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On a class of left metacyclic codes

Yonglin Cao, Yuan Cao, Fang-Wei Fu and Jian Gao

Abstract

Let Gonsry = (z,y | 2™ = 1,y® = 1,yr = 2"y) be a metacyclic group of ord&m, whereged(m,r) = 1,
1 <r <m andr® =1 (modm). Then left ideals of the group algebfg(G ., 3, ] are called left metacyclic codes
overF, of length3m, and abbreviated as left,, 3 ,)-codes. A system theory for left,, 3 .)-codes is developed
for the case ofcd(m, ¢) = 1 andr = ¢¢ for some positive integet, only using finite field theory and basic theory
of cyclic codes and skew cyclic codes. The fact that anyd&ft, 5 .y-code is a direct sum of concatenated codes
with inner codesA; and outer code€’; is proved, where4; is a minimal cyclic code oveF, of lengthm andC;
is a skew cyclic code of length over an extension field df,. Then an explicit expression for each outer code in
any concatenated code is provided. Moreover, the dual cbdaah leftG,, 5 .-code is given and self-orthogonal
left G, 3,--codes are determined.

Index Terms

Left metacyclic code, Cyclic code, Skew cyclic code, DualeoSelf-orthogonal code.

. INTRODUCTION

ET [F, be a finite field of cardinality; and G a group of ordem. The group algebrd@,[G] is a vector space
overF, with basisG. Addition, multiplication with scalars € F, and multiplication are defined by: for any
ag,by € Fy,

deG agg + ZgGG bgg = deG(ag +bg)g,
c(Xoge @99) = 2 gec Cag9s
(dec agg)(zge(; bgg) = ZgEG(ZuU:g auby)g.

Then[,[G] is an associativé&,-algebra with identityl = 1r 1 wherelr, and1g are the identity elements df,
and G respectively. Readers are referred B for more details on group algebra.

Let G = Gy = (r,y | 2™ = 1,y° = 1,yz = 2"y) whereged(m,r) = 1 andr® = 1 (mod m). Then
G is called ametacyclic group of order sm. Sabin and Lomonacd] provided a unique direct decomposition of
the Fz-algebralfz (G, , )] t0 minimal two-sided ideals (central codes) and describégchnique to decompose
minimal central codes to a direct sumininimal left ideals (left codes) and gave an algorithm teed®ine these
minima left codes. They discovered several good metacgoées and they expressed the hope that more “good”
and perhaps even “best” codes may be discovered among this imfenon-abelian group rings. Recently, Olteanu
et al [?] provided algorithms to construct minimal left group codesl rediscovered some best codes. These are
based on results describing a complete set of orthogonaiitpré idempotents in each Wedderburn component
of a semisimple finite group algebi, [G] for a large class of group&. For example, by use of the computer
algebra system GAP and the packages GUAVA and Wedderga sptimab codes and non-abelian group codes
were obtained:

o A linear [27, 18, 2]-code constructed by a left ideal iy [G], whereG = (z,y | 2 = 1,4® = 1,yx = 21y) (
[?, Example 1]).

o A best linear[20, 4, 8]-code constructed by a left ideal ify[G], whereG = (z,y | 2° = 1,y* = 1,yx = 2%y)
( [?, Example 3]).
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o A non-abelian group codg5, 10,22]-code constructed by a left ideal ify[G], whereG = (z,y | z!! =
1,y° = 1,yz = 23y) ([?, Example 4]).

For anya = (ao,0,a1,0,- -, @m—1,0,00,1,01,1, - - - y@m—1,1, G0,s—1, 01,51 - -, Am—1,s—-1) € F", define
1
@) =(Laz,..., 2" Y| Y |,
y.s.—.l
a0 ap1 ... Qgs—1
where)M, = oGt e Ghsml 1l Then is anF,-linear isomorphism fronfs™ ontoF, (G, . )]-

Am—-10 m-11 --- Gm—-1s5-1
As in [?] and [?] a nonempty subset’ of F;™ is called aleft metacyclic code (or left G, ;) -code for more

precisely) overF, if ¥(C) is a left ideal of theF,-algebralF,[G/,, s.»]. From now on, we will identifyC' with
U (C) for convenience.

In this paper, we focus our attention on the case ef 3 in the metacyclic grouf,, ; ,) andr = ¢ for some
positive integere.

Compared with the known theory for cyclic codes over finitddfe literatures related with metacyclic codes
were involved too much group algebra language and techsidusystem and elementary theory for left metacyclic
codes over finite fields have not been developed fully to trst dour knowledge. In this paper, we try to achieve
the following goals:

e Develop a system theory for left,, 3, -codes using an elementary method. Specifically, only fifiétl
theory and basic theory of cyclic codes and skew cyclic catesinvolved, and it does not involve any group
algebra language and technique.

e Provide a clear expression for each I&ft,, 3 . -code overfF, and give a formula to count the number of all
such codes.

e Give an explicit expression of the dual code for each &ff, 3, -code overF, and determine its self-
orthogonality.

Using the expression provided, one can list all distinct &f,,, 5 ,)-codes for specifien and ¢ (not too big)
conveniently and easily, design left,, 3 .-codes for their requirements and encode the presented chdetly.

The present paper is organized as follows. In section 2, weepthat any lefi,,, 3 ,1-code overf, is a direct
sum of concatenated codes with inner codgsand outer codeg¢’; for the case ofged(n,q) = 1 andr = ¢°
(mod m) for some positive integet, where A; is a minimal cyclic code oveF, of lengthm and C; is a skew
0;-cyclic code overk; of length3, i.e., left ideals of the ring;[y; 6;]/(y> — 1), where K; is an extension field
of F, and §; € Auty, (K;) satisfying#? = idg,. In Section 3, we give a precise description for skéwcyclic
codes overk; of length3. Hence all distinct leftz(,, 3 ,-codes oveif, can be determined by their concatenated
structure. In Section 4, we give the dual code of eachdgf} 5, -code overf, precisely and determine all self-
orthogonal lefté&x,, 5 ) -codes. Finally, we list all distinci41696 left G143 9)-codes and alB364 self-orthogonal
left G(14,39)-codes oveifs in Section 5.

Il. THE CONCATENATED STRUCTURE OF LEFTG(;, 3 ,)-CODES OVERF,

In this section, we overview properties for concatenatedcsire of linear codes and determine the concatenated
structure of leftG,,, 5 ,)-codes ovett,.

Let B be a linear[ng, kg, dp]-code overF,, F,, an extension field off, with degreekp, ¢ an F,-linear
isomorphism fromF .. onto B and E a linear[ng, kg, dg]-code overF .. The concatenated code of the inner
code B and the outer cod®’ is defined as

BUGE = {(¢(c1);-- s ¢(eng)) | (1, enp) € B}

(cf. [?, Definition 2.1]). It is known thatB[JE is a linear code ovelF, with parametersnpng, kpke, > dpdg].
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From now on, letn be a positive integer satisfying:d(m,q) = 1 andm > 3, (Z,,,+) the addition group of
integer residue classes modutowhereZ,, = {0,1,...,m — 1}, and denote by

A=TFylz]/(z™ - 1) = {Z a;x’ | ag,ay, ..., am_1 eF,}

the residue class ring df, [x] modulo its ideal generated ly” —1 with operations defined by the usual polynomial
operations modula™ — 1. We will identify cycllc codes oveflr, of lengthm with ideals of the ringA under the
identification mapiag, a1, ..., am—1) — >.ivp Laat,
First, we define
0: (Zmy+) = (Zp,+) by 0(s) =rs (mod m).

As ged(m,r) = 1, we see that is a group automorphism of¥,,, +). Moreover, froml < r < n andr?® =
(mod m) we deduce that the multiplicative order &fis a factor of3.
Next, we define a mapl — A by the rule that

) Z a;z%9) = a(z") (mod 2™ — 1),

for anya(z) = Z;” 01 ajz? € A. In order to simplify notations, we also useto denote this map ow, i.e.,
f(a(x)) = a(z") in A.

Thend is anF,-algebra automorphism oA satisfyingé? = id 4. In addition,6 is a permutation of the coordinate
positions{0,1,...,m — 1} of a cyclic codes of length: overF, and is called anultiplier. Readers are referred
to [?, Theorems 4.3.12 and 4.3.13] for more details on basic ptiepeof multipliers.

Wetherd denotes this automorphism gf or the group automorphism diZ,,, +) is determined by the context.
Let

Aly; 0 —{ZCLJ 2)y’ | ao(z),...,ax(x) € A, k> 0}

be theskew polynomial ring over the commutative ringd with coefficients written on the left side, where the
multiplication is defined by the rule

ya(x) = 0 (a(@)y’ = a(z”)y’, Ya(z) € A
and by the natural-linear extension to all polynomials id|y; 6].
As 62 = id 4, we havey3a(z) = a(z)y? for all a(x) € A. Soy> — 1 generates a two-sided ide@)® — 1) of
Aly; 0]. Let
Aly:0)/(y° = 1) = {a+ By +vy* [ o, B,7 € A}
be the residue class ring offy; ] modulo its two-sided idealy® — 1). For any¢ = ag(z) + a1 (z)y + az(z)y? €
Aly; 0]/ (y® — 1), wherea;(z) = 37" a; jo* € A with a;; € F, for j = 0,1,2, we define a natural map:

m—1 2

O alx,y) = ZZamxy

=0 j=0

Then it can be easily proved thétis a ring isomorphism fromA[y; 6]/(y* — 1) onto Fy[G (m,3,m)]-
In the rest of this paper, we will identif§, (G, 5 )] with Aly;6]/(y® — 1) under this ring isomorphisrb.

Theorem 2.1: Using the notations abové, is a left G, 3 ,)-code overF, if and only if C is a left ideal of the
ring Aly; 0]/(y* — 1).

