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Abstract

This paper revisits formalizations of information-the@resecurity for symmetric-key encryption and key agreenpntocols
which are very fundamental primitives in cryptography. lkengral, we can formalize information-theoretic securityvarious
ways: some of them can be formalized as stand-alone sedyrigxtending (or relaxing) Shannon’s perfect secrecy or thgro
ways such as semantic security; some of them can be done bassmmposable security. Then, a natural question aboutsthis
what is the gap between the formalizations? To answer thstigne we investigate relationships between several fbrzatéoons
of information-theoretic security for symmetric-key eymtion and key agreement protocols. Specifically, for symniciey
encryption protocols in a general setting including theecadere there exist decryption-errors, we deal with theofalhg
formalizations of security: formalizations extended (elaxed) from Shannon’s perfect secrecy by using mutuakimédion and
statistical distance; information-theoretic analoguédistinguishability and semantic security by Goldwasaed Micali; and
composable security by Maurer et al. and Canetti. Then, vpdaoitky show the equivalence and non-equivalence betwbese
formalizations. Under the model, we also derive lower bauond the adversary’s (or distinguisher’s) advantage andsitte of
secret-keys required under all of the above formalizatigithough some of them may be already known, we can expficitl
derive them all at once through our relationships betweerfahmalizations. In addition, we briefly observe impodgipiresults
which easily follow from the lower bounds. The similar resuhre also shown for key agreement protocols in a gener@hget
including the case where there exist agreement-errorseimptbtocols.

Index Terms

information-theoretic security, unconditional securipgrfect secrecy, indistinguishability, semantic sagudomposable se-
curity, encryption, key agreement.

|. INTRODUCTION

Background and Related Works. The security of cryptographic protocols in informatioretinetic cryptography does
not require any computational assumption based on conipuigdly hard problems, such as the integer factoring andretie
logarithm problems. In addition, since the security defimiin information-theoretic cryptography is formalizeg bise of some
information-theoretic measure (e.g. entropy or statistitistance) or some probability (e.g., success probwlfiadversary’s
guessing), it does not depend on a specific computationaéhzodl can provide security which does not compromise even if
computational technology intensively develops or a new matational technology (e.g. quantum computation) appieatise
future. In this sense, it is interesting to study and develyptographic protocols with information-theoretic setu

As fundamental cryptographic protocols we can considernsgtric-key encryption and key-agreement protocols, aed th
model of the protocols falls into a very simple and basic adenwhere there are two honest players (named Alice and Bob)
and an adversary (hamed Eve). Up to date, various resulteetopic of those protocols with information-theoretic ledy
have been reported and developed since Shannon’s wdrkif3®jost of those results the traditional security definitas been
given asstand-alone securitin the sense that the protocols will be used in a stand-al@ye iw symmetric-key encryption, the
security is formalized ag(M; C') = 0 (Shannon's perfect secrecy) or its variant (d.gM; C') < ¢ for some smalk), where
M andC are random variables which take values in sets of plain@xdsciphertexts, respectively; similarly, in key agreeten
the security is usually formalized d$K; T') = 0 or its variant (e.gI (K;T) < ¢), whereK andT are random variables which
take values on sets of shared keys and transcripts, resggctn addition, it is possible to give security formalizas of
symmetric-key encryption by an information-theoreticlagae of indistinguishability or semantic security by Gelsser and
Micali [L5]. The problem with those definition of stand-atosecurity is that, if a protocol is composed with other otes,
security of the combined protocol may not be clear. Namelig hot always guaranteed that the composition of indiviigua
secureprotocols results in theecureprotocol, wheresecureis meant in the sense of the traditional definition of stalwha
security.
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On the other handcomposable securitfor security under composition) can guarantee that a pobteenains to be secure
after composed with other ones. The previous frameworkéisfline of researches are based on iteal-world/real world
paradigm and the paradigm includasiiversal composabilitpy Canetti[6] andeactive simulatabilitypy Backes, Pfitzmann
and Waidner[[2] (See alsal[5]._[R7]._[14]. [26].1[3] for redat works). In addition, the explicit and simple paradigm for
composable security was given by Maurer][21], and this aqgitds calledconstructive cryptographwhere the security
definitions of cryptographic systems can be understoodestiaative statements: the idea is to consider cryptogdcagbtocols
as transformations which construct cryptographicalfgngersystems fronweakerones. Using the framework of constructive
cryptography, Maurer and Tackmarin[24] studied the auitatetthen-encrypt paradigm for symmetric-key encryptidth
computational security. Furthermore, Maurer and Renng} fPoposed a new framework in an abstract way, cadlbdtract
cryptography The framework is described at a higher level of abstradtian [21], [24], and various notions and methodologies
(e.g. universal composability|[6], reactive simulatagil2], and indifferentiability [28]) can be captured in tfi@amework.

Up to date, there are a few works which report a gap betweendiarations of the stand-alone security and composable
security for multiparty computation in information-thetic settings[[i1],[[11],[[18]. In particular, Kushilevitzjndell and Rabin
[18] investigated the gap between them in several settings perfect/statistical security and composition witaptive/fixed
inputs), and they showed a condition that a protocol havilagdsalone security is not necessarily secure under wsaber
composition.

Our Contributions. We can formalize information-theoretic security for syntrivzekey encryption and key agreement protocols
in various ways: some of them can be formalized as standeadenurity by extending Shannon’s perfect secrecy or byrothe
ways such as semantic security; some of them can be done basedmposable security. Then, a natural question about
this is: what is the gap between the formalizations? To anghe question, we investigate relationships between aéver
formalizations of information-theoretic security for sgmatric-key encryption and key agreement protocols. Spadlfi we
deal with the model of symmetric-key encryption protocaolsigeneral setting where encryption/decryption algorittman be
arbitrary (i.e., deterministic or randomized), or protisocan have decryption-errors. In the model, we investigsdollowing
formalizations of security:

(i) Traditional formalization extended (or relaxed) frorh&@non’s perfect secrecy by using the mutual information;

(ii) Another traditional one extended (or relaxed) from Bhan’s perfect secrecy by using the statistical distandegathe
variational distance);

(iii)y Formalization by information-theoretic analogue ioflistinguishability by Goldwasser and Micali [15];

(iv) Formalization by information-theoretic analogue ehsantic security by Goldwasser and Micali[15];

(v) Formalizations of composable security by Maurer et[22]] [24] and Canetti[[5],]6].

The main contribution of this paper is to explicitly show tthalationships between those formalizations, and to feWea
conditions that those formalizations being (non)equivala details. Under the model, we also derive lower boundshen
adversary’s (or distinguisher’s) advantage and secngske required under all of the above formalizations. Althlo some of
them may be already known, we can explicitly derive them atirece through our relationships between the formalizatian
combination with the lower bound shown by Popel[28] in whieh security definition is given based on Maurer’s formaiaat
for composable security. In addition, we briefly observe asgbility results which easily follow from the lower bownd

Furthermore, we show similar results (i.e., relationshipswveen formalizations, lower bounds, and impossibilggults)
for key agreement protocols in a general setting where tharwéls used are unidirectional/bidirectional, the rounchber of
protocols is arbitrary, and the protocols can have agreegreors.

Other Works Related. Bellare, Tessaro, and Vardyl [4] recently study securityni@dins and schemes for encryption in the
model of the wiretap channe[s[34]. In particular, in the rlaaf wiretap channels, they showed that the following fdinadions
of stand-alone security are equivalent: formalizatiorteresed (or relaxed) from Shannon’s perfect secrecy by usagnutual
information and statistical distance; information-thetar indistinguishability which is calledistinguishing securityn [4]; and
information-theoretic semantic security. Although theimscope of their paper lies in the wiretap channel and it fiedint
from the model in this paper, their approach and ours ardasiniihey also showed that the first formalization by usingual
information with restriction on that only uniformly dishited plaintexts are input is weaker than those formatirati
Recently, in a simple and elemental way, Dodis [10] direddyives a lower bound on secret-key size required for symcaet
key encryption, which may have decryption-errors, withcsfyéng required running time of an adversary where the ggcu
definition is given based on a simulation-based formaliwratinder bounded/unbounded adversaries. One of lower kannd
Corollary[d in this paper is the same as his lower bound, atetéstingly, our technique and his for deriving it are quite
different.

Organization. The rest of this paper is organized as follows. In Sectiowd,survey composable security and its formalization
based on[[22],[124] which is similar in spirit to previous snia [2], [5], [6], [27]. In Section Ill, we explain the protot
execution of symmetric-key encryption in a general seftangl we give several formalizations of correctness andrig@o our
model. Section 1V is devoted to the main contribution of tlager, and we show the relationships between those fornializa
for symmetric-key encryption protocols, and reveal candi for equivalence and non-equivalence of the formatinat In



addition, we derive lower bounds on adversary’s (or distislger’s) advantage and the size of secret-keys requireerwll the
formalizations. Furthermore, impossibility results argetly observed. In Section V, we show similar results for keyeement
protocols as well. Finally, we conclude the paper in Sectidn

Notation. In this paper, for a random variablé which takes values in a finite séf, the min-entropy and Hartley entropy of
X (i.e., log of the cardinality of the set) are denoted By, (X) and Hy(X), respectively. Also/(X;Y) denotes the mutual
information betweenX andY, and we denote the statistical distance between two disivitis Py and Py by A(Px, Py ).
For completeness, we describe the definitions in Appendix A.

For ann-tuples of random variablegX;, X», ..., X,,), we denote its associated probability distributionBy, x,. x, . In
this paper, for a random variablé which takes values i, we especially writePx x for the distribution on¥’ x X defined
by Pxx(x,2’) := Px(z) if x =2/, and Pxx(z,2’) := 0 if o # a’. Furthermore|X’| denotes the cardinality ot. Also, let
P(X) be the set of all distributions oveY whose supports ar&’, i.e., P(X) := {Px | Supd Px) = X}.

II. COMPOSABLE SECURITY

In this paper, we consider a very basic scenario where threréhaee entities, Alice, Bob (honest players), and Eve (an
adversary).

A. Definition of Systems

Following the notions in[[22],[[24], we describe three tymdssystems: resources, converters and distinguishers[22&e
[24] for more details).

