooks and binning. As a result, we can reduce the number
of error events and give sharper second-order bounds. For example:

a) Conventional proofs of the Gelfand-Pinsker theorem involve one sub-codebook, giving an additional error event,
whereas we do not use any sub-codebook.

b) Conventional proofs of the Wyner-Ziv theorem and the Berger-Tung inner bound [11], [12] (for distributed lossy
source coding) use binning, giving additional error events, whereas we do not require binning.
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c) Conventional proofs of Marton’s inner bound [13] (for broadcast channels) involve two sub-codebooks, whereas
we use only one.

6) In our approach, the encoders and decoders are characterized using a common framework (the Poisson functional
representation), which is noteworthy since the roles of an encoder and a decoder in an operational setting are very
different, and their constructions usually have little in common in conventional approaches.

Notation

Throughout this paper, we assume that log is to base 2 and the entropy H is in bits. We write expa(b) for ab.
The set of positive integers is denoted as N = {1, 2, . . .}. We use the notation: Xb

a := (Xa, . . . , Xb), Xn := Xn
1 and

[a : b] := [a, b] ∩ Z. The conditional information density is denoted as

ιX;Y |Z(x; y|z) := log
dPXY |Z=z

d(PX|Z=z × PY |Z=z)
(x, y).

We consider ιX;Y |Z(x; y|z) to be defined only if PXY |Z=z � PX|Z=z × PY |Z=z .
For discrete X , we write the probability mass function as pX . For continuous X , we write the probability density function

as fX . For a general random variable X in a measurable space, we write its distribution as PX . The uniform distribution over a
finite set S is denoted as Unif(S). The joint distribution of X1, . . . , Xn

iid∼ PX is written as P⊗nX . The degenerate distribution
P{X = a} = 1 is denoted as δa. The conditional independence of X and Z given Y is denoted as X ↔ Y ↔ Z.

The Q-function and its inverse are denoted as Q(x) and Q−1(ε) respectively. For V ∈ Rn×n positive semidefinite, define
Q−1(V, ε) = {x ∈ Rn : P{X ≤ x} ≥ 1− ε} where X ∼ N(0, V ) and X ≤ x denotes entrywise comparison.

We assume that every random variable mentioned in this paper lies in a Polish space with its Borel σ-algebra, and all
functions mentioned (e.g. distortion measures, the function x(u, s) in Theorem 2) are measurable. The Lebesgue measure over
R is denoted as λ. The Lebesgue measure restricted to the set S ⊆ R is denoted as λS . For two measures µ, ν over X (a Polish
space with its Borel σ-algebra) such that ν is absolutely continuous with respect to µ (denoted as ν � µ), the Radon-Nikodym
derivative is written as

dν

dµ
: X → [0,∞).

If ν1, ν2 � µ (but ν1 � ν2 may not hold), we write

dν1

dν2
(x) =

dν1

dµ
(x)

(
dν2

dµ
(x)

)−1

∈ [0,∞], (1)

which is 0 if (dν1/dµ)(x) = 0, and is ∞ if (dν1/dµ)(x) > 0 and (dν2/dµ)(x) = 0.
The total variation distance between two distributions P,Q over X is denoted as ‖P −Q‖TV = supA⊆X measurable |P (A)−

Q(A)|.

II. POISSON MATCHING LEMMA

We first state the definition of Poisson functional representation in [1], with a different notation that allows the proofs to be
written in a simpler and more intuitive manner.

Definition 1 (Poisson functional representation). Let {Ūi, Ti}i∈N be the points of a Poisson process with intensity measure
µ×λR≥0

on U ×R≥0 (where U is a Polish space with its Borel σ-algebra, and µ is σ-finite). For P � µ a probability measure
over U , define

ŨP
(
{Ūi, Ti}i∈N

)
:= ŪKP ({Ūi,Ti}i∈N),

where

KP

(
{Ūi, Ti}i∈N

)
:= arg min

i: dPdµ (Ūi)>0

Ti

(
dP

dµ
(Ūi)

)−1

,

with arbitrary tie-breaking (a tie occurs with probability 0). We omit {Ūi, Ti}i∈N and only write ŨP if the Poisson process is
clear from the context. If the Poisson process is {X̄i, Ti}i∈N instead of {Ūi, Ti}i∈N, then the Poisson functional representation
is likewise denoted as X̃P . If Ūi = (X̄i, Ȳi) is multivariate, and P is a distribution over X × Y , the Poisson functional
representation is denoted as (X̃, Ỹ )P . We write its components as (X̃, Ỹ )P = (X̃P , ỸP ).

Note that while dP/dµ is only uniquely defined up to a µ-null set, changing the value of dP/dµ on a µ-null set will only
affect the values of ŨP on a null set with respect to the distribution of {Ūi, Ti}i∈N, since the probability that there exists Ūi
on that µ-null set is zero. Therefore ŨP is uniquely defined up to a null set.
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By the mapping theorem [14], [15] (also see Appendix A of [1]), we have ŨP ∼ P . This is termed Poisson functional
representation in [1] since it can be regarded as a construction for the functional representation lemma [16]. Consider the
distribution PU,X . Let {Ūi, Ti}i∈N be the points of a Poisson process with intensity measure PU ×λR≥0

, X ∼ PX independent
of the process, and U := ŨPU|X(·|X). Then (U,X) ∼ PU,X . Hence we can express U as a function of X and {Ūi, Ti} (which
is independent of X). This fact will be used repeatedly throughout the proofs in this paper.

For two different distributions P and Q, ŨP and ŨQ are coupled in such a way that ŨP = ŨQ occurs with a probability
that can be bounded in terms of dP/dQ. We now present the core lemma of this paper. The proof is given in Appendix A.

Lemma 1 (Poisson matching lemma). Let {Ūi, Ti}i∈N be the points of a Poisson process with intensity measure µ × λR≥0
,

and P,Q be probability measures on U with P,Q� µ. Then we have the following almost surely:

P
{
ŨQ 6= ŨP

∣∣∣ ŨP} ≤ 1−
(

1 +
dP

dQ
(ŨP )

)−1

, (2)

where we write (dP/dQ)(u) = (dP/dµ)(u)/((dQ/dµ)(u)) as in (1) (we do not require P � Q). The right hand side of (2)
is considered to be 1 if (dP/dµ)(ŨP ) > 0 and (dQ/dµ)(ŨP ) = 0.

The exact expression for the left hand side of (2) is in (16).
We usually do not apply the Poisson matching lemma on fixed P,Q, but rather on conditional distributions. The following con-

ditional version of the Poisson matching lemma follows directly from applying the lemma on (P,Q)← (PU |X(·|X), QU |Y (·|Y )).
The proof is given in Appendix B for the sake of completeness.

Lemma 2 (Conditional Poisson matching lemma). Fix a distribution PX,U,Y and a probability kernel QU |Y (that is not
necessarily PU |Y ) satisfying PU |X(·|X), QU |Y (·|Y )� µ almost surely. Let X ∼ PX , and {Ūi, Ti}i∈N be the points of a Poisson
process with intensity measure µ × λR≥0

independent of X . Let U = ŨPU|X(·|X) and Y |(X,U, {Ūi, Ti}i) ∼ PY |X,U (·|X,U)

(note that (X,U, Y ) ∼ PX,U,Y and Y ↔ (X,U)↔ {Ūi, Ti}i). Then we have the following almost surely:

P
{
ŨQU|Y (·|Y ) 6= U

∣∣∣ X,U, Y } ≤ 1−
(

1 +
dPU |X(·|X)

dQU |Y (·|Y )
(U)

)−1

.

The condition that PU |X(·|X), QU |Y (·|Y ) � µ almost surely is satisfied, for example, when µ = PU , QU |Y = PU |Y ,
PUX � PU ×PX and PUY � PU ×PY . Note that since X⊥⊥{Ūi, Ti}i, we have ŨPU|X(·|X)|X ∼ PU |X , whereas Y may not
be independent of {Ūi, Ti}i, so ŨQU|Y (·|Y ) may not follow the conditional distribution QU |Y .

III. ONE-SHOT CHANNEL CODING

To demonstrate the application of the Poisson matching lemma, we apply it to recover a bound for one-shot channel coding
in [5] (with a slight penalty of having L instead of L− 1). Upon observing M ∼ Unif[1 : L], the encoder produces X , which
is sent through the channel PY |X . The decoder observes Y and recovers M̂ with error probability Pe = P{M 6= M̂}.

Proposition 1. Fix any PX . There exists a code for the channel PY |X , with message M ∼ Unif[1 : L], with average error
probability

Pe ≤ E

[
1−

(
1 + L2−ιX;Y (X;Y )

)−1
]

if PXY � PX × PY .

Proof: Let {(X̄i, M̄i), Ti}i∈N be the points of a Poisson process with intensity measure PX × PM × λR≥0
(where PM is

Unif[1 : L]) independent of M . The encoding function is m 7→ X̃PX×δm (i.e., X = X̃PX×δM ), and the decoding function is
y 7→ M̃PX|Y (·|y)×PM (i.e., M̂ = M̃PX|Y (·|Y )×PM ). Note that the encoding and decoding functions also depend on the common
randomness {(X̄i, M̄i), Ti}i∈N, which will be fixed later. We have (M,X, Y ) ∼ PM × PXPY |X .

P
{
M 6= M̃PX|Y (·|Y )×PM

}
≤ P

{
(X,M) 6= (X̃, M̃)PX|Y (·|Y )×PM

}
= E

[
P
{

(X,M) 6= (X̃, M̃)PX|Y (·|Y )×PM

∣∣∣ M,X, Y
}]

(a)

≤ E

[
1−

(
1 +

dPX × δM
dPX|Y (·|Y )× PM

(X,M)

)−1
]

= E
[
1− (1 + L2−ιX;Y (X;Y ))−1

]
,
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where (a) is by the conditional Poisson matching lemma (Lemma 2) on (X,U, Y,QU |Y )← (M, (X,M), Y, PX|Y ×PM ) (note
that PX,M |M = PX × δM ). Therefore there exists a fixed {(x̄i, m̄i), ti}i∈N such that conditioned on {(X̄i, M̄i), Ti}i∈N =
{(x̄i, m̄i), ti}i∈N, the average probability of error is bounded by E

[
1− (1 + L2−ιX;Y (X;Y ))−1

]
.

Compared to the scheme in [5], we use the Poisson process {(X̄i, M̄i), Ti} to create a codebook, instead of the conventional
i.i.d. random codebook in [5]. While the codewords for different m’s are still i.i.d., we attach a bias Ti to each codeword. Our
scheme does not use a stochastic decoder as in [5], but rather a biased maximum likelihood decoder M̃PX|Y (·|y)×PM = M̄K

where K = arg maxi T
−1
i (dPX|Y (·|y)/dPX)(X̄i). In the following sections, we will demonstrate how our approach can lead

to simpler proofs and sharper bounds compared to [5].
Using the generalized Poisson matching lemma that will be introduced in Section VII, we can prove the following bound.

The proof is in Appendix C.

Theorem 1. Fix any PX . There exists a code for the channel PY |X , with message M ∼ Unif[1 : L], with average error
probability

Pe ≤ E

[
1−

(
1−min

{
2−ιX;Y (X;Y ), 1

})(L+1)/2
]

if PXY � PX × PY .

Compare this to the dependence testing bound [17]:

Pe ≤ E

[
min

{
L− 1

2
· 2−ιX;Y (X;Y ), 1

}]
.

Theorem 1 is at least as strong (with a slight penalty of having (L + 1)/2 instead of (L− 1)/2) since

E

[
1−

(
1−min

{
2−ιX;Y (X;Y ), 1

})(L+1)/2
]

≤ E

[
min

{
L + 1

2
· 2−ιX;Y (X;Y ), 1

}]
.

Remark 1. Apart from the dependence testing bound [17], there are other one-shot bounds for channel coding such as the
random-coding union (RCU) bound and the κβ bound in [17], which are tighter in certain situations (e.g. the RCU bound is
suitable for error exponent analysis). The technique introduced in this paper is suitable for first and second order analysis, but
does not seem to give tight error exponent bounds.

IV. ONE-SHOT CODING FOR CHANNELS WITH STATE INFORMATION AT THE ENCODER

The one-shot coding setting for a channel with state information at the encoder is described as follows. Upon observing
M ∼ Unif[1 : L] and S ∼ PS , the encoder produces X , which is sent through the channel PY |X,S with state S. The decoder
observes Y and recovers M̂ with error probability Pe = P{M 6= M̂}.

We show a one-shot version of the Gelfand-Pinsker theorem [2]. This is the first one-shot bound attaining the best known
second order result in [18] (which considers a finite-blocklength, not one-shot scenario). Our bound is stronger than the one-
shot bounds in [3], [5], [19] (in the second order), and significantly simpler to state and prove than all the aforementioned
results. Unlike previous approaches, our proof does not require sub-codebooks.

Theorem 2. Fix any PU |S and function x : U × S → X . There exists a code for the channel PY |X,S with state distribution
PS with message M ∼ Unif[1 : L], with error probability

Pe ≤ E
[
1− (1 + L2ιU;S(U ;S)−ιU;Y (U ;Y ))−1

]
if PUS � PU × PS and PUY � PU × PY , where (S,U,X, Y ) ∼ PSPU |Sδx(U,S)PY |X,S .

Proof: Let {(Ūi, M̄i), Ti}i∈N be the points of a Poisson process with intensity measure PU × PM × λR≥0
independent

of M,S. The encoding function is (m, s) 7→ x(ŨPU|S(·|s)×δm , s) (let U = ŨPU|S(·|S)×δM , X = x(U, S)), and the decoding
function is y 7→ M̃PU|Y (·|y)×PM (i.e., M̂ = M̃PU|Y (·|Y )×PM ). Note that (M,S,U,X, Y ) ∼ PM × PSPU |Sδx(U,S)PY |X,S . We
have

P{M 6= M̃PU|Y (·|Y )×PM }
≤ P{(U,M) 6= (Ũ , M̃)PU|Y (·|Y )×PM }

= E
[
P
{

(U,M) 6= (Ũ , M̃)PU|Y (·|Y )×PM

∣∣∣ M,S,U, Y
}]
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(a)

≤ E

[
1−

(
1 +

dPU |S(·|S)× δM
dPU |Y (·|Y )× PM

(U,M)

)−1
]

= E
[
1− (1 + L2ιU;S(U ;S)−ιU;Y (U ;Y ))−1

]
.

where (a) is by the conditional Poisson matching lemma on ((M,S), (U,M), Y, PU |Y ×PM ) (note that PU,M |M,S = PU |S ×
δM ). Therefore there exists a fixed {(ūi, m̄i), ti}i∈N attaining the desired bound.

