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We analyze a cryptographic protocol for generating a distributed secret key from correlations
that violate a Bell inequality by a sufficient amount, and prove its security against eavesdroppers,
constrained only by the assumption that any information accessible to them must be compatible with
the non-signaling principle. The claim holds with respect to the state-of-the-art security definition
used in cryptography, known as universally-composable security. The non-signaling assumption only
refers to the statistics of measurement outcomes depending on the choices of measurements; hence
security is independent of the internal workings of the devices — they do not even need to follow the
laws of quantum theory. This is relevant for practice as a correct and complete modeling of realistic
devices is generally impossible. The techniques developed are general and can be applied to other
Bell inequality-based protocols. In particular, we provide a scheme for estimating Bell-inequality
violations when the samples are not independent and identically distributed.

I. INTRODUCTION

Quantum Key Distribution (QKD) [1, 2] is the task of
generating a secret key such that the key gets known ex-
clusively to two designated parties, in the following called
Alice and Bob. In this work, we consider entanglement-
based QKD [2], where Alice and Bob have access to
a source of entanglement, and they can communicate
over an authenticated 1 classical communication channel.
Crucially, nothing is assumed about the source. In partic-
ular, the source may be fully controlled by an adversary,
Eve, who may try to gain information about the gen-
erated key. The main idea behind entanglement-based
QKD is that Alice and Bob, in a verification step, check
whether the entanglement obtained from the source is
sufficiently strong. If this is the case, they “distill” their
key from the entanglement provided by the source. Oth-
erwise, if the entanglement is found to be weak, they have
to abort the protocol as security cannot be guaranteed.

The aim of this paper is to prove security of a class

1 An authenticated channel provides the guarantee to the receiver,
say Bob, that the received messages has indeed be sent by the
sender, Alice. However, such a channel does not guarantee any
secrecy.

of QKD protocols under minimal assumptions. In par-
ticular, our argument is device-independent [3, 4], which
means that we do not make any assumptions about the
internal workings of the source nor the quantum devices
used by Alice and Bob. In fact, we do not even require
that they work according to the laws of quantum me-
chanics. Instead, we only make no-signaling assump-
tions, which require that the components of the QKD
scheme do not emit any undesired information [5]. This
assumption can be met, for example, by perfectly iso-
lating a large number of devices. We also note that, in
order to make sense of the QKD problem, certain non-
signaling assumptions are necessary: If the device pro-
cessing the final key broadcasts it, secrecy obviously re-
mains unachievable in any protocol.

In contrast to this, most standard security proofs [6–
11] are device-dependent. This means that the secu-
rity claim is only guaranteed to hold if Alice and Bob’s
devices precisely meet a given specification. Consider,
for example, an optical implementation, where a source
distributes pairs of entangled photons, whose polariza-
tion is then measured by Alice and Bob. A device-
dependent security proof would then require that the
measurement outcomes depend in a specific way on the
polarization degree of freedom, and are otherwise inde-
pendent of any further properties of the photons (such
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as their wave length or their arrival time) or any other
parameter (such as the temperature of the device). This
assumption—even if one tolerates some inaccuracies—is
not only hard to meet, but also hard to verify. In fact,
the assumption is not met by many existing practical re-
alizations of QKD, as has recently been demonstrated in
a series of hacking experiments (see, e.g., [12, 13]).

The mismatch between the theoretical specifications
of the devices used for the security proofs and the actual
practical implementations of these devices was already
recognized in the late 90s. In particular, Mayers and
Yao proposed the idea of self-testing, where the violation
of Bell inequalities [14] is used to infer that the devices
meet a given specification [15]. This approach has been
taken further by Barrett, Hardy, and Kent, who proposed
a scheme whose security is based solely on certain non-
signaling assumptions [5], similarly to those used in this
work. Their proof, however, only applied to an idealized
setting with a noiseless source. Later, Aćın, Gisin and
Masanes showed that noise can be tolerated if one makes
the assumption of individual attacks2 [3]. We stress that
these security claims, as well as the one presented in this
work, do not rely on the correctness of quantum theory.

In a parallel line of research, device-independent se-
curity proofs have been developed which rely on the va-
lidity of quantum theory. While the first proofs of this
type were restricted to a certain class of attacks, called
collective attacks3 [16], this restriction could be relaxed
recently to non-signaling constraints similar to those used
here [17, 18]. Moreover, these recent results, like the one
presented here, use a strong notion of security, as intro-
duced in [19–21]. This guarantees universal composabil-
ity, which means that the secret key generated by the
protocol can safely be used in any application.