A resourceis a system with three interfaces labeléd B, and E/, where A, B, and E imply three entities, Alice, Bob, and
Eve, respectively. If two resourcés S are used in parallel, this system is called parallel conjposof R andS and denoted
by R || S. We note thatR || S is also a resource.

A converteris a system with two kinds of interfaces: the first kind of ifdees are designated as iheer interfaces which
can be connected to interfaces of a resource, and combinganwerter and a resource by the connection results in a new
resource; the second kind of interfaces are designed asutieeinterfaces which can be provided as the new interfaces of the
combined resource. For a resouBeand a converterr, we write 7(R) for the system obtained by combinirfgyand =, and
m(R) behaves as a resource, againpmtocol is a pair of converters = (w4, 75) for the honest players, Alice and Bob,
and the resulting system by applyiagto a resourceR is denoted byr(R) or mamg(R). For converters (or protocols), ¢,
the sequential compositioof them, denoted by o 7, is defined by(¢ o 7)(R) := ¢(n(R)) for a resourceR. In contrast, the
parallel compositionof converters (or protocolsy, ¢, denoted byr || ¢, is defined by(r || ¢)(R || S) := n(R) || ¢(S) for
resourcesik, S.

A distinguisherfor an n-interface resource is a system with+ 1 interfaces:n interfaces are connected tointerfaces
of the resource, respectively; and the other interfaceutstp bit (i.e., 1 or 0). For a resourée and a distinguisheD, we
write DR for the system obtained by combining and D, and we regardR as a binary random variable. The purpose of
distinguishers is to distinguish two resources, and theatge of a distinguishap for two resourcesy, R; is defined by

AP(Ro, R1) == A(Ppr,, Ppr,),

wherePpr, and Ppg, are the probability distributions of the binary random satesD R, and DR, , respectively. LeD be
the set of all distinguishers, and we define
AP(Rg, Ry) := sup AP(Ro, Ry).
DeD
Note thatD contains not only polynomial-time distinguishers but ateonputationally unbounded ones, since this paper deals
with information-theoretic security.

B. Definition of Security

The security definition we focus on in this paper is derivaahfithe paradigm of constructive cryptographyi[21]. Techihjc
the formal definition is based on the works|[in[22].][24] (<82][ [24] for details), and is similar in spirit to previouisraulation-
based definitions in [2]/[5]/16],127]. The idea in the paigm of constructive cryptography includes comparison &f el
andideal systems: the real system means constructibR) by applying a protocof to a resourceR?; and the ideal system
consists of thédeal functionality(such as ideal channelS)including description of a security goal and a simulataonnected
to the interface of/, which we denote by (5). If the difference of the two resources(R) ando(S), is a small quantity
(i.e., AP(m(R),0(S)) < e for small €), we consider that the protocal securely construct§ from R. More formally, we
define the security as follows.

Definition 1 ([22], [24]): For resourcesk, S, we say that a protocat constructsS from R with error € € [0, 1], denoted
by R =5 S, if the following two conditions are satisfied:



1) Availability: For the set of all distinguishe®, we haveA” (r(L¥(R)), L¥(S)) < ¢, where L is the converter which
blocks theE-interface for distinguishers when it is attachedRo
2) Security: There exists a simulatersuch that, for the set of all distinguishe®s we haveA” (r(R),o(S)) < e.

In the above definition, we do not require the condition that$imulator is efficient (i.e., polynomial-time). In othgords,
the simulator may be inefficient.

The advantage of the above security definition lies in thatodogol having this kind of security remains to be secureneve
if it is composed with other protocols. Formally, this candiated as follows.

Proposition 1 ([22], [24]): Let R, S, T andU be resources, and let ¢ be converters (or protocols) such tHat=% S and

522 7, Then, we have the following:

(1) ¢ o satisfiesR “Z57 1,

(2) = || id satisfiesR || U “4“ s || U; and

(3) id || = satisfiesU || R “2%“ U || 8,
whereid is the trivial converter which makes the interfaces of thiesystem accessible through the interfaces of the combined
system.

We note that the first property in Propositidh 1 means thergégdor sequential composition. In addition, as statedda][
three properties in Propositidh 1 imply the security forget composition in the following sense: For resourégs?’, S, S’

and converters, ¢ such thatR =5 S and R’ 22 &', || ¢ satisfiesR || R’ mlegH g | S

C. Ildeal Functionality/Channels

In this section, we give several definitions of ideal funetbity of resources such as the authenticated channel and ke
sharing resources which are necessary to discuss in ther.pap

o Authenticated Channel: Aauthenticated channalsable once, denoted l®y—, transmits a message (or a plaintext)
m from Alice’s interface (i.e. A-interface) to Bob’s interface (i.eB-interface) without any error/replacement. If Eve is
active, through theF-interface Eve obtains:, and she obtains nothing, otherwise. Similarly, an autbat#td channel
from B-interface toA-interface can be defined and denoted<bye . For a positive integet, we write (e—)* for the
composition of invoked: authenticated channe¢s— ||e— || ---||e— (¢ times), and we writge— ) if arbitrarily
many use oP— is allowed. Similarly,(+—e ) and (+—e )> can be defined.

« Secure Channel: Aecure channalsable once, denoted ley—e, transmits a plaintext: from A-interface toB-interface
without any error/replacement. Even if Eve is active, shiiols nothing except for the length of the plaintexts anchoan
replacem with another plaintext. Also, for a positive integemwe write (e—e) for the composition of invoked secure
channel®——e|je——e|| ... |e——>e (¢ times).

« Key Sharing Resource (with Uniform Distribution): Rey sharing resourcevith the uniform distribution usable once,
denoted bye—==, means the ideal resource with no input which generatesfaramrandom stringc and outputs it at
both interfaces of Alice and Bob. Even if Eve is active, hdeiiface outputs no information ahand cannot replacg
with another one. More generally, if such a kieys chosen according to a distributidf, (not necessarily the uniform
distribution), we denote the key sharing resource By ]|

« Correlated Randomness Resource (or Key Distribution RespulLet Pyy be a probability distribution with random
variablesX andY. A correlated randomness resourasable once, denoted by} y], means the resource with no input
which randomly generatgs;, y) according to the distributioyxy and outputst andy at interfaces of Alice and Bob,
respectively. Even if Eve is active, her interface outpuwsnformation on(z,y) and cannot replace it with another one.
Note that the resourcePlyy] includes [Px] (and hences=s ) as a special case.

IIl. SYMMETRIC-KEY ENCRYPTION: PROTOCOLEXECUTION AND SECURITY FORMALIZATIONS, REVISITED

We explain the traditional protocol execution of symmelay encryption. In the following, letM and C be finite sets
of plaintexts and ciphertexts, respectively. In addititet, M/ and C be andom variables which take plaintexts A1 and
ciphertexts inC, respectively.

Let 7 = (74,., 72 ) be a symmetric-key encryption protocol connected to a keyish resource Px] as defined below,
wherer? is a converter called aencryption algorithmat Alice’s side, andr? is a converter called decryption algorithm

enc dec

at Bob’s side:

Input of Alice’s outer interfacein € M
Input of Alice’s inner interfacek € K by accessing Px]
— Input of Bob’s inner interfacek € K by accessing Px]
Output of Bob’s outer interfaceh € M

1. 74 computes: = 72 (k,m) and sends: to 75

enc enc enc

2. nB computesi = 7% (k,c) and outputsh.

by e—.



In this paper, for given random variabléd and K, let M := 7% (K,x4 (K, M)) be a random variable which takes
values in the set of output of? .

Note that we do not require any restriction on the protocacexion of symmetric-key encryption such asl . is
deterministic; or for eactt € K, 72, (k,-) : M — C is injective; orrZ  is deterministic; or it has to be satisfied that
7B (k, 74 .(k,m)) = m for any possiblek and m. Therefore, we deal with a general case of the protocol aiecwf
symmetric-key encryption. In particular, it should be mbtkat: 72}, can be probabilistic (i.e., not necessarily determinystic
for eachk € K, 724,.(k,-) may not be injectiver? = can be probabilistic; and a decryption-error may occur.

If a symmetric-key encryption protocat is usable at most one time (i.e., the one-time model), thgqae ofr is to
transform the resourcel’x] and e— into the secure channet—we . In this paper, we only deal with symmetric-key
encryption protocols in the one-time model, since this nhaglsimple and fundamental.

Now, we revisit the formalization of several informatidmebretic security notions for symmetric-key encryptiomeT
traditional security is formalized based on the notion thatobserved ciphertext and underlying plaintexd/ are statistically
independent. The most famous formalization based on thismas Shannon’s perfect secredy [3@],(M|C) = H(M), or
equivalently,/(M;C) = 0. As an extended (or a relaxed) version, we can also condislerriant,/(M;C) < e for some

small quantitye. Along with this concept, we first consider the following twlefinitions.

Definition 2: Let 7 be a symmetric-key encryption protocol. LBt; be a certain probability distribution oM. Then,r is
said to bece-secure forPy, if it satisfies the following conditions:

(i) Correctness Pr{M # M} < ¢; and
(i) Secrecy I(M;C) <e.
In particular,r is said to beperfectly-secure folPy, if € = 0 above forP,,.

Definition 3:Let = be a symmetric-key encryption protocol. Thenis said to be:-secure if for any probability distribution
Py € P(M), we have:

(i) Correctness Pr{M # M} <e¢; and
(i) Secrecy I(M;C) <e.
In particular,r is said to beperfectly-securéf ¢ = 0 above.

The difference of Definitiong]2 ard 3 is that we consider sgcuamly for a certain distribution of plaintexts or for all
distributions of plaintexts. Obviously, Definitidd 3 is @tiger than Definitiol ]2, since we can find a distributiByy and =
such thatr is e-secure forP,; but it is note-secure. In this paper, we are interested in correctnesseguttity of Definition
or other formalizations in which all distributions of plééxts are considered. From this viewpoint, we give theofaihg
definition in a comprehensive way.