Compared to Theorem 3 in [3]:

Pe ≤ P{ιU ;S(U ;S) > log J− γ}+ P{ιU ;Y (U ;Y ) ≤ log LJ + γ}+ 2−γ + e−2γ

for any γ > 0, J ∈ N, our result is strictly stronger since

E

[
1−

(
1 + L2ιU;S(U ;S)−ιU;Y (U ;Y )

)−1
]

≤ P{ιU ;S(U ;S) > log J− γ}+ P{ιU ;Y (U ;Y ) ≤ log LJ + γ}

+ E

[
1−

(
1 + L2ιU;S(U ;S)−ιU;Y (U ;Y )

)−1

| ιU ;S(U ;S) ≤ log J− γ, ιU ;Y (U ;Y ) > log LJ + γ

]
≤ P{ιU ;S(U ;S) > log J− γ}+ P{ιU ;Y (U ;Y ) ≤ log LJ + γ}+ 2−2γ

< P{ιU ;S(U ;S) > log J− γ}+ P{ιU ;Y (U ;Y ) ≤ log LJ + γ}+ 2−γ + e−2γ .

This is due to the fact that the Poisson matching lemma simultaneously replaces both the covering and the packing lemma,
resulting in only one error event.

Next, we prove a second-order result. Fix ε > 0. Let C := I(U ;Y ) − I(U ;S), V := Var[ιU ;S(U ;S) − ιU ;Y (U ;Y )]. We
apply Theorem 2 on n uses of the memoryless channel with i.i.d. state sequence Sn = (S1, . . . , Sn), and

L :=

⌊
exp2

(
nC −

√
nVQ−1

(
ε− α√

n

)
− 1

2
log n

)⌋
,

where α is a constant that depends on PS,U,Y . For n > α2ε−2, by the Berry-Esseen theorem [20], [21], [22], we have

Pe ≤ E
[
min

{
2log L+ιUn;Sn (Un;Sn)−ιUn;Y n (Un;Y n), 1

}]
≤ 1√

n
+ P

{
2log L+ιUn;Sn (Un;Sn)−ιUn;Y n (Un;Y n) >

1√
n

}
≤ 1√

n
+ P

{
1√
n

n∑
i=1

(ιU ;Y (Ui;Yi)− ιU ;S(Ui;Si)− C) < −
√
VQ−1

(
ε− α√

n

)}
≤ 1√

n
+ ε− α√

n
+
α− 1√
n

≤ ε

if we let α− 1 be the constant given by the Berry-Esseen theorem. This coincides with the best known second order result in
[18], which is stronger than the second order results implied by [3], [5], [19]. We bound ιU ;S(U ;S)− ιU ;Y (U ;Y ) as a single
quantity, instead of bounding the two terms separately as in [3], [5], [19], resulting in a sharper second order bound.

V. ONE-SHOT LOSSY SOURCE CODING WITH SIDE INFORMATION AT THE DECODER

The one-shot lossy source coding setting with side information at the decoder is described as follows. Upon observing
X ∼ PX , the encoder produces M ∈ [1 : L]. The decoder observes M and Y ∼ PY |X and recovers Ẑ ∈ Z with probability
of excess distortion Pe = P{d(X, Ẑ) > D}, where d : X × Z → R≥0 is a distortion measure.

We show a one-shot version of the Wyner-Ziv theorem [8], [9]. Our bound is stronger than those in [3], [19], and significantly
simpler to state and prove. Unlike previous approaches, our proof does not require binning.

Theorem 3. Fix any PU |X and function z : U ×Y → Z . There exists a code for lossy source coding with source distribution
PX , side information at the decoder given by PY |X , and message size L, with probability of excess distortion

Pe ≤ E
[
1− 1{d(X,Z) ≤ D}(1 + L−12ιU;X(U ;X)−ιU;Y (U ;Y ))−1

]
if PUX � PU × PX and PUY � PU × PY , where (X,Y, U, Z) ∼ PXPY |XPU |Xδz(U,Y ).

Proof: Let {(Ūi, M̄i), Ti}i∈N be the points of a Poisson process with intensity measure PU×PM×λR≥0
independent of X ,

where PM is Unif[1 : L]. The encoding function is x 7→ M̃PU|X(·|x)×PM (i.e., M = M̃PU|X(·|X)×PM ), and the decoding function
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is (m, y) 7→ z(ŨPU|Y (·|y)×δm , y) (let Û = ŨPU|Y (·|Y )×δM , Ẑ = z(Û , Y )). Also define U = ŨPU|X(·|X)×PM , Z = z(U, Y ).
Note that (M,X, Y, U, Z) ∼ PM × PXPY |XPU |Xδz(U,Y ). We have

P{d(X, Ẑ) > D}
≤ 1−P{d(X,Z) ≤ D andU = Û}

≤ E
[
1− 1{d(X,Z) ≤ D}P{(U,M) = (Ũ , M̃)PU|Y (·|Y )×δM |M,X, Y, U}

]
(a)

≤ E

[
1− 1{d(X,Z) ≤ D}

(
1 +

dPU |X(·|X)× PM
dPU |Y (·|Y )× δM

(U,M)

)−1
]

≤ E
[
1− 1{d(X,Z) ≤ D}(1 + L−12ιU;X(U ;X)−ιU;Y (U ;Y ))−1

]
.

where (a) is by the conditional Poisson matching lemma on (X, (U,M), (M,Y ), PU |Y×δM ) (note that PU,M |X = PU |X×PM ).
Therefore there exists a fixed {(ūi, m̄i), ti}i∈N attaining the desired bound.

This reduces to lossy source coding (without side information) when Y = ∅. Note that the encoder is designed in the same
way with or without side information. An encoder for lossy source coding is sufficient to achieve the bound in Theorem 3
even when side information is present. Binning is not required at the encoder.

Similar to the case in Section IV, it can be checked that our bound is stronger than that in Theorem 2 in [3]. Compared to
Corollary 9 in [19]:

Pe ≤ P{ιU ;X(U ;X) > γc or ιU ;Y (U ;Y ) < γp or d(X,Z) > D}+
J

2γpL
+

1

2

√
2γc

J
(3)

for any γp, γc > 0, J ∈ N, our result is stronger since

E
[
1− 1{d(X,Z) ≤ D}(1 + L−12ιU;X(U ;X)−ιU;Y (U ;Y ))−1

]
≤ P{ιU ;X(U ;X) > γc or ιU ;Y (U ;Y ) < γp or d(X,Z) > D}+ L−12γc−γp

≤ P{ιU ;X(U ;X) > γc or ιU ;Y (U ;Y ) < γp or d(X,Z) > D}+
J

2γpL
+

1

2

√
2γc

J
,

where the last inequality is due to

a+ b ≥ (a+ b)3 = 27

(
a+ 2(b/2)

3

)3

≥ 27a(b/2)2 ≥ 4ab2

by the AM-GM inequality for a, b ≥ 0, a + b ≤ 1 (since the right hand side of (3) ≤ 1 for it to be meaningful). We bound
ιU ;X(U ;X)− ιU ;Y (U ;Y ) as a single quantity, instead of bounding the two terms separately, resulting in a sharper bound.

VI. ONE-SHOT JOINT SOURCE-CHANNEL CODING

The one-shot joint source-channel coding setting is described as follows. Upon observing the source symbol W ∼ PW ,
the encoder produces X ∈ X , which is sent through the channel PY |X . The decoder observes Y and recovers Ẑ ∈ Z with
probability of excess distortion Pe = P{d(W, Ẑ) > D}, where d :W ×Z → R≥0 is a distortion measure.

We show a one-shot joint source-channel coding result that achieves the optimal dispersion in [10].

Theorem 4. Fix any PX and PZ . There exists a code for the source distribution PW and channel PY |X , with probability of
excess distortion

Pe ≤ E

[(
1 + PZ(BD(W ))2ιX;Y (X;Y )

)−1
]

if PXY � PX × PY , where (W,X, Y ) ∼ PW × PXPY |X , and BD(w) := {z : d(w, z) ≤ D}.

Proof: Let {(X̄i, Z̄i), Ti}i∈N be the points of a Poisson process with intensity measure PX × PZ × λR≥0
independent of

W . Let ρ(w) := PZ(BD(w)). Let PŽ|W be defined as

PŽ|W (A|w) :=

{
PZ(A ∩ BD(w))/ρ(w) if ρ(w) > 0

PZ(A) if ρ(w) = 0.

The encoding function is w 7→ X̃PX×PŽ|W (·|w) (i.e., X = X̃PX×PŽ|W (·|W )). The decoding function is y 7→ Z̃PX|Y (·|y)×PZ
(i.e., Ẑ = Z̃PX|Y (·|Y )×PZ ). Also define Ž = Z̃PX×PŽ|W (·|W ). We have (X,Y,W, Ž) ∼ PXPY |X × PWPŽ|W .

P{d(W, Ẑ) > D}
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≤ P{ρ(W ) = 0}+ P{ρ(W ) > 0 and Ž 6= Ẑ}

≤ P{ρ(W ) = 0}+ E
[
1{ρ(W ) > 0}P{(X, Ž) 6= (X̃, Z̃)PX|Y (·|Y )×PZ |X,Y,W, Ž}

]
(a)

≤ P{ρ(W ) = 0}+ E

1{ρ(W ) > 0}

1−

(
1 +

dPX × PŽ|W (·|W )

dPX|Y (·|Y )× PZ
(X, Ž)

)−1


= P{ρ(W ) = 0}+ E

[
1{ρ(W ) > 0}

(
1−

(
1 + (ρ(W ))−12−ιX;Y (X;Y )

)−1
)]

= E

[(
1 + ρ(W )2ιX;Y (X;Y )

)−1
]
,

where (a) is by the conditional Poisson matching lemma on (W, (X, Ž), Y, PX|Y × PZ) (note that PX,Ž|W = PX × PŽ|W ).
Therefore there exists a fixed {(x̄i, z̄i), ti}i∈N attaining the desired bound.

Compare this to Theorem 7 in [10]:

Pe ≤ E
[
min

{
J2−ιX;Y (X;Y ), 1

}]
+ E

[
(1− PZ(BD(W )))J

]
(4)

for any PJ|W , J ∈ N. While neither of the bounds implies the other, our bound is at least within a factor of 2 from (4), since

E

[(
1 + PZ(BD(W ))2ιX;Y (X;Y )

)−1
]

≤ E

[(
1 + (2J)−12ιX;Y (X;Y )

)−1
]

+ P
{

(2J)−1 ≥ PZ(BD(W ))
}

≤ E
[
min

{
2J2−ιX;Y (X;Y ), 1

}]
+ 2E [max{1− JPZ(BD(W )), 0}]

≤ 2E
[
min

{
J2−ιX;Y (X;Y ), 1

}]
+ 2E

[
(1− PZ(BD(W )))J

]
.

However, (4) does not imply a bound that is within a constant factor from our bound. Theorem 8 in [10] is obtained by
substituting J = bγ/PZ(BD(W ))c in (4):

Pe ≤ E
[
min

{
γPZ(BD(W ))−12−ιX;Y (X;Y ), 1

}]
+ e1−γ ,

which is strictly weaker than our bound with an unbounded multiplicative gap γ (that tends to ∞ when the bound tends
to 0). Hence our bound is stronger than Theorem 7 and 8 in [10] (ignoring constant multiplicative gaps). Also our proof is
significantly shorter than that of Theorem 7 in [10].

Please refer to Appendix D for the proof that Theorem 4 achieves the optimal dispersion.

VII. POISSON MATCHING LEMMA BEYOND THE FIRST INDEX

The Poisson functional representation concerns the point with the smallest Ti((dP/dµ)(Ūi))
−1. We can generalize it to

obtain a sequence ordered in ascending order of Ti((dP/dµ)(Ūi))
−1.

Definition 2 (Mapped Poisson process). Let {Ūi, Ti}i∈N be the points of a Poisson process with intensity measure µ× λR≥0

on U × R≥0 (where U is a Polish space with its Borel σ-algebra, and µ is σ-finite). For P � µ a probability measure
over U , let iP,1, iP,2, . . . ∈ N be a sequence of distinct integers such that

⋃∞
j=1{iP,j} = {i : (dP/dµ)(Ūi) > 0} and

{TiP,j ((dP/dµ)(ŪiP,j ))
−1}j∈N is sorted in ascending order with arbitrary tie-breaking (a tie occurs with probability 0). For

j ∈ N, u ∈ U , define the mapped Poisson process with respect to P as{
ŨP
(
{Ūi, Ti}i∈N, j

)
, T̃P

(
{Ūi, Ti}i∈N, j

)}
j∈N

, (5)

where

T̃P
(
{Ūi, Ti}i∈N, j

)
:= TiP,j

(
dP

dµ
(ŪiP,j )

)−1

,

ŨP
(
{Ūi, Ti}i∈N, j

)
:= ŪiP,j .

For P,Q� µ probability measures over U , define iP,1, iP,2, . . . ∈ N and iQ,1, iQ,2, . . . ∈ N as above. Define

ΥP‖Q
(
{Ūi, Ti}i∈N, j

)
:= min{k ∈ N : iQ,k = iP,j},

where the minimum is ∞ if such k does not exist. We omit {Ūi, Ti}i∈N and only write ŨP (j), T̃P (j), ΥP‖Q(j) if the Poisson
process is clear from the context. Note that, with probability 1, we have either ŨQ(ΥP‖Q(j)) = ŨP (j) or ΥP‖Q(j) = ∞.
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Also, for any j, k ∈ N, ΥP‖Q(j) = k ⇔ ΥQ‖P (k) = j. Loosely speaking, ΥP‖Q(j) can be regarded as “Ũ−1
Q (ŨP (j))” (if

there are no atoms in µ), i.e., finding the j-th point in the mapped Poisson process w.r.t. P , then finding its index in the
mapped Poisson process w.r.t. Q.

While dP/dµ is only uniquely defined up to a µ-null set, changing the value of dP/dµ on a µ-null set will only affect
the values of {ŨP (j), T̃P (j)}j∈N on a null set with respect to the distribution of {Ūi, Ti}i∈N, since the probability that there
exists Ūi in that µ-null set is zero. Therefore {ŨP (j), T̃P (j)}j∈N is uniquely defined up to a null set. The same is true for
ΥP‖Q(j).

By the mapping theorem [14], [15] (also see Appendix A of [1]),

{ŪiP,j , TiP,j ((dP/dµ)(UiP,j ))
−1}j∈N = {ŨP (j), T̃P (j)}j∈N

is a Poisson process with intensity measure P × λR≥0
. Hence

ŨP (1), ŨP (2), . . .
iid∼ P.

We present a generalized Poisson matching lemma concerning the indices beyond the first. The proof is given in Appendix
A.

