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Abstract

This paper revisits formalizations of information-theoretic security for symmetric-key encryption and key agreement protocols
which are very fundamental primitives in cryptography. In general, we can formalize information-theoretic security in various
ways: some of them can be formalized as stand-alone securityby extending (or relaxing) Shannon’s perfect secrecy or by other
ways such as semantic security; some of them can be done basedon composable security. Then, a natural question about thisis:
what is the gap between the formalizations? To answer the question, we investigate relationships between several formalizations
of information-theoretic security for symmetric-key encryption and key agreement protocols. Specifically, for symmetric-key
encryption protocols in a general setting including the case where there exist decryption-errors, we deal with the following
formalizations of security: formalizations extended (or relaxed) from Shannon’s perfect secrecy by using mutual information and
statistical distance; information-theoretic analogues of indistinguishability and semantic security by Goldwasser and Micali; and
composable security by Maurer et al. and Canetti. Then, we explicitly show the equivalence and non-equivalence betweenthose
formalizations. Under the model, we also derive lower bounds on the adversary’s (or distinguisher’s) advantage and thesize of
secret-keys required under all of the above formalizations. Although some of them may be already known, we can explicitly
derive them all at once through our relationships between the formalizations. In addition, we briefly observe impossibility results
which easily follow from the lower bounds. The similar results are also shown for key agreement protocols in a general setting
including the case where there exist agreement-errors in the protocols.

Index Terms

information-theoretic security, unconditional security, perfect secrecy, indistinguishability, semantic security, composable se-
curity, encryption, key agreement.

I. I NTRODUCTION

Background and Related Works. The security of cryptographic protocols in information-theoretic cryptography does
not require any computational assumption based on computationally hard problems, such as the integer factoring and discrete
logarithm problems. In addition, since the security definition in information-theoretic cryptography is formalized by use of some
information-theoretic measure (e.g. entropy or statistical distance) or some probability (e.g., success probability of adversary’s
guessing), it does not depend on a specific computational model and can provide security which does not compromise even if
computational technology intensively develops or a new computational technology (e.g. quantum computation) appearsin the
future. In this sense, it is interesting to study and developcryptographic protocols with information-theoretic security.

As fundamental cryptographic protocols we can consider symmetric-key encryption and key-agreement protocols, and the
model of the protocols falls into a very simple and basic scenario where there are two honest players (named Alice and Bob)
and an adversary (named Eve). Up to date, various results on the topic of those protocols with information-theoretic security
have been reported and developed since Shannon’s work [30].In most of those results the traditional security definitionhas been
given asstand-alone securityin the sense that the protocols will be used in a stand-alone way: in symmetric-key encryption, the
security is formalized asI(M ;C) = 0 (Shannon’s perfect secrecy) or its variant (e.g.I(M ;C) ≤ ǫ for some smallǫ), where
M andC are random variables which take values in sets of plaintextsand ciphertexts, respectively; similarly, in key agreement
the security is usually formalized asI(K;T ) = 0 or its variant (e.g.I(K;T ) ≤ ǫ), whereK andT are random variables which
take values on sets of shared keys and transcripts, respectively. In addition, it is possible to give security formalizations of
symmetric-key encryption by an information-theoretic analogue of indistinguishability or semantic security by Goldwasser and
Micali [15]. The problem with those definition of stand-alone security is that, if a protocol is composed with other ones,the
security of the combined protocol may not be clear. Namely, it is not always guaranteed that the composition of individually
secureprotocols results in thesecureprotocol, wheresecureis meant in the sense of the traditional definition of stand-alone
security.

This paper was presented in part at 2011 IEEE International Symposium on Information Theory (ISIT2011) [16] and 2013 IEEE International Symposium
on Information Theory (ISIT2013) [31].
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On the other hand,composable security(or security under composition) can guarantee that a protocol remains to be secure
after composed with other ones. The previous frameworks of this line of researches are based on theideal-world/real world
paradigm, and the paradigm includesuniversal composabilityby Canetti [6] andreactive simulatabilityby Backes, Pfitzmann
and Waidner [2] (See also [5], [27], [14], [26], [3] for related works). In addition, the explicit and simple paradigm for
composable security was given by Maurer [21], and this approach is calledconstructive cryptographywhere the security
definitions of cryptographic systems can be understood as constructive statements: the idea is to consider cryptographic protocols
as transformations which construct cryptographicallystrongersystems fromweakerones. Using the framework of constructive
cryptography, Maurer and Tackmann [24] studied the authenticate-then-encrypt paradigm for symmetric-key encryption with
computational security. Furthermore, Maurer and Renner [22] proposed a new framework in an abstract way, calledabstract
cryptography. The framework is described at a higher level of abstractionthan [21], [24], and various notions and methodologies
(e.g. universal composability [6], reactive simulatability [2], and indifferentiability [23]) can be captured in theframework.

Up to date, there are a few works which report a gap between formalizations of the stand-alone security and composable
security for multiparty computation in information-theoretic settings [1], [11], [18]. In particular, Kushilevitz,Lindell and Rabin
[18] investigated the gap between them in several settings (i.e., perfect/statistical security and composition with adaptive/fixed
inputs), and they showed a condition that a protocol having stand-alone security is not necessarily secure under universal
composition.

Our Contributions. We can formalize information-theoretic security for symmetric-key encryption and key agreement protocols
in various ways: some of them can be formalized as stand-alone security by extending Shannon’s perfect secrecy or by other
ways such as semantic security; some of them can be done basedon composable security. Then, a natural question about
this is: what is the gap between the formalizations? To answer the question, we investigate relationships between several
formalizations of information-theoretic security for symmetric-key encryption and key agreement protocols. Specifically, we
deal with the model of symmetric-key encryption protocols in a general setting where encryption/decryption algorithms can be
arbitrary (i.e., deterministic or randomized), or protocols can have decryption-errors. In the model, we investigatethe following
formalizations of security:

(i) Traditional formalization extended (or relaxed) from Shannon’s perfect secrecy by using the mutual information;
(ii) Another traditional one extended (or relaxed) from Shannon’s perfect secrecy by using the statistical distance (a.k.a. the

variational distance);
(iii) Formalization by information-theoretic analogue ofindistinguishability by Goldwasser and Micali [15];
(iv) Formalization by information-theoretic analogue of semantic security by Goldwasser and Micali [15];
(v) Formalizations of composable security by Maurer et al. [22], [24] and Canetti [5], [6].

The main contribution of this paper is to explicitly show that relationships between those formalizations, and to reveal the
conditions that those formalizations being (non)equivalent in details. Under the model, we also derive lower bounds onthe
adversary’s (or distinguisher’s) advantage and secret-key size required under all of the above formalizations. Although some of
them may be already known, we can explicitly derive them all at once through our relationships between the formalizations in
combination with the lower bound shown by Pope [28] in which the security definition is given based on Maurer’s formalization
for composable security. In addition, we briefly observe impossibility results which easily follow from the lower bounds.

Furthermore, we show similar results (i.e., relationshipsbetween formalizations, lower bounds, and impossibility results)
for key agreement protocols in a general setting where the channels used are unidirectional/bidirectional, the round number of
protocols is arbitrary, and the protocols can have agreement-errors.

Other Works Related. Bellare, Tessaro, and Vardy [4] recently study security definitions and schemes for encryption in the
model of the wiretap channels [34]. In particular, in the model of wiretap channels, they showed that the following formalizations
of stand-alone security are equivalent: formalizations extended (or relaxed) from Shannon’s perfect secrecy by usingthe mutual
information and statistical distance; information-theoretic indistinguishability which is calleddistinguishing securityin [4]; and
information-theoretic semantic security. Although the main scope of their paper lies in the wiretap channel and it is different
from the model in this paper, their approach and ours are similar. They also showed that the first formalization by using mutual
information with restriction on that only uniformly distributed plaintexts are input is weaker than those formalizations.

Recently, in a simple and elemental way, Dodis [10] directlyderives a lower bound on secret-key size required for symmetric-
key encryption, which may have decryption-errors, with specifying required running time of an adversary where the security
definition is given based on a simulation-based formalization under bounded/unbounded adversaries. One of lower bounds in
Corollary 1 in this paper is the same as his lower bound, and interestingly, our technique and his for deriving it are quite
different.

Organization. The rest of this paper is organized as follows. In Section II,we survey composable security and its formalization
based on [22], [24] which is similar in spirit to previous ones in [2], [5], [6], [27]. In Section III, we explain the protocol
execution of symmetric-key encryption in a general setting, and we give several formalizations of correctness and security in our
model. Section IV is devoted to the main contribution of the paper, and we show the relationships between those formalizations
for symmetric-key encryption protocols, and reveal conditions for equivalence and non-equivalence of the formalizations. In



3

addition, we derive lower bounds on adversary’s (or distinguisher’s) advantage and the size of secret-keys required under all the
formalizations. Furthermore, impossibility results are briefly observed. In Section V, we show similar results for keyagreement
protocols as well. Finally, we conclude the paper in SectionVI.

Notation. In this paper, for a random variableX which takes values in a finite setX , the min-entropy and Hartley entropy of
X (i.e., log of the cardinality of the set) are denoted byH∞(X) andH0(X), respectively. Also,I(X ;Y ) denotes the mutual
information betweenX andY , and we denote the statistical distance between two distributionsPX andPY by ∆(PX , PY ).
For completeness, we describe the definitions in Appendix A.

For ann-tuples of random variables(X1, X2, . . . , Xn), we denote its associated probability distribution byPX1X2...Xn
. In

this paper, for a random variableX which takes values inX , we especially writePXX for the distribution onX ×X defined
by PXX(x, x′) := PX(x) if x = x′, andPXX(x, x′) := 0 if x 6= x′. Furthermore,|X | denotes the cardinality ofX . Also, let
P(X ) be the set of all distributions overX whose supports areX , i.e.,P(X ) := {PX | Supp(PX) = X}.

II. COMPOSABLE SECURITY

In this paper, we consider a very basic scenario where there are three entities, Alice, Bob (honest players), and Eve (an
adversary).

A. Definition of Systems

Following the notions in [22], [24], we describe three typesof systems: resources, converters and distinguishers (See[22],
[24] for more details).

A resourceis a system with three interfaces labeledA, B, andE, whereA, B, andE imply three entities, Alice, Bob, and
Eve, respectively. If two resourcesR,S are used in parallel, this system is called parallel composition of R andS and denoted
by R ‖ S. We note thatR ‖ S is also a resource.

A converteris a system with two kinds of interfaces: the first kind of interfaces are designated as theinner interfaces which
can be connected to interfaces of a resource, and combining aconverter and a resource by the connection results in a new
resource; the second kind of interfaces are designed as theouter interfaces which can be provided as the new interfaces of the
combined resource. For a resourceR and a converterπ, we writeπ(R) for the system obtained by combiningR andπ, and
π(R) behaves as a resource, again. Aprotocol is a pair of convertersπ = (πA, πB) for the honest players, Alice and Bob,
and the resulting system by applyingπ to a resourceR is denoted byπ(R) or πAπB(R). For converters (or protocols)π, φ,
the sequential compositionof them, denoted byφ ◦ π, is defined by(φ ◦ π)(R) := φ(π(R)) for a resourceR. In contrast, the
parallel compositionof converters (or protocols)π, φ, denoted byπ ‖ φ, is defined by(π ‖ φ)(R ‖ S) := π(R) ‖ φ(S) for
resourcesR,S.

A distinguisherfor an n-interface resource is a system withn + 1 interfaces:n interfaces are connected ton interfaces
of the resource, respectively; and the other interface outputs a bit (i.e., 1 or 0). For a resourceR and a distinguisherD, we
write DR for the system obtained by combiningR andD, and we regardDR as a binary random variable. The purpose of
distinguishers is to distinguish two resources, and the advantage of a distinguisherD for two resourcesR0, R1 is defined by

∆D(R0, R1) := ∆(PDR0
, PDR1

),

wherePDR0
andPDR1

are the probability distributions of the binary random variablesDR0 andDR1, respectively. LetD be
the set of all distinguishers, and we define

∆D(R0, R1) := sup
D∈D

∆D(R0, R1).