Proof: By the identification ofF,[G,, 5 )] with Afy;0]/(y* — 1), we see that is a left G(,, 3 1-code over
Fq, i.e.,C is a left ideal of the ringF,[G,, 3], if and only if C is a left ideal of Afy; 6]/(y* — 1). [
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In order to determine all left-,,, 3 ,-codes oveif,, by Theoremi 2]1 it is sufficient to give all left ideals of the
ring Aly; 0]/{y® — 1). To do this, we need investigate the structure and progeafied first.

For any integes, 0 < s <m — 1, let J9 pe theg-cyclotomic coset modulan, i.e., J — {s,5q,...,5¢""1}
(mod m) wherel, = min{k € Z* | s(¢" — 1) = 0 (mod m)}. Then|J?| = ,. It is obvious that]éq) = {0} and
0(J) = 7 = {0}. In this paper, we assume that

r =¢° (mod m) (1)

for some positive integet.

Lemma 2.2 Let0 < s<m — 1. Then Js(q) satisfies one and only one of the following two conditions:
) 0(s) = s Emod m). In this casef(k) = k (mod m) for all k € J<©.
() 6(s) € J\? and@(s) # s (mod m). In this casel, = |J\”| is a multiple of3, andg(J{?) = J2.

Proof: By Condition (1), it follows thatd(s) € J§q) and 9(J§q)) = s(q). Then we have one of the following
two cases.

() 6(s) =rs=s (modm). In this case, for any: € J§q) we havek = sq¢’ for some0 < j < I, — 1, and hence
0(k) = rsq¢’ = s¢’ = k (mod m).

() (s) € J9 and 0(s) # s (mod m). In this case, it is obvious thd} = |J8(q)| > 2. Byd(s) € J9  there
exits integer, 1 < v < I, — 1, such that(s) = rs = sq* (mod m). By 7* = 1 (mod m) andsq’ = rs (mod m),
we havesq®” = s(¢")? = r3s = s (modm). From this and by the minimality of, we deduce that,|3v. Suppose
that [, is not a multiple of3. Thenged(l,,3) = 1 and hencd,|v. By sq¢* = s (mod m), we deduce thatq” = s
(modm), i.e.,f(s) = s (mod m), which contradicts thaf(s) # s (mod m). Hencel, is a multiple of3. [ |

In this paper, le be a primitivemth root of unity in an extension field df,. Thenz™ —1 = Zsm:‘ol(a: —(%).
We will adopt the following notations:

o Let J,g‘j), J,g‘f), e J,g‘j), whereky = 0, be all distinctg-cyclotomic cosets module: satisfying Condition (1)
in Lemmal2.D.
o Let J,g‘jil, A J,g‘jit be all distinctg-cyclotomic cosets module: satisfying Condition (II) in Lemma 21 2.

e DenoteJ (i) = J,&‘j), fi(@) = Tle (= — &),
Ki = Fylz]/{fi(x))
and assumé; = deg(fi(x)) = \J,gf)\ =[J@@)| foralli=0,1,...,s+t.
Thend; is a multiple of3 for all s+ 1 <i < s+ ¢ by Lemma2Z.R(ll). It is clear thafy(x), f1(z),..., fsit(z) are
pairwise coprime irreducible polynomials ify[x] satisfying
™ = 1= folz)fi(z)... fou(2).

HencekK; is an extension field oF, with cardinality ¢* for i =0,1,...,s+t, andm = Zfié d;.

For each integet, 0 < i < s + ¢, denote

Fi(x) = 4y € Fyla].
Thenged(Fi(z), fi(z)) = 1. By Extended Euclidian Algorithm, we find polynomials(x), v;(z) € F4[z] such

that

ui(@) Fi(z) + vi(z) fi(z) = 1. )
In this paper, we denote
gi(z) = ui(z)Fi(x) =1 —v;(z) fi(x) (mod =™ — 1). (3)
By (@) and [(), it follows that;(¢’) = 1 for all j € J(i) ande;(¢?) = 0 for all j € Z,, \ J(i), which implies
m—1
&(:U):%Z( d ¢hel 0<i<s+t. “)

1=0 jeJ(i)
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Then we have the following conclusions.

Lemma 2.3: Using the notations above, the following hold.

() Sitiei(@) =1, gi(x)? = i(x) ande;(z)ej(z) =0in Aforall 0 <i#j<s+t

(i) A=Agd A1 ... As1y, WhereA; = Ae;(x) is the ideal ofA generated by;(z), and.4; is a commutative
ring with ¢;(x) as its multiplicative identity for ali = 0,1,...,s +t.

(iii) For each integeti, 0 <1i < s+ t, define

@i a(x) — gi(x)a(x) mod 2™ — 1 (Va(z) € Kj;).

Thenp; is a field isomorphism fronds; onto A;.
(iv) O(gi(x)) = ei(z) andf(A;) = A;, foralli = 0,1, ..., s + .
(v) For each integet, 0 < i < s+ t, define

0;: K; — K; via a(x) — a(z") (Va(z) € K;).

Thend; is anF-algebra automorphism ofi; satisfyingd? = id,, whereidg, is the identity automorphism oR;;.
Preciselyp; = idg, forall i =0,1,...,s, and the multiplicative order df; is equal to3 for all i = s+1,...,s+t.
(vi) The restriction| 4, of # on A; is an F,-algebra automorphism om; satisfying (6|4,)® = id4, and

0|4, = gp,-@igpi_l. Hence the following diagram fdF,-algebra isomorphisms commutes:
©i 4 Lo .
0] .4,
A Mg,
Thenf| 4, =idy, foralli =0,1,...,s, and the multiplicative order df| 4, is equal to3 forall i = s+1,...,s+t.

Proof: (i)—(iii) follow from classical ring theory and Equation®)(and [(3).
(iv) By the definition of the automorphisih on A and [4), it follows that

m—1
Q(EZ(I')) = % Z( Z C—jl)wrl (mod m)

I=0 jeJ()
As J(i) = 0(J(i)) = {rj (mod m) | j € J(i)}, we have

m—1

Z( Z C_(Tj)l)l'rl (mod m)
=0 jeJ(i)

J

O(ei(r) =

( Z C—j(rl))wrl (mod m)

I=0 jeJ()

Moreover, since is an automorphism of the groufZ,,, +), for eachk € Z,, there is a uniqué € Z,, such that
k = rl (modm), and hence

Therefore,0(A;) = 0(A)0(gi(x)) = Agi(x) = A;.

(v) It is clear thatd; is anF,-algebra endomorphism df;. By r* = 1 (modm) and f;(z) = ]_[jeJ(i)(a: — ),
we see tha((j)rg = ¢/ for all j € J(i), which implies thatz” = z (mod fi(x)), i.e., 2" =z in K;. Hence for
any a(z) € K; = F,[z]/(f;(x)) we haveb?(a(z)) = a(z"") = a(z) in K;. Therefore0; = idx, and sod; is an
IF,-algebra automorphism dk;. Then we consider the following two cases:

(v-1) Let 0 < i < s. For anyj € J(i), by Condition (I) in Lemma 2.2 we havg?)"” = ¢/, which implies
2" =z (mod x — ¢/), and hencer” = = (mod fi(x)). Therefore §;(a(z)) = a(2") = a(x) for anya(z) € K; =
F,lx]/(fi(x)), and sof; = id,.
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(v-2) Lets +1 < i < s+ t. By Condition (Il) in Lemma 2.2, there exisjsc J(i) such thatj # j (mod m),
which implies (¢7)" # ¢7. Then by the proof of (v-1), we concludg # idk,. From this and by} = idg,, we
deduce that the multiplicative order 6f is equal to3.

(vi) By (iv) and 63 = id 4, it follows thatf| 4, is anF,-algebra automorphism aA; satisfying(6|4,)% = id,.
Then the equatiod| 4, = cpiﬁigpi_l follows from (v) and the definitions ap;, 6; andf| 4, immediately. ]

For any integet, 0 < i < s+t, it is known thatA; is a minimal cyclic code of length: over[F,. Precisely,f;(x)
is the parity check polynomial and(z) is the idempotent generator gf;. Hencedimy, (A;) = deg(fi(x)) = d;.

Frow now on, we adopt the following notations.

o Let K[y;6;] = {Z?:o bj(z)y’ | bo(x),...,bx(z) € K;, k > 0} be the skew polynomial ring ove; with
coefficients written on the left side, where the multiplioatis defined by the rule

Ya(z) = ) (a(@))y’ = a(a” )y, Va(x) € K;

and by the naturak;-linear extension to all polynomials if;[y; 0;].

Since#? = idk, by Lemma 2B(v), we see thgf — 1 generates a two-sided ide@l® — 1) of K;[y; ;).

o Let K;[y;0;]/(y® — 1) = {a(x) + b(z)y + c(z)y? | a(z),b(x),c(z) € K;} be the residue class ring &f;[y; 0;]
modulo its two-sided idealy® — 1).

Recall that left ideals of<;[y; 6;]/(y> — 1) are calledskew 6;-cyclic codes over K; of length3 (See P, Theorem
1]). For more details on skew cyclic codes, readers areregfdo 7], [?], [?], [?], [?].

Now, we can decompose any I€f,,, ; ,)-code into a direct sum of concatenated codes by the follpthirorem.

Theorem 2.4: Using the notations above, we have the following conclusion

() Aly; 0]/(y® — 1) = @725 (Asly:; 0].4)/ (ei(2)y® — es(2))).