All results mentioned above rely on the no-signaling as-
sumption. In our model, we treat each measurement as
if it was carried out on a separate device, between which
no signaling is allowed. In a practical setup—where Al-
ice and Bob each have only one measurement device that
is used repeatedly—this means that there should not be
signaling between the individual uses of the devices. In
particular, the non-signaling assumption is satisfied if the
practical devices have no memory. This assumption has
recently been relaxed in [22–24]. Although the proto-
col in [22] assumes that the adversary does not have a
long term non-classical memory, [23] does not tolerate
any noise, and the protocol in [24] relies on the validity
of quantum theory.

Since our claims are supposed to hold independently
of the correctness of quantum theory, we need a general

2 An attack is called individual if the adversary gathers only clas-
sical information, obtained by individual measurements applied
to single pairs emitted by the source of entanglement.

3 An attack is called collective if it is guaranteed that the individ-
ual particle pairs as received by Alice and Bob are independent
and identically distributed [9].

framework to specify the protocol, executed by Alice and
Bob, as well as Eve’s attack strategy. We follow a stan-
dard approach [25–27] and describe the source of entan-
glement as a random system, which takes inputs X, Y ,
and Z, and produces outputs A, B, and E, accessible
to Alice, Bob, and Eve, respectively. The idea is that
the inputs specify the choices of measurements that can
be applied to the (potentially) correlated systems, and
the outputs correspond to the measurement outcomes.
Crucially, we assume that this random system satisfies
certain non-signaling constraints.

The paper is organized as follows. In Section II we pro-
vide an introduction for: non-signaling correlations, Bell
inequalities and their relation to privacy, the notion of
device-independent protocols, and the security definition
that we use. In Section III we describe the protocol, state
our main result, explain how to implement the protocol
with quantum devices, and compare its performance with
other protocols. The proofs of our results are provided in
Section IV. The conclusions of our work are in Section V,
and the Appendix contains a supplementary result that
allows to adapt our protocol so that higher key rates can
be achieved at the price of assuming the validity of quan-
tum theory.

II. PRELIMINARIES

A. Non-signaling correlations

We use upper-case A to denote the random variable
whose particular outcome is the corresponding lower-
case a. We write the probability distribution for A as
PA, and the probability for A = a as Pa, as well as
PA(a). We use bold letters to denote strings of out-
comes a = (a1, . . . , aN ) or strings of random variables
A = (A1, . . . , AN ).

Alice and Bob share N pairs of physical systems, la-
beled by n ∈ {1, . . . , N}. Alice measures her nth system
with one of theM observablesXn ∈ {0, 1, . . . ,M−1}, ob-
taining the outcome An ∈ {0, 1}. Analogously, Bob mea-
sures his nth system with one of the (M + 1) observables
Yn ∈ {0, 1, . . . ,M} and obtains the outcome Bn ∈ {0, 1}.
The chosen observables and their corresponding out-
comes for the N pairs of systems are represented by the
random variables A, B, X, Y, which are correlated ac-
cording to the joint conditional probability distribution
PA,B|X,Y. The number Pa,b|x,y is the probability of ob-

taining the strings of outcomes a,b ∈ {0, 1}N when mea-
suring x ∈ {0, . . . ,M − 1}N and y ∈ {0, . . . ,M}N . The
only assumption about this distribution is the following.

The non-signaling assumption: The choice of ob-
servable for one system cannot modify the marginal dis-
tribution for the rest of the systems.

More formally, we impose the following condition among
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any two sets of input/output pairs I1, O1 and I2,O2,

∑

o2

Po1,o2|i1,i2 =
∑

o2

Po1,o2|i1,i′2 (1)

for all i2, i
′
2,o1, i1. This condition could be enforced phys-

ically by using a different device for each measurement
and isolating the devices from each other. In a more
practical situation where the same device is used for sub-
sequent measurements, the condition holds, for instance,
if one assumes that the device has no memory.

The information available to the adversary Eve is mod-
eled analogously: it is given by the input/output behav-
ior of a system, which may be correlated to Alice and
Bob’s measurements. Specifically, Eve can choose an ob-
servable Z and obtains an outcome E. We assume that
this, together with the public messages exchanged by Al-
ice and Bob, is all information available to her. Note
that we can without loss of generality assume that Eve
only carries out this one measurement, for the sole as-
sumption that we use in the security proof is that the
global (2N + 1)-partite distribution PA,B,E|X,Y,Z is a
non-signaling one, but otherwise may be arbitrary.

B. Bell inequalities

A bipartite conditional distribution PA,B|X,Y is said to
be local if it can be written as

P local
a,b|x,y =

∑

v

Pv Pa|x,vPb|y,v , (2)

for some probability distribution PV and conditional
probability distributions PA|X,V and PB|Y,V . Local dis-
tributions can be generated by shared randomness (de-
noted V above) between the parties, plus local opera-
tions. In other words, local distributions can be gener-
ated with classical resources. A distribution PA,B|X,Y
which cannot be written as (2) is said to be non-local.
Non-local correlations are the resource consumed in our
secret key distribution protocol.