Note thatD contains not only polynomial-time distinguishers but alsocomputationally unbounded ones, since this paper deals
with information-theoretic security.

B. Definition of Security

The security definition we focus on in this paper is derived from the paradigm of constructive cryptography [21]. Technically,
the formal definition is based on the works in [22], [24] (see [22], [24] for details), and is similar in spirit to previous simulation-
based definitions in [2], [5], [6], [27]. The idea in the paradigm of constructive cryptography includes comparison of the real
and ideal systems: the real system means constructionπ(R) by applying a protocolπ to a resourceR; and the ideal system
consists of theideal functionality(such as ideal channels)S including description of a security goal and a simulatorσ connected
to the interface ofE, which we denote byσ(S). If the difference of the two resources,π(R) andσ(S), is a small quantity
(i.e., ∆D(π(R), σ(S)) ≤ ǫ for small ǫ), we consider that the protocolπ securely constructsS from R. More formally, we
define the security as follows.

Definition 1 ([22], [24]): For resourcesR,S, we say that a protocolπ constructsS from R with error ǫ ∈ [0, 1], denoted
by R

π,ǫ
=⇒ S, if the following two conditions are satisfied:
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1) Availability: For the set of all distinguishersD, we have∆D(π(⊥E(R)),⊥E(S)) ≤ ǫ, where⊥E is the converter which
blocks theE-interface for distinguishers when it is attached toR.

2) Security: There exists a simulatorσ such that, for the set of all distinguishersD, we have∆D(π(R), σ(S)) ≤ ǫ.
In the above definition, we do not require the condition that the simulator is efficient (i.e., polynomial-time). In otherwords,

the simulator may be inefficient.
The advantage of the above security definition lies in that a protocol having this kind of security remains to be secure even

if it is composed with other protocols. Formally, this can bestated as follows.
Proposition 1 ([22], [24]): Let R,S, T andU be resources, and letπ, φ be converters (or protocols) such thatR

π,ǫ
=⇒ S and

S
φ,δ
=⇒ T . Then, we have the following:

(1) φ ◦ π satisfiesR
φ◦π,ǫ+δ
=⇒ T ;

(2) π ‖ id satisfiesR ‖ U π‖id,ǫ
=⇒ S ‖ U ; and

(3) id ‖ π satisfiesU ‖ R id‖π,ǫ
=⇒ U ‖ S,

whereid is the trivial converter which makes the interfaces of the subsystem accessible through the interfaces of the combined
system.

We note that the first property in Proposition 1 means the security for sequential composition. In addition, as stated in [22]
three properties in Proposition 1 imply the security for parallel composition in the following sense: For resourcesR,R′, S, S′

and convertersπ, φ such thatR
π,ǫ
=⇒ S andR′ φ,δ

=⇒ S′, π ‖ φ satisfiesR ‖ R′ π‖φ,ǫ+δ
=⇒ S ‖ S′.

C. Ideal Functionality/Channels

In this section, we give several definitions of ideal functionality of resources such as the authenticated channel and key
sharing resources which are necessary to discuss in this paper.

• Authenticated Channel: Anauthenticated channelusable once, denoted bys−→ , transmits a message (or a plaintext)
m from Alice’s interface (i.e.,A-interface) to Bob’s interface (i.e.,B-interface) without any error/replacement. If Eve is
active, through theE-interface Eve obtainsm, and she obtains nothing, otherwise. Similarly, an authenticated channel
from B-interface toA-interface can be defined and denoted by s←− . For a positive integert, we write ( s−→)t for the
composition of invokedt authenticated channelss−→‖ s−→‖ · · · ‖ s−→ (t times), and we write( s−→ )∞ if arbitrarily
many use ofs−→ is allowed. Similarly,( s←− )t and ( s←− )∞ can be defined.

• Secure Channel: Asecure channelusable once, denoted bys−→ s, transmits a plaintextm from A-interface toB-interface
without any error/replacement. Even if Eve is active, she obtains nothing except for the length of the plaintexts and cannot
replacem with another plaintext. Also, for a positive integert, we write( s−→ s)t for the composition of invokedt secure
channelss−→ s‖ s−→ s‖ · · · ‖ s−→ s (t times).

• Key Sharing Resource (with Uniform Distribution): Akey sharing resourcewith the uniform distribution usable once,
denoted by s s, means the ideal resource with no input which generates a uniform random stringk and outputs it at
both interfaces of Alice and Bob. Even if Eve is active, her interface outputs no information onk and cannot replacek
with another one. More generally, if such a keyk is chosen according to a distributionPK (not necessarily the uniform
distribution), we denote the key sharing resource by [PK ].

• Correlated Randomness Resource (or Key Distribution Resource): Let PXY be a probability distribution with random
variablesX andY . A correlated randomness resourceusable once, denoted by [PXY ], means the resource with no input
which randomly generates(x, y) according to the distributionPXY and outputsx andy at interfaces of Alice and Bob,
respectively. Even if Eve is active, her interface outputs no information on(x, y) and cannot replace it with another one.
Note that the resource [PXY ] includes [PK ] (and hences s ) as a special case.

III. SYMMETRIC-KEY ENCRYPTION: PROTOCOL EXECUTION AND SECURITY FORMALIZATIONS , REVISITED

We explain the traditional protocol execution of symmetric-key encryption. In the following, letM and C be finite sets
of plaintexts and ciphertexts, respectively. In addition,let M and C be andom variables which take plaintexts inM and
ciphertexts inC, respectively.

Let π = (πA
enc, π

B
dec) be a symmetric-key encryption protocol connected to a key sharing resource [PK ] as defined below,

whereπA
enc is a converter called anencryption algorithmat Alice’s side, andπB

dec is a converter called adecryption algorithm
at Bob’s side:

– Input of Alice’s outer interface:m ∈ M
– Input of Alice’s inner interface:k ∈ K by accessing [PK ]
– Input of Bob’s inner interface:k ∈ K by accessing [PK ]
– Output of Bob’s outer interface:̃m ∈ M̃
1. πA

enc computesc = πA
enc(k,m) and sendsc to πB

enc by s−→ .
2. πB

dec computesm̃ = πB
dec(k, c) and outputsm̃.
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In this paper, for given random variablesM and K, let M̃ := πB
dec(K,πA

enc(K,M)) be a random variable which takes
values in the set of output ofπB

dec.
Note that we do not require any restriction on the protocol execution of symmetric-key encryption such as:πA

enc is
deterministic; or for eachk ∈ K, πA

enc(k, ·) : M → C is injective; orπB
dec is deterministic; or it has to be satisfied that

πB
dec(k, π

A
enc(k,m)) = m for any possiblek and m. Therefore, we deal with a general case of the protocol execution of

symmetric-key encryption. In particular, it should be noted that:πA
enc can be probabilistic (i.e., not necessarily deterministic);

for eachk ∈ K, πA
enc(k, ·) may not be injective;πB

dec can be probabilistic; and a decryption-error may occur.
If a symmetric-key encryption protocolπ is usable at most one time (i.e., the one-time model), the purpose ofπ is to

transform the resources[PK ] and s−→ into the secure channels−→ s. In this paper, we only deal with symmetric-key
encryption protocols in the one-time model, since this model is simple and fundamental.

Now, we revisit the formalization of several information-theoretic security notions for symmetric-key encryption. The
traditional security is formalized based on the notion thatthe observed ciphertextC and underlying plaintextM are statistically
independent. The most famous formalization based on this notion is Shannon’s perfect secrecy [30],H(M |C) = H(M), or
equivalently,I(M ;C) = 0. As an extended (or a relaxed) version, we can also consider its variant,I(M ;C) ≤ ǫ for some
small quantityǫ. Along with this concept, we first consider the following twodefinitions.

Definition 2: Let π be a symmetric-key encryption protocol. LetPM be a certain probability distribution onM. Then,π is
said to beǫ-secure forPM if it satisfies the following conditions:

(i) Correctness Pr{M 6= M̃} ≤ ǫ; and

(ii) Secrecy I(M ;C) ≤ ǫ.

In particular,π is said to beperfectly-secure forPM if ǫ = 0 above forPM .

Definition 3:Let π be a symmetric-key encryption protocol. Then,π is said to beǫ-secure, if for any probability distribution
PM ∈ P(M), we have:

(i) Correctness Pr{M 6= M̃} ≤ ǫ; and

(ii) Secrecy I(M ;C) ≤ ǫ.

In particular,π is said to beperfectly-secureif ǫ = 0 above.

The difference of Definitions 2 and 3 is that we consider security only for a certain distribution of plaintexts or for all
distributions of plaintexts. Obviously, Definition 3 is stronger than Definition 2, since we can find a distributionPM andπ
such thatπ is ǫ-secure forPM but it is notǫ-secure. In this paper, we are interested in correctness andsecurity of Definition
3 or other formalizations in which all distributions of plaintexts are considered. From this viewpoint, we give the following
definition in a comprehensive way.

Definition 4 (Correctness and Security):Let π be a symmetric-key encryption protocol. Then,π is said to be(δ, ǫ)-secure
in the sense of Type(i, j), if π satisfies

δπ,i ≤ δ andǫπ,j ≤ ǫ,

whereδπ,i (1 ≤ i ≤ 3) andǫπ,j (1 ≤ j ≤ 10) are defined as follows.

• Correctness. We define the following parameters concerningcorrectness ofπ:

δπ,1 := sup
PM

Pr{M 6= M̃},

δπ,2 := sup
PM

∆(PMM̃ , PMM ),

δπ,3 := max
m

∆(PM̃ |M=m, PM|M=m),

where the supremum ranges over allPM ∈ P(M).
• Traditional Secrecy (TS). We define the following advantageof adversaries in terms of traditional secrecy:

ǫπ,1 := sup
PM

I(M ;C),

ǫπ,2 := sup
PM

∆(PMC , PMPC),

ǫπ,3 := sup
PM

max
m∈M

∆(PC|M=m, PC),

ǫπ,4 := sup
PM

max
c∈C

∆(PM|C=c, PM ).
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• Indistinguishability (IND). We define the following advantage of adversaries in terms of indistinguishability:

ǫπ,5 := max
m

max
m′ 6=m

∆(PC|M=m, PC|M=m′),

ǫπ,6 := max
m

max
m′ 6=m

max
f :C→{0,1}

|Pr{f(C) = 1 |M = m} − Pr{f(C) = 1 |M = m′}| ,

where inǫπ,6 the maximum ranges over all functionsf : C → {0, 1}.
• Semantic Security (SS). We define the following advantage ofadversaries in terms of semantic security:

ǫπ,7 := sup
PM

max
f :C→{0,1}

inf
Gf

max
h:M→{0,1}

|Pr{f(C) = h(M)} − Pr{Gf = h(M)}| , (1)

where the maximum ranges over all functionsf : C → {0, 1} and h : M → {0, 1}, and the infimum ranges over all
binary random variableGf which only depends onf but is independent ofPM andh.

• Composable Security (CS). We define the following advantageof adversaries in terms of composable security:

ǫπ,8 := inf
σ

∆D(π( s−→|| [PK ]), σ( s−→ s)) (2)

= inf
PQ

sup
PM

∆(PMM̃C , PMMPQ), (3)

ǫπ,9 := inf
PQ

sup
PM

∆(PMC , PMPQ), (4)

ǫπ,10 := inf
PQ

max
m

∆(PC|M=m, PQ), (5)

where the infimum in (2) ranges over all possible simulators,the supremum in (3), (4) ranges over allPM ∈ P(M), and
the infimum in (3)–(5) ranges over allPQ ∈ P(C).

By Definition 4, we can formally give thirty kinds of formalizations of correctness and security. In particular, several
important formalizations known can be considered to be captured within Definition 4 as follows.

• Traditional Secrecy (TS). The traditional formalization in Definition 3 corresponds to the security in the sense of Type
(1, 1). Note that, instead of using the mutual information, independence ofM andC is expressed by the statistical distance
as∆(PMC , PMPC) = 0, and can be relaxed as∆(PMC , PMPC) ≤ ǫ. This type of security is represented by Type(1, 2).