(ii) For each integef, 0 < i < s+t, ; : K; — A; can be extended to a ring isomorphism fréd(y; 6;]/(y> —1)
onto A;[y: 0].4,]/(ei(z)y* — () by

i+ £(y) = wi&0) + @iy + wi(&)y® = ci(x)E(y)

for any &(y) = & + &1 + &y with &0, 61,6 € K.
(iiiy Cis a leftG,, 3, -code overf, if and only if for each0 < i < s+t there is a unique skeg;-cyclic code

C; over K; of length3 such that
s+t

¢ = An,.C,
=0
where 4,00, C; = {e;(2)¢ (mod 2™ — 1) | € € C;}. Moreover, we haveC| = [[;2}|Cil.
Proof: (i) By LemmalZ.3(ii),(iv) and (vi), we have
Aly; 0] = &2 Aily; 0].4,]-

Moreover, by A, = As;(x) we know that the projection fromd[y; 6] onto A;[y; 0| 4,] is determined byx(y) —
gi(z)a(y) (Va(y) € Aly;0]). Especially, we havg? —1 + ¢;(x)y3 —e;(x) under this projection. A§| 4,)3 = id.4,,
gi(z)y®—e;(z) generates a two-sided idea} (z)y> —¢;(z)) of A;[y; 0| 4,] foralli = 0,1, ..., s+t. By Lemmd2.B(j)
it follows thaty® —1 = S5 (e:(2)y® —ei(x)) and(e;(z)y® —&i(x)) (g (x)y —¢j(z)) = 0 forall 0 < i # j < s+t.
Hence

Aly; 0]/ (y® — 1) = @5 (Aily; 0] 4,)/ (ei(2)y® — ei())).

(i) Since p; : K; — A; is a ring isomorphism by Lemma 2.3(iii), the conclusion dals from Lemmad 213(vi)
and a direct calculation.

(i) By Theorem[2.1 and (i), we see thétis a left G(,, 3 )-code overFF, if and only if for each integet,
0 < i< s+t, there is a unique left ided; of the ring A;[y; 0] 4,]/(si(2)y® — &;(x)) such thatC = @:1.C;. By
(i), the latter condition is equivalent to that for eacheigeri, 0 < i < s + t, there is a unique left ideal’; of
Kl[y792]/<y3 — 1> such thatCZ = Spi(Ci) = {E,(m)§ ’ f S CZ} = AZ‘D%CZ'.

Finally, it is clear that the codewords containedCiis equal to|C| = 315 |Ci| = [1:241Cil- |
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By Theoreni 2.4, in order to give all distinct left,, 5 ,)-codes oveif, it is sufficient to determine all distinct
skew 6;-cyclic codes ovelK; of length3, for all i = 0,1,...,s + t. For convenience and notations simplicity in
the following sections, we introduce the following notaiso

Notation 2.5: For any integeti, 0 < i < s+ t, denote

o R = Kily; 0]/ (y® — 1). ,
For anya = ag + a1y + agy® € R; With ag, a1, as € K;, the Hamming weight wtg_’[)(a) of o over K; is defined
as the number of nonzero coefficients of the polynomigh a1y + asy? € K;[y; 6], i.e.,

o Wit (0) = [{j | a; #0, j=0,1,2}].
For any nonzero left ideal of R;, the minimum Hamming weight wtg_?(J) of J over K; is defined as

. wtg)(J) = min{wtg)(a) |la#0, a e J}.

[1l. SKEW 6;-CYCLIC CODES OVERK; OF LENGTH 3

In this section, we give all skew;-cyclic codes overK; of length 3, i.e., left ideals of the ringR;, where
0<i<s+t.

¢ Let0 < i < s. Thenk; is a finite field of cardinality; and#; is the identity automorphism d&; by Lemma
[23(v). HenceR,; = K;[y]/(y® — 1) which is a commutative ring. In this case, left ideals7f are in fact ideals
of R;. By the basic theory of cyclic codes over finite fields, we krtbat C; is an ideal ofR; if and only if C; is
a cyclic code overk; of length3. The latter is equivalent to that there is a unique monicsgivg(y) of ¢ — 1 in
K;[y] such thatC; = R;g(y). Theng(y) is called thegenerator polynomial of C; anddimg, (C;) = 3 —deg, (9(v))
wheredeg, (g(y)) is the degree of(y) as a polynomial with indeterminatg Obviously,R;(y* — 1) = {0}.

Theorem 3.1: Let0 <i < s. ThenR; = K;[y]/(y> — 1) which is a commutative ring, and the following hold.
(i) If ¢ =0 (mod 3), there aret distinct ideals inR;:

Rig(y), where g(y) € {1,y — 1,(y — 1)*,5" — 1}.
(i) If ¢% =2 (mod 3), there aret distinct ideals inR;:
Rig(y), where g(y) € {1,y — L,y* +y+1,5° —1}.

adi—1

(i) Let ¢% =1 (mod 3), ¢;(z) a primitive element off(; and denotev;(z) = ¢;(x) 5 (mod f;(x)). Then
there are8 distinct ideals inR;: Rig(y), where

9() e {Ly — Ly —wi(x),y — wi(x)*,y” +y + 1,
(y— 1)y —wi(x)?), (y — D)y —wi(x)),y* — 1}.

Proof: (i) Sinceq = 0 (mod 3), we havey® — 1 = (y — 1)? in K;[y]. In this casey® — 1 has4 monic divisors
in K[yl: 1,y —1, (y —1)? andy® — 1,.
(i) Since ¢% = 2 (mod 3), we have thai® — 1 = (y — 1)(y?> +y + 1) wherey? 4+ y + 1 is irreducible inK;[y).
In this casey® — 1 has4 monic divisors inK;[y]: 1,y — 1, > +y + 1 andy® — 1.
(i) Since ¢% =1 (mod 3), we have3|(¢* — 1) andw;(x) is a primitive 3th root of unity in K;, which implies
v —1=(y—1)(y —wi(z))(y — wi(x)?). In this casey? — 1 has8 monic divisors inK;[y]: 1, y — 1, y — w;(x),
y—wi(@)? y? +y+1 (y - Dy —wi(@)?), (y — D(y — wi(z)) andy® — 1. m

O Lets+1<i< s+t Thenk; is a finite field of cardinalityy®, d; is a multiple of3 by Lemma 2.2(Il), and
9; is anF -algebra automorphism d&; with multiplicative order3 by Lemma Z.B(v).

In this case, by 7, Lemma 1 and Theorem 1] we know th&t is a left ideal of R; if and only if C; is
a skewd;-cyclic code overK; of length 3, and the latter is equivalent to that there is a unique moigit r
divisor g(y) of 4> — 1 in the skew polynomial ringK;[y;#;] such thatC; = R;g(y). If the latter condition
is satisfied,g(y) is called thegenerator polynomial of C;, dimg,(C;) = 3 — deg,(g(y)) and the number of
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codewords inC; is equal to|C;| = (¢%)3~de.,(9W) Precisely, a generator matrix @f; over K; is given by:
Ge, = (a(x),b(2),1) if g(z) = a(z) + b(z)y +y*; and

a(x 1 0 .
Ge. :< (0) (oo 1) if g(a) = a(z) + y.

In order to describe monic right divisors gf — 1 in the skew polynomial ring¥;[y; 6;] and the relationships
between two nontrivial monic right divisors, we adopt théde@ing notatlons in the rest of this paper:

e Let (;(x) be a primitive eIement oK and denotey; () = (;(x)? 3 . Then the multiplicative order of;(x)
is equal toord(p;(z)) = qd. =1+ q s+ q = . Denote
g3 -1

Gi={0i()* | k=0,1,...,q% +¢q5}
which is the multiplicative cyclic subgroup dt;* generated by;(z). Then|G;| =1 + q% + q%_

Lemma 3.2: Lets + 1 <i < s+t Then we have the foIIowmg
(i) Oi(a(x)) = a(x)? 7 for all a(z) € K; or 6;(a(z)) = a(x)? = for all a(z) € K;.
(i) Forany a(z) € K, a(z) € G; if and only if a(z) satisfies the following equation
a(z)b;(a(x))87 (a(x)) = 1.
(iii) All distinct monic right divisors ofy® — 1 with degreel in the skew polynomial ring<;[y; 6;] are given by:
~a(z) +y, a(z) €G;.
(iv) All distinct monic right divisors ofy — 1 with degree2 in the skew polynomial rinds;[y; §;] are given by:

a(z)™! + 6 (a(2))y + 4%, alz) € Gi.
(v) For anya(x) € G;, we have

v’ =1 = (—a()+y) - (a(a)™" + 6 (a(z))y +y°)
= (a(@) + 6} (al@)y +y°) - (—alz) +y).
Therefore, both the number of right divisors gf — 1 |n K; [y,&] with degreel and the number of right divisors
of y3 — 1 in K;[y; ;] with degree2 are equal tol +q 5 +qs .

Proof: (i) Let 0 : o — a? (Vo € K;) be the Frobenius automorphism &f; overF,. Then the multiplicative
order ofo is d; and every automorphism df; overF, is of the form:a’“, 0 g k< di — 1. By Lemmal2.Rd; is
a multiple of 3. Henceord(c*) = 3 if and only if gcd(k,d;) = %, i.e., k = 7‘ ork =

is an automorphlsm ok; overF, with multiplicative order3 WhICh |mpI|es thaty; = o% or 0; =0 . Hence
0i(a(z)) = a(x)? 7 for all a(z) € K; or 0;(a(z)) = a(z)? = forall a(z) € K;.