Definition 4 (Correctness and Security)et 7 be a symmetric-key encryption protocol. Thenijs said to be(d, ¢)-secure
in the sense of Typg, j), if = satisfies

671—,1‘ <4 andeﬂ—d‘ <,

whered,; (1 <i<3)ande,; (1 <j <10) are defined as follows.
o Correctness. We define the following parameters concermngectness ofr:

drq :=supPr{M # M},
Py
571-,2 .= sup A(P]WJVP P]\,{M),
Py
On,3 1= max APy ar=m> Praivi=m),

where the supremum ranges over Bl; € P(M).
« Traditional Secrecy (TS). We define the following advantagadversaries in terms of traditional secrecy:

€x1 =supl(M;C),

Py

€r2 :=sup A(Pyc, PuPe),
Py

€x,3 1= sup max A(Pgo|a—m, Pc),
Py MEM

€r,4 := supmax A(Pyjc—c, Par)-
Py c€C



« Indistinguishability (IND). We define the following advage of adversaries in terms of indistinguishability:

€r,5 7= MAX Max A(Poivi=m»> Poyyv=m’)

m  m/#
= P = = — = = /
€r6 °= 08X MEX. f:CrEf?g,l}| {f(C)=1|M=m}-Pr{f(C)=1| M =m'}|,

where ine. ¢ the maximum ranges over all functiorfs ¢ — {0, 1}.
o Semantic Security (SS). We define the following advantagadvkrsaries in terms of semantic security:
7= inf Pr{f(C) =h(M)} — Pr{Gy = h(M)}|, 1
er7i=sup max b e [PH{AC) = MM} = Pr{Gy = R(M)}] (1)
where the maximum ranges over all functiofs ¢ — {0,1} andh : M — {0, 1}, and the infimum ranges over all

binary random variablé& y which only depends orf but is independent oy, andh.
o Composable Security (CS). We define the following advant#gedversaries in terms of composable security:

€r 8 = Hgf AD(W(._)H [PK])v U( .)) (2)

= infsup A(Py,; 0 Pum Pg), ®)
Pq Py

€r9 := inf sup A(Puyc, PruPg), 4)
Pq Py

€x10 = ilglf max A(Peo|v=m, PQ), (5)
Q m

where the infimum in[{2) ranges over all possible simulatths,supremum in{3)[14) ranges over &, € P(M), and
the infimum in [3)-{(b) ranges over aft; € P(C).

By Definition [4, we can formally give thirty kinds of formakfions of correctness and security. In particular, several

important formalizations known can be considered to beuraptwithin Definition % as follows.

« Traditional Secrecy (TS). The traditional formalization Definition[3 corresponds to the security in the sense of Type
(1,1). Note that, instead of using the mutual information, indefence ofd/ andC' is expressed by the statistical distance
asA(Pyc, Py Pco) = 0, and can be relaxed as(Py ¢, Py Po) < e. This type of security is represented by Tyfe2).

« Indistinguishability (IND). The formalization based onfanmation-theoretic analogue of indistinguishability Bold-
wasser and Micali[15] corresponds to the security in thessaf Type(1,5), sincee, 5 means the adversary’s advantage
for distinguishing the views (i.e., distributions of cipgtexts) in the protocol execution when two different plaits are
inputted. In addition¢, ¢ means another interpretation of information-theoretitistinguishability, since the adversary’s
advantage for distinguishing the views is described by e af a binary functiory arbitrarily chosen by the adversary.
In this case, the security is represented by Type).

o Semantic Security (SS). The formalization based on infeionaheoretic analogue of semantic security by Goldwasse
and Micali [15] corresponds to the security in the sense qfeTyi, 7) by the following reason: Intuitively, semantic
security implies that a ciphertext is almost useless to obtain any one bit information of theeulythg plaintext)/;
and the adversary’s advantagge; implies that, in order to guess such one bit informatigd/), there is no difference
between by using the ciphertekt and a mapping, and by usingf only with a random coin.

o Composable Security (CS). The formalizations based orrnmdition-theoretic composable security given by Definition
[ is the security in the sense of Tyg2,8) or Type (3,8). In addition, we can consider the distinguisher’s advamtag
by the following his behavier: a distinguisher arbitrardfilooses a random variabld (or a plaintextmn) and inputs it
into A-interface; theng, » (or 6, 3) means the distinguisher's advantage for distinguishéaj output and ideal one at
B-interface; and: o (or e, 19) means his advantage for distinguishing real output andilsitor’s output (according to
Py) at E-interface. By combining those, we will reach the securityTgpe (i, 5) with ¢ = 2,3 andj = 9, 10 for the
composable security.

We next define equivalence of security notions of Typg) as follows.

Definition 5: For a symmetric-key encryption protoce] its security of Type(i, j) and Type(é’, ;') are said to bestrictly
equivalent if d.; = O(dr) ander ; = O(ex ;) Where©(:) is evaluated in a system parameterc N inputted intor
and [Px]. Furthermore, for a symmetric-key encryption protoeolits security of Typeg(i, j) and Type(i’, ;') are said to be
equivalent if it holds that

(0x,i,€x,5) — (0,0) (ask — o) if and only if (i, €x ) — (0,0) (@Sk — o0).

In Section IV, we will show equivalence and non-equivalebeaveen the formalizations in a comprehensive way.



IV. SYMMETRIC-KEY ENCRYPTION: RELATIONSHIPS BETWEENFORMALIZATIONS OF CORRECTNESS ANDSECURITY
A. Equivalence

We show the explicit relationships between security foimagions of Type(i,j) for 1 < i < 3 and1 < j < 10. In the
following, let IT be a family of all symmetric-key encryption protocols.

Theorem 1:For any symmetric-key encryption protocol < 11, we have explicit relationships between formalizations of
correctness and security as follows.
1) Correctness formalization8; 1 = 02 = 03,
2) TS formalizations:
2

In

3) IND formalizations:es » = €.,

4) CS formalizationsmax(emg, §ﬂ—72) <érg < €rot+ 671—,2, €9,.r = €10,
5) TS and |ND:€3771— = €5,

6) SS and INDi, 7 < er6 < déx 7,

7) IND, CS, and TS%eg_’7T <egn < €57,

<er1 < —2e0log ——"—, er<er <25 €r<E€ir,

2671—72
Mlcr

2772

Proof of Theorenil1The proof is organized as follows:

1) Proof of relationships between correctness formabnatis given by Lemmal 1,
2) Proof of relationships between TS formalizations is giby Lemmag2 and] 9,
3) Proof of relationships between IND formalizations isegivby Lemmal3,

4) Proof of relationships between CS formalizations is giy Lemmag ¥4 and] 5,
5) Proof of relationships between TS and IND is given by Lenfina

6) Proof of relationships between SS and IND is given by Leriina

7) Proof of relationships among IND, CS, and TS is given by hefB.

In the following, we will show Lemmas 1-9 to complete the droo

Lemma 1:For any symmetric-key encryption, we haved, ; = dr 2 = 0 3.
Proof: First, we showd,; = 0. 2: For anyr and for any distributionPy;, we haveA (P, Pysyy) = P(M # J\Z/) by
Propositior D in Appendix A, from which it is straightforwhto haved, 1 = i, o.
Secondly, we show, 5 = 0, 3: This is shown by applying{ =Y = M andZ = M in Propositio IR in Appendix Bm
Lemma 2:For any symmetric-key encryption, we have

2 2671—2
<en1 < —26x5] 2
fptne < er1 S —2emalog R M| [C]

€r,2 <67r3a andETrQ <€7r4-

Proof: First, we show tha;—e,, 9 < é€r1 < —2€r2log er ‘C| : From Corollan[Y in Appendix A, it follows that, for any
Py and anyrm,

2A(Pye, Py Po)

I(M; C) < =2A(Puc, ParPe) log =0
2€7r 2
< —2¢x2log
M| -|C|

Therefore, we have

€x,2
IMI il
On the other hand, from Corollafy 6 in Appendix A, it followsat, for anyP,; and anyr,
Therefore, we have, » < |/12¢ z

€x.1 S —2671—72 log

ln 1
A(Pyc, PruPo) <\ — 5 I(M;C)z.
2 7rl

Secondly, we show, 5 < e, 3: For an arbitrary distributior”,;, we have

A(Pye, PyPe) = Z|PMC m,c) — Py (m)Pc(c)l

=3 Z Par(m) Y |Pejps—m(clm) — Po(c)|



< ;mgxz |Pepps—m(clm) = Pe(o)
= ma XA(PC\M m» Po).
Therefore, we get, 2 < e 3.
Similarly, we can show that, for an arbitrary distributidty,,
A(Pyo, PuPe) < mgXA(PM‘C:c, Pyr),
which implies thate, 2 < e, 4. [ |

Lemma 3:For any symmetric-key encryption, we havee, 5 = e, ¢.
Proof: For probability distributions”x and Py over a finite setY’, it holds that

A(Px, Py) = jnax IPr{f( ) =1} =Pr{f(Y) =1}
Thus, we have

max A(Peipi— Peipr—n) = may max [Pr(/(C) = 1| M =m} = Pr{f(C) = 1| M = m'}|.

which impliese; 5 = € 6. [ |
Lemma 4:For any symmetric-key encryption, we have
max(€r,9,0r2) < €rg < €r g+ 0n2.
Proof: For any distributionsPy; € P(M) and Py € P(C), we have
A(Pyyios PumPQ) < A(Pyyros Pumic) + A(Puvic, Puv PQ)
= APy Pynt) + A(Puc, Py Pg).
By taking the supremum over afty; € P(M) and the infimum over alPy € P(C), we have

inf sup A(Py; 70> Prvni Po) < sup A(Py s Parne) + mfs;lp A(Puyre, PuPg)

PQP M

- 671'.2 + €x 9
In addition, from Propositionl8 in Appendix A, itis clear thA(Pac, ParPg) < A(Py,y1c» PuaiPo) forany Py € P(M)
and Py € P(C). Therefore, we obtain

€rxo < infsup A(Py, o Py Pg)-
Pq py,

Similarly, we have§,r72 < inpr Supp,, A(P]\JMC7 P]\{MPQ). |

Lemma 5:For any symmetric-key encryption, we havee, g = € 1.
Proof: For arbitrary distributiong’, and Py, we setX := M, Y := C, andZ := @, and use Propositidn 12 in Appendix
B. Then, we haveupp, A(Pyc, Py Pg) = max,, A(Pojav—m, Pg). Therefore, by taking the infimum over diy € P(C),
we havee, g = €x 10. [ |

Lemma 6:For any symmetric-key encryption, we havee, 5 = e, 5.
Proof: Observe for everyn € M that

A (Pejpi=m, Pc) = —Z

Pop(elm) = > Poar(elm’) Par(m )‘

ceC m’/eM
== Z > Pu(m!) {Poar(clm) — PC|M(C|m/)}|- (6)
cEC m’eM

First, we provee, 3 < e, 5: For arbitrary Py, let mg := arg max,, A(PCW:W Pg). Then, from [[6) we have

max A(FPo|ar=m, Po) = A (Poim=me» Pc)

IN

1
5 > Pu(ma) Y |Poa(elmo) = Pojar(clma)]
mieM ceC

Z Prr(ma) - A(Peyar=me s Pojvi=m, )
miEM



< Z Prr(ma)ex s

mieEM
= 671—75. (7)

Hence, by taking the supremum over &li; € P(M), we geter 3 < € 5.
Next, we showe, 3 > e 5. Let mg, my € M such thate, 5 = A(Po|ar=mq, Pojm=m, ). FOr arbitrarye > 0, we define

11—, if m' =m
no_ ,
Far(m') = { i1, Otherwise (8)

where~y is a positive real number such that, 5 < e. Then, by substituting both = mq and Py, (m’) into (@), we obtain
€3 > A(Po|v=m,, Pc)

:%Z

ceC

> Pu(m) { Pep(elmo) = Popur(clm’)}
m’/eM

2 % Z |(1 =) {Peja(elmo) — Poju(clma) } |
ceC

= (1 - 7)€7r75
> €r,5 — €.