• Indistinguishability (IND). The formalization based on information-theoretic analogue of indistinguishability byGold-
wasser and Micali [15] corresponds to the security in the sense of Type(1, 5), sinceǫπ,5 means the adversary’s advantage
for distinguishing the views (i.e., distributions of ciphertexts) in the protocol execution when two different plaintexts are
inputted. In addition,ǫπ,6 means another interpretation of information-theoretic indistinguishability, since the adversary’s
advantage for distinguishing the views is described by the use of a binary functionf arbitrarily chosen by the adversary.
In this case, the security is represented by Type(1, 6).

• Semantic Security (SS). The formalization based on information-theoretic analogue of semantic security by Goldwasser
and Micali [15] corresponds to the security in the sense of Type (1, 7) by the following reason: Intuitively, semantic
security implies that a ciphertextC is almost useless to obtain any one bit information of the underlying plaintextM ;
and the adversary’s advantageǫπ,7 implies that, in order to guess such one bit informationh(M), there is no difference
between by using the ciphertextC and a mappingf , and by usingf only with a random coin.

• Composable Security (CS). The formalizations based on information-theoretic composable security given by Definition
1 is the security in the sense of Type(2, 8) or Type (3, 8). In addition, we can consider the distinguisher’s advantage
by the following his behavier: a distinguisher arbitrarilychooses a random variableM (or a plaintextm) and inputs it
into A-interface; then,δπ,2 (or δπ,3) means the distinguisher’s advantage for distinguishing real output and ideal one at
B-interface; andǫπ,9 (or ǫπ,10) means his advantage for distinguishing real output and simulator’s output (according to
PQ) at E-interface. By combining those, we will reach the security of Type (i, j) with i = 2, 3 and j = 9, 10 for the
composable security.

We next define equivalence of security notions of Type(i, j) as follows.

Definition 5: For a symmetric-key encryption protocolπ, its security of Type(i, j) and Type(i′, j′) are said to bestrictly
equivalent, if δπ,i = Θ(δπ,i′) and ǫπ,j = Θ(ǫπ,j′) whereΘ(·) is evaluated in a system parameterκ ∈ N inputted intoπ
and [PK ]. Furthermore, for a symmetric-key encryption protocolπ, its security of Type(i, j) and Type(i′, j′) are said to be
equivalent, if it holds that

(δπ,i, ǫπ,j)→ (0, 0) (asκ→∞) if and only if (δπ,i′ , ǫπ,j′)→ (0, 0) (asκ→∞).

In Section IV, we will show equivalence and non-equivalencebetween the formalizations in a comprehensive way.
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IV. SYMMETRIC-KEY ENCRYPTION: RELATIONSHIPS BETWEENFORMALIZATIONS OF CORRECTNESS ANDSECURITY

A. Equivalence

We show the explicit relationships between security formalizations of Type(i, j) for 1 ≤ i ≤ 3 and 1 ≤ j ≤ 10. In the
following, let Π be a family of all symmetric-key encryption protocols.

Theorem 1:For any symmetric-key encryption protocolπ ∈ Π, we have explicit relationships between formalizations of
correctness and security as follows.

1) Correctness formalizations:δπ,1 = δπ,2 = δπ,3,
2) TS formalizations:

2

ln 2
ǫ2π,2 ≤ ǫπ,1 ≤ −2ǫπ,2 log

2ǫπ,2
|M| |C| , ǫ2,π ≤ ǫ3,π ≤ 2ǫ2,π, ǫ2,π ≤ ǫ4,π,

3) IND formalizations:ǫ5,π = ǫ6,π,
4) CS formalizations:max(ǫπ,9, δπ,2) ≤ ǫπ,8 ≤ ǫπ,9 + δπ,2, ǫ9,π = ǫ10,π,
5) TS and IND:ǫ3,π = ǫ5,π,
6) SS and IND:ǫπ,7 ≤ ǫπ,6 ≤ 4ǫπ,7,
7) IND, CS, and TS:12ǫ2,π ≤ ǫ9,π ≤ ǫ5,π.

Proof of Theorem 1.The proof is organized as follows:
1) Proof of relationships between correctness formalizations is given by Lemma 1,
2) Proof of relationships between TS formalizations is given by Lemmas 2 and 9,
3) Proof of relationships between IND formalizations is given by Lemma 3,
4) Proof of relationships between CS formalizations is given by Lemmas 4 and 5,
5) Proof of relationships between TS and IND is given by Lemma6,
6) Proof of relationships between SS and IND is given by Lemma7,
7) Proof of relationships among IND, CS, and TS is given by Lemma 8.

In the following, we will show Lemmas 1–9 to complete the proof.

Lemma 1:For any symmetric-key encryptionπ, we haveδπ,1 = δπ,2 = δπ,3.
Proof: First, we showδπ,1 = δπ,2: For anyπ and for any distributionPM , we have∆(PMM , PMM̃ ) = P (M 6= M̃) by

Proposition 9 in Appendix A, from which it is straightforward to haveδπ,1 = δπ,2.
Secondly, we showδπ,2 = δπ,3: This is shown by applyingX = Y = M andZ = M̃ in Proposition 12 in Appendix B.
Lemma 2:For any symmetric-key encryptionπ, we have

2

ln 2
ǫ2π,2 ≤ ǫπ,1 ≤ −2ǫπ,2 log

2ǫπ,2
|M| |C| ,

ǫπ,2 ≤ ǫπ,3, andǫπ,2 ≤ ǫπ,4.

Proof: First, we show that 2ln 2ǫ
2
π,2 ≤ ǫπ,1 ≤ −2ǫπ,2 log 2ǫπ,2

|M| |C| : From Corollary 7 in Appendix A, it follows that, for any
PM and anyπ,

I(M ;C) ≤ −2∆(PMC , PMPC) log
2∆(PMC , PMPC)

|M| · |C|
≤ −2ǫπ,2 log

2ǫπ,2
|M| · |C| .

Therefore, we have

ǫπ,1 ≤ −2ǫπ,2 log
2ǫπ,2
|M| · |C| .

On the other hand, from Corollary 6 in Appendix A, it follows that, for anyPM and anyπ,

∆(PMC , PMPC) ≤
√

ln 2

2
I(M ;C)

1

2 .

Therefore, we haveǫπ,2 ≤
√

ln 2
2 ǫ

1

2

π,1.
Secondly, we showǫπ,2 ≤ ǫπ,3: For an arbitrary distributionPM , we have

∆(PMC , PMPC) =
1

2

∑

m,c

|PMC(m, c)− PM (m)PC(c)|

=
1

2

∑

m

PM (m)
∑

c

|PC|M=m(c|m)− PC(c)|
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≤ 1

2
max
m

∑

c

|PC|M=m(c|m)− PC(c)|

= max
m

∆(PC|M=m, PC).

Therefore, we getǫπ,2 ≤ ǫπ,3.
Similarly, we can show that, for an arbitrary distributionPM ,

∆(PMC , PMPC) ≤ max
c

∆(PM|C=c, PM ),

which implies thatǫπ,2 ≤ ǫπ,4.

Lemma 3:For any symmetric-key encryptionπ, we haveǫπ,5 = ǫπ,6.
Proof: For probability distributionsPX andPY over a finite setX , it holds that

∆(PX , PY ) = max
f :X→{0,1}

|Pr{f(X) = 1} − Pr{f(Y ) = 1}| .

Thus, we have

max
m,m′

∆(PC|M=m, PC|M=m′) = max
m,m′

max
f :C→{0,1}

|Pr{f(C) = 1 |M = m} − Pr{f(C) = 1 |M = m′}| ,

which impliesǫπ,5 = ǫπ,6.

Lemma 4:For any symmetric-key encryptionπ, we have

max(ǫπ,9, δπ,2) ≤ ǫπ,8 ≤ ǫπ,9 + δπ,2.

Proof: For any distributionsPM ∈ P(M) andPQ ∈ P(C), we have

∆(PMM̃C , PMMPQ) ≤ ∆(PMM̃C , PMMC) + ∆(PMMC , PMMPQ)

= ∆(PMM̃ , PMM ) + ∆(PMC , PMPQ).

By taking the supremum over allPM ∈ P(M) and the infimum over allPQ ∈ P(C), we have

inf
PQ

sup
PM

∆(PMM̃C , PMMPQ) ≤ sup
PM

∆(PMM̃ , PMM ) + inf
PQ

sup
PM

∆(PMC , PMPQ)

= δπ,2 + ǫπ,9.

In addition, from Proposition 8 in Appendix A, it is clear that ∆(PMC , PMPQ) ≤ ∆(PMM̃C , PMMPQ) for anyPM ∈ P(M)
andPQ ∈ P(C). Therefore, we obtain

ǫπ,9 ≤ inf
PQ

sup
PM

∆(PMM̃C , PMMPQ).

Similarly, we haveδπ,2 ≤ infPQ
supPM

∆(PMM̃C , PMMPQ).

Lemma 5:For any symmetric-key encryptionπ, we haveǫπ,9 = ǫπ,10.
Proof: For arbitrary distributionsPQ andPM , we setX := M , Y := C, andZ := Q, and use Proposition 12 in Appendix

B. Then, we havesupPM
∆(PMC , PMPQ) = maxm ∆(PC|M=m, PQ). Therefore, by taking the infimum over allPQ ∈ P(C),

we haveǫπ,9 = ǫπ,10.

Lemma 6:For any symmetric-key encryptionπ, we haveǫπ,3 = ǫπ,5.
Proof: Observe for everym ∈M that

∆
(

PC|M=m, PC

)

=
1

2

∑

c∈C

∣

∣

∣

∣

∣

PC|M (c|m)−
∑

m′∈M

PC|M (c|m′)PM (m′)

∣

∣

∣

∣

∣

=
1

2

∑

c∈C

∣

∣

∣

∣

∣

∑

m′∈M

PM (m′)
{

PC|M (c|m)− PC|M (c|m′)
}

∣

∣

∣

∣

∣

. (6)

First, we proveǫπ,3 ≤ ǫπ,5: For arbitraryPM , let m0 := argmaxm ∆(PC|M=m, PC). Then, from (6) we have

max
m

∆(PC|M=m, PC) = ∆
(

PC|M=m0
, PC

)

≤ 1

2

∑

m1∈M

PM (m1)
∑

c∈C

∣

∣PC|M (c|m0)− PC|M (c|m1)
∣

∣

=
∑

m1∈M

PM (m1) ·∆
(

PC|M=m0
, PC|M=m1

)
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≤
∑

m1∈M

PM (m1)ǫπ,5

= ǫπ,5. (7)

Hence, by taking the supremum over allPM ∈ P(M), we getǫπ,3 ≤ ǫπ,5.
Next, we showǫπ,3 ≥ ǫπ,5: Let m0,m1 ∈M such thatǫπ,5 = ∆(PC|M=m0

, PC|M=m1
). For arbitraryǫ > 0, we define

PM (m′) =

{

1− γ, if m′ = m1
γ

|M|−1 , otherwise (8)

whereγ is a positive real number such thatγǫπ,5 ≤ ǫ. Then, by substituting bothm = m0 andPM (m′) into (6), we obtain

ǫπ,3 ≥ ∆(PC|M=m0
, PC)

=
1

2

∑

c∈C

∣

∣

∣

∣

∣

∑

m′∈M

PM (m′)
{

PC|M (c|m0)− PC|M (c|m′)
}

∣

∣

∣

∣

∣

≥ 1

2

∑

c∈C

∣

∣(1− γ)
{

PC|M (c|m0)− PC|M (c|m1)
}∣

∣

= (1− γ)ǫπ,5

≥ ǫπ,5 − ǫ.

Lemma 7:For any symmetric key encryptionπ, we have

ǫπ,7 ≤ ǫπ,6 ≤ 4ǫπ,7.

Proof: First, we proveǫπ,7 ≤ ǫπ,6. This part of the proof can be shown in a very similar way as that in [33] as
follows, though the proof in [33] is given under computational security setting. Suppose that a distributionPM and functions
f : C → {0, 1}, h :M→ {0, 1} are arbitrarily given. LetPM∗ be an independently and identically distribution ofPM . Then,
we consider the random variableGf which is defined by

Gf := f(C∗), andPC∗(c) :=
∑

m1

PC|M (c|m1)PM∗(m1) for c ∈ C andm1 ∈M.