(i) Denote o = «(z) in order to simplify the notation. Whe#; (a(z)) = a(:n)ﬁ for all a(z) € K, it is clear
that

4y 2d4
abi(a)? (o) = aTa® T4
2d; 4d; i
3

Whend;(a(z)) = a(x)? " foralla(z) € K;, bya™ = (@™ )a”
a1+ T 405 a5 well,
SinceK;* is a multiplicative cyclic group with ordey?: —1 andgZ |s a subgroup of with order1+q 3 —|—q 5,

2d; 4d;

d;
= a?” we havend;(a)0? (o) = o T47° T17° =

by basic group theory we conclude thatc G; if and only if a!+4™ T =1, i.e,ad;(a)f?(a) =1.
(iii) Let a € K;. Dividing v — 1 by y — o from right hand in the skew polynomial ring;[y; 6;], we

v =1 = (¥ + 0}y + 0 (a)bi(a)) (y — @)
+1 — ab;(a)6?(a).

Hence—a +y is a right divisors ofy® — 1 in K;[y; 6;] if and only if 1 — af;(a)02(a) = 0, i.e., ab;(a)6?(a) =
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(iv) Let 8,7 € K;. Theny + By +y? is a right divisors ofy® — 1 in K;[y; 6;] if and only if there existsy € K;
such that

vy -1 = (—a+y)(y+8y+y°)
= ¥+ 0:(8) — )y’ + (6:(7) - Ba)y — v,
which is equivalent thaty, 3,~ satisfy 6;(8) = «, 0;(y) = Ba and~ya = 1. From these and by? = idg,, we
deduce thaB3 = 62(0;(3)) = 6%(a) andy = 02(0;(7)) = 6?(Ba) = 0;(a)0?(c), which impliesad;(a)6?(a) = 1.
Then by the latter equation and (ii), we conclude that G;, and hence

y=a"!and 8 = 6?(a).

Therefore, both the number of right divisorsof— 1 in Kl-[y; 6;] with degreel and the number of right divisors
of y3 — 1 in K;[y; 6;] with degree2 are equal tol + ¢z +q = .
(v) It follow from a direct calculation. |

Now, by Lemmd 3.2 and basic theory of skew cyclic codes walidistinct left ideals ofR;, i.e., skewd;-cyclic
codes overK; of length3, by the following theorem.

Theorem 3.3: Lets+ 1 <i < s+t. Then all distinct left ideals oR; = K;[y; 0;]/(y> — 1) are given by one of
the following three cases: 4

(i) Cio =1{0}; C;3 =R, with |C; 3| = %, wtf,_’l)(Ci,g) =1andGg,, = I3 is a generator matrix of; 3, where
I5 is the identity matrix of size x 3.

(i) Ci2.a =TRi(—a(z) +y), wherea = a(z) € G,.

Precisely, we haveimg, (Ci2a) =2, |Ci2,0| = ¢** and a generator matrix af; 2  is given by

Geys = ( _Oé(w) —ei(ix(w)) (1) ) '

ThereforeC; 2 o = {(a,b)Gc, , . | a,b € K;} andwtf,_’[)(Ci,gva) = 2. HenceC; 3, is a MDS linear(3, 2, 2] ,, -code
over K;.

(i) Ci1a = Rila(z)™! + 62(a(x))y + y?), wherea = a(z) € G,.

Precisely, we haveimg, (Ci10) =1, |Cipa] = ¢% and a generator matrix a¥; 1 o is given by

Ge,, = (a(2)™h, 67 (a(2)), 1).

HenceC; 1o = {aGq,, ., | a € K;} andwtg)(Ci,lva) = 3. ThenC; 1 is a MDS linear[3, 1, 3] .., -code overk;.
Therefore, the number of left ideals &; is equal to4 + 2q% + Zq%.

In the rest of this paper, for any, 5 € G;, we denote
12,0 =Ri(—a+y), Cirpg=Ri(B~ +607(B)y + )

which are skewd;-cyclic codes overK; of length 3. By Theoremd 214 3.1 arld 8.3, we deduce the following
corollary.

Corollary 3.4: Using the notations in Section 2, denote
§=|{d; | ¢* =1 (mod 3), 0<i< s}

Then the numben,, 5 ,.,) of left G(,, 3 ,)-codes oveif, is given by one of the following two cases:
(i) Wheng =0 (mod 3),
s+t
Nemswa =4 J] @+2¢% +2¢7).
i=s+1
(i) When ¢ # 0 (mod 3),
s+t
Nimsrg =224 J[ @+2¢% +2¢7%).
1=s+1
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As the end of this section, we investigate the relationstepvben two left ideals of the rin@®; for i =
s+1,...,s+t. To do this, we consider the relationship between two naatrimonic right divisors ofy? — 1 in
Ky, 0;] with different degrees.

Lemma 3.5: For anyy € G;, denote

2d;

01y (X) = XO 4yt X 7,
Yiny(X) =77 X+ 447X 4,
Then bothg; ., (X) and; (X) have exactly; s + 1 roots and these roots are containedin

Proof: As gcd(q,q% +1) =1, ¢; ,(X) and; (X) have exactlyy% + 1 roots in some extended field &f;.
We only need to prove that all these roots are containggl.in _

By ve€ G C K, we havey”ﬁﬂf =1 and~?" = ~, which impIieSfquiJrl =~ * . Then from

2d,

+1 = _(,quX + 7_1) (InOd Qsi,y(X))»
we deduce that

(Xq%'i'l)q%X

~(r X Y x
(v a" a1 7q*%X)

= —(X0FH 47T )

= -y ' =1 (mod ¢;,(X)),

2d; 2d;

which implies thate; ,(X) is a factor of X4 *4 F+1_ 1. Hencead ™ +1F+1 — 1 for any roota of ¢; ,(X).
Therefore, all roots ob; ., (X) are contained ig;.
The reciprocal polynomial of; - (X) is equal to

di di
Ui (X) = X+ 4y 7IX 4407

)
d;

Then by X7 +1 = —(y=1X +~77) (mod ¥i (X)) andy1% ~1 =477, it follows that

2d; dq d;
D CEIR R - (Xq_SL +1)q

7
X
d d;

)qTX
~ qTT q3+1+7q3 X)
= (T T
= 1 (mod ¥; (X)),

2d; 2d;

which implies that);  (z) is a factor oqu g1 1. SinceXx9?® +a? F1_ 1 is self-reciprocal, we conclude

= -0~
~

that; ,(X) is also a factor ofX? g _ 1. Therefore, all roots of); ,(X) are contained i1g;. [
Theorem 3.6: (i) Let o, 5 € G;. ThenC; 1 3 C C; 2, if and only of o and 3 satisfying the following equation
af;(0)B + af93(B) +1 = 0. (5)

(i) For any 8 € G;, there areq% + 1 codesC; 2, containingC; 1 3 wherea is given by one of the following
two case:
« is a root of the polynomiad; 5(X) if 0;(a(z)) =

«a is a root of the polynomialy; g(X) if 6;(a(x)) =

a(x)?° for all a(z) € K;;
a

(x)? = for all a(z) € K.



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. , NO. , 11

(iii) For any a € G;, there are]% +1 codesC; ; g contained inC; » , Wwhere is given by one of the following
two case: .
3 is a root of the polynomialy; (X) if 6;(a(z)) = a(z)?® for all a(z) € K;;
B is a root of the polynomiad; o (X) if 0;(a(z)) = a(m)qu for all a(z) € K;.
Proof: (i) It is clear thatC; ; 5 C C; 2, if and only if —a + y is a right divisor of 37! + 02(8)y + v>.
Dividing 8% + 62(8)y + v* by y—« from right hand in the skew polynomial ring;[y; 6;], we have

B+ 03 (B)y +y°
= (0i(0) + 07(B))(—a +y) + 7" + abi(a) + o ().
Hence—a+y is a right divisor of3~1 +62(3)y+4? if and only if 371 +ab;(a) +ab?(3) = 0, which is equivalent

to thata and 3 satisfy [5).
(i) Let a € G;. We have one of the following two cases:

Wheno;(a(x)) = a(x)? B for all a(z) € K, it is clear that

abi(a)B + aB6F(B) + 1 = B¢ p().
From this and by (i), we deduce thé?tL 1.8 C Cia, if and only if ¢; g(a) = 0. Furthermore, by Lemmia_3.5 we
know that theg; g(x) has exactlyq + 1 roots ingG;.
When6i(a(z)) = a(z)?* for all a(x) € Ki, by afi(a) = a*1° — =17 we have

2d;

abi(Q)B + aBo?(B) + 1 = a7 B, ().

From this and by (i), we deduce that ; 3 C CZ 2.« If and only if ¢; s3(a) = 0. Furthermore, by Lemmia_3.5 we

know that the polynomial); 5(x) has exactlyq + 1 roots ing,;.
(iii) By (B) and Lemmd_3.5, it can be proved similarly as thati§. Here, we omit the proof. [ |

IV. THE DUAL CODE OF ANY LEFT G(m,37T)-CODE

In this section, we give the dual code of any I€f,, 3, -code overF, and determine all self-orthogonal left
G (m,3,-)-cOdeS.

As in [’?] the Euclidian inner product in Fy[G/,, 3] is defined as follows. Fof = > 7" Zj 0 @ijx'y! and
n= Z Zg =0 Z]x y] in F [G(m,?),r)]' we set

m—

>_A

2
Za ,jbiJ’ S Fq.

=0 5=0
The Euclidian dual code of a left G, 3 ,)-codeC overF, is defined by
CJ_E = {f € FQ[G(m,&T)] | [fﬂ?]E =0, Vpe C}'

C is said to besdlf- orthogonal if C CCte.
For anyé(y) = >0, Zj 00i;j Ty’ € Fy[G 3., as in ] we define theconjugation . on Fy[G (., 5] by

i
g a; ;Y ' x

2
=0 j=0
)

,_.

m—

+yPar(zh) +yaz(z ), (6)
wherea;(z) = Y1 a2 anda;(z71) = ag; + S0 " a; ;2™ for j = 0,1,2. It can be verify easily that

(€ +n) = (&) + p(n) and p(En) = p(n)p()

for all {,n € Fy[G (3, Moreover, we have the following

= ag(z ™!