By definition, Bell inequalities [14, 28, 29] are satis-
fied by all local distributions (2). In this paper, we con-
centrate on the Braunstein-Caves Bell inequality [29], or
BC-inequality for short. This inequality is often stated
using a different notation (not to be further used in this
work), where Ax, By denote the random variables A,B
conditioned on X = x, Y = y, so that it reads

〈A1 ⊕B1〉+ 〈B1 ⊕A2〉+ 〈A2 ⊕B2〉+ · · ·
+ 〈AM ⊕BM 〉+ 〈BM ⊕A1 ⊕ 1〉 ≥ 1 , (3)

where ⊕ is the sum modulo 2. For our purposes it is con-
venient to write the BC-inequality for a given conditional
distribution PA,B|X,Y as the expectation of the random
variable

W = (A⊕B ⊕ δ0
Xδ

M−1
Y ) (4)

over Pa,b,x,y = Pa,b|x,yQx,y, where

Qx,y =

{
1

2M if (x− y mod M) ∈ {0, 1}
0 otherwise

. (5)

The BC-inequality for M observables (3) can be written
as

〈W 〉 ≥ 1

2M
. (6)

As mentioned above, any local distribution (2) satisfies
(6). The largest violation 〈W 〉 = 0 can be reached for cer-
tain non-signaling distributions, but cannot be reached
within quantum theory. The largest quantum violation
is obtained with the EPR state |φ〉 = (|0〉|0〉+ |1〉|1〉)/

√
2

[30, 31], with the measurements specified in FIG. 1,
reaching the value

〈W 〉|φ〉 = sin2
( π

4M

)
. (7)

Note that when increasing M , the quantum violation
tends to zero, the maximal one.

For M = 2 the BC-inequality is equivalent to the fa-
mous CHSH-inequality [28], with its well-known maxi-
mal quantum violation of 〈W 〉 = 1

2 − 1
2
√

2
≈ 0.15 due to

Tsirelson [32].

C. Guessing probability and Bell violation

Suppose that Eve is correlated with Alice and
Bob through the global non-signaling distribution
PA,B,E|X,Y,Z . If Alice measures X = 0 and obtains the
outcome A, then we can quantify the knowledge that Eve
has about A by the optimal guessing probability

Pguess(A|E) = max
z

∑

e

max
a

PA,E|X,Z(a, e, 0, z) . (8)

If Pguess(A|E) = 1 then Eve knows A with certainty. If
Pguess(A|E) = 1/2 then Eve is completely ignorant about
the value of A. In [33] it was shown that the knowledge
that Eve has about A can be bounded by the amount of
non-locality present in Alice’s and Bob’s marginal distri-
bution:

Pguess(A|E) ≤ 1/2 +M〈W 〉 . (9)

If the marginal for the honest parties PA,B|X,Y violates
the BC-inequality (6), then according to (9), the prob-
ability that Eve guesses correctly is smaller than one.
This is one manifestation of the monogamy of non-local
correlations [26, 27]. In Appendix A, inequality (9) is
generalized to the case of more than one pair of systems.

D. Device-independent QKD

Inequality (9) allows to bound Eve’s knowledge about
A in terms of the statistics of A,B,X, Y , regardless of
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how the correlations PA,B|X,Y are generated. In partic-
ular, the privacy of A is independent of the functioning
of the device used to generate A. Even if the devices are
maliciously designed by Eve, and even if the devices vi-
olate quantum theory, the security of our protocol is not
compromised.

The only assumption that we make on the devices is
that they satisfy the no-signaling constraints (1). This
could be enforced by performing each of the 2N mea-
surements by Alice and Bob in a separate isolated de-
vice. Clearly, this approach, though theoretically possi-
ble, would be extremely costly in practice. A cheaper
possibility—actually the one employed by all existing ex-
periments—is that Alice and Bob each use one single de-
vice repeatedly for the different measurements. The con-
straints (1) then mean that there should be no signaling
between the individual uses of the devices. This would
be the case, for instance, if the devices had no mem-
ory. While such a no-memory assumption may be hard
to guarantee in practice, it is still considerably weaker
than the assumption that the devices can be modeled
completely, which is necessary in standard (non device-
independent) cryptography.

E. Security definition

Our key generation protocol starts from correla-
tions that violate the Bell inequality (6). We model
these initial correlations by a non-signaling distribution
PA,B,E|X,Y,Z . This distribution is a priori unknown and
may have been chosen by the adversary. In other words,
all our security claims are supposed to hold for any possi-
ble initial non-signaling distribution PA,B,E|X,Y,Z . Fur-
thermore, Alice and Bob have access to a public authen-
ticated communication channel. That is, all information
sent through this channel will be available to, but cannot
be altered by Eve.