Let us define an indicator function1f,h : C ×M→ {0, 1} for mapsf andh by

1f,h(c,m) =

{

1, if f(c) = h(m)
0, otherwise.

(9)

Then, we have

inf
G

f̂

∣

∣

∣Pr{f(C) = h(M)} − Pr{Gf̂ = h(M)}
∣

∣

∣

≤ |Pr{f(C) = h(M)} − Pr{Gf = h(M)}|
= |Pr{f(C) = h(M)} − Pr{f(C∗) = h(M)}|

=

∣

∣

∣

∣

∣

∑

c,m0

1f,h(c,m0) {PCM (c,m0)− PC∗M (c,m0)}
∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑

c,m0

1f,h(c,m0)PM (m0)
{

PC|M (c|m0)− PC∗(c)
}

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑

m0,m1

PM (m0)PM∗(m1)
∑

c

1f,h(c,m0){PC|M (c|m0)− PC|M (c|m1)}
∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑

m0,m1

PM (m0)PM∗(m1) {Pr{fh,m0
(C) = 1|M = m0} − Pr{fh,m0

(C) = 1|M = m1}}
∣

∣

∣

∣

∣

≤
∑

m0,m1

PM (m0)PM∗(m1)ǫπ,6

= ǫπ,6,

wherefh,m0
: C → {0, 1} is defined byfh,m0

(c) = 1 if and only if 1f,h(c,m0) = 1. Therefore, we haveǫπ,7 ≤ ǫπ,6.
Next, we show thatǫπ,6 ≤ 4ǫπ,7. We first prove the following claim.
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Claim 1: For arbitrarily givenPM , f : C → {0, 1}, andh :M→ {0, 1}, we have
∣

∣

∣

∣

Pr{f(C) = h(M)} −
∑

ℓ∈{0,1}

Pr{f(C) = ℓ}Pr{h(M) = ℓ}
∣

∣

∣

∣

≤ 2ǫπ,7. (10)

Proof: Suppose thatPM and f : C → {0, 1} are arbitrarily given. Then, by definition of semantic security, there exists
Gf such that

∣

∣

∣

∣

Pr{f(C) = h(M)} − Pr{Gf = h(M)}
∣

∣

∣

∣

≤ ǫπ,7 (11)

for any h :M→ {0, 1}. In particular, lettingh be a map that always outputs1 for everym ∈ M, we have
∣

∣Pr{f(C) = 1} − Pr{Gf = 1}
∣

∣ ≤ ǫπ,7

which is equivalent to
∣

∣Pr{f(C) = 0} − Pr{Gf = 0}
∣

∣ ≤ ǫπ,7.

Thus, forℓ ∈ {0, 1}, it holds that

Pr{Gf = ℓ}+ ǫπ,7 ≥ Pr{f(C) = ℓ} ≥ Pr{Gf = ℓ} − ǫπ,7,

and hence we have

(Pr{Gf = ℓ}+ ǫπ,7) Pr{h(M) = ℓ} ≥ Pr{f(C) = ℓ}Pr{h(M) = ℓ} ≥ (Pr{Gf = ℓ} − ǫπ,7) Pr{h(M) = ℓ}.
From this, it follows that

Pr{Gf = h(M)}+ ǫπ,7 ≥
∑

ℓ∈{0,1}

Pr{f(C) = ℓ}Pr{h(M) = ℓ} ≥ Pr{Gf = h(M)} − ǫπ,7,

or equivalently,
∣

∣

∣

∣

∑

ℓ∈{0,1}

Pr{f(C) = ℓ}Pr{h(M) = ℓ} − Pr{Gf = h(M)}
∣

∣

∣

∣

≤ ǫπ,7. (12)

Therefore, we obtain
∣

∣

∣

∣

Pr{f(C) = h(M)} −
∑

ℓ∈{0,1}

Pr{f(C) = ℓ}Pr{h(M) = ℓ}
∣

∣

∣

∣

≤
∣

∣

∣

∣

Pr{f(C) = h(M)} − Pr{Gf = h(M)}
∣

∣

∣

∣

+

∣

∣

∣

∣

∑

ℓ∈{0,1}

Pr{f(C) = ℓ}Pr{h(M) = ℓ} − Pr{Gf = h(M)}
∣

∣

∣

∣

≤ 2ǫπ,7,

where the last inequality follows from (11) and (12).

By applyingX = f(C) andY = h(M) in Lemma 15 in Appendix B to the inequality (10), it holds that
∣

∣

∣Pr{f(C) = h(M) = 1} − Pr{f(C) = 1}Pr{h(M) = 1}
∣

∣

∣ ≤ ǫπ,7, (13)

for arbitrarily givenPM , f : C → {0, 1}, andh :M→ {0, 1}. In particular, we choosem0,m1 ∈M by which ǫπ,6 is given.
Then, for arbitraryǫ > 0, we consider

PM (m) :=







1
2 , if m = m0,
1
2 − γ, if m = m1,

γ
|M|−2 , otherwise,

whereγ is a positive real number withγǫπ,6 ≤ 2ǫ, and takeh :M→ {0, 1} defined by

h(m) :=

{

1, if m = m0,
0, otherwise.

Then, from (13) it follows that

ǫπ,7 ≥
∣

∣

∣Pr{f(C) = h(M) = 1} − Pr{f(C) = 1}Pr{h(M) = 1}
∣

∣

∣
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= Pr{M = m0}
∣

∣

∣

∣

Pr{f(C) = 1 |M = m0} −
∑

ℓ∈{0,1}

Pr{f(C) = 1 |M = mℓ}Pr{M = mℓ}
∣

∣

∣

∣

= Pr{M = m0}Pr{M = m1}
∣

∣

∣

∣

Pr{f(C) = 1 |M = m0} − Pr{f(C) = 1 |M = m1}
∣

∣

∣

∣

=
1

2

(

1

2
− γ

)

ǫπ,6

≥ 1

4
ǫπ,6 − ǫ.

Lemma 8:For any symmetric-key encryptionπ, we have1
2ǫπ,2 ≤ ǫπ,9 ≤ ǫπ,5.

Proof: First, we show1
2ǫπ,2 ≤ ǫπ,9: For arbitrary distributionsPQ andPM , we have

∆(PMC , PMPC) ≤ ∆(PMC , PMPQ) + ∆(PMPQ, PMPC)

= ∆(PMC , PMPQ) + ∆(PQ, PC)

≤ 2∆(PMC , PMPQ).

Therefore,ǫπ,2 ≤ 2απ,9.
Next, we showǫπ,9 ≤ ǫπ,5: By Lemma 5, it is sufficient to proveǫπ,10 ≤ ǫπ,5. Let m0 ∈ M be a plaintext such that it

givesǫπ,10, and setPQ := PC|M=m1
by choosingm1 ∈M with m1 6= m0. Then, we have

ǫπ,10 ≤ ∆(PC|M=m0
, PQ) = ∆(PC|M=m0

, PC|M=m1
) ≤ ǫπ,5.

Lemma 9:For any symmetric-key encryptionπ, we haveǫπ,3 ≤ 2ǫπ,2.
Proof: By Lemma 6, it is sufficient to proveǫπ,5 ≤ 2ǫπ,2. For anyǫ > 0, and form0,m1 ∈ M (m0 6= m1) such that

ǫπ,5 = ∆(PC|M=m0
, PC|M=m1

), we define a distributionPM̂ by

PM̂ (m) :=

{ 1
2 (1 − γ) if m ∈ {m0,m1},

γ
|M|−2 otherwise,

whereγ is a positive real number such thatγǫπ,5 ≤ 2ǫ. Then, we have

ǫπ,2 ≥ ∆(PM̂Ĉ , PM̂PĈ)

≥ 1

2
(1− γ){∆(PĈ|M̂=m0

, PĈ) + ∆(PĈ|M̂=m1
, PĈ)}

≥ 1

2
(1− γ)∆(PĈ|M̂=m0

, PĈ|M̂=m1
)

=
1

2
(1− γ)απ,5

≥ 1

2
ǫπ,5 − ǫ.

The following theorem shows equivalence between security formalizations of Type(i, j) under a certain condition.

Theorem 2:For security formalizations of Type(i, j) with 1 ≤ i ≤ 3 and1 ≤ j ≤ 10, we have the following relationships:
(i) For arbitrary symmetric-key encryption protocolπ ∈ Π, all π’s security of Type(i, j) are strictly equivalent except for

j = 1, 4.
(ii) Let Π1 = {π ∈ Π | ǫπ,5 = o(1/ log |M|) andǫπ,5 = o(1/ log |C|)}. Then, for arbitraryπ ∈ Π1, all π’s security of Type

(i, j) are equivalent except forj = 4.
(iii) Let Π2 = {π ∈ Π | |C| = Θ(|M|), δπ,1 = o(1/ log |M|), ǫπ,5 = o(1/|M|)}. Then, for arbitraryπ ∈ Π2, all π’s

security of Type(i, j) are equivalent.
Proof: First, the proof of (i) directly follows from Theorem 1.

Next, we prove (ii). By Theorem 1, we have

ǫπ,1 ≤ −2ǫπ,2 log
2ǫπ,2
|M| |C| , andǫπ,2 = Θ(ǫπ,5). (14)

Now, we consider the following proposition.
Lemma 10:Let y(x) be a continuous and positive function defined over(0,∞), and define the functionf(x) = −x log x

y(x) .

Then, it holds thatf(x)→ 0 asx→ 0 if and only if y(x) = 2o(1/x).
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Proof: Note thatf(x) = −x log x+ x log y(x) and−x log x→ 0 asx→ 0. Therefore, we havef(x)→ 0 if and only if
x log y(x)→ 0, or equivalently,y(x) = 2o(1/x).

Therefore, by Lemma 10 and (14), we haveǫπ,1 = o(1) under the condition|M| · |C| = 2o(1/ǫπ,5), which in turn follows
from the condition thatǫπ,5 = o(1/ log |M|) andǫπ,5 = o(1/ log |C|).

Finally, in order to prove (iii), we need the following propositions.
Lemma 11:Let ǫ̃π,4 := sup

PM

max
c0,c1

∆(PM|C=c0 , PM|C=c1). Then, we havẽǫπ,4 = ǫπ,4.

Proof: The proof is shown in the same way as that ofǫπ,3 = ǫπ,5 in Lemma 6.
Lemma 12:For any symmetric-key encryptionπ, it holds that

ǫ̃π,4 ≤ 2ǫπ,3

(

sup
PM

PC(cmin)
−1

)

,

wherecmin := arg min
c∈Supp(PC)

PC(c).

Proof: For anyPM , m ∈ Supp(PM ), andc ∈ Supp(PC), we have|PC(c)− PC|M (c|m)| ≤ ǫπ,3, which is equivalent to

1− ǫπ,3
PC(c)

≤ PC|M (c|m)

PC(c)
≤ 1 +

ǫπ,3
PC(c)

. (15)

For anyPM , andc0, c1 ∈ Supp(PC), it holds that

∆(PM|C=c0 , PM|C=c1) =
∑

m

|PM|C(m|c0)− PM|C(m|c1)|

=
∑

m

PM (m)

∣

∣

∣

∣

PC|M (c0|m)

PC(c0)
− PC|M (c1|m)

PC(c1)

∣

∣

∣

∣

≤
∑

m

PM (m) max
c∈Supp(PC)

2ǫπ,3
PC(c)

(16)

= max
c∈Supp(PC)

2ǫπ,3
PC(c)

=
2ǫπ,3

PC(cmin)
, (17)

wherecmin := arg min
c∈Supp(PC)

PC(c) and the inequality (16) follows from (15). By taking the supremum overPM ∈ P(M),

the inequality in the lemma is induced.

Proposition 2:For a symmetric-key encryptionπ, it holds that

ǫπ,4 ≤
2ǫπ,3 · |C|

1−
√
2 ln 2 [log |C| − (1− δπ,1) log |M|+ h(δπ,1)]

1

2

.