Lemma 4.1: (i) The mapy defined by(6) is anF,-algebra anti-automorphism &[G ,,, 3 ] satisfyingu=! = p.
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(i) For any &, n € Fy[G (3], we havel¢,n]g =0 if £ u(n) =0 in the ringFy (G, 5.1)]-
(iii) Let C be a leftG,, 3, -code overF, and B a right ideal ofF,[G ,, 3,y]- Then

u(B) C e if C- B = {0} in Fy[G s -

Proof: (i) For & =" ZJ 0 @i ja'yl andn = YT Z; _obijz'y? in F alGm,3,m], by ord(z) = m and
ord(y) = 3 we deduce that

m—1 2 m—1 2
€ pn) > aiziy) (O 0D ey ™)
2:0 =0 k=0 1=0
= [&nle+ > ci o'y’

0<i<m—1,0<5j<2,1+57#0

for somec; ; € F,. Hence[¢,n]g = 0 if - pu(n) = 0 in the ringFy[G . 3]
(i) For any g € B andn € C, by C - B = {0} we havens = 0, which impliesu(3) - u(n) = 0 by (i), and so
[11(B),n) e = 0 by (ii). From this we deduce that(3) € C+=. Thereforeu(B) C C*=. ]

By the identification ofF, (G, 3 )] With Aly;0]/(y® — 1), we see thatd = F,[z]/(z™ — 1) is a subring of
Fq[G(m,3,m]- In the following, we consider the restriction of on A. In order to simplify the notation, we still
denote this restriction by. Obviously, we have

m—1 m—1
pla(z)) = alz™t) = Z a;x”" = ag + Z a;z™ "
i=0 i=1

for all a(x) = Z;’;f)l a;x' € A. It is clear thatu is anF,-algebra automorphism ofl satisfyingu ! = p.

Using the notations of Section 2, we know thAt) = J,S), 0 < i < s+t, are the all distincy-cyclotomic
cosets modulon. By Lemmal2.2, we have one of the following two cases:

& 0 < i < s.In this case, we havé(j) = rj = j (modm) for all j € J(i) = J,S). Then it is clear that
—J(i) ={—j | j € J()} (modm) is ag-cyclotomic coset modulen satisfyingf(—;) = —rj = —j (modm) for
all j € J(i). Hence—J(7) is also ag-cyclotomic coset module. satisfying Condition (I) in Lemma_2.2. Therefore,
there is a unique integef, 0 < i’ < s, such that-J(i) = J(¢').

¢ s+1<i<s+t. Inthis case, we have(j) € J(i) andf(j) # j (modm) for all j € J(i) = J,g‘j). Then it
is clear that—J(i) is a ¢g-cyclotomic coset modulen satisfyingd(—j) = —6(j) € —J(i) andé(—j) £ —j (mod
m) for all j € J(i). Hence—J (i) is also ag-cyclotomic coset modulen satisfying Condition (Il) in Lemma2]2.
Therefore, there is a unique integérs + 1 < i’ < s +t, such that-J (i) = J(7').

We also use. to denote this map +— ¢/, i.e., u(i) = i'. Whetheru denotes the automorphism gf or this map
on the set{0,1,...,s+t} is determined by context. The next lemma shows the compstibf the two uses of

.

Lemma 4.2: Using the notations above, the following assertions hold.

(i) u is a permutation o0, 1,...,s + t} satisfyingu=" = p, ©(0) =0, 1 < p(i) < sforall 1 <i < s and
s—|—1<,u()<s—|—tf0ra||8—|—1<z<s—|—t

(i) After a rearrangement of(0), J(1)...,J(s + t), there are nonnegative integers so, t1, to satisfying the
following conditions:

o s =351+ 2s9, pu(i)=1iforall 1 <i<sy, p(i)=1i+syandu(i+ sz) =i forall s; +1<i <351+ s9;

ot =1t14+2ty, p(i) =iforall s+1 <i < s+ty, u(i) =i+t andu(i+te) =i forall s+t1+1 < i < s++t1+1to.

(III) ,u(z—:z( )) M(l)( ) and ,u(.A ) AM(Z) foralli=0,1,...,s+t.

(iv) Let u be the map defined by:(a(z)) = a(z™!) = a(x™ ') (mod fu@y(x)) for all a(x) € K; =

Fy[z]/{fi()). Thenu is anFF-algebra isomorphism from\; onto K, ;y = Fy[z]/(f,.) (z)) satisfyingud; = 6,,;p

(V) Let0 < i < s+t. Usmg the notatlons of Theorem P.4(ii), tlfg- algebra anti- automorphlsmof FylGm, 3r)]
induces arF,-algebra anti-isomorphism (),ucpl from R; onto R,,(;. We denote this anti-isomorphism hyas

well. Then for anya(y) = a(z) + b(x)y + c(z)y? € R; wherea(x),b(z), c(x) € K;, we have
wa(y)) = al@™) + bz ™") + ye(z ™). (7)
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Proof: (i) follows from the definition of the ma, and (ii) follows from (i).
(iii) It is clear thatu(s;(z)) = L Z{’;_Ol(ZJGJ ¢H2~! by @) in Section 2. From this, b%,, = —Z,, and
J(p(i) =—J(i) ={—j |7 € J(i)} we deduce that

Six e

0 jeJ(i)

,_.

3=

plei(r)) =

>_A

Y o
k=0 jreJ(u(i)
@ (@

)-

Henceyu(A;) = p(Azi(2)) = p(A)p(ei(r)) = Aa—:w (#) = Ay by LemmalZB(ii).

(iv) By (i), We know that induces arff;-algebra isomorphism from{; onto A,,;. Then by Lemma 213(iii),
we see thatp~ ()/up, is anF-algebra |somorph|sm froni; onto K,,;y. For anya(x) € K;, by Equation[(B) in
Section 2 we have,,; (r) =1 (mod f,;)(z)), which implies

3=

(‘P&%N‘Pi)(a(m)) = cp;(ll.),u(gi(x)a(x))

w;(l,-) (eu@ ()alz™))
= a(e™") (mod fG;(x))-

Since we denotea;(li)ugp,- by 1 as well, the mag: : a(x) — a(z~!) (mod fu@i)(z)) is anF-algebra isomorphism
from K; onto K,;). Moreover, for anyu(z) € K; by Lemma 2.B(v) andi(z~ 1) € K, it follows that

(nby)(a(z)) = u(a(:v )) = a(@™") = b (alz™))

= (Ouem)(a(z)).
Hencepd; = 0,,; 1.
(v) By (iii) and Theorer 24(ii), we have the following comtative diagram form ring isomorphisms:
LR A/ @) - 1)
Puiiytpi + Y
Ruy =% A [y:0]a,0, 1/ e (@) (° — 1))
As we Write¢;(12.)yg0i by ., for anya(z), b(z), c(z) € K; by the identification off, (G, 5 )] with Afy; 6]/ (y* —1),
ei(z™h) = plei(x)) = e, (2), Equation [8) andje ;) (z) = 0(e ) (2))y = £,0) (x)y, we deduce that
pla(z) +b(x)y + c(z)y®)
= (¢, (pilal@) +b(@)y + c(z)y?))

= oy (uei@)al@) + ei(@)b(@)y +ei(@)e(x)y?)

= gy a™) +yPe @ b(a )

+ysz( “He(@™))

= ¢ (G @) (alz™) + 2@ ) +ye(@™)))

= a( D+ () +ye(a™)
by (iv). |

Corollary 4.3: For anya(x) € G;, we denote

2d; d;
3

() = (a(@™ 1)1+ (mod f,q(x)).

Using the notations of Lemnia4.2(iv), we have thdt) = (a(z1))™! = (u(a(2))) ™ € G4y, a(zH)a(z) =1
anda(z) = (a(z™1))~L.
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S

Proof: As a(z) € G;, we see that(z) is an element ofK; = F,[z]/(fi(x)) satisfying(a(z))?® T4° 1 =1.
By Lemmal4.2(iv), we know thai |s anIF -algebra isomorphism fronﬁ( onto K,,; = Fy[z]/{f. (x)). Hence

(u(e(x)))™! € K,y and (u(a(z)))? Faed_in g (i) Which impliesy(a(x)) € G,,;), and so(u(a(z)) ™! €
G- Finally, by f,,;)(x)[(z™ — 1) it follows that

a@) = (a(@ )T+ = (uala))r " T
= (ulo))!
1

in K,;). Thena(z) = (u(a(z)))~! = (@z~1)) "
For any integeri, 0 < i < s+t, andg(y), h(y) € R; = K;[y;0;]/(y® — 1), in the following we define
g(y) ~1 h(y) if g(y) = ah(y) for some o € R,
whereR* is the set of invertible elements R,. It is clear thatR;g(y) = R;h(y) if g(y) = ah(y).

Lemma 4.4: For any integer, 0 < ¢ < s+ t, we have the following conclusions:

) p@+y+1)~ 9> +y+1,u® 1)~y —1andu((y — 1)) ~ (y— 1) forall j =0,1,2.