The key distribution protocol specifies by a sequence
of instructions for Alice and Bob. In each of the protocol
steps, Alice and Bob either access the correlated data,
perform local calculations, or exchange messages over the
public channel. In the final step of the protocol, Alice
and Bob generate the keys KA and KB taking values on
{0, 1}Ns , respectively.

We say that a protocol is secure if the resulting distri-
bution is indistinguishable from an ideal one. Suppose
that at the end of the protocol all the relevant infor-
mation is characterized by a distribution P real

KAKB ,T,E|Z ,

where T is a transcript of the communication, containing
all messages exchanged between Alice and Bob through
the authenticated channel (note that T is accessible to
Eve). An ideal QKD protocol produces the distribution

P ideal
kAkB ,t,e|z = 2−Ns δkBkA P

real
t,e|z , (10)

where P real
t,e|z are the values of the marginal P real

TE|Z de-

rived from the real distribution P real
KAKBTE|Z . Note that

according to (10), the two versions of the secret key, KA

and KB , are identical and uniformly distributed, inde-
pendently of the values taken by T,E,Z. We say that a
protocol is secure if the quantity

∑

kA,kB ,t

max
z

∑

e

∣∣∣P real
kAkB ,t,e|z − P

ideal
kAkB ,t,e|z

∣∣∣ (11)

can be made arbitrarily small as N grows. This is the
strongest notion of security, and it is called universally
composable security [19, 20, 34, 35]. It is often the case
that the secret key generated by a QKD protocol is used
as an ingredient for another cryptographic task. The
above security definition warrantees that the composed
scheme that uses a secure key distribution protocol as a
component is as secure as if an ideal secret key (10) was
used instead (see [21] for more details).

III. SETUP AND RESULTS

A. Description of the protocol

In what follows we describe a family of protocols
parametrized by the number of settings M in the BC-
inequality, and a probability γ ∈ (0, 1). The role of γ is
explained next. In Section III C we illustrate how to find
the optimal value for these parameters. This family of
protocols is similar to those introduced in [5, 38].

1. Distribution and measurements. Alice and Bob
are given N pairs of systems. Alice generates the random
bits I = (I1, . . . , IN ) independently and with identical
distribution: PIn(0) = 1 − γ, PIn(1) = γ. Analogously,
Bob generates the random bits J = (J1, . . . , JN ) indepen-
dently and with identical distribution PJn = PIn . Pairs
such that In = Jn = 0 are used to generate the raw key,
and pairs such that In = Jn = 1 are used to estimate
how much non-locality Alice and Bob share. For each
n ∈ {1, . . . , N}, if In = 0 Alice measures her nth system
with Xn = 0, if In = 1 she measures it with Xn chosen
uniformly on {0, . . . ,M − 1}, if Jn = 0 Bob measures his
nth system with Yn = M , if Jn = 1 he measures it with
Yn chosen uniformly on {0, . . . ,M − 1}.
2. Estimation of non-locality. Alice and Bob an-
nounce I,J publicly as well as the tuples (An, Bn, Xn, Yn)
for the values of n where In = Jn = 1. The subset of pairs

Ne =
{
n ∈ {1, . . . , N} | In = Jn = 1

and (Xn − Yn mod M) ∈ {0, 1}
}
. (12)

is used to compute the average value for the BC-
inequality

W̄ =
1

Ne

∑

n∈Ne

(An ⊕Bn ⊕ δ0
Xnδ

M−1
Yn

) , (13)
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where Ne = |Ne|. W̄ thus corresponds to the average of
the variables Wn defined by (4) with n ∈ Ne. Note that
after post-selecting on the pairs with n ∈ Ne the ran-
dom variables Xn, Yn follow the distribution QX,Y de-
fined by (5), which allows to identify Wn with the BC-
inequality for the pair with index n.

The number of estimated systems is Ne ≈ 2Nγ2/M
with high probability. Here and in the rest of the paper
the symbol ≈ denotes equality up to subleading terms.
As we will see, the asymptotic efficiency of the protocol
does not depend on the subleading terms. The outcomes
of the pairs in the set

Nr = {n ∈ {1, . . . , N} | In = Jn = 0} , (14)

have not been published, and are denoted by Ar,Br.
These are the raw keys obtained by Alice and Bob, re-
spectively. We denote their length by Nr = |Nr| ≈
(1− γ)2N .