Proof: First, we have the inequality

H(M) = H(M | K) ≤ H(M,C | K) = H(C | K) +H(M | K,C)

≤ H(C) +H(M | M̃)

≤ H(C) + Pr{M 6= M̃} log(|M| − 1) + h(Pr{M 6= M̃}) (18)

≤ H(C) + δπ,1 log |M|+ h(δπ,1), (19)

where the inequality (18) follows from Fano’s inequality.
For the case of uniform distributionPM overM, we have

D(PC ‖ PU ) = log |C| −H(C)

≤ log |C| −H(M) + δπ,1 log |M|+ h(δπ,1) (20)

= log |C| − log |M|+ δπ,1 log |M|+ h(δπ,1)

= log |C| − (1 − δπ,1) log |M|+ h(δπ,1), (21)

where (20) follows from (19). Letη := log |C| − (1− δπ,1) log |M|+ h(δπ,1). Then, we have

∆(PC , PU ) ≤
√

ln 2

2
D(PC ‖ PU )

1

2 ≤
√

ln 2

2
η

1

2 ,

and hence, we get
√

ln 2

2
η

1

2 ≥ 1

2

∑

c

∣

∣

∣

∣

PC(c)−
1

|C|

∣

∣

∣

∣
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≥ 1

2
|C|
(

1

|C| − PC(cmin)

)

.

Therefore, we have

PC(cmin)
−1 ≤ |C|

1−
√
2 ln 2 η

1

2

.

From the above inequality and Lemmas 11 and 12, it follows that

ǫπ,4 = ǫ̃π,4

≤ 2ǫπ,3

(

sup
PM

PC(cmin)
−1

)

≤ 2ǫπ,3 · |C|
1−
√
2 ln 2 η

1

2

=
2ǫπ,3 · |C|

1−
√
2 ln 2 [log |C| − (1− δπ,1) log |M|+ h(δπ,1)]

1

2

.

We are back to the proof of Theorem 2. From the assumptions,|C| = Θ(|M|) and δπ,1 = o(1/ log |M|), and Proposition
2, it follows that ǫπ,4 = O(ǫπ,3 · |M|). Here, we note thatǫπ,3 = Θ(ǫπ,5) by Theorem 1. Therefore, by the assumption of
ǫπ,5 = o(1/|M|), we haveǫπ,4 = o(1).

B. Non-equivalence

Let π be a symmetric key encryption. We denote byPπ
C|M an |C| × |M| transition probability matrix associated with

{PC|M (c|m)}c∈C,m∈M of π, i.e., each entry ofPπ
C|M corresponds toPC|M (c|m) for c ∈ C andm ∈M in π.

The following theorem states the property ofP
π
C|M for a symmetric key encryptionπ.

Theorem 3:For any symmetric key encryptionπ satisfying |C| = |M|, its probability transition matrixPπ
C|M is doubly

stochastic1. Conversely, for anyn × n matrix A which is doubly stochastic, there exists a symmetric-key encryption π such
that |C| = |M| = n andPπ

C|M = A.
Proof: In what follows, we consider the case of|M| = |C|. In this case, ifk ∈ K is fixed, there exists a bijection

fk :M→ C since every ciphertextc ∈ C can be uniquely decrypted byk ∈ K. Hence, for eachk ∈ K, let Fk ∈ {0, 1}n×n be
a permutation matrix which corresponds to the bijectionfk. Then, it is easy to see that the probability transition matrix can
be represented as

P
π
C|M =

∑

k∈K

PK(k)Fk, (22)

which is doubly stochastic. Conversely, due to Birknoff–von Neumann Theorem, there exists a pair ofPK(k) andFk, k ∈ K,
satisfying (22) ifPπ

C|M is doubly stochastic.

In the following, let Π̄ := {π ∈ Π | |C| = Θ(|M|) andδπ,1 = o(1/ log |M|)}. The following theorems show the explicit
conditions for non-equivalence between security formalizations.

Theorem 4:For arbitraryπ ∈ Π̄, if security of Type(i, 1) and Type(i, 5) are not equivalent (i.e., security of Type(i, 1)
is asymptotically stronger than that of Type(i, 5)) for 1 ≤ i ≤ 3, we haveǫπ,5 = Ω(1/ log |M|). Conversely, for arbitrarily
given ǫ such thatǫ = o(1) andǫ = Ω(1/ logn), there exists a symmetric-key encryptionπ ∈ Π̄ such that,ǫπ,5 = ǫ, n = |M|,
andπ’s security of Type(i, 1) and Type(i, 5) are not equivalent for1 ≤ i ≤ 3.

Proof: We show the first statement of Theorem 4 by its contraposition, namely, we prove thatǫπ,1 = o(1) for arbitrarily
givenπ ∈ Π̄ satisfyingǫπ,5 = o(1/ logn). This statement directly follows from (ii) of Theorem 2.

What remains to be shown is the second statement of Theorem 4,and it is sufficient to prove the following proposition.

Proposition 3:Suppose thatǫ = o(1) andǫ = Ω(1/ logn). Then, there exists a symmetric-key encryptionπ ∈ Π̄ such that,
ǫπ,5 = ǫ, n = |M|, andπ’s security of Type(i, 1) and Type(i, 5) are not equivalent for1 ≤ i ≤ 3.

Proof: For arbitararyǫ and any positive integern, we consider ann× n matrix A = (aij) defined by

aij =

{

ǫ+ 1−ǫ
n if i = j,

1−ǫ
n otherwise.

(23)

1An n× n probability transition matrixP = (pi,j) is said to bedoubly stochasticif
∑

i pi,j =
∑

j pi,j = 1 for every1 ≤ i, j ≤ n.
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Then, it holds that
∑

j aij = 1 for everyi, and
∑

i aij = 1 for everyj, which shows thatA is doubly stochastic. Therefore, by
Theorem 3, it follows that there exists a symmetric-key encryption π such that|M| = |C| = n andPπ

C|M = A, wherePπ
C|M

is the probability transition matrix ofπ. Suppose thatM = {m1,m2, . . . ,mn}, C = {c1, c2, . . . , cn}, and the(i, j)-entry of
P
π
C|M is equal toPC|M (ci|mj).
It is easy to see that∆(PC|M=mi

, PC|M=mj
) = ǫ for every pair ofmi,mj ∈ M with mi 6= mj . Hence, we haveǫπ,5 = ǫ,

and by takingǫ→ 0 it holds that

lim
ǫ→0

ǫπ,5 = 0. (24)

On the other hand, if we assume thatPM is the uniform distribution, it holds that by direct calculation

I(M ;C) =

(

ǫ+
1

n

)

log n+

(

ǫ+
1− ǫ

n

)

log

(

ǫ+
1− ǫ

n

)

+

(

1− 1

n

)

(1− ǫ) log (1− ǫ)− ǫ

n
logn. (25)

Thus, by settingǫ = 1
logn and takingn→∞ in (25), we have lim

n→∞
I(M ;C) = 1, and hence,

lim
ǫ→0

ǫπ,1 ≥ 1. (26)

Therefore, the proof is completed by (24) and (26).

Theorem 5:For arbitraryπ ∈ Π̄, if security of Type(i, 4) and Type(i, 5) are not equivalent (i.e., security of Type(i, 4) is
asymptotically stronger than that of Type(i, 5)) for 1 ≤ i ≤ 3, we haveǫπ,5 = Ω(1/|M|). Conversely, for arbitrarily givenǫ
such thatǫ = o(1) and ǫ = Ω(1/n), there exists a symmetric-key encryptionπ ∈ Π̄ such that,ǫπ,5 = ǫ, n = |M|, andπ’s
security of Type(i, 4) and Type(i, 5) are not equivalent for1 ≤ i ≤ 3.

Proof: The contraposition of the first statement of Theorem 5 follows from (iii) of Theorem 2.
In order to show the second statement of Theorem 5, it is sufficient to prove the following proposition.

Proposition 4:Suppose thatǫ = o(1) and ǫ = Ω(1/n). Then, there exists a symmetric-key encryptionπ ∈ Π̄ such that,
ǫπ,5 = ǫ, n = |M|, andπ’s security of Type(i, 4) and Type(i, 5) are not equivalent for1 ≤ i ≤ 3.

Proof: We consider a symmetric-key encryptionπ ∈ Π̄ whose probability transition matrix is defined by (23) in theproof
of Proposition 3. Then, we haveǫπ,5 = ǫ and lim

ǫ→0
ǫπ,5 = 0 by (24).

On the other hand, we derive a lower bound onǫπ,4 as follows. For any distributionPM , we have

PM|C(mi|cj) =
{

PM (mi)[ǫn+(1−ǫ)]
PM (mi)ǫn+(1−ǫ) if i = j,
PM (mi)(1−ǫ)

PM (mj)ǫn+(1−ǫ) if i 6= j.

Hence, forcs, ct ∈ C with s 6= t andPM (ms) ≤ PM (mt), we have

∆(PM|C=cs , PM|C=ct) =
PM (ms)PM (mt)ǫ

2n2 + PM (mt)ǫn(1− ǫ)(1 − PM (mt) + PM (ms))

[PM (ms)ǫn+ (1− ǫ)] [PM (mt)ǫn+ (1− ǫ)]
.

In particular, for the case of a distributionPM with PM (ms) = PM (mt) = 1/3 andǫ = 1/n, it holds that

∆(PM|C=cs , PM|C=ct) =
1

4− 3
n

. (27)

Thus, we have

ǫπ,4 = sup
PM

max
cs,ct

∆(PM|C=cs , PM|C=ct) (28)

≥ 1

4− 3
n

, (29)

where (28) and (29) follows from Lemma 11 and (27), respectively. Therefore, we obtainlim
ǫ→0

ǫπ,4 ≥ 1/4.

From the above discussion, it follows thatlim
ǫ→0

ǫπ,4 ≥ 1/4 and lim
ǫ→0

ǫπ,5 = 0, and the proof is completed.

C. Lower Bounds and Impossibility Results

In this section, under each of the security formalizations in Definition 4, we derive lower bounds on the adversary’s (or
distinguisher’s) advantage and the required size of secret-keys. First, we note the following lower bound shown in [28].

Proposition 5 ([28]): Let π be a symmetric-key encryption protocol. Then, for any simulator σ on C, and for the set of all
distinguishersD, we have

∆D(π( s−→|| [PK ]), σ( s−→ s)) ≥ 1− |K||M| .
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In [28] Pope showed the above lower bound by only consideringa distinguisher that inputs the uniformly distributed plaintexts
into the symmetric-key encryption protocol for distinguishing real output and ideal one. From the above proposition, it follows
that

ǫπ,8 ≥ 1− |K||M| , (30)

for arbitrary symmetric-key encryptionπ and [PK ]. We now derive lower bounds for the adversary’s (or distinguisher’s)
advantage under all formalizations in Definition 4 at once through our relationships.

Theorem 6:For any symmetric-key encryption protocolπ and [PK ], we have:

(i) δπ,i + ǫπ,j ≥ 1− |K||M| for i ∈ {1, 2, 3} andj ∈ {3, 5, 6, 8, 9, 10},

(ii) δπ,i + 2ǫπ,j ≥ 1− |K||M| for i ∈ {1, 2, 3} andj ∈ {2, 4},

(iii) δπ,i + 4ǫπ,7 ≥ 1− |K||M| for i ∈ {1, 2, 3},

(iv) δπ,i +

√

ln 2

2
ǫ

1

2

π,1 ≥ 1− |K||M| for i ∈ {1, 2, 3},

whereδπ,i andǫπ,j are parameters of formalizations of correctness and security, respectively, defined in Definition 4.
Proof: By Theorem 1, we have

ǫπ,8 ≤ ǫπ,9 + δπ,2,

δπ,1 = δπ,2 = δπ,3,

ǫπ,9 = ǫπ,10 ≤ ǫπ,3 = ǫπ,5 = ǫπ,6.

Combining the above inequalities with (30), we obtain (i).
In addition, by Theorem 1, we haveǫπ,3 ≤ 2ǫπ,2 andǫπ,2 ≤ ǫπ,4. Therefore, we have (ii) by these inequalities and (i).