Lemma 3 (Generalized Poisson matching lemma). Let {Ūi, Ti}i∈N be the points of a Poisson process with intensity measure
µ× λR≥0

on U ×R≥0, and P,Q be probability measures over U with P,Q� µ. Fix any j ∈ N. Then we have the following
almost surely:

E
[

ΥP‖Q(j)
∣∣ ŨP (j)

]
≤ j dP

dQ
(ŨP (j)) + 1,

where we write (dP/dQ)(u) = (dP/dµ)(u)/((dQ/dµ)(u)) as in (1) (we do not require P � Q). As a result, we have the
following almost surely: for all k ∈ N,

P
{
ŨP (j) /∈ {ŨQ(i)}i∈[1:k]

∣∣∣ ŨP (j)
}
≤ P

{
ΥP‖Q(j) > k

∣∣ ŨP (j)
}

≤ min

{
j

k

dP

dQ
(ŨP (j)), 1

}
.

For k = 1, this can be slightly strengthened to

P
{

ΥP‖Q(j) > 1
∣∣ ŨP (j)

}
≤ 1−

(
1−min

{
dP

dQ
(ŨP (j)), 1

})j
.

For j = 1, this can be slightly strengthened to: for all k ∈ N,

P
{

ΥP‖Q(1) > k
∣∣ ŨP (1)

}
≤
(

1−
(

1 +
dP

dQ
(ŨP (1))

)−1)k
≤ 1−

(
1 + k−1 dP

dQ
(ŨP (1))

)−1

.

The exact distribution of ΥP‖Q(j) is given in (15).
Similar to Lemma 2, we can state a conditional version of the generalized Poisson matching lemma. The proof follows the

same logic as Lemma 2 and is omitted.

Lemma 4 (Conditional generalized Poisson matching lemma). Fix a distribution PX,J,U,Y and a probability kernel QU |Y ,
satisfying J ∈ N and PU |X,J(·|X, J), QU |Y (·|Y ) � µ almost surely. Let (X, J) ∼ PX,J , and {Ūi, Ti}i∈N be the points of a
Poisson process with intensity measure µ×λR≥0

independent of (X, J). Let U = ŨPU|X,J (·|X,J)(J) and Y |(X, J, U, {Ūi, Ti}i) ∼
PY |X,J,U (·|X, J, U) (note that (X, J, U, Y ) ∼ PX,J,U,Y and Y ↔ (X, J, U)↔ {Ūi, Ti}i). Then we have the following almost
surely:

E
[

ΥPU|X,J (·|X,J)‖QU|Y (·|Y )(J)
∣∣∣ X,J, U, Y ] ≤ J dPU |X,J(·|X,J)

dQU |Y (·|Y )
(U) + 1,

and for all k ∈ N,

P
{

ΥPU|X,J (·|X,J)‖QU|Y (·|Y )(J) > k
∣∣∣ X,J, U, Y } ≤ min

{
J

k

dPU |X,J(·|X, J)

dQU |Y (·|Y )
(U), 1

}
,

and

P
{

ΥPU|X,J (·|X,J)‖QU|Y (·|Y )(J) > 1
∣∣∣ X,J, U, Y } ≤ 1−

(
1−min

{
dPU |X,J(·|X, J)

dQU |Y (·|Y )
(U), 1

})J
.
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If J = 1 almost surely, then we also have the following almost surely: for all k ∈ N,

P
{

ΥPU|X(·|X)‖QU|Y (·|Y )(1) > k
∣∣∣ X,U, Y } ≤ (1−

(
1 +

dPU |X(·|X)

dQU |Y (·|Y )
(U)
)−1)k

≤ 1−
(

1 + k−1 dPU |X(·|X)

dQU |Y (·|Y )
(U)
)−1

.

Remark 2. We can use the generalized Poisson matching lemma to extend Proposition 1 to the list decoding setting with fixed list
size J. The decoder outputs the list {M̃PX|Y (·|Y )×PM (j)}j∈[1:J]. The error event becomes (X,M) /∈ {(X̃, M̃)PX|Y (·|Y )×PM (j)}j∈[1:J].
The probability of error is bounded by E

[
(1− (1 + L2−ιX;Y (X;Y ))−1)J

]
.

VIII. ONE-SHOT CODING FOR BROADCAST CHANNELS AND MUTUAL COVERING

The one-shot coding setting for the broadcast channel with common message is described as follows. Upon observing three
independent messages Mj ∼ Unif[1 : Lj ], j = 0, 1, 2, the encoder produces X , which is sent through the broadcast channel
PY1,Y2|X . Decoder j observes Yj and recovers M̂0j and M̂j (j = 1, 2). The error probability is Pe = P{(M0,M0,M1,M2) 6=
(M̂01, M̂02, M̂1, M̂2)}.

We show a one-shot version of the inner bound in [23, Theorem 5] (which is shown to be equivalent to [24, Theorem 1] in
[25]). The proof is given in Appendix F.

Theorem 5. Fix any PU0,U1,U2
and function x : U0 × U1 × U2 → X . For any J,K1,K2 ∈ N, there exists a code for the

broadcast channel PY1,Y2|X for independent messages Mj ∼ Unif[1 : Lj ], j = 0, 1, 2, with the error probability bounded by

Pe ≤ E

[
min

{
L̃0L̃1JA2−ιU0,U1;Y1

(U0,U1;Y1) + L̃1JA2−ιU1;Y1|U0
(U1;Y1|U0)

+ L̃0L̃2J
−1B2ιU1;U2|U0

(U1;U2|U0)−ιU0,U2;Y2
(U0,U2;Y2) + L̃0L̃2(1− J−1)B2−ιU0,U2;Y2

(U0,U2;Y2)

+ L̃2J
−1B2ιU1;U2|U0

(U1;U2|U0)−ιU2,Y2|U0
(U2;Y2|U0) + L̃2(1− J−1)B2−ιU2,Y2|U0

(U2;Y2|U0), 1

}]
if all the information density terms are defined almost surely, where

L̃0 := L0K1K2,

L̃a := dLa/Kae for a = 1, 2,

A := (log(L̃−1
1 J−12ιU1;Y1|U0

(U1;Y1|U0) + 1) + 1)2,

B :=
(
log((L̃2J

−12ιU1;U2|U0
(U1;U2|U0)−ιU2,Y2|U0

(U2;Y2|U0)

+ L̃2(1− J−1)2−ιU2,Y2|U0
(U2;Y2|U0))−1 + 1) + 1

)2
.

As a result, for γ > 0,

Pe ≤ P

{
log L̃1J > ιU1;Y1|U0

(U1;Y1|U0)− γ or log L̃2 > ιU2,Y2|U0
(U2;Y2|U0)− γ

or log L̃2J
−1 > ιU2,Y2|U0

(U2;Y2|U0)− ιU1;U2|U0
(U1;U2|U0)− γ

or log L̃0L̃1J > ιU0,U1;Y1
(U0, U1;Y1)− γ or log L̃0L̃2 > ιU0,U2;Y2

(U0, U2;Y2)− γ

or log L̃0L̃2J
−1 > ιU0,U2;Y2(U0, U2;Y2)− ιU1;U2|U0

(U1;U2|U0)− γ
}

+ 2−γ
(
8E
[
(ιU1;Y1|U0

(U1;Y1|U0))2 + (ιU2,Y2|U0
(U2;Y2|U0))2

]
+ 12γ2 + 84

)
. (6)

The logarithmic terms A and B (or the last term in (6)) result in an O(n−1 log n) penalty on the rate in the finite blocklength
regime, and do not affect the second order result. Ignoring the last term in (6), the error event in (6) is a strict subset of those
in [5, eqn (32)] and [4, eqn (49)]. This is because the error event in [5] is a superset of (6) by Fourier-Motzkin elimination
on J2 in the error event in [5], but the reverse is not true since Fourier-Motzkin elimination only guarantees the existence of a
random variable for J2 (that depends on the information density terms) satisfying the bounds, but J2 must be a constant since
it is a parameter of the code construction in [5].
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Theorem 5 gives the following second order bound. Consider n independent channel uses. Let La = 2nRa for a = 0, 1, 2.
By the multi-dimensional Berry-Esseen theorem [26] (using the notation in [5]), we have Pe ≤ ε if there exists R̄, R̂1, R̂2 ≥ 0
such that 

R̃1 + R̄

R̃2

R̃2 − R̄

R̃0 + R̃1 + R̄

R̃0 + R̃2

R̃0 + R̃2 − R̄


∈ E[I]− 1√

n
Q−1

(
Cov[I], ε− β√

n

)
− β log n

n

if n > β2ε−2, where β is a constant that depends on PU0,U1,U2,Y1,Y2
, and R̃0 = R0 + R̂1 + R̂2, R̃a = Ra − R̂a for a = 1, 2,

and

I =



ιU1;Y1|U0
(U1;Y1|U0)

ιU2,Y2|U0
(U2;Y2|U0)

ιU2,Y2|U0
(U2;Y2|U0)− ιU1;U2|U0

(U1;U2|U0)

ιU0,U1;Y1(U0, U1;Y1)

ιU0,U2;Y2
(U0, U2;Y2)

ιU0,U2;Y2
(U0, U2;Y2)− ιU1;U2|U0

(U1;U2|U0)


.

To demonstrate the use of the generalized Poisson matching lemma in place of the mutual covering lemma, we prove a
one-shot version of Marton’s inner bound without common message [13] (i.e., L0 = 1). Our bound is stronger than that in [3]
in the sense that our bound implies [3] (with a slight penalty of having 21−γ + 2−2γ instead of 21−γ + e−2γ ), but [3] does not
imply our bound. We also note that a finite-blocklength bound is given in [7]. Nevertheless, the analysis in [7] only works for
discrete auxiliary random variables U1, U2, and does not appear to yield a one-shot bound due to the use of typical sequences.

In the conventional mutual covering approach in [5], [4], sub-codebooks for both U1 and U2 are generated, whereas in
our approach we generate a sub-codebook only for U1, and the codebook of U2 adapts to the sub-codebook automatically,
eliminating the need for a sub-codebook for U2.

Theorem 6. Fix any PU1,U2
and function x : U1 × U2 → X . For any J ∈ N, there exists a code for the broadcast channel

PY1,Y2|X for independent private messages Mj ∼ Unif[1 : Lj ], j = 1, 2, with the error probability bounded by

Pe ≤ E

[
min

{
L1J2−ιU1;Y1

(U1;Y1) + L2(1− J−1)2−ιU2;Y2
(U2;Y2) + L2J

−12ιU1;U2
(U1;U2)−ιU2;Y2

(U2;Y2), 1

}]
if all the information density terms are defined, where (U1, U2, X, Y1, Y2) ∼ PU1U2δx(U1,U2)PY1,Y2|X .

Proof: Let {(Ū1,i, M̄1,i), T1,i}i∈N, {(Ū2,i, M̄2,i), T2,i}i∈N be two independent Poisson processes with intensity measures
PU1
× PM1

× λR≥0
and PU2 × PM2 × λR≥0

respectively, independent of M1,M2.
The encoder would generate X such that

(M1,M2,K, {Ǔ1j}j∈[1:J], U1, U2, X) ∼ PM1 × PM2 × PKP⊗JU1
δǓ1K

PU2|U1
δx(U1,U2), (7)

where PK = Unif[1 : J], and {Ǔ1j}j∈[1:J] ∈ UJ
1 is an intermediate list (which can be regarded as a sub-codebook). The

term P⊗JU1
δǓ1K

in (7) means that {Ǔ1j}j are i.i.d. PU1
, and U1 = Ǔ1K . To accomplish this, the encoder computes Ǔ1j =

(Ũ1)PU1
×δM1

(j) for j = 1, . . . , J (which Poisson process we are referring to can be deduced from whether we are discussing U1

or U2), U2 = (Ũ2)J−1
∑J
j=1 PU2|U1

(·|Ǔ1j)×δM2
, and (K,U1)|({Ǔ1j}j , U2) ∼ PK,U1|{Ǔ1j}j ,U2

(where PK,U1|{Ǔ1j}j ,U2
is derived

from (7)), and outputs X = x(U1, U2). It can be verified that (7) is satisfied.
The decoding functions are M̂1 = (M̃1)PU1|Y1

(·|Y1)×PM1
, M̂2 = (M̃2)PU2|Y2

(·|Y2)×PM2
. We have the following almost surely:

P

{
(Ũ1, M̃1)PU1|Y1

(·|Y1)×PM1
6= (U1,M1)

∣∣∣∣U1, U2, Y1, Y2,M1,K

}
(a)
= P

{
(Ũ1, M̃1)PU1|Y1

(·|Y1)×PM1
6= (U1,M1)

∣∣∣∣U1, Y1,M1,K

}
(b)

≤ K
dPU1

× δM1

dPU1|Y1
(·|Y1)× PM1

(U1,M1)



11

M1 M2

K {Ǔ1j}j

U1 U2

X

Y1 Y2

{(Ū1,i, M̄1,i), T1,i}i

M1 M2

K {Ǔ1j}j

U1 U2

X

Y1 Y2

{(Ū1,i, M̄1,i), T1,i}i

M1 M2

K {Ǔ1j}j

U1 U2

X

Y1 Y2

{(Ū2,i, M̄2,i), T2,i}i

Figure 1. Left: The Bayesian network described in (7). Middle: The Bayesian network deduced from (7) and Ǔ1j = (Ũ1)PU1
×δM1

(j). Right: The Bayesian
network describing the encoding scheme. Note that all three are valid Bayesian networks, and the desired conditional independence relations can be deduced
using d-separation.

≤ L1J2−ιU1;Y1
(U1;Y1),

where (a) is by (U2, Y2) ↔ (U1, Y1,M1,K) ↔ {(Ū1,i, M̄1,i), T1,i}i (see Figure 1 middle), and (b) is by the conditional
generalized Poisson matching lemma on (X, J, U, Y,QU |Y )← (M1, K, (U1,M1), Y1, PU1|Y1

× PM1), since PU1,M1|M1,K =
PU1 × δM1 , (M1,K) ⊥⊥ {(Ū1,i, M̄1,i), T1,i}i, and Y1 ↔ (U1,M1,K)↔ {(Ū1,i, M̄1,i), T1,i}i, which can be deduced from (7)
and Ǔ1j = (Ũ1)PU1

×δM1
(j) (see Figure 1 middle).