3. Error correction. Alice publishes Nc bits of infor-
mation about her raw key C = f(Ar), which Bob uses for
correcting the errors in his raw key: (Br, C) 7→ B′r ≈ Ar.
Any error-correction method, or equivalently any func-
tion f : {0, 1}Nr → {0, 1}Nc , can be inserted here,
as long as the probability that B′r 6= Ar vanishes as
N grows. It follows from classical information theory
(see [35] for more details) that error correction can be
achieved asymptotically with

Nc ≈ Nrh(λ) , (15)

where λ is the relative frequency of Bn 6= An for all
n ∈ Nr, and

h(λ) = −λ log2 λ− (1− λ) log2(1− λ) (16)

is the binary Shannon entropy.

4. Privacy amplification. Alice chooses at random
a function G : {0, 1}Nr → {0, 1}Ns from a set of two-
universal hash functions (see Definition 5 or [41]) with
output length

Ns(w̄) = max
{

0,

max
θ∈[0,1]

[
2NeD(w̄‖θ)− 2Nr log2(1/2 +Mθ)

]

−Nr −Nc − 2 log2(8NeN/ε)
}
, (17)

where the binary relative entropy is defined as

D(θ1‖θ2) = θ1 log2

θ1

θ2
+ (1− θ1) log2

1− θ1

1− θ2
, (18)

and w̄ is the observed value of the random variable (13).
If Ns(w̄) > 0 then Alice and Bob respectively compute
KA = G(Ar) and KB = G(B′r), which constitute their
versions of the final secret key. We stress that the hash
function G is chosen at random and independently of any
other information. The first maximization in (17) avoids
a negative length for the secret key, which obviously does
not have any meaning. If Ns(w̄) = 0 then Alice and Bob
write KA = KB =⊥, which means that the protocol has
not produced any secret key.

B. Main Results

The above protocol can be seen as a process
which transforms process which transforms the ini-
tial distribution PA,B,E|X,Y,Z into the final distribution
PKA,KB ,W̄ ,T,E|Z , where

T =
[
I,J, C,G, (An, Bn, Xn, Yn) ∀n ∈ Ne

]
(19)

is all the information that has been published by the
honest parties. We prove that for any initial distribution
PA,B,E|X,Y,Z , the resulting distribution PKA,KB ,W̄ ,T,E|Z
satisfies

∑

kA,kB ,w̄,t

max
z

∑

e

∣∣∣PkA,kB ,w̄,t,e|z − 2−Ns(w̄) δkBkA Pw̄,t,e|z
∣∣∣

≤ ε+ 2εerco , (20)

where εerco is an upper-bound for the error probability
of the error correction scheme. This implies that the ac-
tual key generated by the protocol has at most distance
ε+2εerco from a perfectly secure key (see also (11) above).
Note that the parameter ε can be controlled by the hon-
est parties when adjusting the length of the final secret
key (17).

By setting ε and εerco to sufficiently small values, the
honest parties can be confident of the fact that the secret
key generated by the protocol is indistinguishable from
an ideal secret key (10). This implies that the protocol
is secure according to the strongest notion of security,
the so called universally-composable security [21, 34] (see
Section II E).

The efficiency of a key distribution scheme is quanti-
fied by the asymptotic secret key rate. This is defined
as the ratio Ns/N in the limit N → ∞, where Ns is the
number of perfect secret bits obtained and N is the num-
ber of pairs of systems consumed. Using (17) and (15)
we obtain the secret key rate of our protocol:

lim
N→∞

Ns

N
= −(1− γ)2[1 + h(λ)] + (21)

+ max
θ∈[0,1]

[
4γ2

M
D(w̄‖θ)− 2(1− γ)2 log2

(1

2
+Mθ

)]

It is understood that if the above quantity is negative the
secret key rate is zero.

C. Implementation of the protocol with quantum
devices

Here we explain how to implement the protocol with
quantum-mechanical devices, i.e., if the initial correla-
tions are generated by measurements on an entangled
quantum state. We stress that this is not a part of the
proof that the resulting key is secret (as the secrecy claim
must hold for any possible correlations). However, it is
necessary to argue that, if the adversary is passive then
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B. Security criterion

Let us analyze the information that Eve has about Al-
ice’s key G(A′

r), in a worst-case scenario. As mentioned
above, our security proof uses the assumption that Eve
cannot store nonclassical information, that is, she can-
not keep a nonclassical physical system and decide how to
measure it at the end of the protocol. Therefore, we allow
Eve to decide the actual distribution PAr,Br,E|Xr,Yr

, but
not depending on the messages that the honest parties
publish during the protocol. Also, this distribution must
be compatible with the frequency qe, obtained in the es-
timation step. During the protocol Eve learns: Bob’s
inputs Yr, Alice’s message in the error correction step
C = f(A′

r), and the function G that outputs the final
key.