Similarly, the inequalitiesǫπ,6 ≤ 4ǫπ,7 and ǫπ,2 ≤
√

ln 2
2 ǫ

1/2
π,1 shown by Theorem 1 imply (iii) and (iv), respectively, by

applying them to (i).

From Theorem 6, we obtain the following lower bounds on the size of secret-keys. The proof immediately follows from
Theorem 6, and we omit the proof.

Corollary 1: Suppose that a symmetric-key encryption protocolπ is (δ, ǫ)-secure in the sense of Type(i, j). Then, we have
the following lower bounds on the size of secret-keys:

(i) |K| ≥ {1− (δ + ǫ)} |M| for i ∈ {1, 2, 3} andj ∈ {3, 5, 6, 8, 9, 10},
(ii) |K| ≥ {1− (δ + 2ǫ)} |M| for i ∈ {1, 2, 3} andj ∈ {2, 4},
(iii) |K| ≥ {1− (δ + 4ǫ)} |M| for i ∈ {1, 2, 3} andj = 7,

(iv) |K| ≥
{

1−
(

δ +
√
2 ln 2ǫ

1

2

)}

|M| for i ∈ {1, 2, 3} andj = 1.

Remark 1:As described in [32], it is known that:Let {Φr|r ∈ R} be a family of (hash) functions fromS to T such that:
eachΦr mapsS injectively intoT ; and there existsǫ ∈ [0, 1] such that∆(ΦH(s),ΦH(s′)) ≤ ǫ for all s, s′ ∈ S, where
H is uniformly distributed overR. Then, we have|R| ≥ (1 − ǫ)|S|. Corollary 1 can be understood as an extension of the
above statement (see (i) in Corollary 1). Actually, we do notnecessarily assume that:PK is uniform; or for eachk ∈ K,
πA(k, ·) :M→ C is deterministic and injective (Note thatδ can be zero ifπA(k, ·) is injective).

Remark 2:In [10], Dodis derives the lower bound (i) in Corollary 1, andshows that this bound is tight with respect toδ and
ǫ up to a constant. In fact, by using a mechanism of the one-timepad, two constructions satisfying the following parameters
are proposed in [10]:ǫ = 0 and |K| = (1− δ)|M| for given δ ∈ [0, 1]; andδ = 0 and |K| = (1− 1

2ǫ)|M| for given ǫ ∈ [0, 1]
such thatǫ · |M|/2 is non-negative integer. By the constructions, it is straightforwardly seen that our lower bounds in Corollary
1 are also tight with respect toδ andǫ up to a constant.

By considering a contraposition of Corollary 1, we obtain the following impossibility result: There exists no symmetric-key
encryption protocol which is(δ, ǫ)-secure in the sense of Type(i, j), if δ andǫ are some real numbers such that they do not
satisfy the corresponding inequality among (i)–(iv) in Corollary 1.
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V. K EY AGREEMENT

A. Protocol Execution

We explain protocol execution of key agreement. LetX andY be finite sets. Suppose that Alice and Bob can have access
to an ideal resource, and that they can finally obtainx ∈ X andy ∈ Y, respectively. For simplicity, suppose that the resource
is given by a correlated randomness resource [PXY ]. In addition, we assume that there is the bidirectional (orunidirectional)
authenticated channel available between Alice and Bob, andthat Eve can eavesdrop on all information transmitted by the
channel without any error.

Let K be a set of keys, and letK be a random variable which takes values onK in s s (or more generally, [PK ]).
Also, let T be a set of transcripts between Alice and Bob. Letπ = (πA

ka, π
B
ka) be a key agreement protocol, whereπA

ka (resp.
πB
ka) is a converter at Alice’s (resp. Bob’s) side, defined below:Let l be a positive integer andλ = 2l − 1; The converter

πA
ka consists of (probabilistic) functionsf1, f3, f5, . . . , f2l−1 andgA, and the converterπB

ka consists of (probabilistic) functions
f2, f4, f6, . . . , f2l−2 andgB, where the functionsf1, f2, . . . , fn, gA, gB are defined as follows:

fi : X × T i−1 → T , ti = fi(x, t1, t2, t3, . . . , ti−1) for i = 1, 3, . . . , 2l− 1;

fj : Y × T j−1 → T , tj = fj(y, t1, t2, t3, . . . , tj−1) for j = 2, 4, . . . , 2l − 2;

gA : X × T λ → K, kA = gA(x, t1, t2, t3, . . . , tλ); gB : Y × T λ → K, kB = gB(y, t1, t2, t3, . . . , tλ).

Key Agreement Protocol π
Input of Alice’s inner interface:x ∈ X by accessing [PXY ]
Input of Bob’s inner interface:y ∈ Y by accessing [PXY ]
Output of Alice’s outer interface:kA ∈ K
Output of Bob’s outer interface:kB ∈ K

1. πA
ka

computest1 = f1(x) and sendst1 to πB
ka

by s−→ .
2. For s from 1 to (λ− 1)/2,

2-1. πB
ka

computest2s = f2s(y, t1, t2, . . . , t2s−1). Then,πB
ka

sendst2s to πA
ka

by s←− .

2-2. πA
ka

computest2s+1 = f2s+1(x, t1, t2, . . . , t2s). Then,πA
ka

sendst2s+1 to πB
ka

by s−→ .
3. πA

ka
computeskA = gA(x, t1, t2, . . . , tλ) and outputskA.

Similarly, πB
ka

computeskB = gB(y, t1, t2, . . . , tλ) and outputskB .

Note that, if only the unidirectional authenticated channel from Alice to Bob is available, the functionsfi for eveni could
be understood as trivial functions which always return a certain single point (or symbol). Similarly, we can capture thecase
of only the unidirectional authenticated channel from Bob to Alice being available.

For everyi with 1 ≤ i ≤ λ, Ti denotes a random variable which takes valuesti ∈ T , and letT λ := (T1, T2, . . . , Tλ) be
the joint random variable which takes valuestλ = (t1, t2, . . . , tλ) ∈ T λ. Also, letKA andKB be the random variables which
take valueskA ∈ K andkB ∈ K, respectively.

For simplicity, we assume that a key agreement protocolπ can be used at most one time (i.e., we deal with key agreement
protocols in the one-time model). Therefore, the purpose ofthe key agreement protocol is to transform a correlated randomness
resource [PXY ] and channels( s−→)l ‖ ( s←− )l−1 into a key sharing resources s ( or more generally, [PK ]).

B. Security Definitions Revisited: Formalizations and Relationships

As in the case of symmetric-key encryption protocols, let’sconsider the following traditional formalization of security for
key agreement protocols (e.g. [8], [9], [12], [19], [20], [25]).

Definition 6: Let π be a key agreement protocol. Then,π is said to beǫ-secureif it satisfies the following conditions:

Pr{KA 6= KB} ≤ ǫ, log |K| −H(KA) ≤ ǫ, andI(KA;T
λ) ≤ ǫ.

In particular,π is said to beperfectly-secureif ǫ = 0 above.

We now consider the following formalizations of information-theoretic security for key agreement.

Definition 7: Let π be a key agreement protocol such thatPK is the uniform distribution overK (i.e., [PK ]= s s). We
define the following formalizations of correctness and security.

• Correctness. We define the following parameters concerningcorrectness ofπ:

δπ,1 := max{Pr{KA 6= KB}, log |K| −H(KA)},
δπ,2 := ∆(PKAKB

, PKK).

• Security. We define the following advantage of adversaries for security:

ǫπ,1 := I(KA;T
λ),

ǫπ,2 := ∆(PKATλ , PKA
PTλ),
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ǫπ,3 := inf
PQ

∆(PKATλ , PKA
PQ),

where the infimum ranges over allPQ ∈ P(T λ).

Then,π is said to be(δ, ǫ)-secure in the sense of Type(i, j) for 1 ≤ i ≤ 2 and 1 ≤ j ≤ 3, if π satisfiesδπ,i ≤ δ and
ǫπ,j ≤ ǫ.

The traditional definition in Definition 6 corresponds to thesecurity in the sense of Type(1, 1). The composable security
by Maurer et al. [22], [24] and Canetti [5], [6] is closely related to the security in the sense of Type(2, 3): δπ,2 means
distinguisher’s advantage for distinguishing real outputand ideal one at honest players’ interfaces, andδπ,2 is the same as the
formalization of availability in Definition 1 for key agreement; ǫπ,3 means distinguisher’s advantage for distinguishing real
transcripts and simulator’s output atE-interface, together with output atA-interface. Note that the formalizationǫπ,3 is simple,
and validity ofǫπ,3 is well explained by the following proposition.

Proposition 6:The formalization of security in Definition 1 for a key agreement protocolπ is lower-and-upper bounded as
follows:

max

(

1

3
ǫπ,3, δπ,2

)

≤ inf
σ

∆D(π(( s−→)l‖( s←− )l−1‖ [PXY ]), σ( s s)) ≤ ǫπ,3 + 2δπ,2.

Proof: By focusing on distributions of output atA’s, B’s andE’s interfaces, for simplicity, we write
infPQ

∆(PKAKBTλ , PKKPQ) for infσ ∆
D(π(( s−→ )l‖( s←− )l−1‖ [PXY ]), σ( s s)), wherePK is the uniform distribution

overK.
For any distributionPQ ∈ P(C), we have

∆(PKAKBTλ , PKKPQ) ≤ ∆(PKAKBTλ , PKAKATλ) + ∆(PKAKATλ , PKAKA
PQ)

+∆(PKAKA
PQ, PKKPQ)

= Pr{KA 6= KB}+∆(PKATλ , PKA
PQ) + ∆(PKA

, PK)

≤ ∆(PKATλ , PKA
PQ) + 2∆(PKAKB

, PKK).

By taking the infimum over allPQ ∈ P(T λ), we have

inf
PQ

∆(PKAKBTλ , PKKPQ) ≤ inf
PQ

∆(PKATλ , PKA
PQ) + 2∆(PKAKB

, PKK)

= ǫπ,3 + 2δπ,2.

In addition, for any distributionPQ ∈ P(C) we have

∆(PKATλ , PKA
PQ) ≤ ∆(PKAKATλ , PKAKBTλ) + ∆(PKAKBTλ , PKKPQ) + ∆(PKKPQ, PKAKA

PQ)

= Pr{KA 6= KB}+∆(PKAKBTλ , PKKPQ) + ∆(PK , PKA
)

≤ 2∆(PKAKB
, PKK) + ∆(PKAKBTλ , PKKPQ)

≤ 3∆(PKAKBTλ , PKKPQ).

By taking the infimum over allPQ ∈ P(T λ), we have

1

3
ǫπ,3 ≤ inf

PQ

∆(PKAKBTλ , PKKPQ).

Finally, it is straightforward to see thatδπ,2 ≤ infPQ
∆(PKAKBTλ , PKKPQ).

Then, as in the case of symmetric-key encryption, we can showthe following theorem which states relationships between
all the formalizations above (i.e., six possible formalizations above).

Theorem 7:Let π be a key agreement protocol such thatPK is the uniform distribution overK. Then, we have explicit
relationships betweenδπ,i, ǫπ,j for i ∈ {1, 2}, j ∈ {1, 2, 3} as follows:

(1)δπ,2 ≤ δπ,1 +

√

δπ,1 ln 2

2
and δπ,1 ≤ −2δπ,2 log

2δπ,2
|K| ,

(2)
2

ln 2
ǫ2π,2 ≤ ǫπ,1 ≤ −2ǫπ,2 log

2ǫπ,2
|K||T |λ ,

(3)ǫπ,3 ≤ ǫπ,2 ≤ 2ǫπ,3.

Furthermore, it holds that:

(i) For arbitrary key agreementπ, it holds thatπ’s security of Type(i, 2) and Type(i, 3) are strictly equivalent for every
i ∈ {1, 2};
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(ii) Suppose that a key agreement protocolπ satisfiesǫπ,2 = o( 1
log |K|+λ log |T | ). Then, it holds thatπ’s security of Type

(i, 1), Type (i, 2), and Type(i, 3) are equivalent for everyi ∈ {1, 2};
(iii) Suppose that a key agreement protocolπ satisfiesδπ,2 = o(1/ log |K|). Then, it holds thatπ’s security of Type(1, j)

and Type(2, j) are equivalent for everyj ∈ {1, 2, 3};
(iv) Suppose that a key agreement protocolπ satisfiesδπ,2 = o(1/ log |K|) and ǫπ,2 = o( 1

log |K|+λ log |T | ). Then, allπ’s
security of Type(i, j) are equivalent.