Lemma 7:For any symmetric key encryption, we have
€n,7 S €r.6 S 4671',7-

Proof: First, we provee,r < erg. This part of the proof can be shown in a very similar way ag tha[33] as
follows, though the proof in([33] is given under computatibsecurity setting. Suppose that a distributiByy and functions
f:C—={0,1}, h : M — {0, 1} are arbitrarily given. Let?;- be an independently and identically distributionf;. Then,
we consider the random variable; which is defined by

Gy := f(C"), and Pg+(c) := ZPC\M(dml)PM*(ml) for c € C andm; € M.

Let us define an indicator functialy j, : C x M — {0,1} for mapsf andh by
' [ 1, i f(c) =h(m)
Lyn(e,m) = { 0, otherwise ©)

Then, we have
it [Pr{(C) = (M)} = Pr{G; = (M)}
< [Pr{f(C) = h(M)} — Pr{G; = h(M)}]
= [Pr{f(C) = h(M)} = Pr{f(C") = h(MD}

= Z 1¢1(c,mo) {Pon (e, mo) — Po- (e, mo)}‘

c,mo

c,mo

= Z 14, (c, mo) Par(mo) { Poya (clmo) — Pe- (C)}|

= Z Py (mo) Pag-(mq) Z 14 n(c,mo){Peiar(clmo) — PCM(C|m1)}|

mo,mi

= > Par(mo) Pars (ma) {Pr{ fn.my (C) = 1M = mo} — Pr{ fn,m,(C) = 1|1M = ml}}‘

mo,mi1

< Z PM(mO)PM*(ml)Eﬂ-,G

mo,mi
= €7,6

where fj, m, : C — {0,1} is defined byfy ., (c) =1 if and only if 15 ;,(c,mo) = 1. Therefore, we have, ; < e, ¢.
Next, we show that, ¢ < 4¢, 7. We first prove the following claim.
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Claim 1: For arbitrarily givenPy,, f : C — {0,1}, andh : M — {0,1}, we have
PHAC) =00} = 3 PrA(C) = PR = ) < 20 (10
(e{0,1}
Proof: Suppose thaf,, and f : C — {0,1} are arbitrarily given. Then, by definition of semantic séguthere exists
Gy such that
PR(C) = () = Pr{Gy = DY < ers (1)

for any h: M — {0,1}. In particular, lettingh be a map that always outputsfor everym € M, we have
|Pr{f(C) =1} = Pr{Gy = 1}| < €x 7
which is equivalent to
[Pr{f(C) = 0} = Pr{Gy = 0}] < €.
Thus, for¢ € {0,1}, it holds that
Pr{Gy =10} + ex7 2 Pr{f(C) =} 2 Pr{G; = {} — €7,
and hence we have
(Pr{Gf = £} + ex 7) Pr{h(M) = £} > Pr{f(C) = (} Pr{h(M) = £} > (Pr{G = {} — &z 7) Pr{h(M) = {}.
From this, it follows that

Pr{Gy =h(M)} +exz> > Pr{f(C) =} Pr{A(M) = £} > Pr{G; = h(M)} — ex 7,
(e{0,1}

or equivalently,

S™ Pr{f(C) = €} Pr{h(M) = £} - Pr{C = h(M)}\ <enr (12)
£€{0,1}

Therefore, we obtain

PHC) =00} = 3 Pr(C) = £ Pr{(a) = o)

(e{0,1}

<|Pr(s©) = a0} - Priay = )|

+

> Prf(C) = () Pr{h(M) = 0} ~ Pr{Gs = ()
£e{0,1}
S 25#,71

where the last inequality follows fromi (111) arld112). [ |
By applying X = f(C) andY = h(M) in Lemmal[I5 in Appendix B to the inequality{10), it holds that
Pr{f(C) = h(M) =1} = Pr{f(C) = 1} Pr{h(M) = 1}| < er 7, (13)

for arbitrarily givenPy, f: C — {0,1}, andh : M — {0, 1}. In particular, we choose, m; € M by whiche, ¢ is given.
Then, for arbitrarye > 0, we consider

%, if m =myg,
P]w(m) = 5—’7, ifm:ml,
ﬁ, otherwise

where~ is a positive real number withe, ¢ < 2¢, and takeh : M — {0,1} defined by

1, ifm=mo,
h(m) := { 0, otherwise

Then, from [IB) it follows that
ex7 2 |Pr{f(C) = h(M) = 1} = Pr{f(C) = 1} Pr{h(M) = 1}
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=Pr{M =mo}| Pr{f(C)=1| M =mo} — Z Pr{f(C)=1|M =my} Pr{M =m}

£e{0,1}

=Pr{M = mo} Pr{M =my}

11
_2 9 Y | €x,6

> —1 —
€x. €.
! 0

Pr{f(C) = 1| M =mq} — Pr{f(C) = 1| M = m1}

Lemma 8:For any symmetric-key encryption, we have%emg <é€r9 < é€rs.
Proof: First, we show%eﬁg < ex,9: For arbitrary distributiong’y and Py;, we have

A(Pyie, PrPe) < A(Puye, PuPg) + A(Py Pg, Py Pe)
= A(Prye, PuPg) + A(Pg, Po)
<2A(Pumc, PuPg).

Thereforeex 2 < 20 9.
Next, we showe, ¢ < €. 5: By Lemmalb, it is sufficient to prove, 10 < e, 5. Let mg € M be a plaintext such that it
giveser 10, and setP, := Pgjay—m, Dy choosingm, € M with m; # mq. Then, we have

€r,10 < A(Poiv=mo: PQ) = AP v=me» Poiv=m,) < €x5.
n

Lemma 9:For any symmetric-key encryption, we havee, 3 < 2¢, o.
Proof: By Lemmal®, it is sufficient to prove, 5 < 2e¢, 2. For anye > 0, and formg, m; € M (mo # m1) such that
x5 = A(Po|v=mo» Po|vi=m, ), We define a distributioP; by

Py (m) := { ol
[M[—2
where~ is a positive real number such that. 5 < 2e. Then, we have
671—,2 Z A(PMC"PMPC')
1
2 5= IHALE Hr=mgr Po) + AlPev1=m,» Pe)}
1
2 50 =NAFe 1= mg» Py ir=m, )

%(1 —7) if me {mgy,mi},
otherwise

2

1
= 5(1 —Y)ars
. 1

—€r 5 — €.
> Séns

The following theorem shows equivalence between secuoitynélizations of Typ€(, j) under a certain condition.

Theorem 2:For security formalizations of Typg, j) with 1 <i <3 and1 < j < 10, we have the following relationships:
(i) For arbitrary symmetric-key encryption protocele II, all ©'s security of Type(i, j) are strictly equivalent except for
j=1,4.
(i) Let Iy = {m €Il | er5 =0(1/log|M]) ande, 5 = o(1/log|C|)}. Then, for arbitraryr € II;, all ©'s security of Type
(i,7) are equivalent except for = 4.
(i) Let Iy = {w € II | |C| = O(JM]), 61 = o(1/log|M|), €x5 = o(1/|M|)}. Then, for arbitraryr € II,, all ©’s
security of Type(i, j) are equivalent.
Proof: First, the proof of (i) directly follows from Theoref] 1.
Next, we prove (ii). By Theorerl 1, we have

2671—,2

Ml Il

€x1 < —2671—,2 lOg and €x2 = @(671—,5). (14)
Now, we consider the following proposition.
Lemma 101iet y(x) be a continuous and positive function defined oi@erc), and define the functioffi(x) = —z log

Then, it holds thatf (z) — 0 asz — 0 if and only if y(z) = 2°(1/),

y(z)”
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Proof: Note thatf(x) = —zlogz + zlogy(x) and—zlogxz — 0 asx — 0. Therefore, we havg (x) — 0 if and only if
zlogy(x) — 0, or equivalentlyy(x) = 20(1/%), [ ]
Therefore, by LemmB10 anf{14), we have, = o(1) under the conditionM| - |C| = 2°(1/¢=.5) which in turn follows
from the condition that, 5 = o(1/log|M|) ande, 5 = o(1/log|C]).
Finally, in order to prove (iii), we need the following pragtions.
Lemma 11Llet é; 4 := supmax A(Pysjc=cy> Prjc=c, ). Then, we havé, 4 = e 4.