Our security criterion is that Eve’s information
[E,Yr, C,G] is not useful to make any prediction about
the secret key G(A′

r). In other words, the distribu-
tion for the secret key conditioned on Eve’s information
PG(A′

r)|E,Yr,C,G is undistinguishable from a uniform dis-

tribution PU over all values of the secret key {0, 1}Ns . In
Theorem 15 it is shown that

∥∥∥PG(A′
r),C,Yr,E,G − PUPC,Yr,E,G

∥∥∥ ≤ N5 2− 1
2

√
N (14)

holds with probability larger than (1 − 2− 1
2

√
N ). The

L1-norm of a given vector PV is defined as ‖PV ‖ =∑
v∈V |PV (v)|. When the difference of two distributions

is small in L1-norm, they are undistinguishable [16].

For the success of the protocol, it is also necessary that
Alice’s version of the final key G(A′

r) is identical to Bob’s
one G(B′

r), which happens if B′
r = A′

r. In Theorem 19 it
is shown that

Prob{B′
r $= A′

r} ≤ 4N12 2− 1
8 ln 2

√
Nr , (15)

provided Ne ≥ Nf/2. Recall that Ne is a parameter that
can be choosen by Alice and bob. We will see that the
optimal efficiency is achieved for Ne ≥ Nf/2.

Summarizing, the probability of failure, related to (14,
15), tends to zero as the number of systems consumed
grows (N → ∞). As we see next, the optimal Ne is
proportional to N , which implies Nr ∝ N too. Hence,
the convergence rates are super-polynomial in N .

C. Secret key rate

The efficiency of a key distribution scheme is quantified
by the asymptotic secret key rate. This is defined as the
ratio Ns/N , where Ns is the number of perfect secret
bits obtained and N is the number of pairs of systems
consumed, in the limit N → ∞. In our case, the optimal

FIG. 1: Location in the equator of the Block sphere of the
observables for M = 4.

secret key rate is

Ns

N
≈ 2

M
max

µ
min

ν

(
µD(νe|ν̄) (16)

+ (1 − µ) [D(ν|ν̄) + 1 − ν log2 τ − H1(A|B)qe
]
)

,

where the maximization is constrained by µ ∈ (1/2, 1),
and the minimization by ν ∈ (0, 1). The above is ob-
tained from (7) and (9) when substituting Ne = µNf ≈
2µN/M and Nr = (1 − µ)Nf ≈ 2(1 − µ)N/M . Notice
that (16) includes the optimization over Ne with the con-
straint Ne ≥ Nf/2.

IV. IMPLEMENTATION WITH QUANTUM
DEVICES

In this section we explain how to implement our pro-
tocol with quantum mechanical devices. Suppose Alice
and Bob share many copies of the noisy EPR state

ρp = pΦ + (1 − p)
I
4

, (17)

where Φ is the projector onto |00〉 + |11〉, and I the iden-
tity matrix. They perform the measurements in the fol-
lowing basis. The observable x ∈ {0, . . . M − 1} for Alice
is

|0〉 ∓ eiπ x
M |1〉 , (18)

and the observable y ∈ {0, . . . M − 1} for Bob is

|0〉 ∓ e−iπ
y+ 1

2
M |1〉 . (19)

In the Bloch sphere, these observables correspond to the
directions represented in FIG. 1. These are the observ-
ables used to obtain large violations of the Braunstein-
Caves inequality with M observables [17]. For M = 2,
the settings (18, 19) are the ones which maximize the

FIG. 1: Location in the equator of the Bloch sphere of the
observables for M = 4.

the protocol actually generates a key (in particular, it
should not abort), and to calculate the rate it which it
does so—thereby allowing a comparison to other proto-
cols.

Suppose Alice and Bob share many copies of the noisy
EPR state

ρ = (1− ξ) Φ + ξ
I
4
, (22)

where ξ ∈ [0, 1] is the fraction of noise, Φ is the projector

onto the EPR state |φ〉 = (|0〉|0〉+ |1〉|1〉)/
√

2, and I/4 is
the maximally noisy state. They perform the measure-
ments in the following orthogonal basis. The observable
x ∈ {0, . . . ,M − 1} for Alice has eigenvectors

|0〉 ± eiπx/M |1〉 , (23)

the observable y ∈ {0, . . . ,M − 1} for Bob has eigenvec-
tors

|0〉 ± eiπ(y+1/2)/M |1〉 , (24)

and the observable y = M for Bob has eigenvectors

|0〉 ± |1〉 . (25)

Note that, while Alice has M observables, Bob has M+1
observables, and that y = M is the same observable as
Alice’s x = 0. In the Bloch sphere, these observables
correspond to the directions represented in FIG. 1. The
observables x, y ∈ {0, . . . ,M − 1} are the ones used to
obtain large violations of the BC-inequality [29]. The
observables x = 0, y = M maximize the correlation be-
tween Alice and Bob, and hence, are used to generate the
raw key. For M = 2, this protocol is essentially equiva-
lent to Ekert’s original protocol [2].