Proof: First, we show (1): By Lemma 14 in Appendix B, we have

δπ,2 = ∆(PKAKB
, PKK)

≤ Pr{KA 6= KB}+min{∆(PKA
, PK),∆(PKB

, PK)}.
In addition, by Proposition 10 in Appendix A we have

∆(PKA
, PK)2 ≤ ln 2

2
D(PKA

||PK)

=
ln 2

2
(log |K| −H(KA))

≤ ln 2

2
δπ,1.

Therefore, we haveδπ,2 ≤ δπ,1 +
√

δπ,1 ln 2
2 .

Conversely, we have

Pr{KA 6= KB} ≤ δπ,2, and

log |K| −H(KA) ≤ −2∆(PKA
, PK) log

2∆(PKA
, PK)

|K| (31)

≤ −2δπ,2 log
2δπ,2
|K| ,

where (31) follows from Proposition 11. Thus, we obtain

δπ,1 ≤ −2δπ,2 log
2δπ,2
|K| .

Secondly, the proof of (2) is given in the same way as that of Theorem 1, and we omit it.
Thirdly, we show (3): By definition, we haveǫπ,3 ≤ ǫπ,2. In addition, for anyǫ > 0, there is a distributionPQ such that

ǫπ,3 + ǫ ≥ ∆(PKATλ , PKA
PQ). Then, we have

ǫπ,2 ≤ ∆(PKATλ , PKA
PQ) + ∆(PKA

PQ, PKA
PTλ)

≤ ǫπ,3 + ǫ+∆(PQ, PTλ)

≤ 2(ǫπ,3 + ǫ),

where the last inequality follows from∆(PQ, PTλ) ≤ ∆(PKA
PQ, PKATλ) ≤ ǫπ,3 + ǫ. Thus, we obtainǫπ,2 ≤ 2ǫπ,3.

Finally, (i) follows from (3) above; (ii) follows from Lemma10 and (2), (3) above and ; Similarly, (iii) follows from Lemma
10 and (1) above; and (iv) follows from (ii) and (iii) above.

C. Lower Bounds and Impossibility Results

For any key agreement protocol which constructs a key sharing resource [PK ] starting from a correlated randomness resource
[PXY ], we show a lower bound on the advantage of distinguishers asfollows. The proof is given in Appendix C.

Lemma 13:Let [PK ] be a key sharing resource. For any key agreement protocolπ, and for any simulatorσ, we have

∆D(π(( s−→)l‖( s←− )l−1‖ [PXY ]), σ([PK ])) ≥ 1− 2H0(X,Y )−H∞(K).

In particular, we have

∆D(π(( s−→)l‖( s←− )l−1‖ [PXY ]), σ( s s)) ≥ 1− 2H0(X,Y )

|K| .

From Lemma 13, we obtain lower bounds on the adversary’s (or distinguisher’s) advantage by Theorem 8 below, and the
required size of a correlated randomness resource by Corollary 2 below.



19

Theorem 8:For any key agreement protocolπ such thatPK is the uniform distribution overK, we have the following lower
bounds on the adversary’s advantage:

(i) 2

(

1 +

√

ln 2

2

)

δ
1

2

π,1 +

√

ln 2

2
ǫ

1

2

π,1 ≥ 1− 2H0(X,Y )

|K| , if δπ,1 ∈ [0, 1];

(ii) 2

(

1 +

√

ln 2

2

)

δ
1

2

π,1 + ǫπ,j ≥ 1− 2H0(X,Y )

|K| for j ∈ {2, 3}, if δπ,1 ∈ [0, 1];

(iii) 2δπ,2 +

√

ln 2

2
ǫ

1

2

π,1 ≥ 1− 2H0(X,Y )

|K| ;

(iv) 2δπ,2 + ǫπ,j ≥ 1− 2H0(X,Y )

|K| for j ∈ {2, 3},

whereδπ,i andǫπ,j are parameters of formalizations of correctness and security, respectively, defined in Definition 7.
Proof: By Proposition 6, we have

inf
σ

∆D(π(( s−→)l‖( s←− )l−1‖ [PXY ]), σ( s s)) ≤ ǫπ,3 + 2δπ,2. (32)

Therefore, by (32) and Lemma 13 we obtain

ǫπ,3 + 2δπ,2 ≥ 1− 2H0(X,Y )

|K| .

By Theorem 7, we have explict relationships betweenδπ,i andǫπ,j as follows:

δπ,2 ≤ δπ,1 +

√

ln 2

2
δ

1

2

π,1

≤
(

1 +

√

ln 2

2

)

δ
1

2

π,1 if δπ,1 ∈ [0, 1];

ǫπ,3 ≤ ǫπ,2 ≤
√

ln 2

2
ǫ

1

2

π,1.

Therefore, by combining the above inequalities we obtain all lower bounds in Theorem 8.

Corollary 2: Suppose that a key agreement protocolπ is (δ, ǫ)-secure in the sense of Type(i, j) in whichPK is the uniform
distribution overK. Then, we have the following lower bounds on the size of a correlated randomness resource:

(i) 2H0(X,Y ) ≥
{

1−
[
√

ln 2

2
ǫ

1

2 + 2

(

1 +

√

ln 2

2

)

δ
1

2

]}

|K| for i = j = 1, if δ ∈ [0, 1];

(ii) 2H0(X,Y ) ≥
{

1−
[

ǫ+ 2

(

1 +

√

ln 2

2

)

δ
1

2

]}

|K| for i = 1 andj ∈ {2, 3}, if δ ∈ [0, 1];

(iii) 2H0(X,Y ) ≥
{

1−
(
√

ln 2

2
ǫ

1

2 + 2δ

)}

|K| for i = 2 andj = 1;

(iv) 2H0(X,Y ) ≥ {1− (ǫ+ 2δ)} |K| for i = 2 andj ∈ {2, 3}.
Proof: The proof of Corollary 2 immediately follows from Theorem 8.

Finally, from Lemma 13 we obtain Proposition 7 which is an impossibility result for key agreement. Also, we provide
Corollaries 3 and 4 below, as illustrations of impossibility results which are special cases of Proposition 7. The proofs
immediately follow from Theorem 8 and Proposition 7, and we omit them.

Proposition 7: Let [PK ] be a key sharing resource, and let [PXY ] be a correlated randomness resource. In addition,
let ǫ̂ be a real number such thatǫ̂ < 1 − 2H0(X,Y )−H∞(K). Then, there exists no key agreement protocolπ such that

( s−→)∞‖( s←− )∞‖ [PXY ]
π,ǫ̂
=⇒ [PK ].

Corollary 3: There is no key agreement protocolπ such that ( s−→ )∞‖( s←− )∞
π,ǫ̂
=⇒ [PK ] for ǫ̂ < 1 − 1/2H∞(K). In

particular, there is no(δ, ǫ)-secure key agreement in the sense of Type(i, j) which constructss s (even with 1-bit) starting
from authenticated communications, ifδ, ǫ ∈ [0, 1] are some real numbers such that:

(i)

√

ln 2

2
ǫ

1

2 + 2

(

1 +

√

ln 2

2

)

δ
1

2 <
1

2
for i = j = 1;
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(ii) ǫ+ 2

(

1 +

√

ln 2

2

)

δ
1

2 <
1

2
for i = 1 andj ∈ {2, 3};

(iii)

√

ln 2

2
ǫ

1

2 + 2δ <
1

2
for i = 2 andj = 1;

(iv) ǫ+ 2δ <
1

2
for i = 2 andj ∈ {2, 3}.

Corollary 4: Let l and s be nonnegative integers withl < s. In addition, we denote thel-bit key sharing resource by
s s

l, and let [PK ]s be ans-bit key sharing resource with min-entropyH∞(K). Then, there is no protocolπ such that

( s−→ )∞‖( s←− )∞‖ s s
l

π,ǫ̂
=⇒ [PK ]s for ǫ̂ < 1 − 2l−H∞(K). In particular, there is no(δ, ǫ)-secure key agreement (or

key-expansion) protocol in the sense of Type(i, j) which constructs thes-bit key sharing resources s
s from the l-bit key

sharing resources s
l, if δ, ǫ ∈ [0, 1] are some real numbers which satisfy the inequality in Corollary 3.

VI. CONCLUSION

In this paper, we investigated relationships between formalizations of information-theoretic security for symmetric-key
encryption and key-agreement protocols in a general setting. Specifically, we showed that, for symmetric-key encryption,
the following formalizations are all equivalent without any condition on system parameters:

• Stand-alone security including formalizations of extended (or relaxed) Shannon’s secrecy using the statistical distance,
information-theoretic indistinguishability and semantic security by Goldwasser and Micali; and

• Composable security including formalizations of Maurer etal. and Canetti.

In addition, we have shown that there are two security formalizations which are not equivalent to the above formalizations
without a certain condition: one is the formalization of extended (or relaxed) Shannon’s secrecy using the mutual information,
and the other is the formalization given by the difference between the distribution of plaintexts and the one conditioned on
a certain ciphertext. However, these two formalizations will be equivalent to others, if we impose a certain condition which
seems to be satisfied in a usual designing of protocols.

Furthermore, we also derived lower bounds on the adversary’s (or distinguisher’s) advantage and secret-key size required
under all of the above formalizations. In particular, we could derive them all at once through our relationships betweenthe
formalizations. In addition, we briefly observed impossibility results which easily follow from the lower bounds.

Moreover, we showed similar results (i.e., relationships between formalizations of stand-alone and composable security,
lower bounds, and impossibility results) for key agreementprotocols.

We hope that our results on relationships between security formalizations shown by a formal and rigorous way are useful
in designing the protocols by selecting suitable system parameters. In particular, our results explicitly imply that encryption
and key agreement protocols defined by stand-alone securityremain to be secure even if they are composed with other ones,
though it may be implicitly assumed by some researchers thatthe stand-alone security formalizations are sufficient forproviding
composable security in the information-theoretic settings.
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APPENDIX A: DEFINITION AND INEQUALITY

Definition 8: Let X be a random variable which takes values in a finite setX . Then, the min-entropyH∞(X) and the
Hartley entropyH0(X) are defined by

H∞(X) = min
x∈X
{− logPX(x)}, H0(X) = log |{x ∈ X|PX(x) > 0}| .

Definition 9:Let X , Y , andZ be random variables associated with distributionsPX , PY , andPZ , respectively. Themutual
information betweenX andY , denoted byI(X ;Y ), is defined by

I(X ;Y ) := H(X)−H(X |Y ),

whereH(X) (resp.H(X |Y )) is the Shannon entropy (resp. the conditional Shannon entropy). Also, theconditional mutual
information ofX and Y givenZ, denoted byI(X ;Y |Z), is defined by

I(X ;Y |Z) :=
∑

z

PZ(z)I(X ;Y |Z = z).

Definition 10:Let X , Y , andZ be random variables associated with distributionsPX , PY , andPZ , respectively, whereX
andY take values in a finite setX . Thestatistical distance(a.k.a. variational distance) between two distributionsPX andPY ,
denoted by∆(PX , PY ), is defined by

∆(PX , PY ) :=
1

2

∑

x∈X

|PX(x) − PY (x)| .

Also, for conditional probabilitiesPX|Z := PXZ/PZ and PY |Z := PY Z/PZ , the statistical distance betweenPX|Z and
PY |Z , denoted by∆(PX|Z , PY |Z) (or ∆(X,Y |Z)), can be defined by

∆(PX|Z , PY |Z) :=
∑

z

PZ(z)∆(PX|Z=z , PY |Z=z).