P cp,C1
Proof: The proof is sh%wn in the same way as thaikpf = €, 5 in Lemmal®. [ |
Lemma 12:For any symmetric-key encryption, it holds that

g71',4 < 2671',3 (SUP PC(Cmin)_l> )
Py
wherecyi, :=arg  min  Po(c).

ceSupp(Pc)
Proof: For any Py;, m € Supp(Pys), andc € Supp(Pc), we have|Pc(c) — Poja(clm)| < e 3, which is equivalent to

. €r,3 PC|M(C|m) €n.3
Pe(e) = Polg T Be(e) 13)

For any Py, andcg, ¢; € Supp(P¢), it holds that
A(Prrjc=co» Prjc=c,) = Z | Parjc(mlco) — Pagje(mler))

1

= ZPM(m) ‘PCM(COWL) ~ Poju(er|m)

Pc(CO) Pc(cl)
2€r 3
= ; Pa(m) ) Polo) (16)
_ 2€r 3
" cesupp(Pe) Fole)
2€r 3
= Polemm)’ (a7
wherecp,i, := arg cesflr;i;ﬁpc) Pc(c) and the inequality[{16) follows froni_(15). By taking the sepum overP,, € P(M),
the inequality in the lemma is induced. [ |
Proposition 2:For a symmetric-key encryption, it holds that
2¢,3|C]|
€ra < : .
© 1= V2In2[log[C| = (1 = br,1) log [M] + h(6x,1)]?
Proof: First, we have the inequality
HM)=HM |K)<HM,C|K)=H(C|K)+H(M|K,C)
< H(C)+ H(M | M)
< H(C) 4 Pr{M # M}log(|M| — 1) + h(Pr{M # M}) (18)
< H(C)+ 0z log M|+ h(dz1), (19)
where the inequality{{18) follows from Fano’s inequality.
For the case of uniform distributioR,; over M, we have
D(Fc || Pu) =log|C| - H(C)
<log[C| — H(M) + §r1 log| M| + h(01) (20)
= log |C] — log | M| + 6.1 log [ M| + A(0x.1)
=log|C| — (1 — dx,1) log IM| + h(6x,1), (21)

where [(2D) follows from[{T9). Lefy :=log |C| — (1 — &, 1) log |[M]| + h(d1). Then, we have

and hence, we get
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1 1
> — — — i .
- 2|C| (|C| PC(Cmm))

Therefore, we have

C|
P Cmin -t < |—
olemin) ™ € TS n
From the above inequality and Lemnias 11 12, it follows tha
€r,4 = gﬁ,4
S 267r,3 (SUP PC(Cmin)_l)
Py
2671—,3 . |C|
T 1-+v2In2 2

2671—,3 . |C|
1—+v2In2(log|C| — (1 —dr1)log | M|+ h((sn,l)]%

We are back to the proof of Theordrh 2. From the assumpti@is;: ©(|]M|) andd. 1 = o(1/log|M|), and Proposition
[, it follows thate, 4 = O(er 3 - |[M]). Here, we note that, 3 = ©(er5) by Theorenll. Therefore, by the assumption of
ers = o(1/|M|), we havee, 4 = o(1). [

B. Non-equivalence

Let 7 be a symmetric key encryption. We denote ]B&M an |C| x |M| transition probability matrix associated with
{Pojm(clm)}eec,mem of m, i.e., each entry oPF, ,, corresponds tdc s (c[m) for c € C andm € M in 7.
The following theorem states the propertyR@'M for a symmetric key encryption.

Theorem 3:For any symmetric key encryption satisfying |C| = | M|, its probability transition matrixf, , is doubly
stochast{g. Conversely, for any: x n matrix A which is doubly stochastic, there exists a symmetric-keyngstion = such
that|C| = [M| =n andPZ,,, = A.

Proof: In what follows, we consider the case pM| = |C|. In this case, ifk € K is fixed, there exists a bijection
fx : M — C since every ciphertext € C can be uniquely decrypted By< K. Hence, for eaclk € K, let F}, € {0,1}"*™ be
a permutation matrix which corresponds to the bijectjfan Then, it is easy to see that the probability transition matan
be represented as

T =Y Pr(k)Fy, (22)

kek
which is doubly stochastic. Conversely, due to BirknoffAldeumann Theorem, there exists a paitRaf(k) and Fy, k € K,
satisfying [2P) ifPf, ,, is doubly stochastic. [

In the following, letll := {r € I1 | |C| = ©(|M|) andé, 1 = o(1/log|M]|)}. The following theorems show the explicit
conditions for non-equivalence between security fornadilins.

Theorem 4:For arbitraryn € II, if security of Type(i, 1) and Type(i,5) are not equivalent (i.e., security of Tyge 1)
is asymptotically stronger than that of Tyge 5)) for 1 < i < 3, we havee, 5 = ©(1/log|M]). Conversely, for arbitrarily
givene such that = o(1) ande = Q(1/logn), there exists a symmetric-key encryptiore II such thate, 5 = ¢, n = | M|,
andr’s security of Type(i, 1) and Type(i,5) are not equivalent fot <4 < 3.

Proof: We show the first statement of Theorgin 4 by its contrapositiamely, we prove that, ; = o(1) for arbitrarily
givenr € II satisfyinge, 5 = o(1/logn). This statement directly follows from (ii) of Theordm 2.
What remains to be shown is the second statement of Thddramd4it is sufficient to prove the following propositiom

Proposition 3:Suppose that = o(1) ande = (1/logn). Then, there exists a symmetric-key encryptiog II such that,
er5 =€ n=|M]|, andn’s security of Type(i, 1) and Type(s,5) are not equivalent fot < i < 3.
Proof: For arbitararye and any positive integet, we consider am x n matrix A = (a,;) defined by

e+ ifi=4,
dij = { 1-c otherwise (23)

n

1An n x n probability transition matrixP = (pi,;) is said to bedoubly stochastidf >, p; ; = Zj pi,j = 1 foreveryl <i,j <n.
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Then, it holds thag a;; = 1 for everyi, and), a;; = 1 for every;j, which shows thatl is doubly stochastic. Therefore, by
Theoren{B, it follows that there exists a symmetric-key gpon 7 such tha M| = |[C| = n andPF, ,, = A, wherePf,
is the probability transition matrix of. Suppose thatmt = {my,ma,...,m,}, C = {c1,¢2,...,c,}, and the(s, j)-entry of
]P)g“\{ is equal tOPC\I\{(Cilmj)-

It is easy to see tha\(Pg|arr—m,, Pojv=m,;) = € for every pair ofm;, m; € M with m; # m;. Hence, we have, 5 = «,
and by takinge — 0 it holds that

lim e 5 = 0. (24)
e—0

On the other hand, if we assume thay{; is the uniform distribution, it holds that by direct calctiden

I(M;C) = <e+ 1) logn + <e+ IT> log( 126) + <1 - %) (1-e)log(l—e)— %logn. (25)

Thus, by setting: = —— and takingn — oo in (25), we havehm I(M;C) =1, and hence,
lim e > 1. (26)
e—0
Therefore, the proof is completed Hy [24) ahd](26). [ |

Theorem 5:For arbitraryr € I1, if security of Type(i,4) and Type(i,5) are not equivalent (i.e., security of Typ& 4) is
asymptotically stronger than that of Typg 5)) for 1 <14 < 3, we havee, 5 = Q(1/|M|). Conversely, for arbitrarily given
such thate = o(1) ande = Q(1/n), there exists a symmetric-key encryptienc 11 such thate, 5 = ¢, n = |[M|, and7’s
security of Type(i,4) and Type(i,5) are not equivalent fot < i < 3.

Proof: The contraposition of the first statement of Theofém 5 fodldrom (i) of Theoren 2.
In order to show the second statement of Thedrém 5, it is srifito prove the following proposition. [ |

Proposition 4: Suppose that = o(1) ande = Q(1/n). Then, there exists a symmetric-key encryptiore II such that,
er5 =€ n=|M]|, andn’s security of Type(i,4) and Type(s,5) are not equivalent fot < i < 3.
Proof: We consider a symmetric-key encryptienc I whose probability transition matrix is defined hy]23) in fr@of
of Propositio 8. Then, we havg 5 = ¢ and hn(l) er5 = 0 by (29).

On the other hand, we derive a lower boundeqn, as follows. For any distributio#”,;, we have
Par(mi)[ent(1—e¢)]

P“'{'C(m”c-f):{ G A T
Par(my)enti—a I 17#J-

if i = 4,

Hence, forcg, ¢; € C with s # t and Py (ms) < Pp(my), we have

Par(mg) Par(my)en® + Pyy(my)en(1 — €)(1 — Pas(my) + Ppr(ms))
[Prr(ms)en + (1 — €)] [Pa(my)en + (1 — )] .

In particular, for the case of a distributid®y, with Py (mg) = Py (m:) = 1/3 ande = 1/n, it holds that

A(Prrjc=c,s Prjo=c,) =

1
A(Pyrjc=c, Pyrjc=c,) = 13 (27)
Thus, we have
€x,a = sup max A(Pyjc=c,, Prjo=c,) (28)
Py CssCt
1
29
> (29)
where [28) and[{29) follows from Lemnia]ll a(27), respebtivT herefore, we Obtaiﬂ]in(lJ €ra > 1/4.
e—>
From the above discussion, it follows th]a'ntr(lJ €xa > 1/4 and lin% ex5 = 0, and the proof is completed. [ |
e—> €—>

C. Lower Bounds and Impossibility Results

In this section, under each of the security formalizatiam®Dgefinition[4, we derive lower bounds on the adversary’s (or
distinguisher’s) advantage and the required size of sdienet. First, we note the following lower bound shown[in][28]

Proposition 5 ([28]): Let = be a symmetric-key encryption protocol. Then, for any satardo on C, and for the set of all
distinguishersD, we have
K]

AP(n(e—|| [Px]),o(e—)) > 1~ M
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In [28] Pope showed the above lower bound by only considexidigtinguisher that inputs the uniformly distributed ptakts
into the symmetric-key encryption protocol for distinduiigg real output and ideal one. From the above propositido]lows
that

€n.8 >1- ﬂa

T M

for arbitrary symmetric-key encryption and [Px]. We now derive lower bounds for the adversary’s (or digtisber’s)
advantage under all formalizations in Definitidh 4 at ona®tigh our relationships.

(30)

Theorem 6:For any symmetric-key encryption protoceland [Px], we have:
K]

(i) O0r;i+ex;>1— W fori € {1,2,3} andj € {3,5,6,8,9,10},
(i) Ori+2€r;>1-— % fori e {1,2,3} andj € {2,4},
|K] .
(i) 0q;+4der7>1—+— forie{l, 2,3},
M|

. In2 1 K| .