Also, almost surely,

P
{

(Ũ2, M̃2)PU2|Y2
(·|Y2)×PM2

6= (U2,M2)
∣∣∣ U1, U2, Y1, Y2,M2

}
(a)
= P

{
(Ũ2, M̃2)PU2|Y2

(·|Y2)×PM2
6= (U2,M2)

∣∣∣ U1, U2, Y2,M2

}
(b)

≤ E

[
d(J−1

∑J
j=1 PU2|U1

(·|Ǔ1j))× δM2

dPU2|Y2
(·|Y2)× PM2

(U2,M2)

∣∣∣∣∣ U1, U2, Y2,M2

]

= E

L2J
−1

J∑
j=1

2ιU1;U2
(Ǔ1j ;U2)−ιU2;Y2

(U2;Y2)

∣∣∣∣∣∣ U1, U2, Y2,M2


= E

L2J
−12−ιU2;Y2

(U2;Y2)
(

2ιU1;U2
(U1;U2) +

∑
j∈[1:J]\K

2ιU1;U2
(Ǔ1j ;U2)

) ∣∣∣∣∣∣ U1, U2, Y2,M2


= E

L2J
−12−ιU2;Y2

(U2;Y2)
(

2ιU1;U2
(U1;U2) +

J−1∑
j=1

2ιU1;U2
(Ǔ1,j+1{j≥K};U2)

) ∣∣∣∣∣∣ U1, U2, Y2,M2


(c)

≤ L2J
−12−ιU2;Y2

(U2;Y2)(2ιU1;U2
(U1;U2) + J− 1),

where (a) is by Y1 ↔ (U1, U2, Y2,M2)↔ {(Ū2,i, M̄2,i), T2,i}i (see Figure 1 right), (b) is by the conditional Poisson matching
lemma on (({Ǔ1j}j ,M2), (U2,M2), Y2, PU2|Y2

×PM2
), and (c) is because {Ǔ1,j+1{j≥K}}j∈[1:J−1] (the Ǔ1j’s not selected as

U1) are independent of (U1, U2, Y2,M2), E[2ιU1;U2
(Ǔ1,j+1{j≥K};U2) |U2] = 1, and Jensen’s inequality. Hence,

P{(M1,M2) 6= (M̂1, M̂2)}

= E
[
P
{

(M1,M2) 6= (M̂1, M̂2)
∣∣∣ U1, U2, Y1, Y2

}]
≤ E

[
min

{
P
{
M1 6= M̂1

∣∣∣ U1, U2, Y1, Y2

}
+ P

{
M2 6= M̂2

∣∣∣ U1, U2, Y1, Y2

}
, 1
}]

≤ E

[
min

{
L1J2−ιU1;Y1

(U1;Y1) + L2J
−12−ιU2;Y2

(U2;Y2)(2ιU1;U2
(U1;U2) + J− 1), 1

}]
.

Therefore there exist fixed realizations of the Poisson processes attaining the desired bound.
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IX. ONE-SHOT DISTRIBUTED LOSSY SOURCE CODING

The one-shot distributed lossy source coding setting is described as follows. Let (X1, X2) ∼ PX1,X2 . Upon observing Xj ,
encoder j produces Mj ∈ [1 : Lj ], j = 1, 2. The decoder observes M1,M2 and recovers Ẑ1 ∈ Z1, Ẑ2 ∈ Z2 with probability
of excess distortion Pe = P{d1(X1, Ẑ1) > D1 or d2(X2, Ẑ2) > D2}, where dj : Xj × Zj → R≥0 is a distortion measure for
j = 1, 2.

We show a one-shot version of the Berger-Tung inner bound [11], [12].

Theorem 7. Fix any PU1|X1
, PU2|X2

and functions zj : U1 × U2 → Zj , j = 1, 2. There exists a code for distributed lossy
source coding with sources PX1

, PX2
and message sizes L1, L2, with probability of excess distortion

Pe ≤ E

[
min

{
1{d1(X1, Z1) > D1 or d2(X2, Z2) > D2}+ L−1

1 2ιU1;X1|U2
(U1;X1|U2)

+
(
L−1

1 L−1
2 2ιU1,U2;X1,X2

(U1,U2;X1,X2) + L−1
2 2ιU2;X2|U1

(U2;X2|U1)
)(

log(L22−ιU2;X2|U1
(U2;X2|U1) + 1) + 1

)2

, 1

}]
(8)

if all the information density terms are defined, where (X1, X2, U1, U2, Z1, Z2) ∼ PX1,X2PU1|X1
PU2|X2

δz1(U1,U2)δz2(U1,U2).
As a result, for γ > 0,

Pe ≤ P

{
d1(X1, Z1) > D1 or d2(X2, Z2) > D2 or log L1 < ιU1;X1|U2

(U1;X1|U2) + γ

or log L2 < ιU2;X2|U1
(U2;X2|U1) + γ or log L1L2 < ιU1,U2;X1,X2

(U1, U2;X1, X2) + γ

}
+ 2−γ

(
4E[(ιU1;U2

(U1;U2))2] + 4γ2 + 29
)
. (9)

The logarithmic term in (8) (or the last term in (9)) results in an O(n−1 log n) penalty on the rate in the finite blocklength
regime, and does not affect the second order result. Ignoring the last term in (9), the error event in (9) is a strict subset of
that in [5, eqn (47)]. This is because the error event in [5] is a superset of (9) by Fourier-Motzkin elimination on J1, J2 in
the error event in [5], but the reverse is not true since Fourier-Motzkin elimination only guarantees the existence of random
variables for J1, J2 (that depend on the information density terms) satisfying the bounds, but J1, J2 must be constants since
they are parameters of the code construction in [5].

We now prove the result. Unlike previous approaches, our proof does not require binning. The encoders are the same as
those for point-to-point lossy source coding.

Proof: Let {(Ū1,i, M̄1,i), T1,i}i∈N, {(Ū2,i, M̄2,i), T2,i}i∈N be two independent Poisson processes with intensity mea-
sures PU1

× PM1
× λR≥0

and PU2
× PM2

× λR≥0
respectively, independent of X1, X2. The encoding functions are Mj =

(M̃j)PUj |Xj (·|Xj)×PMj , j = 1, 2 (which Poisson process we are referring to can be deduced from whether we are dis-
cussing M1 or M2). Also define Uj = (Ũj)PUj |Xj (·|Xj)×PMj , Zj = zj(U1, U2), j = 1, 2. For the decoding function,

let Ǔ1k = (Ũ1)PU1
×δM1

(k) for k ∈ N, Û2 = (Ũ2)∑∞
k=1 φ(k)PU2|U1

(·|Ǔ1k)×δM2
where φ(k) ∝ k−1(log(k + 2))−2 with∑∞

k=1 φ(k) = 1, and Û1 = (Ũ1)PU1|U2
(·|Û2)×δM1

, Ẑj = zj(Û1, Û2), j = 1, 2. Note that (M1,M2, X1, X2, U1, U2, Z1, Z2) ∼
PM1 × PM2 × PX1,X2PU1|X1

PU2|X2
δz1(U1,U2)δz2(U1,U2).

Let K = ΥPU1|X1
(·|X1)×PM1

‖PU1
×δM1

(1) (using the Poisson process {(Ū1,i, M̄1,i), T1,i}i∈N). By the conditional generalized
Poisson matching lemma on (X1, 1, (U1,M1), M1, PU1

× δM1
) (note that PU1,M1|X1

= PU1|X1
× PM1

), almost surely,

E [K | X1, U1,M1] ≤
dPU1|X1

(·|X1)× PM1

dPU1
× δM1

(U1,M1) + 1

= L−1
1 2ιU1;X1

(U1;X1) + 1. (10)

Since {Ǔ1k}k is a function of {(Ū1,i, M̄1,i), T1,i}i and M1, we have {Ǔ1k}k ↔ (X1, X2, U1, U2,M2)↔ {(Ū2,i, M̄2,i), T2,i}i.
By the conditional Poisson matching lemma on (X2, (U2,M2), ({Ǔ1k}k,M2),

∑∞
k=1 φ(k)PU2|U1

(·|Ǔ1k) × δM2) (note that
PU2,M2|X2

= PU2|X2
× PM2

), almost surely,

P

{
(Ũ2, M̃2)∑∞

k=1 φ(k)PU2|U1
(·|Ǔ1k)×δM2

6= (U2,M2)
∣∣∣ X1, X2, U1, U2,M2

}
≤ E

[
min

{
dPU2|X2

(·|X2)× PM2

d(
∑∞
k=1 φ(k)PU2|U1

(·|Ǔ1k))× δM2

(U2,M2), 1

} ∣∣∣∣∣ X1, X2, U1, U2,M2

]

≤ E

[
min

{
L−1

2

dPU2|X2
(·|X2)

φ(K)dPU2|U1
(·|U1)

(U2), 1

} ∣∣∣∣ X1, X2, U1, U2,M2

]
= E

[
min{L−1

2 (φ(K))−12ιU2;X2|U1
(U2;X2|U1), 1}

∣∣∣ X1, X2, U1, U2,M2

]
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(a)

≤ E

[
KL−1

2 2ιU2;X2|U1
(U2;X2|U1)

(
log(L22−ιU2;X2|U1

(U2;X2|U1) + 1) + 1
)2
∣∣∣∣ X1, X2, U1, U2,M2

]
(b)

≤
(
L−1

1 2ιU1;X1
(U1;X1) + 1

)
L−1

2 2ιU2;X2|U1
(U2;X2|U1)

(
log(L22−ιU2;X2|U1

(U2;X2|U1) + 1) + 1
)2

=
(
L−1

1 L−1
2 2ιU1,U2;X1,X2

(U1,U2;X1,X2) + L−1
2 2ιU2;X2|U1

(U2;X2|U1)
)(

log(L22−ιU2;X2|U1
(U2;X2|U1) + 1) + 1

)2

,

where (a) is by Proposition 6, and (b) is by K ↔ (U1, X1)↔ (X2, U2,M2), (10) and Jensen’s inequality. By the conditional
Poisson matching lemma on (X1, (U1,M1), (U2,M1), PU1|U2

× δM1
) (note that PU1,M1|X1

= PU1|X1
× PM1

), and X2 ↔
(X1, U1, U2,M1)↔ {(Ū1,i, M̄1,i), T1,i}i, almost surely,

P

{
(Ũ1, M̃1)PU1|U2

(·|U2)×δM1
6= (U1,M1)

∣∣∣∣X1, X2, U1, U2,M1

}
≤
dPU1|X1

(·|X1)× PM1

dPU1|U2
(·|U2)× δM1

(U1,M1)

= L−1
1 2ιU1;X1|U2

(U1;X1|U2).

We have

P{d1(X1, Ẑ1) > D1 or d2(X2, Ẑ2) > D2}

≤ E

[
P

{
d1(X1, Z1) > D1 or d2(X2, Z2) > D2 or Û2 6= U2

or (Û2 = U2 and Û1 6= U1)

∣∣∣∣X1, X2, U1, U2

}]
≤ E

[
min

{
1{d1(X1, Z1) > D1 or d2(X2, Z2) > D2}+ L−1

1 2ιU1;X1|U2
(U1;X1|U2)

+
(
L−1

1 L−1
2 2ιU1,U2;X1,X2

(U1,U2;X1,X2) + L−1
2 2ιU2;X2|U1

(U2;X2|U1)
)(

log(L22−ιU2;X2|U1
(U2;X2|U1) + 1) + 1

)2

, 1

}]
Therefore there exist fixed values of the Poisson processes attaining the desired bound.

For (9), if the event in (9) does not occur, by Proposition 6 with α = γ − 1, α̃ = γ, β = ιU1;U2
(U1;U2)− γ,

L−1
1 2ιU1;X1|U2

(U1;X1|U2)

+
(
L−1

1 L−1
2 2ιU1,U2;X1,X2

(U1,U2;X1,X2) + L−1
2 2ιU2;X2|U1

(U2;X2|U1)
)(

log(L22−ιU2;X2|U1
(U2;X2|U1) + 1) + 1

)2

≤ 2−γ + 21−γ (2(ιU1;U2(U1;U2))2 + 2γ2 + 14
)

= 2−γ
(
4(ιU1;U2(U1;U2))2 + 4γ2 + 29

)
.

Remark 3. The reason for the logarithmic term is that we want to translate a bound on E[K] (given by the generalized Poisson
matching lemma) into a bound on E[(φ(K))−1] for some distribution φ over N. Ideally, we wish (φ(k))−1 ∝ k, but this is
impossible since the harmonic series diverges. Therefore we use a slow converging series φ(k) ∝ k−1(log(k + 2))−2 instead,
resulting in a logarithmic penalty.

If we use J−11{k ≤ J} instead of φ(k) in the proof, we can obtain the following bound for any J ∈ N:

Pe ≤ E

[
min

{
1{d1(X1, Z1) > D1 or d2(X2, Z2) > D2}

+ L−1
1 J−12ιU1;X1

(U1;X1) + L−1
2 J2ιU2;X2|U1

(U2;X2|U1) + L−1
1 2ιU1;X1|U2

(U1;X1|U2), 1

}]
.

Compared to Theorem 7, this does not contain the logarithmic term, but requires optimizing over J, and may give a worse
second order result.

Another choice is to use g(k) ∝ k−11{k ≤ J} instead of φ(k). We can obtain the following bound for any J ∈ N:

Pe ≤ E

[
min

{
1{d1(X1, Z1) > D1 or d2(X2, Z2) > D2}+ L−1

1 J−12ιU1;X1
(U1;X1)

+ L−1
1 L−1

2 (ln J + 1)2ιU1,U2;X1,X2
(U1,U2;X1,X2) + L−1

2 (ln J + 1)2ιU2;X2|U1
(U2;X2|U1) + L−1

1 2ιU1;X1|U2
(U1;X1|U2), 1

}]
.

which gives the same second order result as Theorem 7. Nevertheless, we prefer using φ(k) which eliminates the need for a
parameter J at the decoder.
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X. ONE-SHOT CODING FOR MULTIPLE ACCESS CHANNELS

The one-shot coding setting for the multiple access channel is described as follows. Upon observing Mj ∼ Unif[1 : Lj ]
(M1,M2 independent), encoder j produces Xj , j = 1, 2. The decoder observes the output Y of the channel PY |X1,X2

and
recovers (M̂1, M̂2). The error probability is Pe = P{(M1,M2) 6= (M̂1, M̂2)}.

We present a one-shot achievability result for the capacity region in [27], [28], [29]. While this result is slightly weaker
than that in [3], we include it to illustrate the use of the generalized Poisson matching lemma in simultaneous decoding. Note
that the logarithmic term results in an O(n−1 log n) penalty on the rate in the finite blocklength regime, and does not affect
the second order result.