Using Equation (7) it is straightforward to extend the
expectation of the Bell inequality violation (6) to the case
where noise is added to the EPR state (22):

〈W 〉ρ = (1− ξ) sin2
( π

4M

)
+ ξ

1

2
. (26)

0.000 0.005 0.010 0.015 0.020 0.025 0.030
Ξ0.000

0.001

0.002

0.003

0.004

Ns�N

M=15

M=11

M=7

M=5

FIG. 2: The secret key rate Ns/N as a function of the noise
ξ is plotted for different values of M . The parameter γ is
optimized for every value of ξ. Note that in our protocol, γ
tends to a non-zero value asymptotically.

This is the value taken by W̄ in the large N limit. Sub-
stituting this in (17) we obtain the secret key rate, which
is plotted as a function of the noise ξ in Fig. 2. The
value of the parameter γ is numerically optimized, such
that, for each value of the noise ξ the secret key rate is
maximal.

In Fig. 2 one can see that the secret key rate for M = 2
(and also M = 3) is zero, hence the security of the CHSH-
protocol [3] against general attacks remains an open ques-
tion. We have numerically seen that the optimal protocol
is the one with M = 7.

D. Comparison with other results

In this section we make a survey of some proofs for
device-independent security in QKD. The first division
that we consider is whether the adversary is totally un-
restricted [5, 17, 18, 22–24], or is constrained to perform
the so called individual or collective attacks [3, 4, 16, 38].
The second division concerns whether the security re-
lies on the validity of quantum theory [4, 16–18, 24] or
not [3, 5, 22, 23, 38]. Third division, the devices are as-
sumed to be memoryless [3, 5, 16–18, 38], or not [22–24].
Fourth division, the protocol tolerates certain degree of
noise [3, 4, 16–18, 22, 24, 38], or not [5, 23]. Fifth division,
the adversary is allowed to have a long-term non-classical
memory [3–5, 16–18, 23, 24, 38], or not [22].

The advantages of our result are:

1. The adversary is totally unrestricted in the sense
that no assumption is made about the structure of
the global distribution (like in individual or collec-
tive attacks).

2. The security of our protocol does not rely on the
validity of quantum theory.

3. The adversary is allowed to have a long-term non-
classical (and non-quantum) memory.
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The disadvantages of our result are:

1. The security of our protocol relies on the measuring
devices not having an internal memory.

2. Our protocol tolerates certain degree of noise, but
only a small amount ξ = 2.7% (compare this with
ξ = 11% in [22]).

3. The secret key rate achieved by our protocol is very
low. For example, in the noiseless case ξ = 0, our
protocol gives Ns/N = .004 while the protocols
of [3, 4, 16–18, 22] obtain Ns/N = 1.

IV. SECURITY PROOF

A. Properties of symmetric distributions

The results derived in this section provide tools for
estimating properties of symmetric distributions with-
out resorting to any de Finetti-like theorem. They are
motivated by recent quantum analogues [39] (sometimes
termed postselection techniques [40]) and may be of in-
dependent interest.

We use calligraphic letter V to denote the alphabet
of values for the corresponding random variable V , that
is v ∈ V. We use bold letters to denote strings of
variables v = (v1, . . . , vN ) ∈ VN or random variables
V = (V1, . . . , VN ). We say that a distribution PV is
symmetric if PV(v1, . . . , vN ) = PV(vπ(1), . . . , vπ(N)) for
any permutation π : {1, . . . , N} → {1, . . . , N}.

Definition 1 Given a string v = (v1, . . . , vN ) ∈ VN
we define its corresponding frequency distribution q =
freq(v) as

q(v) =
|{n : vn = v}|

N
, ∀ v ∈ V . (27)

This function naturally extends to sets Q = freq(VN ),
and random variables Q = freq(V).

For any v, the frequency q = freq(v) is a probabil-
ity distribution for the random variable V , but it has
the specific feature that it only takes values on the set
{ nN : n = 0, . . . , N}. Q is the set of all possible frequen-
cies, whose cardinality can be bounded as

|Q| ≤ (N + 1)|V|−1 . (28)

For what follows, it is convenient to define a particu-
lar kind of probability distributions for V: the distribu-
tion with well-defined frequency q ∈ Q, denoted PV|q, is

the uniform distribution over all strings v ∈ VN such
that freq(v) = q. Another important kind of symmetric
distributions are the i.i.d. distributions, representing in-
dependent and identically-distributed random variables
V1, . . . , VN . Borrowing notation from quantum informa-
tion theory we write P⊗NV for such a distribution. If

PV (v) < 1 for all v, then the i.i.d. distribution P⊗NV does
not have a well-defined frequency. However, any sym-
metric distribution P sym

V , including the i.i.d. ones, can
be written as a mixture of distributions with well-defined
frequency,

P sym
V =

∑

q∈Q
PQ(q)PV|q , (29)

Q = freq(V) . (30)

These two equalities establish a one-to-one correspon-
dence between Q and V, for symmetric distributions.
In Lemma 3 we show that, in a sense, general symmet-
ric distributions are similar to i.i.d. distributions. But
before, we need the following technical result.