) e >1 - 7
(V)  Oxs+ 5 €1 2 1 M| for i € {1,2,3},

whered, ; ande, ; are parameters of formalizations of correctness and dgcrespectively, defined in Definitidd 4.
Proof: By Theoren{]L, we have

671'.,8 S 671'.,9 + 671',2,
577,1 = 671',2 = 5#,37
€r0 = €x10 S €x3 = €x5 = €1 6.

Combining the above inequalities with {30), we obtain (i).
In addition, by Theoreril1, we havg 3 < 2¢, 2 ande, » < €. 4. Therefore, we have (i) by these inequalities and (i).

Similarly, the inequalities:; ¢ < 4e;7 ande, o < "“72671/12 shown by Theorerfi]l1 imply (i) and (iv), respectively, by

applying them to (i). [ |

From Theoreni]6, we obtain the following lower bounds on thee sif secret-keys. The proof immediately follows from
Theoreni®, and we omit the proof.

Corollary 1: Suppose that a symmetric-key encryption protacds (0, €)-secure in the sense of Type 7). Then, we have
the following lower bounds on the size of secret-keys:

() IK|>{1-=(00+e} M| forie{l,2,3}andje {3,5,6,8,9,10},
(i) |K|>{1—=(0+2¢)} M| forie{1,2,3} andj € {2,4},

(i) |K|>{1—-(0+4e)} M| forie{l,2,3}andj =7,

)l = {1 (54 v2Im2ed) b im fori e {1,2,3} andj = 1.

Remark 1:As described in[[32], it is known thatet {®,|r € R} be a family of (hash) functions frof to 7 such that:
each®, mapsS injectively into7; and there exists € [0,1] such thatA(®y(s),Pu(s")) < € for all 5,5 € S, where
H is uniformly distributed ovefR. Then, we havéR| > (1 — ¢)|S|. Corollary[d can be understood as an extension of the
above statement (see (i) in Corolldry 1). Actually, we do netessarily assume tha®y is uniform; or for eacht € K,
74(k,-) : M — C is deterministic and injective (Note thatcan be zero ifr* (k, -) is injective).

Remark 2:n [10], Dodis derives the lower bound (i) in Corolldry 1, asitows that this bound is tight with respectstand
€ up to a constant. In fact, by using a mechanism of the one-tiate two constructions satisfying the following parameter
are proposed i [10k = 0 and |K| = (1 — )| M| for givend € [0, 1]; andé = 0 and|K| = (1 — J¢)|M]| for givene € [0, 1]
such that - | M| /2 is non-negative integer. By the constructions, it is stifigywardly seen that our lower bounds in Corollary
[@ are also tight with respect thande up to a constant.

By considering a contraposition of Corolldry 1, we obtaia fhllowing impossibility result: There exists no symmetkiey
encryption protocol which i$4, €)-secure in the sense of Tyfé j), if § ande are some real numbers such that they do not
satisfy the corresponding inequality among (i)—(iv) in Gltary 1.
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V. KEY AGREEMENT
A. Protocol Execution

We explain protocol execution of key agreement. Betand ) be finite sets. Suppose that Alice and Bob can have access
to an ideal resource, and that they can finally obtaim X andy € ), respectively. For simplicity, suppose that the resource
is given by a correlated randomness resouiégyf]. In addition, we assume that there is the bidirectionalyeidirectional)
authenticated channel available between Alice and Bob,thatlEve can eavesdrop on all information transmitted by the
channel without any error.

Let K be a set of keys, and gk’ be a random variable which takes values /6nn e=e (or more generally, Px]).

Also, let 7 be a set of transcripts between Alice and Bob. ket (77}, 77,) be a key agreement protocol, whetg, (resp.
7o) is a converter at Alice’s (resp. Bob's) side, defined belbet I be a positive integer and = 21 — 1; The converter
w4 consists of (probabilistic) functions, fs, fs, ..., fa—1 andga, and the converter? consists of (probabilistic) functions
fo, fa, f6, - -+, fai—2 and gg, where the functiondy, fs, ..., fn, 94, gp are defined as follows:

fiZXXTi71—>T, ti:fi(x,t17t27t37...7ti_1) fori:1,3,...,2l—1;
fj:yXTj_l—>T, tj:fj(y,t17t2,t37...,tj_1) forj=2,4,...,21 —2;
ga: X X T 5K, ka=galx ti,tats,....tx); g:VxT* =K, kp = gp(y,t1,ta,ts,...,1).

Key Agreement Protocol m

Input of Alice’s inner interfacex € X by accessing Pxy]
Input of Bob's inner interfacey € Y by accessing Pxy]
Output of Alice’s outer interfacek 4 € K

Output of Bob’s outer interfacekp € K

1. kaa computest; = f1(z) and sends; to w,}fa by — .
2. Forsfrom1to (A —1)/2,
2-1. 75 computestzs = fos(y, t1,t2,. .., tas—1). Then,mB, sendstas to 7t by <—@.
2-2. 7wt computestasi1 = fast1(x,t1,t2,. .., tas). Then,md sendstasq1 to 72, by &— .
3.7 computesks = ga(z,t1,t2,...,t)\) and outputsia.
Similarly, nfﬂ computeskp = gp(y, t1,t2,...,ty\) and outputsks.

Note that, if only the unidirectional authenticated chdrfrem Alice to Bob is available, the functiong for even: could
be understood as trivial functions which always return daaersingle point (or symbol). Similarly, we can capture tiase
of only the unidirectional authenticated channel from BolAtice being available.

For everyi with 1 < i < A, T; denotes a random variable which takes valties 7, and letT* := (T3, Ts,...,T) be
the joint random variable which takes valugs= (t1,ts,...,t\) € T*. Also, let K 4 and K 5 be the random variables which
take values:, € K andkp € K, respectively.

For simplicity, we assume that a key agreement protaccén be used at most one time (i.e., we deal with key agreement
protocols in the one-time model). Therefore, the purpogb@key agreement protocol is to transform a correlatedoamess
resource Pxy] and channelge—>)' || (+— )!~! into a key sharing resource=se ( or more generally, Pr]).

B. Security Definitions Revisited: Formalizations and Refgships
As in the case of symmetric-key encryption protocols, letsisider the following traditional formalization of settyrfor

key agreement protocols (e.@! [8]] [9],_[12], [19], [20[5]2
Definition 6: Let 7 be a key agreement protocol. Thenjs said to bec-secureif it satisfies the following conditions:
Pr{Ki# Kp} <e¢, log|K| — H(Ka) <e, andI(K4;T*) < e.
In particular,r is said to beperfectly-securéf ¢ = 0 above.
We now consider the following formalizations of informatitheoretic security for key agreement.

Definition 7: Let 7 be a key agreement protocol such ttfat is the uniform distribution oveiC (i.e., [Px]=e—»). We
define the following formalizations of correctness and siécu

« Correctness. We define the following parameters concermrongctness ofr:
Or1 = max{Pr{K4 # Kp}, log|K| — H(Ka)},
Or2 = A(Pr k5, PrK)-
o Security. We define the following advantage of adversaesécurity:
€r1 = I(Kg4; ),
€r2 = A(Pg 7, P, Pra),
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€r 3 = inf A(PKAT* 5 PKAPQ),
) Po

where the infimum ranges over af, € P(T7).
Then, 7 is said to be(d, ¢)-secure in the sense of Typej) for 1 < i <2 andl < j < 3, if 7 satisfiesd,; < § and
€rj <€

The traditional definition in Definitionl6 corresponds to thecurity in the sense of Typd,1). The composable security
by Maurer et al.[[22],[[24] and Canetlil[5].][6] is closely agtd to the security in the sense of Tyf3): d, 2 means
distinguisher’s advantage for distinguishing real outpnd ideal one at honest players’ interfaces, and is the same as the
formalization of availability in Definitio 11 for key agreemt; e, ; means distinguisher’s advantage for distinguishing real
transcripts and simulator’s output Atinterface, together with output at-interface. Note that the formalizatien 5 is simple,
and validity ofe, 5 is well explained by the following proposition.

Proposition 6:The formalization of security in Definitioln] 1 for a key agresmh protocolr is lower-and-upper bounded as
follows:

e (% 5) < inf AP (r((e—)'[[(=—)' || [Pxy]) o(e==)) < e + 2025

Proof: By focusing on distributions of output at’s, B’s and E’s interfaces, for simplicity, we write
infp, A(Pk k1, P Pg) for inf, AP (n((e—)!|(+—e)!"!|| [Pxy]),o(e=s)), where Pk is the uniform distribution
over IC.

For any distributionP, € P(C), we have
A(Pg,kpr: PR PQ) < APy kg s Proyrcar™) + AP ka1 Praka Po)
+A(Pr,xaPo, Pk FPQ)
= PI‘{KA # KB} + A(PKATMPKAPQ) + A(PKA,PK)
S A(PKAT)\,PKAPQ) +2A(PKAKB7PKK)
By taking the infimum over allP, € P(T*), we have
iI_I)lfA(PKAKBTMPKKPQ) < i}{)lfA(PKATA,PKAPQ) + 2A(PKAK37PKK)
Q Q
= 671—73 + 2571—_’2.
In addition, for any distributionPy € P(C) we have

A(Pr ,rr, Py PQ) < APk iy Pre i) + APk ks, Pk PQ) + APk Po, Prara Q)
= PI‘{KA 75 KB} =+ A(PKAKBTMPKKPQ) =+ A(PK,PKA)
<2A(Pr kg Pri) + APk, ks PR PQ)
< 3A(Pg, ks Pric PQ).

By taking the infimum over alP, € P(T*), we have
1 .
567‘—,3 S 1nf A(PKAKBTA, PKKPQ)
Pq

Finally, it is straightforward to see that » < infp, A(Pg, k7>, Pk Pg). [ |

Then, as in the case of symmetric-key encryption, we can ghevwfollowing theorem which states relationships between
all the formalizations above (i.e., six possible formdiiaas above).