Theorem 8. Fix any PX1 , PX2 . There exists a code for the multiple access channel PY |X1,X2
for messages Mj ∼ Unif[1 : Lj ],

j = 1, 2, with the error probability bounded by

Pe ≤ E

[
min

{(
L1L22−ιX1,X2;Y (X1,X2;Y ) + L22−ιX2;X1,Y

(X2;X1,Y )
)(

log(L−1
2 2ιX2;X1,Y

(X2;X1,Y ) + 1) + 1
)2

+ L12−ιX1;X2,Y
(X1;X2,Y ), 1

}]
if PX1X2Y � PX1 × PX2 × PY , where (X1, X2, Y ) ∼ PX1PX2PY |X1,X2

. As a result, for γ > 0,

Pe ≤ P

{
log L1 > ιX1;X2,Y (X1;X2, Y )− γ or log L2 > ιX2;X1,Y (X2;X1, Y )− γ

or log L1L2 > ιX1,X2;Y (X1, X2;Y )− γ
}

+ 2−γ
(
4E[(ιX1;X2|Y (X1;X2|Y ))2] + 4γ2 + 29

)
. (11)

Proof: Let {(X̄1,i, M̄1,i), T1,i}i∈N, {(X̄2,i, M̄2,i), T2,i}i∈N be two independent Poisson processes with intensity measures
PX1
×PM1

×λR≥0
and PX2

×PM2
×λR≥0

respectively, independent of M1,M2. The encoding functions are X1 = (X̃1)PX1
×δM1

,
X2 = (X̃2)PX2

×δM2
(which Poisson process we are referring to can be deduced from whether we are discussing X1 or X2). For

the decoding function, let X̌1k = (X̃1)PX1|Y (·|Y )×PM1
(k) for k ∈ N, (X̂2, M̂2) = (X̃2, M̃2)∑∞

k=1 φ(k)PX2|X1,Y
(·|X̌1k,Y )×PM2

where φ(k) ∝ k−1(log(k + 2))−2 with
∑∞
k=1 φ(k) = 1, and M̂1 = (M̃1)PX1|X2,Y

(·|X̂2,Y )×PM1
.

Let K = ΥPX1
×δM1

‖PX1|Y (·|Y )×PM1
(1) (using the Poisson process {(X̄1,i, M̄1,i), T1,i}i∈N). By the conditional generalized

Poisson matching lemma on (M1, 1, (X1,M1), Y, PX1|Y × PM1
) (note that PX1,M1|M1

= PX1
× δM1

), almost surely,

E [K | X1, Y,M1] ≤ dPX1 × δM1

dPX1|Y (·|Y )× PM1

(X1,M1) + 1

= L12−ιX1;Y (X1;Y ) + 1. (12)

Since {X̌1k}k is a function of {(X̄1,i, M̄1,i), T1,i}i and Y , we have {X̌1k}k ↔ (X1, X2, Y,M2)↔ {(X̄2,i, M̄2,i), T2,i}i. By
the conditional Poisson matching lemma on (M2, (X2,M2), ({X̌1k}k, Y ),

∑∞
k=1 φ(k)PX2|X1,Y (·|X̌1k, Y )× PM2

) (note that
PX2,M2|M2

= PX2 × δM2 ), almost surely,

P

{
(X̃2, M̃2)∑∞

k=1 φ(k)PX2|X1,Y
(·|X̌1k,Y )×PM2

6= (X2,M2)
∣∣∣ X1, X2, Y,M2

}
≤ E

[
min

{
dPX2

× δM2

d(
∑∞
k=1 φ(k)PX2|X1,Y (·|X̌1k, Y ))× PM2

(X2,M2), 1

} ∣∣∣∣∣ X1, X2, Y,M2

]

≤ E

[
min

{
L2

dPX2

φ(K)dPX2|X1,Y (·|X1, Y )
(X2), 1

} ∣∣∣∣ X1, X2, Y,M2

]
= E

[
min{L2(φ(K))−12−ιX2;X1,Y

(X2;X1,Y ), 1}
∣∣∣ X1, X2, Y,M2

]
(a)

≤ E

[
KL22−ιX2;X1,Y

(X2;X1,Y )
(

log(L−1
2 2ιX2;X1,Y

(X2;X1,Y ) + 1) + 1
)2
∣∣∣∣ X1, X2, Y,M2

]
(b)

≤
(
L12−ιX1;Y (X1;Y ) + 1

)
L22−ιX2;X1,Y

(X2;X1,Y )
(

log(L−1
2 2ιX2;X1,Y

(X2;X1,Y ) + 1) + 1
)2

=
(
L1L22−ιX1,X2;Y (X1,X2;Y ) + L22−ιX2;X1,Y

(X2;X1,Y )
)(

log(L−1
2 2ιX2;X1,Y

(X2;X1,Y ) + 1) + 1
)2

,

where (a) is by Proposition 6, and (b) is by K ↔ (X1, Y ) ↔ X2, (12) and Jensen’s inequality. By the conditional Poisson
matching lemma on (M1, (X1,M1), (X2, Y ), PX1|X2,Y × PM1

) (note that PX1,M1|M1
= PX1

× δM1
), almost surely,

P

{
(X̃1, M̃1)PX1|X2,Y

(·|X2,Y )×PM1
6= (X1,M1)

∣∣∣∣X1, X2, Y,M1

}
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≤ dPX1 × δM1

dPX1|X2,Y (·|X2, Y )× PM1

(X1,M1)

= L12−ιX1;X2,Y
(X1;X2,Y ).

Therefore there exist fixed values of the Poisson processes attaining the desired bound.
For (11), if the event in (11) does not occur, by Proposition 6 with α = γ − 1, α̃ = γ, β = ιX1;X2|Y (X1;X2|Y )− γ,(

L1L22−ιX1,X2;Y (X1,X2;Y ) + L22−ιX2;X1,Y
(X2;X1,Y )

)(
log(L−1

2 2ιX2;X1,Y
(X2;X1,Y ) + 1) + 1

)2

+ L12−ιX1;X2,Y
(X1;X2,Y )

≤ 21−γ (2(ιX1;X2|Y (X1;X2|Y ))2 + 2γ2 + 14
)

+ 2−γ

= 2−γ
(
4(ιX1;X2|Y (X1;X2|Y ))2 + 4γ2 + 29

)
.

Remark 4. If we use J−11{k ≤ J} instead of φ(k) in the proof, we can obtain the following bound for any J ∈ N:

Pe ≤ E

[
min

{
L1J
−12−ιX1;Y (X1;Y ) + L2J2

−ιX2;X1,Y
(X2;X1,Y ) + L12−ιX1;X2,Y

(X1;X2,Y ), 1

}]
.

Compared to Theorem 8, this does not contain the logarithmic term, but requires optimizing over J, and may give a worse
second order result.

Another choice is to use g(k) ∝ k−11{k ≤ J} instead of φ(k). We can obtain the following bound for any J ∈ N:

Pe ≤ E

[
min

{
L1L2(ln J + 1)2−ιX1,X2;Y (X1,X2;Y ) + L2(ln J + 1)2−ιX2;X1,Y

(X2;X1,Y )

+ L12−ιX1;X2,Y
(X1;X2,Y ) + L1J

−12−ιX1;Y (X1;Y ), 1

}]
,

which gives the same second order result as Theorem 8. Nevertheless, we prefer using φ(k) which eliminates the need for a
parameter J at the decoder.

XI. ONE-SHOT CHANNEL RESOLVABILITY AND SOFT COVERING

The one-shot channel resolvability setting [30] is described as follows. Fix a channel PY |X and input distribution PX .
Upon observing an integer M ∼ Unif[1 : L], the encoder applies a deterministic mapping g : [1 : L] → X on M to produce
X̂ = g(M), which is sent through the channel PY |X and gives the output Ŷ . The goal is to minimize the total variation
distance between PŶ and PY (Y -marginal of PXPY |X ), i.e., ε := ‖L−1

∑L
m=1 PY |X(·|g(m))− PY (·)‖TV.

We show a one-shot channel resolvability result using the the Poisson matching lemma. This result can also be regarded as
a one-shot soft covering lemma [31].

Proposition 2. Given channel PY |X and input distribution PX with PXY � PX ×PY . Let {X̌m}m∈[1:L]
iid∼ PX , then for any

J ∈ N,

E

[∥∥∥L−1
L∑

m=1

PY |X(·|X̌m)− PY (·)
∥∥∥

TV

]
≤ E

[
(1 + 2−ιX;Y (X;Y ))−J

]
+

1

2

√
JL−1. (13)

As a result, for any 0 < γ ≤ log L,

E

[∥∥∥L−1
L∑

m=1

PY |X(·|X̌m)− PY (·)
∥∥∥

TV

]

≤ P {ιX;Y (X;Y ) > log L− γ}+ 2−γ/2
(

1 +
1

2

√
γ

)
+

1

2

√
L−1. (14)

Hence there exists a code for channel resolvability satisfying the above bounds.

Proof: Let P = {Ȳi, Ti}i∈N be the points of a Poisson process with intensity measure PY × λR≥0
. Let M ∼ Unif[1 : L],

{X̌m}m∈[1:L]
iid∼ PX (M ⊥⊥ {X̌j}j ⊥⊥ P), and X = X̌M . Let Y = ỸPY |X(·|X), and Ŷj = ỸPY (j) for j ∈ N. We have

E
[
‖PY |{X̌m}m(·|{X̌m}m)− PY (·)‖TV

]
(a)

≤ E
[
‖PY |{X̌m}m,P(·|{X̌m}m,P)− PY |P(·|P)‖TV

]
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(b)
=

1

2
E

 ∑
y∈{Ŷj}j∈N

∣∣∣PY |P(y|P)− PY |{X̌m}m,P(y|{X̌m}m,P)
∣∣∣


≤ 1

2
E

[ ∑
y∈{Ŷj}j∈[1:J]

∣∣∣PY |P(y|P)− PY |{X̌m}m,P(y|{X̌m}m,P)
∣∣∣

+
∑

y∈{Ŷj}j∈N\{Ŷj}j∈[1:J]

(
PY |P(y|P) + PY |{X̌m}m,P(y|{X̌m}m,P)

)]

=
1

2
E

 ∑
y∈{Ŷj}j∈[1:J]

∣∣∣∣∣PY |P(y|P)− L−1
L∑

m=1

PY |X,P(y|X̌m,P)

∣∣∣∣∣


+
1

2
E
[
PY |P(Y\{Ŷj}j∈[1:J]|P) + PY |{X̌m}m,P(Y\{Ŷj}j∈[1:J] | {X̌m}m,P)

]
=

1

2
E

 ∑
y∈{Ŷj}j∈[1:J]

∣∣∣∣∣PY |P(y|P)− L−1
L∑

m=1

PY |X,P(y|X̌m,P)

∣∣∣∣∣
+ P

{
Y /∈ {Ŷj}j∈[1:J]

}
,

where (a) is by the convexity of the total variation distance, and (b) is because Y ∈ {Ŷj}j∈N almost surely (note that the
summation

∑
y∈{Ŷj}j∈N ignores multiplicity of elements in {Ŷj}j∈N). For the first term, note that since Y is a function of

(X,P), we have PY |X,P(y|X̌m,P) ∈ {0, 1}, and hence(
L∑

m=1

PY |X,P(y|X̌m,P)

) ∣∣∣∣P ∼ Bin(L, PY |P(y|P)).

We have

1

2
E

 ∑
y∈{Ŷj}j∈[1:J]

∣∣∣∣∣PY |P(y|P)− L−1
L∑

m=1

PY |X,P(y|X̌m,P)

∣∣∣∣∣


=
1

2
E

 ∑
y∈{Ŷj}j∈[1:J]

E

[∣∣∣∣∣PY |P(y|P)− L−1
L∑

m=1

PY |X,P(y|X̌m,P)

∣∣∣∣∣
∣∣∣∣∣ P
]

≤ 1

2
E

 ∑
y∈{Ŷj}j∈[1:J]

√√√√Var

[
L−1

L∑
m=1

PY |X,P(y|X̌m,P)

∣∣∣∣∣ P
]

≤ 1

2
E

 ∑
y∈{Ŷj}j∈[1:J]

√
L−1PY |P(y|P)


≤ 1

2
E

√J
∑

y∈{Ŷj}j∈[1:J]

L−1PY |P(y|P)


≤ 1

2

√
JL−1.

For the second term, by the conditional generalized Poisson matching lemma on (X, 1, Y, ∅, PY ),

P{Y /∈ {Ŷj}j∈[1:J]}

≤ E

(1−
(

1 +
dPY |X(·|X)

dPY
(Y )

)−1
)J


= E
[
(1− (1 + 2ιX;Y (X;Y ))−1)J

]
.

Hence,

E
[
‖PY |{X̌j}j (·|{X̌m}m)− PY (·)‖TV

]
≤ E

[
(1− (1 + 2ιX;Y (X;Y ))−1)J

]
+

1

2

√
JL−1
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= E
[
(1 + 2−ιX;Y (X;Y ))−J

]
+

1

2

√
JL−1.

For (14), substitute J = dγ2−γLe,

E
[
(1− (1 + 2ιX;Y (X;Y ))−1)J

]
+

1

2

√
JL−1

(a)

≤ E
[
(1− (1 + (2L2−γ)−12ιX;Y (X;Y ))−1)J(2L2−γ)−1

]
+

1

2

√
JL−1

≤ P {ιX;Y (X;Y ) > log L− γ}+ 2−J(2L2−γ)−1

+
1

2

√
(γ2−γL + 1)L−1

≤ P {ιX;Y (X;Y ) > log L− γ}+ 2−γ/2 +
1

2

√
γ2−γ +

1

2

√
L−1

= P {ιX;Y (X;Y ) > log L− γ}+ 2−γ/2
(

1 +
1

2

√
γ

)
+

1

2

√
L−1,

where (a) is because γ ≤ log L, 2L2−γ > 1 and (1− (1 + α)−1)β ≤ 1− (1 + β−1α)−1 for α ≥ 0, β ≥ 1.

Compare this to Theorem 2 in [32] (weakened by substituting δ′p,W,C ≤ C): for any α > 0,

ε ≤ P {ιX;Y (X;Y ) > logα}+
1

2

√
αL−1.

If we assume 1 ≤ α ≤ L and substitute γ = log(L/α) in (14), we obtain the following slightly weaker bound (within a
logarithmic gap from that in [32]):

ε ≤ P {ιX;Y (X;Y ) > logα}+
√
αL−1

(
1 +

1

2

√
log(L/α)

)
+

1

2

√
L−1.

Nevertheless, the bound in [32] does not imply (13), so neither bound is stronger than the other.
The channel resolvability or soft covering bound in Proposition 2 can be applied to prove various secrecy and coordination

results, e.g. one-shot coding for wiretap channels [33], one-shot channel synthesis [31], and one-shot distributed source
simulation [34]. Hence these results can also be proved using the Poisson matching lemma alone. In the next section, we
will prove a one-shot result for wiretap channels.

XII. ONE-SHOT CODING FOR WIRETAP CHANNELS

The one-shot version of the wiretap channel setting [33] is described as follows. Upon observing M ∼ Unif[1 : L], the
encoder produces X , which is sent through the broadcast channel PY,Z|X . The legitimate decoder observes Y and recovers M̂
with error probability Pe = P{M 6= M̂}. The eavesdropper observes Z. Secrecy is measured by the total variation distance
ε := ‖PM,Z − PM × PZ‖TV.