(i) Let 0 < i < s andg® =1 (mod 3). Thenu(y — w;(z)) ~ y — wi(x™H)?2 and u(y — w;(2)?) ~ vy — wi(z™1)
in Ru(z)

(i) Let s+1<i<s+tanda(z) € G, Then

p(—a(z) +y) ~ 0,0 (@) + v,

p (@)™t + 6 (al2)y +y)
it (B0 @@)) T + 00 (86@6)) v+

Proof: (i) By Equation [7) andy® = 1, it follows thatu(y — 1) = y?> — 1 = (—y?)(y — 1) where—y? € R .
The other conclusion can be verified similarly.
(ii) Since w;(z)> = 1 and i is a ring isomorphism fromR; onto Ry by Lemmal4.P(v), it follows that
wi(x™1)? = (u(wi(2)))? = 1. As —w;(z71)y? € R:(i), we have
ply —wi(z) = —wie™!) +4°
= (—wilz )y —wilz™)?)
~y—wila T
Similarly, one can verify that(y — w;(z)?) ~; y — w;(z71).
(iii) By (), Lemmal4.2(v) and Corollarly 4.3 we have
pl—al@) +y) = —ale™h)+y?
= —pla(2) (1-a(2)y?)
= —p(a(@) (1 - 40,0 (@)
= M(Oé(l’))y Y (1 - 26u(z)( ( )))
(@))y? (=60 @(2)) +y) ,

where —pu(a(z))y? € RX() andd,,;(a(r)) € G, by Corollary[4.8. Similarly, we have

= (a

,u(ax L 0%( (ac))y+y)
= (w DT 200 (alzTh) +y

= 2y (a@) + 202 @) ) +y)
=y (ei(ixa(x) D)+ 6, @)y + v?)
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wherey? € R* .., 02, (a(z)~!) = (92 @(z ))) " ¢ G,y by Corollary 4.3 and, ;) (6(x)) = 62 (92 @(z))
€y u(i)* Yui) (i) u(i) BY y n@)\Z)) =06 O :

Now, we give the dual code of any leff,, 5 ,)-code overl, by the following theorem.

Theorem 4.5: Let C = @:%}(A;0,,C;) be a left G, 3, -code overF,, whereC; is a left ideal of the ring

Ri = Kily; 6]/ (y* — 1) given by Theorems3.1 ad 8.3. Then the dual o6de of C is also a leftG,, 3 ,-code
overF,. Precisely, we have
s+t

cts = Ao, D),
i=0

where D; is a left ideal ofR; given by one of the following cases:

() Let 0 <i < s. ThenR; = K;[y]/(y® — 1) and D; is given by one of the following subcases:

(i-1) Let g =0 (mod 3). ThenD ;) = R,) (g(y) if C; =Rig(y) whereg(y) € {1,y—1,(y—1)% (y—1)3}.

(i-2) Let ¢ = 2 (mod 3). ThenD,,;y = R (i)~ g(y) ,if C; = Rig(y) whereg(y) € {1,y — 1,9 +y+1,y% —1}.

(i-3) Let ¢* =1 (mod 3). ThenD,; = R, 9(y) if C; =Rig(y), where the paifg(y),J(y)) of polynomials
is given by the following table:

9(y) J(y) (mod f.i)(x))
1 Y3 -1,

y—1 v +y+1

y — wi(z) (y— 1)y —wilz™))
y — wi(z)? (y— Dy —wilz™")?)
v +y+1 y—1

(y = Dy — wi(2)?) | y —wi(z™")?

(y =Dy —wi(z)) | y—wilz™)

Y3 —1 1

(i) Let s+ 1 <i < s+t ThenR; = K;[y;6;]/(y> — 1) and D; is given by one of the following subcases:
(i-1) D,y = Ry (=00 (@(x) +y) = Cﬂ(l) 2.0, (@) @and a generator matrix db,,; is given by

1 0 >
P —%(i) (Ou(e)(@(2))) 1
as a linear code ovel’ i) of Iength3 if C; =Cita=mRi(a(z)™ +6(a(z))y +y?) wherea(z) € gz
(i-2) D,y Ru(i)(eu(z)(A( )N 40, @)y +y*) =C u(i)1,62,,, (@ and a generator matrix db,,;) is given

by
Gpuw = <<93(z)(a($))>_ N0 (9“(2)(a( ))) 71>

as a linear code ovel ;) of length3, if C; = Cj2 o = Ri(—a(x) +y) wherea(z) € G;.
(II3)D“(2—{0}IfC’ Ri; D() R()IfC—{O}

Proof: Let K; = F,[z]/{fi(z)), Ri = K;[y;0;]/(y> — 1) and B; be an right ideal of the ringR; =

Kily;0;]/{(y® — 1) given by one of the following two cases:

(A) Let 0 < i < s. Thend; = idg,, R; = K;[y]/{y>—1) and B; is given by one of the following three subcases.

(A-1) Let ¢ = 0 (mod 3). ThenB; = ‘“’(—;R if C; =Rig(y) whereg(y) € {1,y —1,(y — 1)2,53 — 1}.

(A-2) Let g% =2 (mod 3). ThenB; = y(;)lR if C; =R;g(y) whereg(y) € {1,y —1,y> +y+1,y° —1}.

(A-3) Let ¢* =1 (mod3). ThenB; = 32(;)1731- if C; = Rig(y) whereg(y) € {1,y—1,y—w;i(z),y—w;(z)?,y>+
y+1,(y — Dy —wi(2)?), (y — Dy —wi(2)),y° — 1}.

(B) Let s+ 1 <i < s+t. ThenB; is given by one of the following four subcases.

(B-1) B; = (—a(x) + y)R;, if C; = Ri(a(x)™! + 02(a(z))y + y*) wherea(z) € G;.

(B-2) B; = (a(z)~! 4+ 02(a(z))y + y*) R, if C; = Ri(—a(z) +y) wherea(z) € G;.
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By Theorems$ 3]1 anld 3.3, Lemrhal3.2(v) and direct calculatione can easily verify that
Ci’Bi:{O}inRi,i:O,l,...,S+t. (8)

For any intege < i < s +1, let D, = u(B;). By Lemma[4.2(v) we see thdd,, is a left ideal of R ;.

Let
s+t s+t

D= ZAD D; = @A Doy Dty -

Then by Theorerh 214(iii), we conclude tf@t is a left G(m’gm)'COde overF,,.

¢ First, we give the clear expression ¥, ;) = u(B;).

For the trivial caseB; = R; or B; = {0}, the conclusion follows from Lemma 4.2(v) immediately. Thee
only need to consider the nontrivial cases in (A) and (B).

In the case of (A-1),B; = £ ‘)172 If g(y) = (y — 1)%, thenB; = (y — 1)R;. By Lemma[4.2(v) and Lemma

[4.4(j), we haveD ;) = u(B;) = Ry@ym(y — 1) = Ruw(y — 1).
Similarly, one can easily prove that the other conclusion§-il) and all conclusions in (i-2) hold from (A-1)
and (A-2).
In the case of (A-3)B; = f(;lRi. If g(y) = (y—1)(y —w(x)?), by Lemmd4R(v) and Lemnia4.4(ii), we have
Dyiy = nl(y —wi(2))Ri) = p(Ri)u((y — wilz))
= Ry —wilz™)?).
Similarly, one can easily prove that the other conclusiong-B) hold from (A-3).
In the case of (B-1), by Lemnia_4.2(v) and Lemmal 4.4(iii) weéav
Dyiy = p((—a(@) +y)Ri) = p(Ri)pu(—a(z) +y)
= Rup) (—0u)(@(2)) +v)
Cru(i)2.00 (@)
Hence the conclusion (ii-1) holds by Theoréml 3.3(ii).
Similarly, in the case of (B-2) we have
Dy = n(Ri)p ()™t + 67 (a(2)y +y°)
Ry (02 @)™ + 02y (62 @)y + o)
= Cui)1.02,@)
Hence the conclusion (ii-2) holds by Theoréml 3.3(iii).

¢ Then we prove thalC||D| = |F,|>™. For any0 < i < s +t, by Theorem§3]1,3.3 and direct calculations we
deduce thatCy||D,, ;| = |K;i|> = |R;|. From this and by Theoref 2.4 (i)—(iii), we obtain

s+t s+t s+t

cipl = (JTIehAT1Punh = TTICHIDue)]
=0 =0 =0
s+t s+t

= 1Rl =TT Aily; 0141/ (s () (5* = 1))
" —

= |A[y;01/(y° — 1)| = [Fg[G 3]
= |Fq|3m'
& We claim thatD C C*=. In fact, leté € D andn € C. Then for each integer, 0 < i < s+ t, there exist
a; € C; and B; € D; such thatt = % ¢;(x)oy andy = Zf+g ei(z)B;, whereC; and D; are left ideals ofR;
given by (i)—(ii) ande;(z)a;, e;(2)8; € Aily;0|4,]/{ei(z)(y> — 1)). By Lemmal2.B(iv), we see that(z) is the
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multiplicative identity of A;[y;6]4,]/(e:(x)(y® — 1)). Sincee;(z)ej(z) = 0 for all 0 < i # j < s + ¢, we have
gi(z)eu)(x) = 0if i # u(4), i.e., j # u(i). Hence
s+t s+t

E-pn) = O @) ulei)p:)
i=0 =0

s+t
— (Z(si(x)ai)ei(l"))

1=0

s+t

: (Z (i) (@) (W(Bi)e () (5’3))>
i=0

s+t

= Z (EZ(Z')OQ)EZ(x)Eu(j)(x)(:u(ﬂj)gu(j)(x))

i,j=0
s+t

= Y (eil@))ei(@) (B ei(@))
=0
s+t

= > ei@)(in(Bu))-
=0
by Lemma 4.2(i) we see that

1(Bu(iy) € M(Dpgiy) = n(u(Bi)) = Bi.
From this and by((8), we deduce thag.(5,;)) = 0 for all i = 0,1, ..., s+ ¢, which implies - u(n) = 0, and so

[€,n]r = 0 by LemmaZlL(ii). Thereforep C C-*=.
As stated above, we conclude tifat= C** since bothC andD are linear codes ovéf, of length3m. =

Sinceﬂu(i) S D,u(z) )

Finally, we determine self-orthogonal lef,, 3, -codes.