Theorem 7:Let 7 be a key agreement protocol such ti#t is the uniform distribution ovelC. Then, we have explicit
relationships betweeb, ;, e ; for i € {1,2}, j € {1,2,3} as follows:

O0r11n2 20,
171 and 671—,1 < —2671—,2 lOg 2om2

Kl

(1)671',2 S 57r,1 +

2 2€ﬂ—2
)2, <enq < —26x0l0g — 2
( )1n2€71'72 —6 al —_ € 72 Og |’C||7~|)\
(3)€7T,3 S €r,2 S 2677,3-

Furthermore, it holds that:

(i) For arbitrary key agreement, it holds thatr’s security of Type(i,2) and Type(i,3) are strictly equivalent for every
ie{1,2};
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(i) Suppose that a key agreement protogosatisfiese, o = o(m)
(1,1), Type(i,2), and Type(i, 3) are equivalent for everyc {1,2};

(i) Suppose that a key agreement protoeosatisfiesd, o = o(1/log|K|). Then, it holds thatr's security of Type(1, j)
and Type(2, j) are equivalent for every € {1,2,3};

(iv) Suppqse that a key agreemgnt protogobatisfiesd, o = o(1/log|K|) and e = O(m)' Then, all’s
security of Type(i, j) are equivalent.
Proof: First, we show (1): By Lemm@a_14 in Appendix B, we have

671',2 :A(PKAKvaKK)
< PI‘{KA # KB} + min{A(PKA,PK),A(PKB,PK)}.

. Then, it holds thatr's security of Type

In addition, by Proposition 10 in Appendix A we have

In2
A(Pr,, Pr)* < TD(PKAHPK)

In2

= 7(log K| — H(Ka))
In2

< — .

=9 671',1

Therefore, we havé, » < 6,1 + 1/ 2=t22,

Conversely, we have

PI‘{KA 75 KB} < 671—,2, and

2A(Py,, P
log |K| — H(K 4) < —2A(Px,, Pk ) log 28 (P Pic)

(31)
K|
25# 2
S _2§7r,2 lOg —77
K|
where [31) follows from PropositidnJL1. Thus, we obtain
2072

§ﬂ—71 S —25ﬂ—72 10g |’C| .

Secondly, the proof of (2) is given in the same way as that afofénil, and we omit it.
Thirdly, we show (3): By definition, we have; 3 < e, . In addition, for anye > 0, there is a distributiorP; such that
er3+€> APk, 1, Pk, Pg). Then, we have
€ra < A(PKATA,PKAPQ) + A(PKAPQ, PKAPTA)
S érgtet+ A(Pg, Pra)
S 2(€7T,3 + E)a
where the last inequality follows from\(Pg, Prs) < A(Pk, Pg, Pk ,v») < €x 3+ €. Thus, we obtain, » < 2¢, 3.

Finally, (i) follows from (3) above; (ii) follows from Lemmad and (2), (3) above and ; Similarly, (iii) follows from Lenam
[I0 and (1) above; and (iv) follows from (ii) and (iii) above. |

C. Lower Bounds and Impossibility Results

For any key agreement protocol which constructs a key shaeisource Px] starting from a correlated randomness resource
[Pxy], we show a lower bound on the advantage of distinguishefslksvs. The proof is given in Appendix C.

Lemma 13.Let [Pk] be a key sharing resource. For any key agreement protacahd for any simulatos, we have
AP (w((e—)'|(«—)' | [Pxy]) o([Px])) = 1 = 2=,
In particular, we have
9Ho(X,Y)

AP (m((e—=)l|(—=)" || [Pxy]),o(e==2)) > 1 - K]

From Lemmd_IB, we obtain lower bounds on the adversary’s igtinduisher’s) advantage by Theoréin 8 below, and the
required size of a correlated randomness resource by @orf#ll below.
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Theorem 8For any key agreement protocelsuch thatPx is the uniform distribution ovek’, we have the following lower
bounds on the adversary’s advantage:

: In2\ .1 In2 1 2Ho(X.Y)
(i) 2(1—}—\/%)6;14—\/%6;1Zl—T, if 5,1 €[0,1];

. In2\ 1 2Ho(X.Y) , .
@y 21+ 5 01t er;>1— K for j € {2,3}, if 0,1 € [0,1];

In2 1 2H0(X,Y)

i) 20, —e2. >1 - "

(iif) 2+ 3 €r1 2 K]

_ 9Ho(X,Y)

(IV) 2571'.,2 + €r,j >1- T for ] € {2,3},

whered, ; ande, ; are parameters of formalizations of correctness and sgcrespectively, defined in Definitidd 7.
Proof: By Propositior{ 6, we have

inf AP (n((e—)'|(+—*)"""|| [Pxy]),0(6=2)) < €x3 + 20r.2. (32)
Therefore, by[(32) and Lemniall3 we obtain
9Ho(X,Y)
€r,3+ 2050 2>1— ——=—
Kl
By Theorenl}, we have explict relationships betwéen ande, ; as follows:
In2 1
Or2 < 0n1+ 502,
’ ’ 2 i
< <1 + \/1%2) 62, if 0rq € [0,1];
In2 1
€r,3 < €x,2 < Teﬂ,l'
Therefore, by combining the above inequalities we obtditoaler bounds in Theoreifn 8. |

Corollary 2: Suppose that a key agreement protacds (4, €)-secure in the sense of Ty j) in which Pk is the uniform
distribution overk. Then, we have the following lower bounds on the size of aatated randomness resource:

(i) 2(NY) > {1 - [\/meé +2 <1+ \/hl—z) 52
2 2

e+2<1+\/1n—2> 52
2

(iiy 270 (XY) > {1 - <,/1n226% +26>}|IC| for i = 2 andj = 1;

(iv) 2f0(X5Y) > 11— (e428)}|K| fori=2andj e {2,3}.
Proof: The proof of Corollary P immediately follows from Theorér 8. [ |

}|IC| fori=j =1, if § €[0,1];

(iiy 2fo(XY) > {1 -

}|IC| fori=1andj e {2,3},if § € [0,1];

Finally, from LemmaIB we obtain Propositibh 7 which is an asgibility result for key agreement. Also, we provide
Corollaries[B and]4 below, as illustrations of impossipiliesults which are special cases of Proposifibn 7. The proof
immediately follow from Theorerhl8 and Propositioh 7, and weitahem.

Proposition 7:Let [Px] be a key sharing resource, and lg®y]y] be a correlated randomness resource. In addition,
let ¢ be a real number such that< 1 — 2Ho(XY)=H=(K) " Then, there exists no key agreement protocasuch that

()| (+—=)| [Pxy] =5 [Px].

Corollary 3: There is no key agreement protocolsuch that (e—)>||(«—e)> =< [Px] foré < 1 —1/2H=(K) |n
particular, there is n@J, ¢)-secure key agreement in the sense of Tyipg) which constructs=s (even with 1-bit) starting
from authenticated communications,dife € [0, 1] are some real numbers such that:

/2 In 2 1
0 r;65+2<1+\/%>65<5f0ri:j:1;
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(i) 6+2<1+”h172> 53 <%fori:1andje{2,3};
(iii) \/1%26%+25< % fori =2 andj = 1;

(iv) e+20< % fori =2 andj € {2,3}.

Corollary 4: Let [ and s be nonnegative integers with< s. In addition, we denote thébit key sharing resource by
e, and let [Px]s be ans-bit key sharing resource with min-entrogy..(K). Then, there is no protocat such that
()| («—) || &=, =5 [Px], for é < 1 — 2!=H=(K) |n particular, there is ndd, ¢)-secure key agreement (or
key-expansion) protocol in the sense of Ty(@ej) which constructs the-bit key sharing resource—s ; from the!-bit key
sharing resource==s, if §,¢ € [0, 1] are some real numbers which satisfy the inequality in Carg[B.

VI. CONCLUSION

In this paper, we investigated relationships between ftimatgons of information-theoretic security for symmetkey
encryption and key-agreement protocols in a general get@pecifically, we showed that, for symmetric-key enciypti
the following formalizations are all equivalent withoutyacondition on system parameters:

» Stand-alone security including formalizations of extehder relaxed) Shannon’s secrecy using the statisticabilist,
information-theoretic indistinguishability and semangiecurity by Goldwasser and Micali; and
o Composable security including formalizations of Maureaktand Canetti.

In addition, we have shown that there are two security foizatibns which are not equivalent to the above formalizedio
without a certain condition: one is the formalization ofexded (or relaxed) Shannon’s secrecy using the mutualnraton,
and the other is the formalization given by the differenceMeen the distribution of plaintexts and the one condittboe
a certain ciphertext. However, these two formalizationt ke equivalent to others, if we impose a certain conditidmol
seems to be satisfied in a usual designing of protocols.

Furthermore, we also derived lower bounds on the advesséoy’ distinguisher’s) advantage and secret-key size redui
under all of the above formalizations. In particular, we Idoderive them all at once through our relationships betwien
formalizations. In addition, we briefly observed impodipiresults which easily follow from the lower bounds.

Moreover, we showed similar results (i.e., relationshipsseen formalizations of stand-alone and composable isgcur
lower bounds, and impossibility results) for key agreenmotocols.

We hope that our results on relationships between secuartydlizations shown by a formal and rigorous way are useful
in designing the protocols by selecting suitable systenarpaters. In particular, our results explicitly imply thatceyption
and key agreement protocols defined by stand-alone secantgin to be secure even if they are composed with other ones,
though it may be implicitly assumed by some researcherghieagtand-alone security formalizations are sufficienpfoviding
composable security in the information-theoretic setting
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APPENDIXA: DEFINITION AND INEQUALITY

Definition 8: Let X be a random variable which takes values in a finite XetThen, the min-entropyd..(X) and the
Hartley entropyH,(X) are defined by

H(X)= géi)rvl{—logPX(:zr)}, Hy(X) =log|{z € X|Px(z) > 0}].

Definition 9:Let X, Y, andZ be random variables associated with distributiéhs Py, and Pz, respectively. Thenutual
information betweerX andY’, denoted byl (X;Y), is defined by

I(X:Y):=H(X)— H(X|Y),

where H(X) (resp.H(X|Y)) is the Shannon entropy (resp. the conditional Shannomgyitr Also, theconditional mutual
information of X andY given Z, denoted byl (X;Y|Z), is defined by

I(X;Y(2) =Y Pz(2)[(X;Y|Z = 2).