The following bound is a direct result of the generalized Poisson matching lemma and Proposition 2. It is included for
demonstration purposes. See [32], [35], [36] for other one-shot bounds (that are not strictly stronger or weaker than ours).

Proposition 3. Fix any PU,X . For any ν ≥ 0, K, J ∈ N, there exists a code for the wiretap channel PY,Z|X , with message
M ∼ Unif[1 : L], with average error probability Pe and secrecy measure ε satisfying

Pe + νε ≤ E
[
min{LK2−ιU;Y (U ;Y ), 1}

]
+ ν

(
2E
[
(1 + 2−ιU;Z(U ;Z))−J

]
+
√
JK−1

)
if PUY � PU × PY and PUZ � PU × PZ .

Proof: Let P = {(Ūi, M̄i), Ti}i∈N be the points of a Poisson process with intensity measure PU×PM×λR≥0
independent

of M . Let K ∼ Unif[1 : K] independent of (M,P). The encoder computes U = ŨPU×δM (K) and generates X|U ∼ PX|U .
The decoder recovers M̂ = M̃PU|Y (·|Y )×PM . We have (M,K,U,X, Y, Z) ∼ PM × PK × PU,XPY,Z|X . By the conditional
generalized Poisson matching lemma on (M, K, (U,M), Y, PU |Y × PM ) (note that PU,M |M,K = PU × δM ),

P
{
M 6= M̂

}
≤ E

[
P
{

(U,M) 6= (Ũ , M̃)PU|Y (·|Y )×PM |M,K,U, Y
}]

≤ E

[
min

{
K

dPU × δM
dPU |Y (·|Y )× PM

(U,M), 1

}]
= E

[
min{LK2−ιU;Y (U ;Y ), 1}

]
.
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For the secrecy measure,

E
[∥∥∥PM,Z|P(·, ·|P)− PM (·)× PZ|P(·|P)

∥∥∥
TV

]
= E

[∥∥∥PZ|M,P(·|M,P)− PZ|P(·|P)
∥∥∥

TV

]
≤ E

[∥∥∥PZ|M,P(·|M,P)− PZ(·)
∥∥∥

TV

]
+ E

[∥∥∥PZ|P(·|P)− PZ(·)
∥∥∥

TV

]
(a)

≤ 2E
[∥∥∥PZ|M,P(·|M,P)− PZ(·)

∥∥∥
TV

]
= 2E

[∥∥∥K−1
K∑
k=1

PZ|U (·|ŨPU×δM (k))− PZ(·)
∥∥∥

TV

]
(b)

≤ 2E
[
(1 + 2−ιU;Z(U ;Z))−J

]
+
√
JK−1,

where (a) is by the convexity of total variation distance, and (b) is by Proposition 2 since {ŨPU×δm(k)}k∈[1:K]
iid∼ PU for any

m. Therefore there exists a fixed set of points for P satisfying the desired bound.

XIII. STRONG FUNCTIONAL REPRESENTATION LEMMA AND NONCAUSAL SAMPLING

The generalized Poisson matching lemma can be applied to give a slight improvement on the constant in the strong functional
representation lemma in [1], and hence improves on the variable-length channel simulation result in [37], and the result on
minimax remote prediction with a communication constraint in [38]. It also gives an achievability bound on the moments for
the noncausal sampling setting in [39].

Proposition 4. Let {Ūi, Ti}i∈N be the points of a Poisson process with intensity measure µ× λR≥0
over U ×R≥0, and P,Q

be probability measures over U with P � Q� µ. For any j ∈ N, g : R≥0 → R concave nondecreasing, we have

E
[
g(ΥP‖Q(j)− 1)

]
≤ EU∼P

[
g

(
j
dP

dQ
(U)

)]
,

i.e., j(dP/dQ)(U) dominates ΥP‖Q(j)− 1 in the second order. As a result, let

C[xg′(x)](y) = inf {αy + β : xg′(x) ≤ αx+ β ∀x ≥ 0}

be the upper concave envelope of xg′(x), then

E
[
g(ΥP‖Q(j))

]
≤ EU∼P

[
g

(
j
dP

dQ
(U)

)]
+ j−1C[xg′(x)](j).

In particular,
E
[
log ΥP‖Q(j)

]
≤ D(P‖Q) + log j + j−1 log e,

and for γ ∈ (0, 1),

E
[
(ΥP‖Q(j))γ

]
≤ jγEU∼P

[(
dP

dQ
(U)

)γ]
+ γjγ−1

= jγ2γDγ+1(P‖Q) + γjγ−1,

where Dγ+1(P‖Q) = γ−1 logEU∼P [((dP/dQ)(U))
γ
] is the Rényi divergence.

Proof: For g : R≥0 → R concave nondecreasing, we have

E
[
g(ΥP‖Q(j)− 1)

]
=

ˆ
E
[
g(ΥP‖Q(j)− 1)

∣∣ ŨP (j) = u
]
P (du)

(a)

≤
ˆ
g
(
E
[

ΥP‖Q(j)
∣∣ ŨP (j) = u

]
− 1
)
P (du)

(b)

≤
ˆ
g

(
j
dP

dQ
(u)

)
P (du),

where (a) is by Jensen’s inequality, and (b) is by the generalized Poisson matching lemma. For any α, β such that xg′(x) ≤
αx+ β for x ≥ 0,

E
[
g(ΥP‖Q(j))

]
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≤
ˆ
g

(
j
dP

dQ
(u) + 1

)
P (du)

≤
ˆ
g

(
j
dP

dQ
(u)

)
P (du) +

ˆ
g′
(
j
dP

dQ
(u)

)
P (du)

=

ˆ
g

(
j
dP

dQ
(u)

)
P (du) + j−1

ˆ
g′
(
j
dP

dQ
(u)

)
j
dP

dQ
(u)Q(du)

≤
ˆ
g

(
j
dP

dQ
(u)

)
P (du) + j−1

ˆ (
αj
dP

dQ
(u) + β

)
Q(du)

=

ˆ
g

(
j
dP

dQ
(u)

)
P (du) + j−1(αj + β).

For g(x) = log x, xg′(x) = log e, and hence

E
[
log ΥP‖Q(j)

]
≤ D(P‖Q) + log j + j−1 log e.

For g(x) = xγ , γ ∈ (0, 1), xg′(x) = γxγ is concave, and hence

E
[
(ΥP‖Q(j))γ

]
≤ EU∼P

[(
j
dP

dQ
(U)

)γ]
+ j−1γjγ

= jγEU∼P

[(
dP

dQ
(U)

)γ]
+ γjγ−1.

Consider the setting in the strong functional representation lemma [1]: given (X,Y ), we want to find a random variable Z
independent of X such that Y is a function of (X,Z), and H(Y |Z) is minimized. Take Z = {Ȳi, Ti}i∈N. Applying Proposition
4 on P = PY |X(·|X), Q = PY , we obtain

E
[
log ΥPY |X(·|X)‖PY (1)

]
≤ E

[
D(PY |X(·|X)‖PY )

]
= I(X;Y ).

Using Proposition 4 in [1],

H(Y |Z)

≤ H(ΥPY |X(·|X)‖PY (1))

≤ E
[
log ΥPY |X(·|X)‖PY (1)

]
+ log

(
E
[
log ΥPY |X(·|X)‖PY (1)

]
+ 1
)

+ 1

≤ I(X;Y ) + log e+ log (I(X;Y ) + log e+ 1) + 1

≤ I(X;Y ) + log (I(X;Y ) + 1) + log e+ 1 + log (log e+ 1)

≤ I(X;Y ) + log (I(X;Y ) + 1) + 3.732.

The constant 3.732 is smaller than that in [1]:

e−1 log e+ 2 + log
(
e−1 log e+ 2

)
≈ 3.870.

XIV. CONCLUSIONS AND DISCUSSION

In this paper, we introduced a simple yet versatile approach to achievability proofs via the Poisson matching lemma. By
reducing the uses of sub-codebooks and binning, we improved upon existing one-shot bounds on channels with state information
at the encoder, lossy source coding with side information at the decoder, broadcast channels, and distributed lossy source coding.
The Poisson matching lemma can replace the packing lemma, covering lemma and soft covering lemma to be the only tool
needed to prove a wide range of results in network information theory.

In the proofs, random variables (e.g. the channel input and message in channel coding settings, the source and description
in source coding settings, the channel output in channel resolvability) are regarded as points in a Poisson process. The Poisson
functional representation is applied to map the Poisson process to give the correct conditional distribution. Viewing every
random variable in the operational setting as a Poisson process gives a simple, unified and systematic approach to code
constructions.

A possible extension is to generalize the Poisson functional representation to the multivariate case. In the proof of Marton’s
inner bound for broadcast channels, we had two independent Poisson processes for U1 and U2 respectively. We first used
the process for U1 to obtain a list of values for U1, then used the list to index into the process for U2. A more symmetric
approach where we select (U1, U2) together (similar to the conventional mutual covering approach) using a multivariate version
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of the Poisson functional representation may be possible. Similarly, for distributed lossy source coding and the multiple access
channel, it may be possible to decode both sources/messages simultaneously. While it can be argued that the gain we obtained
in broadcast channels and distributed lossy source coding over conventional approaches comes from the asymmetry of our
construction (our bounds are asymmetric unlike previous bounds), a symmetric treatment that does not result in a looser bound
may be developed in the future.
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APPENDIX

A. Proof of Lemmas 1 and 3

We first prove Lemma 3. For notational simplicity, we use {Xi}i∈N ∼ P(µ) to denote that {Xi}i∈N is the set of points of a
Poisson process with intensity measure µ (the ordering of the points is ignored). Let f(u) = (dP/dµ)(u), g(u) = (dQ/dµ)(u).
Let {Ūi, Ti}i∈N ∼ P(µ × λR≥0

). Let {Ǔk, Ťk}k∈N be the points (Ūi, Ti) where f(Ūi) = 0. By the mapping theorem [14],
[15] on the mapping

ψ(u, t) =

{
(1, u, t/f(u)) if f(u) > 0

(0, u, t) if f(u) = 0,

we have {ψ(Ūi, Ti)}i∈N ∼ P(δ1 × P × λR≥0
+ δ0 × µ{f(u)=0} × λR≥0

) (where µ{f(u)=0} denotes µ restricted to the set
{u : f(u) = 0}), and hence {ŨP (k), T̃P (k)}k∈N ∼ P(P×λR≥0

) (the points in {ψ(Ūi, Ti)}i∈N with f(Ūi) > 0) is independent
of {Ǔk, Ťk}k∈N ∼ P(µ{f(u)=0} × λR≥0

) (the points in {ψ(Ūi, Ti)}k∈N with f(Ūi) = 0).
Condition on ŨP (j) = u and T̃P (j) = t unless otherwise stated. Assume f(u) > 0 (which happens almost surely since

ŨP (j) ∼ P ) and g(u) > 0 (otherwise the inequalities in the lemmas trivially hold). Recall that T̃P (1) ≤ T̃P (2) ≤ · · ·
by definition. It is straightforward to check that {ŨP (k), T̃P (k)}k>j ∼ P(P × λ[t,∞)) independent of {ŨP (k)}k<j

iid∼ P

independent of {T̃P (k)}k<j ∼ Unif(t∆j−1
∗ ), the uniform distribution over the ordered simplex t∆j−1

∗ = {sj−1 : 0 ≤ s1 ≤
· · · ≤ sj−1 ≤ t} (i.e., {ŨP (k), T̃P (k)}k<j has the same distribution as j − 1 i.i.d. points following P × Unif[0, t] sorted in
ascending order of the second coordinate). We have

ΥP‖Q(j)− 1

=
∣∣{k : Tk/g(Ūk) < tf(u)/g(u)

}∣∣
=
∣∣{k : f(Ūk) = 0 and Tk/g(Ūk) < tf(u)/g(u)

}∣∣
+
∣∣{k : f(Ūk) > 0 and Tk/g(Ūk) < tf(u)/g(u)

}∣∣
=
∣∣{k : Ťk/g(Ǔk) < tf(u)/g(u)

}∣∣
+
∣∣∣{k : T̃P (k)f(ŨP (k))/g(ŨP (k)) < tf(u)/g(u)

}∣∣∣
= A0 +A1 +B,

where

A0 :=
∣∣{k : Ťk/g(Ǔk) < tf(u)/g(u)

}∣∣ ,
A1 :=

∣∣∣{k > j : T̃P (k)f(ŨP (k))/g(ŨP (k)) < tf(u)/g(u)
}∣∣∣ ,

B :=
∣∣∣{k < j : T̃P (k)f(ŨP (k))/g(ŨP (k)) < tf(u)/g(u)

}∣∣∣ .
Due to the aforementioned independence between {Ǔk, Ťk}k∈N, {ŨP (k), T̃P (k)}k>j and {ŨP (k), T̃P (k)}k<j , we have A0⊥⊥A1⊥⊥B.
For A0, since {ŨP (k), T̃P (k)}k⊥⊥{Ǔk, Ťk}k, conditioning on (ŨP (j), T̃P (j)) = (u, t) does not affect the distribution of
{Ǔk, Ťk}k, and hence A0 follows the Poisson distribution with rate

(µ{f(u)=0} × λ) ({(v, s) : s/g(v) < tf(u)/g(u)})

=

ˆ
1{f(v) = 0} tg(v)f(u)

g(u)
µ(dv).

For A1, since {ŨP (k), T̃P (k)}k>j ∼ P(P × λ[t,∞)), A1 follows the Poisson distribution with rate

(P × λ[t,∞)) ({(v, s) : sf(v)/g(v) < tf(u)/g(u)})
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=

ˆ
max

{
tg(v)f(u)

f(v)g(u)
− t, 0

}
f(v)µ(dv)

= t

ˆ
1{f(v) > 0}max

{
g(v)f(u)

g(u)
− f(v), 0

}
µ(dv).

Hence A := A0 +A1 follows the Poisson distribution with rate

t

ˆ (
1{f(v) = 0}g(v)f(u)

g(u)
+ 1{f(v) > 0}max

{
g(v)f(u)

g(u)
− f(v), 0

})
µ(dv)

= t

ˆ
max

{
g(v)f(u)

g(u)
− f(v), 0

}
µ(dv)

= tf(u)

ˆ
max

{
g(v)

g(u)
− f(v)

f(u)
, 0

}
µ(dv)

=: tα(u).

For B, since {ŨP (k), T̃P (k)}k<j has the same distribution as j − 1 i.i.d. points following P ×Unif[0, t] sorted in ascending
order of the second coordinate, B follows the binomial distribution with number of trials j − 1 and success probability

(P ×Unif[0, t]) ({(v, s) : sf(v)/g(v) < tf(u)/g(u)})

= t−1

ˆ
min

{
tg(v)f(u)

f(v)g(u)
, t

}
f(v)µ(dv)

= f(u)

ˆ
min

{
g(v)

g(u)
,
f(v)

f(u)

}
µ(dv)

=: β(u).