Theorem 4.6: All distinct self-orthogonal left=(,, 3 .1-codes oveif, are given by the following
s+t s+t

C = AD,.Ci = Plei(@)E | £ € Ci} (mod 2™ — 1),
=0 =0

whereC; is an left ideal ofR; = K;[y;0:]/(y> — 1) given by one of the following four cases:

() 0 <i < s;1. In this case(; is given by one of the following three subcases.

(i-1) If ¢ =0 (mod3), C; = {0} or C; = R;(y — 1)%.

(i-2) If ¢* =2 (mod3), C; = {0}.

(i-3) Let g% = 1 (mod 3). If w;(z™1) = wi(x) (Mod fi(x)), thenC; = {0}, C; = Ri(y — 1)(y — w;(x)) or
C; = Ri(y — 1)(y — wi(x)?). Otherwise,C; = {0}.

(i) s1+1 <i < s;1+s9. Inthis caseC; = Rig(y), Cits, = Ri+s,¥(y) and the paifg(y),¥(y)) of polynomials
is given by one of the following three subcases.

(i-1) Let ¢ = 0 (mod 3). There arel0 pairs (g(y), d(y)):

9(y) Iy
-1 [V -1L-1)%y-11
(y_1)2 yg_la(y_1)27y_1
y—1 |y¥—1,(y—1)?
1 Y3 —1
(ii-2) Let ¢* =2 (mod 3). There are9 pairs (g(y),9(y))

9(y) I(y)

Yo -1 v -Ly'+y+1ly—1,1

v4+y+1 P —1,y—1

y—1 v -1y +y+1

1 Y3 —1
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(ii-3) Let ¢% =1 (mod 3). There are27 pairs (g(y), 9(y)):
(

9(y) J(y) (mod foa)(x))

Y —1 Ly*+y+1,(y— 1)y —wi(z™)),
(y— Dy —wi(z)?),y—1
y—wilz™)?y—wil@™), g’ -1

v +y+1 v =1,y — Dy —wilz™)),
(y =Dy —wi(z™")?),y =1

-y —wx) [¥-1F—-Dy—wlz),
P+y+ly—wi(z)

(y—Dy—w@)?) [ v’ =1,0y— Dy —wilz™1)?),
Y+y+ly—wi(@!)?

y—1 y3—1,y2—|—y+1

y —w(x) v =1, (y—1)(y —wi(z™1))

y —w(x)? v =1, (y— Dy —wi(z™1)?)

1 y3 -1

(i) s+1 < i < s+t Inthis caseC; = {0} or C; = Ci10 = Ri(a(x)™! + 6?(a(x))y + y?) where
a = a(z) € G; satisfying
0;(2)02(a)a + 6;(a)ab?(a) +1 = 0.

(iv) s+1t1+1<1i<s+t;+ts. In this case, there are exactly + Sq% + Sq%i + q% pairs (C;, C;44,) given
by one of the foIIowmg four subcases:
(iv-1) 4 + 2q 5 + 2q 3 palrs ({0} Citt,), WhereCj1, is any left ideal ofR;.,, listed by Theoreni 3]3.
(iv- 2) (14+q5 +q3)(3+q3) pairs: (Ci1.a,Cits,), Wherea = a(z) € G; andCj4, is one of the following
3+ q % left ideals of R;4,:
i+ts — {O}
e Ciyt, = Cipy1,8 Where g = 02, (v(z=1)™1) (mod fi,(z)) and y(z) € G; satisfying the following
conditions:
bia(y(z)) =0, if O;(a(x)) = a(m)q & forall a(z) € K;;
Yia(y(x)) =0, if ;(a(z)) = a(z)? & for all a( ) € K;.
i+t = Cz+t2 2,8 Whereﬁ = Oiys,(a(x™1) 1) (Mod fiyy, ().
(iv-3) 2(1 4+ g5 + ¢ ) pairs: (Ci 2., Citt,), Wherea = a(z) € G; and Cy4, is one of the following2 left
ideals ofR;44,:
i+t = {0}
i+ts = Cite,1,6 Wheres = 07, (a(z™")71) (mod fite, (2)).
(iv-1) 1 pair: (R;,{0}).

Proof: By Theoren{4.b and its proof we hade = @ § A;0,, D;, whereD; = ju(B,,;). From this and by
Theoren 2.4, we deduce thatis a self-orthogonal lefG ,, 5 . -code overF, if and only if C; € D; = ju(B,))
foralli=0,1,...,s+t.

By Equation [(8) and the proof of Theordm 1.5, it follows tidaf;) - B,,;) = {0} and

1Cu) 1 Bugiyl = [Cu@ [|1(Buy) | = 1Cu@ || Dil = Ry,
which implies thatC),(;) is the annihilating left ideal of3,,;) in R ,;), I.

Cuiy = Ay (Bu) ©)

whereAnngzLZ(i)(Bu(i)) = {f € Ru(i) | 577 =0, V?] € Bu(i)}-
Sincep is anF,-algebra anti-isomorphism fro®; onto R,,;y, by C; - B; = {0} and|C;||B;| = [R;| we have
w(B;i) - n(C;) = {0} and|u(By)||n(Ci)| = Ry |, which implies

A (u(C)) = u(B;) = Dy,
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From this, byD; = u(B,,;)) and [9), we deduce that
C; € D; <= B,u 2 u(C)
L L
= Anngaz(i)(Bu(i)) C Ann%jm (u(Cy))
= Cue) € Dy
foralli=0,1,...,s+t.
O Let0 <i < s. Thend; = idk, and thatR; = K;[y]/(y> — 1) is a commutative ring. By Theoreim #.5 and its

proof there is a unique paily(y), h(y)) of monic faCtorSg(y),h(ay) of y3 — 1 in K;[y] such that
C; = Rig(y), D; = Rlyh(—;)l = N(Bu(z)) with BH(Z) = Ru(z)ﬂ(%(—;)l)- and

Cuy = ADH%L:M (Bu)) = Ru@r(h(y)). (10)
Hence 5 4
C; CD; th lg(y) <= (° = 1) | g(y)h(y). (11)

By Lemmal4.2(ii) and Theorenis 3.1, we have one of the follgwiimo cases.

(i) When0 < i < sq, u(i) =4, which impliesu(h(y)) ~; g(y) by (10), and squ(g(y)) ~; h(y). Form this and
by (I1) we deduce that; C D; if and only if (y® — 1) | g(y)u(g(z)). Then the conclusions follow from Lemma
4.4 (i) and (ii).

(i) Let s +1 <i <81+ 89, u(i) =i+ so. By Lemmal 4.4 (i) and (i), we see that for each monic fadt@y)
of y* — 1 in K;[y] there is a unique monic factat(y) of y* — 1 in K, [y] such thatu(h(y)) ~; ¥(y), which
implies Ciys, = R,,;)9(y) by (1Q). Then the conclusions follow frorn (11), Leminal 4.4&(i)d (i) immediately.

O lets+1<i<s+t ThenR; = K;[y;6;]/{y® — 1) is a noncommutative ring. By Theorém ¥.5(ii), the pair
(Ci, D,yiy) is given by one of the following cases:

o ;= {0} and Du(z) = Rﬂ(i)’ orC; =R; and DN(Z) = {0},

© Ci = Cina and D,y = Cuiy 20, @) Wherea € G;;

o C; = Cz',2,a and DN(Z) = Cu(i)7179i(i)(a), wherea € G;.

From these, we deduce that
dimg, (C;) + dimKﬂ(i)(CM(i)) =3. (12)

Then by Lemma 4]2(ii), we have one and only one of the follgntwo cases.

(iii) Let s+ 1 < i < s+t;. Thenu(i) = i. In this case, we deduce that the condit@nC D, if and only if
C; = {0} or C; = Cj 1,0 Wherea = a(x) € G; satistyingCj 1o C C;90,). By Theoren 3)6(i), the condition
Cita C C;20,(a) is equivalent to thall; (@)6; (6; (@) )a+0;(a)abf (o) +1 = 0, i.e.,0;(Q)07 (@) a+0;(0)ab (a)+1 =
0.

(iv) Let s+t1+1 <i< s+t +ty. Thenu(i) =i+ to. By Theoremi 45(ii), we have one of the following four
situations:

(iv-1) Let C; = {0}. ThenD;y4, = R,,(;y- In this case(;y, C D;yy, for any left idealC; i, of R ).

By Theoren3.B, the number of paif$0}, Ci4.,) is equal to4 + Qq% + Zq%i.

(iv-2) Let C; = Ci1,o Wherea = a(z) € G;. Thendimg,,, (Diy,) = 2 by (I12) and

Divi, = Cit,20..0, (@)

by Theoreni 45(ii-1). Hencéimg, , (Ciyy,) < 2 if Ciyy, C Diyy,- Then we have one of the following three
cases.

> It is obvious thatC;;, = {0} satisfyingC;1¢, C D;4,.

> Let Ciyy, = Ciqr, 18 Where = B(x) € Gite,. By Lemmal4.R(ii), we haveu(i + t2) = 4, which implies
Di = Dyive,) = Cm’@i@ by Theoren{ 4}5(ii-1). From this and by Theorém]3.6(ii), weldee thatC; C D; if
and only if Hi(ﬁ) satisfies the following conditions:

~

(bm(Qz(ﬁA)) =0, if 0;(a(x)) = a(m)qi for all a(x) € K;.
Via(0:(8)) =0, if 0;(a(z)) = a(x)??® for all a(x) € K;.
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We denotey = y(z) = 6;(3(x)). Theny = 6;(u(B(z))~1) € G; by Corollary[Z3, which implieg.(3(z))~! =
02(v(x)), and henced(z) = 07, (y(~')~') by Lemmal[4.P(iv). Moreover, by Lemnia 8.5 we know that both
¢ia(z) andip; o(x) have exactlyq% 41 roots ing;.