Definition 10:Let X, Y, andZ be random variables associated with distributiéhis Py, and Pz, respectively, whereX
andY take values in a finite set. Thestatistical distancda.k.a. variational distance) between two distributidhs and Py,
denoted byA(Px, Py ), is defined by

A(Px,Py) = % > |Px(x) — Py ()]
reX

Also, for conditional probabilities’x |, := Pxz/Pz and Py, := Py z/Pz, the statistical distance betwed?y |, and
Py |z, denoted byA(Px|z, Py|z) (or A(X,Y|Z)), can be defined by

A(Px|z, Py|z) == ZPZ(Z)A(PX\Z:za Pyz-.).

Then, by definitions, note thak(Px|z, Py|z) = A(Pzx, Pzy).
In this appendix, for completeness, we describe severglimdies in the following, which are necessary to show theofs
of propositions in this paper. Note that these inequaliiesnot new.
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Proposition 8:Let (X,Y") and(X’,Y”) be random variables associated with two distributi®ys- and Pxy, respectively,
in a finite set. Then, we have
max (A(Px, Px/),A(Py, Py')) < A(Pxy, Pxry’)

Proof: From the definition of statistical distance, it follows that
2-A(Pxy, Pxiyr) = Y > [Pxy(x,y) — Pxyi(,y)|
x Yy

> Z ZPXY(%Q) - ZPX/Y/(%Q)
= S IPx(a) - Paote)

=2 A(Px, Py/).
| ]

Proposition 9:Let X and X’ be random variables associated with two distributiéhs and Py, respectively, in a finite
set. For an arbitrary random variabie associated with a distributiofty-, we haveA(Px xy, Pxxv) = P(X # X').
Proof: The proof follows from the following direct calculation:

2- A(Pxxy,Pxxiy) = >3 [Pxxy(z,2,y) — Pxx (2,2,
x x oy
=3 [Pxxv(@,2,y) — Pxxoy(z,2,y)]
z oy

+Z Z Z |Pxxvy(z,2',y) — Pxxry(z, 2", y)|

T z'Fx Y

=3 3 (Pxv(x,y) = Pxxoy(@,2,9) + > Y Y Pxx(w,a,y)

T z'#r Y
= 1-Pr{X = X'} +Pr{X £ X'}

=2Pr{X # X'}.
]

Corollary 5: Let X and X’ be random variables associated with two distributiGisand Py, respectively, in a finite set.

Then, we haveA(Px, Px/) < Pr{X # X'}.
Proof: The proof follows from Propositiorid 8 andl 9. [ |
Proposition 10 (Pinsker's inequality, Lemma 12.6.1 i [7Det X; and X, be random variables associated with two
distributions Px, and Px,, respectively, in a finite set. Then, we have

2
D(le ” PX2) > EA(PXNP)Q)Q'

Corollary 6: Let X andY be random variables associated with two distributiéis and Py, respectively. Then, we have

I(X;Y) > %A(ny,PXPy)Q.
n

Proof: The proof immediately follows from Propositidn]10 by seitify, := Pxy and Px, := Px Py. [ |

Proposition 11 (Classical case of Fannes'’s inequality,dreen 16.3.2 in[[7]):Let X; and X» be random variables associated
with two distributionsPx, and Py,, respectively, on a finite set’ such thatA(Px,, Px,) < %. Then, we have

2A(Py,, Px,
(X)) — H(X,)| < —2A(Py, . Py,) log %

Corollary 7: Let X andY be random variables which take values in finite setand), respectively. IfA(Pxy, Px Py) < i,

we have
2A(Pxy, Px Py)

Proof: The proof immediately follows from Propositign]11 by seftify, := Pxy and Px, := Px Py.
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APPENDIXB: TECHNICAL PROPOSITIONS
In this appendix, we show several propositions which arel uisethis paper.

Proposition 12:Let X be a random variable which takes values in a finite Betin addition, letY and Z be random
variables taking values in a finite sgtdefined by

Y= f(X,R), Z:=g(X,R),
where f, g are mappings and, R’ are random variables such th&t R, R’ are pairwisely independent. We define

a:= sup A(Pxy,Pxz),
PxeP(X)

= A(Py x—y, Py x—
B Ifea;)(( (Y\Xfwa Z\X71)7

where the supremum ia ranges over all distribution®x € P(X). Then, we haver = 5.
Proof: First, we shown < 3: For an arbitrary distributiodPy, we have

A(Pxy,Pxz) = Z |Pxy(z,y) — Pxz(z,y)|

3 Z Px (x) Z |Py | x=2(yl|z) = Pzix=2(y|x)]|

1
< —maxZ|Py|X I(y|$) PZ|X:m(y|x)|

2
y
= max A(Py|x=zs Pz|x=c)-

Therefore, we getv < .
Secondly, we provex > 3: Let zp € X be an element such that it givés i.e., xg = arg 8. For anye > 0, we define a
distribution P¢ by

[ 1=xif 2=,
Py (z) = { =7 otherwise
where~ is a positive real number such thaf < e. LetY := f(X,R) and Z := f(X, R'). Then, we have
o > A( XY’PXZ)
> (L=NAPY 54y P21 =s,)
=(1-7)8
> p—e
Therefore, we haver > . [ |
Lemma 14:For a key agreement protocol, we have
Pr{K4 # Kp} < A(Px k5, PxK)
S P(KA # KB) + min{A(PKA,PK), A(PKB s PK)}

Proof: Since we can easily see the existence of a distinguisheramitantagePr{ K » # K}, the first inequality of the
two is easy. We show the second inequality in the followingpn triangle inequality, we have

APy iy Prr) < A(Prakps Praka) + AP ks, Pri)
= PI‘{KA #+ KB} + A(PKA,PK).
Similarly, it is shown thatA(Pg , k,, Pxx) < Pr{Ka # Kp} + A(Pk,, Pk). [ |

Lemma 15:For two binary random variableX¥ andY over a set{0, 1}, and fore € [0, 1], the following two inequalities
are equivalent:

Pr{X=Y}- > Pr{X=0Pr{y=/(}]<e, (33)
£e{0,1}

Pr{X =Y ={(} —Pr{X =0} Pr{Y =(}| < 15 for every/ € {0,1}. (34)
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TABLE |
Pxy AND ITS MARGINALS

w1 0 T @
0 a b a+b
1 c d c+d

Py(y) | a+c b+d 1

Proof: It is sufficient to show thaf (33} (34), sincel(34)= (33) is obvious. Letting”xy be a joint probability distribution
of X andY given by TABLE[, (33) is equivalent to

la+d—(a+b)(a+c)— (c+d)(b+d)| <e. (35)
Since it holds thats + b + ¢ + d = 1, (38) becomesad — bc| < /2. Furthermore, using + b + ¢ + d = 1 again, we have
13
‘ny(0,0) — Px(O)Py(O)‘ = |a — (a + b)(a + C)| < 5,
|Pxy (1,1) = Px(1)Py (1)| = |d — (¢ + d)(b+ d)| <
which imply (33). [ |
Remark 3:Note that [[3B)= (34) does not generally hold ¥ andY are not binary random variables.

IR

APPENDIXC: PROOF OFLEMMA [I3
Let SupdPxy) = {(z,y)|Pxy(z,y) > 0} C X x ) be the support oPyy. For anyk, € K, andkp € K, we define

3(z,y) € Supd Pxy) such that
A ti = fi(z,t1,...,t;—1) for oddi
QZAT,kB = A= (t1,ta,...,.t2) €T | t; = fi(y,t1,...,tj_1) for evenj
ka = gA(x,tl,tg, L. ,t>\)
kg =gy, t1,ta,...,tx)
For any(z,y) € SUpgPxy), k4 € K, andkp € K, we also define

t; = fi(l',tl, e 7ti—1) for odd s
T A = (tl,tg, .. .,t)\) € T>‘ t; = fj(y,tl, .. .,tj_l) for evenj
kakp.ey ka=ga(z, t1,ta,... tx)
kB :gB(y,tl,tQ,...,t)\)
Then, for any simulatos, we have

AP (o) [ (<) !|| [Pxy])), o([Px]))
> % > |Pr(ka, kp, ) — Py(ka, kp, t")|

(ka,kp,t*)ELXICXTA
=  max {P:(B)—- P,(B)}

BCKXKXT>
> > (Pr(ka, kg, t") — Py(ka, kg, 1)),
(kakp)treQn T}
=1- > P, (ka, kg, t"), (36)

(ka,kp) treQp TkB

where P, and P, are distributions by the systemg(e—)!||(+—*)'~!|| [Pxy]) ando([Px]), respectively.
We now need the following claim.

Claim 2: Suppose thay4 andgg in the key agreement protocel are deterministic. Then, we have
Z Pa(kAJfB,t)\) §2H0(X7Y)—Hoo(K)'

T T
(kaskg),eQp

Proof: We note thatP, (ka, kp,t") = 0 if ka # kg, and thatP, (ka, kp,t*) = Px(k)P,(t") if ka = kp = k € K.

Thus, we have
> Py(ka,kp,t*) = ZPK > Pt

T T A
(kA,kB),tAer’ZkB treqp]
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1
Ssmm2 2 > B

ko (z,y)€Supp(Pxy) tacqmT?

k. k,x,y
! by
“emmy 2 |2 X P
(z,y)€Supp(Pxy) \ & veapl
1
S SHA(E) > 1 (37)
(z,y)eSupp(Pxy)
— 9Ho(X,Y)—Hoo(K)
where [[37) follows fromQZ"kT; y N QZ/Z,AI , = 0if k#FK, since we assume thaly andgp are deterministic. ]

We are back to the proof of Lemmall3.dfi and gz are deterministic, the proof of Lemrhal13 directly followsrr (36)
and ClainT2. We next show that the statement of Lerhma 13 is énen if we remove the assumption. Suppose ghaor gz
is probabilistic. LetR 4 (resp.Rg) be a finite set, and suppose that (resp.gz) chooses a random numbex € R 4 (resp.
rp € Rp) according to a probability distributiof*r,, (resp.Pg,). For each fixedra,rg) € R4 x Rp, a key agreement
protocol 7, , ) is specified in whichy with inputtingr4 andgp with inputting rz are deterministic. Therefore, we can
apply the lower bound derived before. Hence, evep.if(resp.gp) chooses 4 € R4 (resp.rp € Rp) according toPxr,
(resp.Pg,), this lower bound cannot be improved. Therefore, the pamfdhe lemma is completed.
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