Conditioned on ŨP (j) = u (without conditioning on T̃P (j)), we have T̃P (j) ∼ Erlang(j, 1), and (A,B)|{T̃P (j) = t} ∼
Poi(tα(u))× Bin(j − 1, β(u)). Hence, conditioned on ŨP (j) = u, the distribution of ΥP‖Q(j)− 1 = A+B is

NegBin

(
j, 1− 1

1 + α(u)

)
+ Bin(j − 1, β(u)), (15)

i.e., the sum of a negative binomial random variable and an independent binomial random variable. The mean is

E
[

ΥP‖Q(j)
∣∣ ŨP (j) = u

]
− 1

= jα(u) + (j − 1)β(u)

= jf(u)

ˆ
max

{
g(v)

g(u)
− f(v)

f(u)
, 0

}
µ(dv) + (j − 1)f(u)

ˆ
min

{
g(v)

g(u)
,
f(v)

f(u)

}
µ(dv)

= jf(u)

ˆ
g(v)

g(u)
µ(dv)− f(u)

ˆ
min

{
g(v)

g(u)
,
f(v)

f(u)

}
µ(dv)

≤ j f(u)

g(u)

= j
dP

dQ
(u).

Also,

P
{

ΥP‖Q(1) > 1
∣∣ ŨP (j) = u

}
= 1−P

{
A = 0 and B = 0 | ŨP (j) = u

}
= 1− (1− β(u))j−1

(1 + α(u))j

≤ 1−
(

1− β(u)

1 + α(u)

)j
≤ 1− (1−min{α(u) + β(u), 1})j

= 1−
(

1−min

{
f(u)

ˆ
g(v)

g(u)
µ(dv), 1

})j
= 1−

(
1−min

{
f(u)

g(u)
, 1

})j
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= 1−
(

1−min

{
dP

dQ
(u), 1

})j
.

For j = 1,

P
{

ΥP‖Q(1) > k
∣∣ ŨP (1) = u

}
=
(
1− (1 + α(u))−1

)k
=

(
1−

(
1 + f(u)

ˆ
max

{
g(v)

g(u)
− f(v)

f(u)
, 0

}
µ(dv)

)−1
)k

(16)

≤

(
1−

(
1 + f(u)

ˆ
g(v)

g(u)
µ(dv)

)−1
)k

=
(
1− (1 + f(u)/g(u))−1

)k
≤
(

1−
(

1 +
dP

dQ
(u)
)−1)k

= exp
(
−k ln

((dP
dQ

(u)
)−1

+ 1
))

≤ exp
(
− ln

(
k
(dP
dQ

(u)
)−1

+ 1
))

= 1−
(

1 + k−1 dP

dQ
(u)
)−1

.

B. Proof of the Conditional Poisson Matching Lemma

The conditional Poisson matching lemma is intuitively obvious. The Poisson matching lemma can be equivalently stated as:
for any probability measures ν, ξ � µ, the following holds for ν-almost all u:

P{Ūi,Ti}i∼P{Ūi,Ti}i | Ũν=u
{Ũξ({Ūi, Ti}i) 6= u} ≤ 1−

(
1 +

dν

dξ
(u)

)−1

,

where P{Ūi,Ti}i | Ũν=u is the conditional distribution of the Poisson process given Ũν = u. Intuitively, we can consider the
Poisson matching lemma to be a statement with 3 parameters ν, ξ, u (ignore the almost-all condition on u for the moment).
Since the statement holds for (almost) any (ν, ξ, u), it also holds for any random choice of (ν, ξ, u). In particular, it holds for
(ν, ξ, u) = (PU |X(·|X), QU |Y (·|Y ), U), where (X,U, Y ) ∼ PX,U,Y , which gives the conditional Poisson matching lemma.
Note that the probability in the conditional Poisson matching lemma is conditional on (X,U, Y ), where (X,U, Y )↔ (ν, ξ, u)↔
{Ūi, Ti}i, and hence conditioning on (X,U, Y ) has the same effect on {Ūi, Ti}i as conditioning on the parameters (ν, ξ, u).

We now prove the conditional Poisson matching lemma rigorously. Let (Ω,F , P{Ūi,Ti}i) be the probability space for
{Ūi, Ti}i, the points of a Poisson process with intensity measure µ × λR≥0

on U × R≥0 (let E be the Borel σ-algebra of
U). The Poisson matching lemma can be equivalently stated as: for any probability measures ν, ξ � µ, and κ : U ×F → [0, 1]
a regular conditional probability distribution (RCPD) of {Ūi, Ti}i conditioned on Ũν({Ūi, Ti}i) (i.e., κ is a probability kernel,
and P{Ūi,Ti}i(A ∩ Ũ

−1
ν (B)) =

´
B
κ(u,A)ν(du) for any A ∈ F , B ∈ E , where Ũ−1

ν (B) denotes the preimage of B under
Ũν : Ω→ U , note that Ũν({Ūi, Ti}i) ∼ ν), then we have

ˆ
1{Ũξ({ūi, ti}i) 6= u}κ(u, d{ūi, ti}i) ≤ 1−

(
1 +

dν

dξ
(u)

)−1

(17)

for ν-almost all u.
Consider the conditional Poisson matching lemma. We have the following for PX,U,Y -almost all (x, u, y):

P
{
ŨQU|Y (·|Y ) 6= U

∣∣∣ X = x, U = u, Y = y
}

=

ˆ
1{ŨQU|Y (·|y)({ūi, ti}i) 6= u}P{Ūi,Ti}i|X,U,Y (d{ūi, ti}i|x, u, y)

(a)
=

ˆ
1{ŨQU|Y (·|y)({ūi, ti}i) 6= u}P{Ūi,Ti}i|X,U (d{ūi, ti}i|x, u)

(b)

≤ 1−
(

1 +
dPU |X(·|x)

dQU |Y (·|y)
(u)

)−1

,
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where (a) holds for PX,U,Y -almost all (x, u, y) due to Y ↔ (X,U) ↔ {Ūi, Ti}i, and (b) is by (17) with (ν, ξ, κ) ←
(PU |X(·|x), QU |Y (·|y), P{Ūi,Ti}i|X,U (·|x, ·)), which holds for PU |X(·|x)-almost all u, and hence holds for PX,U,Y -almost all
(x, u, y). We now check that P{Ūi,Ti}i|X,U (·|x, ·) satisfies the RCPD condition for PX -almost all x. Since X⊥⊥{Ūi, Ti}i, we
have P{Ūi,Ti}i(·) = P{Ūi,Ti}i|X(·|x) for PX -almost all x. Since U = ŨPU|X(·|X)({Ūi, Ti}i), we have P{Ūi,Ti}i|X,U (Ũ−1

PU|X(·|x)({u})
|x, u) = 1 for PX,U -almost all (x, u). Hence the following conditions are satisfied for PX -almost all x:

P{Ūi,Ti}i(·) = P{Ūi,Ti}i|X(·|x), (18)

P{Ūi,Ti}i|X,U (Ũ−1
PU|X(·|x)({u})|x, u) = 1 forPU |X(·|x)-almost allu. (19)

For any x satisfying (18) and (19), we have the following: for all A ∈ F , B ∈ E ,

P{Ūi,Ti}i(A ∩ Ũ
−1
PU|X(·|x)(B))

(a)
= P{Ūi,Ti}i|X(A ∩ Ũ−1

PU|X(·|x)(B)|x)

=

ˆ
P{Ūi,Ti}i|X,U (A ∩ Ũ−1

PU|X(·|x)(B) |x, u)PU |X(du|x)

(b)
=

ˆ
P{Ūi,Ti}i|X,U (A ∩ Ũ−1

PU|X(·|x)(B) ∩ Ũ−1
PU|X(·|x)({u}) |x, u)PU |X(du|x)

=

ˆ
1{u ∈ B}P{Ūi,Ti}i|X,U (A ∩ Ũ−1

PU|X(·|x)({u}) |x, u)PU |X(du|x)

(c)
=

ˆ
B

P{Ūi,Ti}i|X,U (A|x, u)PU |X(du|x),

where (a) is by (18), and (b), (c) are by (19).

C. Proof of Theorem 1

Let {X̄i, Ti}i∈N be the points of a Poisson process with intensity measure PX × λR≥0
independent of M . The encoding

function is m 7→ X̃PX (m) (i.e., X = X̃PX (M)), and the decoding function is y 7→ ΥPX|Y (·|y)‖PX (1). We have (M,X, Y ) ∼
PM × PXPY |X ,

P{M 6= ΥPX|Y (·|Y )‖PX (1)}
(a)
= P{ΥPX‖PX|Y (·|Y )(M) > 1}

= E
[
P
{

ΥPX‖PX|Y (·|Y )(M) > 1
∣∣∣ M,X, Y

}]
(b)

≤ E

[
1−

(
1−min

{
dPX

dPX|Y (·|Y )
(X), 1

})M]

= E

[
1−

(
1−min

{
2−ιX;Y (X;Y ), 1

})M]
(c)

≤ E

[
1−

(
1−min

{
2−ιX;Y (X;Y ), 1

})(L+1)/2
]
,

where (a) is by the definition of Υ, (b) is by the conditional generalized Poisson matching lemma on (∅,M,X, Y, PX|Y ), and
(c) is by M⊥⊥(X,Y ) and Jensen’s inequality. Therefore there exists a fixed {x̄i, ti}i∈N attaining the desired bound.

�

A noteworthy property of this construction is that both the encoder and the decoder do not require knowledge of L. The code
can transmit any integer m ∈ N with error probability E

[
1− (1−min{2−ιX;Y (X;Y ), 1})m

]
, assuming unlimited common

randomness {X̄i, Ti}i∈N between the encoder and the decoder.

D. Dispersion of Joint Source-Channel Coding

We show a second order result for joint source-channel coding using Theorem 4 that coincides with the optimal dispersion
in [10]. Consider an i.i.d. source sequence W k of length k, separable distortion measure d(wk, ẑk) = 1

k

∑k
i=1 d(wi, ẑi), and

n uses of the memoryless channel PY |X . Let PZ|W attain the infimum of the rate-distortion function

R(D) := inf
PZ|W :E[d(W,Z)]≤D

I(W ;Z).
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The D-tilted information [40] is defined as

W (w,D) := − logE
[
2ν
∗(D−d(w,Z))

]
,

where Z ∼ PZ (the unconditional Z-marginal of PWPZ|W ), and ν∗ = −R′(D) (the derivative exists if the infimum in R(D)
is achieved by a unique PZ|W [40]). We invoke a lemma in [40]:

Lemma 5 ([40], Lemma 2). If the following conditions hold:
• inf{D̃ ≥ 0 : R(D̃) <∞} < D < infz∈Z E[d(W, z)],
• the infimum in R(D) is achieved by a unique PZ|W ,
• there exists a finite set Z̃ ⊆ Z such that E[minz∈Z̃ d(W, z)] <∞, and
• EPW×PZ [(d(W,Z))9] <∞ (computed assuming W,Z independent),

then there exist constants α, β, γ, k0 > 0 such that for k ≥ k0,

P

{
− logPZk(BD(W k)) ≤

k∑
i=1

W (Wi,D) + α log k + β

}
≥ 1− γ√

k
,

where W k iid∼ PW , and PZk = P⊗kZ .

We now show a second order result.

Proposition 5. Fix PX , 0 < ε < 1, n, k ∈ N. We have Pe = P{d(W k, Ẑk) > D} ≤ ε if the conditions in Lemma 5 are
satisfied, k ≥ k0, and

nC − kR(D) ≥
√
nV + kV(D)Q−1

(
ε− η√

min{n, k}

)
+ α log k +

1

2
log n+ β,

where C := I(X;Y ), V := Var[ιX;Y (X;Y )], V(D) := Var[W (W,D)], and η > 0 is a constant that depends on PX,Y and
the distribution of W (W,D).

Proof: We have

Pe = P{d(W k, Ẑk) > D}
(a)

≤ P

{
− logPZk(BD(W k)) >

k∑
i=1

W (Wi,D) + α log k + β

}

+ E

[(
1 + 2−

∑k
i=1 W (Wi,D)−α log k−β2ιXn;Y n (Xn;Y n)

)−1
]

(b)

≤ γ√
k

+
1√
n

+ P

{
2
∑k
i=1 W (Wi,D)−ιXn;Y n (Xn;Y n)+α log k+β >

1√
n

}
=

γ√
k

+
1√
n

+ P

{
n∑
i=1

(ιX;Y (Xi;Yi)− C)−
k∑
i=1

(W (Wi,D)−R(D)) < −nC + kR(D) + α log k +
1

2
log n+ β

}

≤ γ√
k

+
1√
n

+ P

{
n∑
i=1

(ιX;Y (Xi;Yi)− C)−
k∑
i=1

(W (Wi,D)−R(D)) < −
√
nV + kV(D)Q−1

(
ε− η√

min{n, k}

)}
(c)

≤ γ√
k

+
1√
n

+ ε− η√
min{n, k}

+
η − γ − 1√
min{n, k}

≤ ε

where (a) is by Theorem 4, (b) is by Lemma 5, and (c) is by the Berry-Esseen theorem [20], [21], [22] if we let η − γ − 1
be a constant given by the Berry-Esseen theorem.

This coincides with the optimal dispersion in [10]. Although this is not a self-contained proof (it requires the lemma in [40]
for the dispersion of lossy source coding), it shows how we can obtain the achievability of the dispersion in joint source-channel
coding from a result on the dispersion of lossy source coding with little additional effort, using the Poisson matching lemma.
This proof is considerably simpler than that in [10].

E. Properties of φ(t)

Let φ : R>0 → R>0, φ(t) = ct−1(log(t + 2))−2, where c > 0 such that
∑∞
j=1 φ(j) = 1. Note that (φ(t))−1 is convex. It

can be checked numerically that 1 ≤ c ≤ 2. We prove a useful inequality about φ(t).
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Proposition 6. For any s > 0, t ≥ 1, we have

min{s(φ(t))−1, 1} ≤ min
{
st
(
log(s−1 + 1) + 1

)2
, 1
}
.

Moreover, if st ≤ 2−α, t− 1 ≤ 2β , and α̃ ≥ max{α, 0}, then

min
{
st
(
log(s−1 + 1) + 1

)2
, 1
}
≤ 2−α

(
2(α̃+ β)2 + 2α̃2 + 14

)
.

Proof: Write φ−1(t) for the inverse function of φ. Since

φ

(
c

t (log (c/t+ 2))
2

)
=

t (log (c/t+ 2))
2(

log
(

c
t(log(c/t+2))2 + 2

))2 ≥ t,

we have
φ−1(t) ≥ c

t (log (c/t+ 2))
2 .