Then, by definitions, note that∆(PX|Z , PY |Z) = ∆(PZX , PZY ).
In this appendix, for completeness, we describe several inequalities in the following, which are necessary to show the proofs

of propositions in this paper. Note that these inequalitiesare not new.

http://eprint.iacr.org/2009/630
http://eprint.iacr.org/2012/383
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Proposition 8:Let (X,Y ) and(X ′, Y ′) be random variables associated with two distributionsPXY andPX′Y ′ , respectively,
in a finite set. Then, we have

max (∆(PX , PX′),∆(PY , PY ′)) ≤ ∆(PXY , PX′Y ′)

Proof: From the definition of statistical distance, it follows that

2 ·∆(PXY , PX′Y ′) =
∑

x

∑

y

|PXY (x, y)− PX′Y ′(x, y)|

≥
∑

x

∣

∣

∣

∣

∣

∑

y

PXY (x, y)−
∑

y

PX′Y ′(x, y)

∣

∣

∣

∣

∣

=
∑

x

|PX(x) − PX′(x)|

= 2 ·∆(PX , PX′).

Proposition 9:Let X andX ′ be random variables associated with two distributionsPX andPX′ , respectively, in a finite
set. For an arbitrary random variableY associated with a distributionPY , we have∆(PXXY , PXX′Y ) = P (X 6= X ′).

Proof: The proof follows from the following direct calculation:

2 ·∆(PXXY , PXX′Y ) =
∑

x

∑

x′

∑

y

|PXXY (x, x
′, y)− PXX′Y (x, x

′, y)|

=
∑

x

∑

y

|PXXY (x, x, y)− PXX′Y (x, x, y)|

+
∑

x

∑

x′ 6=x

∑

y

|PXXY (x, x
′, y)− PXX′Y (x, x

′, y)|

=
∑

x

∑

y

(PXY (x, y) − PXX′Y (x, x, y)) +
∑

x

∑

x′ 6=x

∑

y

PXX′Y (x, x
′, y)

= 1− Pr{X = X ′}+ Pr{X 6= X ′}
= 2Pr{X 6= X ′}.

Corollary 5: Let X andX ′ be random variables associated with two distributionsPX andPX′ , respectively, in a finite set.
Then, we have∆(PX , PX′) ≤ Pr{X 6= X ′}.

Proof: The proof follows from Propositions 8 and 9.

Proposition 10 (Pinsker’s inequality, Lemma 12.6.1 in [7]): Let X1 and X2 be random variables associated with two
distributionsPX1

andPX2
, respectively, in a finite set. Then, we have

D(PX1
‖ PX2

) ≥ 2

ln 2
∆(PX1

, PX2
)2.

Corollary 6: Let X andY be random variables associated with two distributionsPX andPY , respectively. Then, we have

I(X ;Y ) ≥ 2

ln 2
∆(PXY , PXPY )

2.

Proof: The proof immediately follows from Proposition 10 by setting PX1
:= PXY andPX2

:= PXPY .

Proposition 11 (Classical case of Fannes’s inequality, Theorem 16.3.2 in [7]):Let X1 andX2 be random variables associated
with two distributionsPX1

andPX2
, respectively, on a finite setX such that∆(PX1

, PX2
) ≤ 1

4 . Then, we have

|H(X1)−H(X2)| ≤ −2∆(PX1
, PX2

) log
2∆(PX1

, PX2
)

|X | .

Corollary 7: LetX andY be random variables which take values in finite setsX andY, respectively. If∆(PXY , PXPY ) ≤ 1
4 ,

we have

I(X ;Y ) ≤ −2∆(PXY , PXPY ) log
2∆(PXY , PXPY )

|X ||Y| .

Proof: The proof immediately follows from Proposition 11 by setting PX1
:= PXY andPX2

:= PXPY .
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APPENDIX B: TECHNICAL PROPOSITIONS

In this appendix, we show several propositions which are used in this paper.

Proposition 12:Let X be a random variable which takes values in a finite setX . In addition, letY andZ be random
variables taking values in a finite setY defined by

Y := f(X,R), Z := g(X,R′),

wheref, g are mappings andR,R′ are random variables such thatX,R,R′ are pairwisely independent. We define

α := sup
PX∈P(X )

∆(PXY , PXZ),

β := max
x∈X

∆(PY |X=x, PZ|X=x),

where the supremum inα ranges over all distributionsPX ∈ P(X ). Then, we haveα = β.
Proof: First, we showα ≤ β: For an arbitrary distributionPX , we have

∆(PXY , PXZ) =
1

2

∑

x,y

|PXY (x, y)− PXZ(x, y)|

=
1

2

∑

x

PX(x)
∑

y

|PY |X=x(y|x) − PZ|X=x(y|x)|

≤ 1

2
max

x

∑

y

|PY |X=x(y|x)− PZ|X=x(y|x)|

= max
x

∆(PY |X=x, PZ|X=x).

Therefore, we getα ≤ β.
Secondly, we proveα ≥ β: Let x0 ∈ X be an element such that it givesβ, i.e., x0 = argβ. For anyǫ > 0, we define a

distributionPX̂ by

PX̂(x) :=

{

1− γ if x = x0,
γ

|X |−1 otherwise,

whereγ is a positive real number such thatγβ ≤ ǫ. Let Ŷ := f(X̂, R) and Ẑ := f(X̂, R′). Then, we have

α ≥ ∆(PX̂Ŷ , PX̂Ẑ)

≥ (1− γ)∆(PŶ |X̂=x0
, PẐ|X̂=x0

)

= (1− γ)β

≥ β − ǫ.

Therefore, we haveα ≥ β.

Lemma 14:For a key agreement protocol, we have

Pr{KA 6= KB} ≤ ∆(PKAKB
, PKK)

≤ P (KA 6= KB) + min{∆(PKA
, PK),∆(PKB

, PK)}.
Proof: Since we can easily see the existence of a distinguisher withadvantagePr{KA 6= KB}, the first inequality of the

two is easy. We show the second inequality in the following. From triangle inequality, we have

∆(PKAKB
, PKK) ≤ ∆(PKAKB

, PKAKA
) + ∆(PKAKA

, PKK)

= Pr{KA 6= KB}+∆(PKA
, PK).

Similarly, it is shown that∆(PKAKB
, PKK) ≤ Pr{KA 6= KB}+∆(PKB

, PK).

Lemma 15:For two binary random variablesX andY over a set{0, 1}, and forε ∈ [0, 1], the following two inequalities
are equivalent:

∣

∣

∣

∣

∣

∣

Pr{X = Y } −
∑

ℓ∈{0,1}

Pr{X = ℓ}Pr{Y = ℓ}

∣

∣

∣

∣

∣

∣

≤ ε, (33)

∣

∣

∣Pr{X = Y = ℓ} − Pr{X = ℓ}Pr{Y = ℓ}
∣

∣

∣≤ 1

2
ε for everyℓ ∈ {0, 1}. (34)
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TABLE I
PXY AND ITS MARGINALS

x\y 0 1 PX(x)
0 a b a+ b
1 c d c+ d

PY (y) a+ c b+ d 1

Proof: It is sufficient to show that (33)⇒ (34), since (34)⇒ (33) is obvious. LettingPXY be a joint probability distribution
of X andY given by TABLE I, (33) is equivalent to

∣

∣a+ d− (a+ b)(a+ c)− (c+ d)(b + d)
∣

∣ ≤ ε. (35)

Since it holds thata+ b+ c+ d = 1, (35) becomes|ad− bc| ≤ ε/2. Furthermore, usinga+ b+ c+ d = 1 again, we have
∣

∣PXY (0, 0)− PX(0)PY (0)
∣

∣ =
∣

∣a− (a+ b)(a+ c)
∣

∣ ≤ ε

2
,

∣

∣PXY (1, 1)− PX(1)PY (1)
∣

∣ =
∣

∣d− (c+ d)(b + d)
∣

∣ ≤ ε

2

which imply (34).

Remark 3:Note that (33)⇒ (34) does not generally hold ifX andY are not binary random variables.

APPENDIX C: PROOF OFLEMMA 13

Let Supp(PXY ) = {(x, y)|PXY (x, y) > 0} ⊂ X × Y be the support ofPXY . For anykA ∈ K, andkB ∈ K, we define

Ωπ,T λ

kA,kB
:=























∃(x, y) ∈ Supp(PXY ) such that
ti = fi(x, t1, . . . , ti−1) for odd i

tλ = (t1, t2, . . . , tλ) ∈ T λ tj = fj(y, t1, . . . , tj−1) for evenj
kA = gA(x, t1, t2, . . . , tλ)
kB = gB(y, t1, t2, . . . , tλ)























.

For any(x, y) ∈ Supp(PXY ), kA ∈ K, andkB ∈ K, we also define

Ωπ,T λ

kA,kB ,x,y :=















ti = fi(x, t1, . . . , ti−1) for odd i
tλ = (t1, t2, . . . , tλ) ∈ T λ tj = fj(y, t1, . . . , tj−1) for evenj

kA = gA(x, t1, t2, . . . , tλ)
kB = gB(y, t1, t2, . . . , tλ)















.

Then, for any simulatorσ, we have

∆D(π(( s−→)l‖( s←− )l−1‖ [PXY ])), σ([PK ]))

≥ 1

2

∑

(kA,kB ,tλ)∈K×K×T λ

∣

∣Pπ(kA, kB, t
λ)− Pσ(kA, kB, t

λ)
∣

∣

= max
B⊂K×K×T λ

{Pπ(B)− Pσ(B)}

≥
∑

(kA,kB),tλ∈Ωπ,T λ

kA,kB

(

Pπ(kA, kB, t
λ)− Pσ(kA, kB, t

λ)
)

,

= 1−
∑

(kA,kB),tλ∈Ωπ,T λ

kA,kB

Pσ(kA, kB , t
λ), (36)

wherePπ andPσ are distributions by the systemsπ(( s−→)l‖( s←− )l−1‖ [PXY ]) andσ([PK ]), respectively.
We now need the following claim.
Claim 2: Suppose thatgA andgB in the key agreement protocolπ are deterministic. Then, we have

∑

(kA,kB),tλ∈Ωπ,T λ

kA,kB

Pσ(kA, kB, t
λ) ≤ 2H0(X,Y )−H∞(K).

Proof: We note thatPσ(kA, kB, t
λ) = 0 if kA 6= kB, and thatPσ(kA, kB, t

λ) = PK(k)Pσ(t
λ) if kA = kB = k ∈ K.

Thus, we have
∑

(kA,kB),tλ∈Ωπ,T λ

kA,kB

Pσ(kA, kB, t
λ) =

∑

k

PK(k)
∑

tλ∈Ωπ,T λ

k,k

Pσ(t
λ)
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≤ 1

2H∞(K)

∑

k

∑

(x,y)∈Supp(PXY )

∑

tλ∈Ωπ,T λ

k,k,x,y

Pσ(t
λ)

=
1

2H∞(K)

∑

(x,y)∈Supp(PXY )







∑

k

∑

tλ∈Ωπ,T λ

k,k,x,y

Pσ(t
λ)







≤ 1

2H∞(K)

∑

(x,y)∈Supp(PXY )

1 (37)

= 2H0(X,Y )−H∞(K).

where (37) follows fromΩπ,T λ

k,k,x,y ∩ Ωπ,T λ

k′,k′,x,y = ∅ if k 6= k′, since we assume thatgA andgB are deterministic.

We are back to the proof of Lemma 13. IfgA andgB are deterministic, the proof of Lemma 13 directly follows from (36)
and Claim 2. We next show that the statement of Lemma 13 is true, even if we remove the assumption. Suppose thatgA or gB
is probabilistic. LetRA (resp.RB) be a finite set, and suppose thatgA (resp.gB) chooses a random numberrA ∈ RA (resp.
rB ∈ RB) according to a probability distributionPRA

(resp.PRB
). For each fixed(rA, rB) ∈ RA × RB, a key agreement

protocolπ(rA,rB) is specified in whichgA with inputting rA andgB with inputting rB are deterministic. Therefore, we can
apply the lower bound derived before. Hence, even ifgA (resp.gB) choosesrA ∈ RA (resp.rB ∈ RB) according toPRA

(resp.PRB
), this lower bound cannot be improved. Therefore, the proofof the lemma is completed.
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