> Let Citv, = Cite, 28 Where = B(x) € Giyy,. As p(i + t2) = i, we haveD; = D igt,) = Ci,1,9§(§) by
Theoren{4.X5(ii-2). Henc€; = C;1, C D; if and only if o = 62(3) = 62(8(z~1)~1), which is equivalent to that
B(x) = iys, ((xz™1)~1) by Lemma4.R(iv).

Therefore, the number of pai(€; 1 o, Cit+,) is equal to

(L+¢% +¢7)B+q7).
(iv-3) Let C; = Cip o Wherea = a(z) € G;. Thendimg,,, (Diy,) =1 by (I12) and

Ditt, = Cipy, 102, (a)

ity

by Theoreni 4)5(ii-2). Hencéimg, ., (Ciye,) < 1if Ciyy, € Diyy,. Then we have one of the following two cases.
> Cz'+t2 = {0}
> Let Ciyy, = Ciyy, 1,3 Where = B(z) € Giyy,. Then Aspu(i + t2) = i, we haveD; = Ditt,) = C; 2.0:(3)

by TheoreniZl5(ji-1). Henc€; = C;s. C D; if and only if o = 6;(3) = 62(8(z~1)~1), which is equivalent to
that 3(z) = 62, (a(z~*)~") by Lemmal4.R(iv).

Therefore, the number of pai(€’; 1 o, Ci++,) IS equal to2(1 + q% + q%).

(iv-4) Let C; = R;. ThenD;;, = {0}. From this and byC;;, C D;1¢,, we deduce”; ., = {0}.

As stated above, we conclude that the number of g&itsC;.¢,), wheres +t; +1 < i < s+ t; + to, is equal

to 10 + 8¢5 + 8¢5 + g% m

V. AN EXAMPLE
We consider leftG (1, 3 9)-codes overl3. Obviously, 9% = 729 = 1 (mod 14). All distinct 3-cyclotomic cosets
modulo 14 are the following:J\¥ = {0}, /¥ = {7}, J$¥ = {2,6,4,12,8,10}, J® = {1,3,9,13,11,5}. It is
clear that
0(7)=9-7T=7,012)=9-2=4, (1) =9 (modl4).

Using the notations is Section 2, we have that 1,¢ =2, J(0) = Jé?’), J(1) = J7(3), J(2) = J2(3) andJ(3) = Jl(g).
Hencedy =dy =1, d; = 6 and% = 2 for i = 2, 3.
Obviously,3 = 0 (mod 3). By Corollary[3.4(i), the number of left’(4 5 9)-codes oveif'; is equal to

22 J] (4 +2-3% +2-3%) =16 - 1842 = 541, 696.
1=2,3

We haver!* — 1 = fo(z)f1(x)f2(2) f3(z), wherefo(x) = o — 1, fi(z) =2+ 1, fo(z) = 2% + 25 + 2% + 23 +
22 +x+1andf3(z) = 25 +22° + 2* + 223 + 22 + 22 + 1. Then

o Ko =F3[z]/(z—1) = F3 andRqy = Ko[y]/(y®> — 1) = F3[y]/{(y — 1)3). By Theoreni:31(ii), all distinct ideals
of R are given by:Cy = Rog(y), whereg(y) € {1,y — 1, (y — 1), 4> — 1}.

o K1 = F3[z]/(z+1) = F3 andR; = K1[y]/(y® — 1) = F3[y]/{(y — 1)3). By Theoreni:31(ii), all distinct ideals
of R, are given by:C; = Rig(y), whereg(y) € {1,y — 1, (y — 1), 43 — 1}.

Moreover, |{0)| = 1, |Ro| = |R1| = 3% = 27, [Ro(y — 1)| = |Ri(y — 1)| = 32 = 9 and [Ro(y — 1)?| =
Ri(y —1)% = 3.

o Ky = Folz]/(fa(x)) = {Z?:o ajz’ | aj € Fs, j = 0,1,...,5} and go(x) = 1 + = is an element of
multiplicative orderl + 32 + 3* = 91 in K. Hence

Go={(1+2)*| A=0,1,...,90} (mod fa())

andRs = Ksy; 02]/(y> — 1) wherefds is anF3-algebra automorphism ok, defined by:
b2(a(z)) = a(z") = a(z”) = a(z)” (mod fa(z))

for all a(z) € K. Thenf3(os(z)) = (1 + )% =1+ 2.
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By Theoren 3.3, all distinct left ideal§; of R, are given by the following three cases:

(i) Co = {0} with [{0}| = 1, andCy = Ry with |Rsy| = | K[> = (3%)% = 3'® = 387420489.

(i) C2 = Coa (142 = Ra(—(1+ 2)* +y) with |Co| = (35)% = 312 = 531441, A =0,1,2,...,90.

(i) Co = Co1 (142> = Ra((1 4 2) 7 + (1 + 2y + y?) with [Cy| =36 =729, A =0,1,2,...,90.

o K3 =Tsx]|/(fs(x)) = {Z?:o a;jx’ | a; € F3}. We find thates(z) = 1 + 2z is an element of multiplicative
orderl + 32 +3* =91 in K3. Hence

Gz ={(1+22)* | A=0,1,...,90} (mod f3(z))
andR3 = K3y;0-]/(y> — 1) wherefs is anFs-algebra automorphism ok3 defined by:
Os(a(z)) = a(z") = a(:ng) = a(aj)g (mod f3(x))

for all a(z) € K3. In particular, we havéd3(os(z)) = (1 4+ 2)* =1+ 2%
By Theoren 3.8, all distinct left ideal§'s of R3 are given by the following three cases:
(i) {0} andRs, where|{0}| =1 and|R3| = |K3|? = (3%)3 = 318 = 387420489.
(i) C3 = C39 (11020 = R3(—(1 + 22)* 4+ y) with [Cs| = (3%)? = 312 = 531441, A =0,1,2,...,90.
(i) C3=C31 (142)» = Ra((1422)" 7 + (1 4+ 2*) y + y?) with [Cs] =35 =729, A =0,1,2,...,90.
e All distinct 541696 left G-codes ovelf's are given by

3 3
C=P A0, Ci=) felx)éi | & € Ci)
1=0 =0

(mod z'4 — 1) by Theoreni 2}4, where
go(x) = 24 22 + 222 + 223 + 22* + 225 4 225 + 227 + 228 4 229 + 2210 4 221 4 2012 4 2213,
e1(z) =2+ x + 222 + 2% + 22 + 25 + 228 + 27 + 228 + 2% + 2210 4 2 + 2212 4 213,
@) =+ +23+ 2t +2° + 28 + 28 + 2% + 210 4 21 4 212 4 213,
e3(z) = 20 + 2% + 223 + 2% + 225 + 28 + 28 + 229 + 210 4 2211 4 212 4 2213,
and the number of codewords ¢his equal to
IC| = |Col|C1]|C2|Cs].

As —J(i) = J(i) (mod 14), we haveu(i) =i for all i = 0, 1,2, 3. Using the notations of Lemma 4.2, we have
s=s1=1,s=0,t=t =2andty = 0. Henceu(e;(z)) = ¢;(z) for all i = 0,1, 2, 3.
e By Theoreni 4.5, all self-orthogonal leff(,, 3 9 -codes oveif; are given by = @?:o A;0,,C;, where
o Cy= {0} orCy = Ro(y - 1)2.
o (Ch = {0} orCy = Rl(y — 1)2.
o Cy = {0} or Cy = Cy 1 4(,) Wherea(z) = (1 + z)* satisfyingd;(a)6?(@)o + 6;(@)ab?(a) + 1 =0, i.e.,
0 = 141+ ) 831 4 2)A
+(1 —|—l‘_1)_9>\(1 _‘_:L,))\—FSI)\
= 14 1’90)‘(1 + l,)—89)\ + :L'g)‘(l _1_1,)73)\
in Ky (0 < X <90). Sincez™ =1 and (1 + z)! =1 in K, the above condition is equivalent to
14+ 220+ 2)2 + 221+ 2)™) =0 (mod fo(z)).
Precisely, we have
A=0,7,8,11,13,20, 21, 24, 26, 33, 34, 37, 39, 46, 47,
50,52, 59, 60, 63, 65, 72, 73, 76, 78, 85, 86, 89. (13)
o C3 = {0} or C3 = C3 1 (142,)» Where ) is given by [(13).
Therefore, the number of self-orthogonal I€ft,, 5 9)-codes ovelf; is equal to2 - 2 - 29 - 29 = 3364.
For example, we havel self-orthogonal lefG (14 3 9)-codes oveifs: C = {e2(z) | £ € Co 1 (144)> } Where) =
7,8,11,20,21,24, 33,34, 37,46,47, 50, 59, 60, 63, 72, 73, 76, 85, 86, 89, which are self-orthogonal lineé2, 6, 18-
codes oveif's with the following Hamming weight enumerator:

We(Y) =1+ 14V + 29472 4 336Y30 + 84Y36,
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VI. CONCLUSION

Let G(,, 3,y be a metacyclic group of ord@m, r = ¢° (modm) for some positive integer andged(m, ¢) = 1.
We present a system theory of I&f,,, 5 . -codes oveif,, only using finite field theory and basic theory of cyclic
codes and skew cyclic codes. We prove that any(gft 5 ,)-code is a direct sum of concatenated codes with inner
codesA; and outer codes’;, where A; is a minimal cyclic code oveF, of lengthm and C; is a skew cyclic
code of length3 over an extension field df,, and provide an explicit expression for each outer code &ryev
concatenated code. Moreover, we give the dual code of edicky|g, 5 )-code and determine all self-orthogonal
left G;,,,3,)-codes oveit,.
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