By the convexity of (φ(t))−1 ,

min

{
s

φ(t)
, 1

}
≤ min

{
t

φ−1(s)
, 1

}
≤ min

{
tc−1s (log (c/s+ 2))

2
, 1
}

≤ min
{
st (log (2/s+ 2))

2
, 1
}

= min
{
st
(
log(s−1 + 1) + 1

)2
, 1
}
.

If st ≤ 2−α, t− 1 ≤ 2β , and α̃ ≥ max{α, 0},

min
{
st
(
log(s−1 + 1) + 1

)2
, 1
}

= min
{
st (log(t/(st) + 1) + 1)

2
, 1
}

≤ 2−α
(
log((2β + 1)2α + 1) + 1

)2
≤ 2−α

(
log(2α̃+β + 2α̃ + 1) + 1

)2
≤ 2−α (max{α̃+ β, α̃}+ log 3 + 1)

2

≤ 2−α
(
2(α̃+ β)2 + 2α̃2 + 14

)
,

where the last inequality follows from considering whether β is positive or negative, and the inequality (x+ y)2 ≤ 2x2 + 2y2.

F. Proof of Theorem 5 for Broadcast Channel with Common Message

The parameters K1,K2 correspond to rate splitting. We can split M1 ∈ [1 : L1] into M10 ∈ [1 : K1] and M11 ∈ [1 : dL1K
−1
1 e],

and treat M10 as part of M0 to be decoded by both decoders. Although M10 and M11 may not be uniformly distributed, we
can apply a random cyclic shift to M1 such that M1 ∼ Unif[1 : K1dL1K

−1
1 e] (and hence M10,M11 are also uniform), and

condition on a fixed shift at the end. Also M2 can be split similarly. Therefore we assume K1 = K2 = 1 without loss of
generality.

Let P0 = {(Ū0,i, M̄00,i), T0,i}i∈N, P1 = {(Ū1,i, M̄01,i, M̄1,i), T1,i}i∈N, P2 = {(Ū2,i, M̄02,i, M̄2,i), T2,i}i∈N be three
independent Poisson processes with intensity measures PU0×PM0×λR≥0

, PU1×PM0×PM1×λR≥0
and PU2×PM0×PM2×λR≥0

respectively, independent of M0,M1,M2.
The encoder would generate X such that

(M0,M1,M2, U0, J, {Ǔ1j}j∈[1:J], U1, U2, X)

∼ PM0
× PM1

× PM2
× PU0

PJP
⊗J
U1|U0

δǓ1J
PU2|U0,U1

δx(U0,U1,U2), (20)

where PJ = Unif[1 : J], and {Ǔ1j}j∈[1:J] ∈ UJ
1 is an intermediate list (which can be regarded as a sub-codebook). The term

P⊗JU1|U0
δǓ1J

in (20) means that {Ǔ1j}j are conditionally i.i.d. PU1|U0
given U0, and U1 = Ǔ1J . To accomplish this, the encoder

computes U0 = (Ũ0)PU0
×δM0

, Ǔ1j = (Ũ1)PU1|U0
(·|U0)×δM0

×δM1
(j) for j = 1, . . . , J,

U2 = (Ũ2)J−1
∑J
j=1 PU2|U0,U1

(·|U0,Ǔ1j)×δM0
×δM2

(which Poisson process we are referring to can be deduced from whether we
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are discussing U0, U1 or U2), (J, U1)|(U0, {Ǔ1j}j , U2) ∼ PJ,U1|U0,{Ǔ1j}j ,U2
(where PJ,U1|U0,{Ǔ1j}j ,U2

is derived from (20)),
and outputs X = x(U0, U1, U2). It can be verified that (20) is satisfied.

For the decoding function at the decoder a ∈ [1 : 2], let (Ǔ0aj , M̌0aj) = (Ũ0, M̃00)PU0|Ya (·|Ya)×PM0
(j) for j ∈ N,

(Ûa, M̂0a, M̂a) = (Ũa, M̃0a, M̃a)∑∞
j=1 φ(j)(PUa|U0,Ya

(·|Ǔ0aj ,Ya)×δM̌0aj
)×PMa where φ(j) ∝ j−1(log(j+2))−2 with

∑∞
j=1 φ(j) =

1.
Let Ka = ΥPU0

×δM0
‖PU0|Ya (·|Ya)×PM0

(1) (using the Poisson process P0). By the conditional generalized Poisson matching
lemma on (M0, 1, (U0,M0), Ya, PU0|Ya × PM0

), almost surely,

E [Ka | U0, Ya,M0] ≤ dPU0 × δM0

dPU0|Ya(·|Ya)× PM0

(U0,M0) + 1

= L02−ιU0;Ya (U0;Ya) + 1. (21)

By (20), U0 = (Ũ0)PU0
×δM0

, Ǔ1j = (Ũ1)PU1|U0
(·|U0)×δM0

×δM1
(j), and (Ǔ01j , M̌01j) = (Ũ0, M̃00)PU0|Y1

(·|Y1)×PM0
(j), we

have (M0,M1, U0, J) ⊥⊥ P1 and ({(Ǔ01j , M̌01j)}j , Y1) ↔ (M0,M1, U0, J, U1) ↔ P1 (see Figure (2) middle). Hence by
the conditional generalized Poisson matching lemma on ((M0,M1, U0), J, (U1,M0,M1), ({(Ǔ01j , M̌01j)}j , Y1),

∑∞
j=1 φ(j)

(PU1|U0,Y1
(·|Ǔ01j , Y1)× δM̌01j

)× PM1
), almost surely,

P

{
(Ũ1, M̃01, M̃1)∑∞

j=1 φ(j)(PU1|U0,Y1
(·|Ǔ01j ,Y1)×δM̌01j

)×PM1
6= (U1,M0,M1)

∣∣∣∣U0, U1, U2, J, Y1, Y2,M0,M1

}
(a)
= P

{
(Ũ1, M̃01, M̃1)∑∞

j=1 φ(j)(PU1|U0,Y1
(·|Ǔ01j ,Y1)×δM̌01j

)×PM1
6= (U1,M0,M1)

∣∣∣∣U0, U1, J, Y1,M0,M1

}
(b)

≤ E

[
min

{
J

dPU1|U0
(·|U0)× δM0 × δM1

d(
∑∞
j=1 φ(j)(PU1|U0,Y1

(·|Ǔ01j , Y1)× δM̌01j
))× PM1

(U1,M0,M1), 1

}∣∣∣∣∣U0, U1, J, Y1,M0,M1

]

≤ E

[
min

{
L1J

φ(K1)

dPU1|U0
(·|U0)× δM0

dPU1|U0,Y1
(·|U0, Y1)× δM0

(U1,M0), 1

} ∣∣∣∣U0, U1, J, Y1,M0,M1

]
= E

[
min

{
L1J

φ(K1)
2−ιU1;Y1|U0

(U1;Y1|U0), 1

} ∣∣∣∣U0, U1, J, Y1,M0,M1

]
(c)

≤ E

[
K1L1J2

−ιU1;Y1|U0
(U1;Y1|U0)

(
log(L−1

1 J−12ιU1;Y1|U0
(U1;Y1|U0) + 1) + 1

)2
∣∣∣∣U0, U1, J, Y1,M0,M1

]
(d)

≤ (L02−ιU0;Y1
(U0;Y1) + 1)L1J2

−ιU1;Y1|U0
(U1;Y1|U0)

(
log(L−1

1 J−12ιU1;Y1|U0
(U1;Y1|U0) + 1) + 1

)2

,

where (a) is due to (U2, Y2) ↔ (M0,M1, U0, J, U1, Y1) ↔ P1 (see Figure 2 middle), (b) is due to the aforementioned
application of the conditional generalized Poisson matching lemma, (c) is by Proposition 6, and (d) is due to (21) and
K1 ↔ (U0, Y1,M0)↔ (J, U1,M1) (see Figure 2 middle).

Also, since (M0,M2, U0, {Ǔ1j}j) ⊥⊥ P2 and ({(Ǔ02j , M̌02j)}j , Y2)↔ (M0,M2, U0, {Ǔ1j}j , U2)↔ P2 (see Figure 2 right),
by the conditional Poisson matching lemma on ((M0,M2, U0, {Ǔ1j}j), (U2,M0,M2), ({(Ǔ02j , M̌02j)}j , Y2),

∑∞
j=1 φ(j)(PU2|U0,Y2

(·|Ǔ02j , Y2)× δM̌02j
)× PM2), almost surely,

P

{
(Ũ2, M̃02, M̃2)∑∞

j=1 φ(j)(PU2|U0,Y2
(·|Ǔ02j ,Y2)×δM̌02j

)×PM2
6= (U2,M0,M2)

∣∣∣∣U0, U1, U2, Y1, Y2,M0,M2

}
(a)
= P

{
(Ũ2, M̃02, M̃2)∑∞

j=1 φ(j)(PU2|U0,Y2
(·|Ǔ02j ,Y2)×δM̌02j

)×PM2
6= (U2,M0,M2)

∣∣∣∣U0, U2, Y2,M0,M2

}
(b)

≤ E

[
E

[
min

{
d(J−1

∑J
j=1 PU2|U0,U1

(·|U0, Ǔ1j))× δM0
× δM2

d(
∑∞
j=1 φ(j)(PU2|U0,Y2

(·|Ǔ02j , Y2)× δM̌02j
))× PM2

(U2,M0,M2), 1

}
∣∣∣∣∣ {Ǔ1j}j , U0, U2, Y2,M0,M2

] ∣∣∣∣∣U0, U2, Y2,M0,M2

]

≤ E

[
min

{
L2

φ(K2)

d(J−1
∑J
j=1 PU2|U0,U1

(·|U0, Ǔ1j))× δM0

dPU2|U0,Y2
(·|U0, Y2)× δM0

(U2,M0), 1

}∣∣∣∣∣U0, U2, Y2,M0,M2

]

= E

min

 L2J
−1

φ(K2)

J∑
j=1

2ιU1;U2|U0
(Ǔ1j ;U2|U0)−ιU2;Y2|U0

(U2;Y2|U0), 1


∣∣∣∣∣∣U0, U2, Y2,M0,M2


(c)

≤ E

[
min

{
L2J
−1

φ(K2)
2−ιU2,Y2|U0

(U2;Y2|U0)(2ιU1;U2|U0
(U1;U2|U0) + J− 1), 1

} ∣∣∣∣U0, U2, Y2,M0,M2

]



27

(d)

≤ E

[
K2L2J

−12−ιU2,Y2|U0
(U2;Y2|U0)(2ιU1;U2|U0

(U1;U2|U0) + J− 1)(
log(L−1

2 J2ιU2,Y2|U0
(U2;Y2|U0)(2ιU1;U2|U0

(U1;U2|U0) + J− 1)−1 + 1) + 1
)2
∣∣∣∣U0, U2, Y2,M0,M2

]
(e)

≤ (L02−ιU0;Y2
(U0;Y2) + 1)L2J

−12−ιU2,Y2|U0
(U2;Y2|U0)(2ιU1;U2|U0

(U1;U2|U0) + J− 1)(
log(L−1

2 J2ιU2,Y2|U0
(U2;Y2|U0)(2ιU1;U2|U0

(U1;U2|U0) + J− 1)−1 + 1) + 1
)2

,

where (a) is due to (U1, Y1)↔ (U0, U2, Y2,M0,M2)↔ P2 (see Figure 2 right), (b) is due to the aforementioned application
of the conditional Poisson matching lemma, (c) is by the same arguments as in the proof of Theorem 6, (d) is by Proposition
6, and (e) is due to (21) and K2 ↔ (U0, Y2,M0)↔ (U2,M2) (see Figure 2 right). Hence

P{(M0,M0,M1,M2) 6= (M̂00, M̂01, M̂1, M̂2)}

≤ E

[
min

{
(L02−ιU0;Y1

(U0;Y1) + 1)L1J2
−ιU1;Y1|U0

(U1;Y1|U0)
(

log(L−1
1 J−12ιU1;Y1|U0

(U1;Y1|U0) + 1) + 1
)2

+ (L02−ιU0;Y2
(U0;Y2) + 1)L2J

−12−ιU2,Y2|U0
(U2;Y2|U0)(2ιU1;U2|U0

(U1;U2|U0) + J− 1)(
log(L−1

2 J2ιU2,Y2|U0
(U2;Y2|U0)(2ιU1;U2|U0

(U1;U2|U0) + J− 1)−1 + 1) + 1
)2

, 1

}]
≤ E

[
min

{
L0L1JA2−ιU0,U1;Y1

(U0,U1;Y1) + L1JA2−ιU1;Y1|U0
(U1;Y1|U0)

+ L0L2J
−1B2ιU1;U2|U0

(U1;U2|U0)−ιU0,U2;Y2
(U0,U2;Y2) + L0L2(1− J−1)B2−ιU0,U2;Y2

(U0,U2;Y2)

+ L2J
−1B2ιU1;U2|U0

(U1;U2|U0)−ιU2,Y2|U0
(U2;Y2|U0) + L2(1− J−1)B2−ιU2,Y2|U0

(U2;Y2|U0), 1

}]
,

where A = (log(L−1
1 J−12ιU1;Y1|U0

(U1;Y1|U0) + 1) + 1)2, B =
(
log((L2J

−12ιU1;U2|U0
(U1;U2|U0)−ιU2,Y2|U0

(U2;Y2|U0) + L2(1 −
J−1)2−ιU2,Y2|U0

(U2;Y2|U0))−1 + 1) + 1
)2

.
For (6), if the event in (6) does not occur, by Proposition 6,

(L02−ιU0;Y1
(U0;Y1) + 1)L1J2

−ιU1;Y1|U0
(U1;Y1|U0)

(
log(L−1

1 J−12ιU1;Y1|U0
(U1;Y1|U0) + 1) + 1

)2

+ (L02−ιU0;Y2
(U0;Y2) + 1)L2J

−12−ιU2,Y2|U0
(U2;Y2|U0)(2ιU1;U2|U0

(U1;U2|U0) + J− 1)(
log(L−1

2 J2ιU2,Y2|U0
(U2;Y2|U0)(2ιU1;U2|U0

(U1;U2|U0) + J− 1)−1 + 1) + 1
)2

≤ 21−γ (2(ιU1;Y1|U0
(U1;Y1|U0))2 + 2γ2 + 14

)
+ 22−γ (2(ιU2,Y2|U0

(U2;Y2|U0))2 + 2γ2 + 14
)

≤ 2−γ
(
8(ιU1;Y1|U0

(U1;Y1|U0))2 + 8(ιU2,Y2|U0
(U2;Y2|U0))2 + 12γ2 + 84

)
.
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{(Ǔ01j , M̌01j)}j

K1

M1 M2

J {Ǔ1j}j
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