Lemma 2 Let the probability distribution PV take values
on the set { nN : n = 0, . . . , N}, and let V = (V1, . . . , VN )

be distributed according to P⊗NV . Then the probability
distribution PQ for Q = freq(V) takes its maximum at
Q = PV , that is,

PQ(PV ) = max
q∈Q

PQ(q) . (31)

Proof We show that for any q ∈ Q with q 6= PV there
exists q′ ∈ Q such that PQ(q′) > PQ(q). Thus let q ∈ Q
be fixed such that q 6= PV . We call the support of q: the
set of values v such that q(v) > 0. If the support of q
is not contained in the support of PV then PQ(q) = 0.
We can thus without loss of generality assume that the
alphabet of V , denoted V, is the support of PV , that is,
PV (v) > 0 for all v ∈ V. For any v ∈ V define

d(v) = q(v)− PV (v) .

Furthermore, let vmin and vmax be defined by

d(vmin) = minv d(v)
d(vmax) = maxv d(v)

.

Because q 6= PV and the assumption of the lemma,
d(vmin) ≤ −1/N and d(vmax) ≥ 1/N . Let us define
q′ ∈ Q as

q′(v) =





q(v) + 1
N if v = vmin

q(v)− 1
N if v = vmax

q(v) otherwise.

From the two inequalities above we have

q′(vmin) ≤ PV (vmin)
q′(vmax) ≥ PV (vmax)

. (32)

Using the identity

PQ(q) =
N !
∏
v PV (v)q(v)N

∏
v(q(v)N)!

we find

PQ(q′)
PQ(q)

=
PV (vmin)(q′(vmax) + 1

N )

PV (vmax)q′(vmin)
>
PV (vmin)

PV (vmax)

q′(vmax)

q′(vmin)
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(note that the terms in the denominator cannot be zero).
By (32), the right-hand side cannot be smaller than 1,
which concludes the proof. 2

Lemma 3 If there is a function t : VN → R and ε > 0
such that for any (single-copy) distribution PV the bound

∑

v

P⊗NV (v) t(v) ≤ ε (33)

holds, then for any symmetric distribution P sym
V we have

∑

v

P sym
V (v) t(v) ≤ |Q| ε . (34)

Proof Let us first prove (34) for distributions with well-
defined frequency P sym

V = PV|q, for all q ∈ Q. Since
any q ∈ Q is a (single-copy) distribution for V , the
premise (33) applies to it:

∑

v

q⊗N(v) t(v) ≤ ε (35)

Using the decomposition (29), we know that there is
a random variable Q′ such that

∑
q′∈Q PQ′(q

′)PV|q′ =

q⊗N , and then

∑

v

∑

q′∈Q
PQ′(q

′)PV|q′(v) t(v) ≤ ε . (36)

In Lemma 2 it is shown that the distribution PQ′(q
′)

reaches the maximum at q′ = q, which implies PQ′(q) ≥
1/|Q|. Then

∑

v

PV|q(v) t(v)

≤ |Q|PQ′(q)
∑

v

PV|q(v) t(v) ≤ |Q| ε , (37)

where the last inequality follows from (36). Finally, we
prove (34) by applying the bound (37) to each term in
(29). 2

An equivalent way to write the above result for the case
V = {0, 1}, which will be useful later, is the following.
For any symmetric distribution P sym

V and any function t
we have
∑

v

P sym
V (v) t(v) ≤ (N + 1) max

PV

∑

v

P⊗NV (v) t(v) (38)

where the maximization is over single-copy distributions
for V .

B. Properties of non-signaling distributions

For the following presentation it is useful to introduce
some additional notation. We represent single-pair dis-
tributions PA,B|X,Y as vectors with components arranged

in the following way

PA,B|X,Y = (39)

P (0, 0|0, 0) P (0, 1|0, 0) . . . P (0, 0|0,M−1)

P (1, 0|0, 0) P (1, 1|0, 0)

.

.

.
. . .

.

.

.

P (0, 0|M−1, 0) . . . P (0, 0|M−1,M−1)

Define the following two vectors (which are not probabil-
ity distributions)

µ =
1

4M

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1
. . .

. . .

1 1 1 1

1 1 1 1

, (40)

ν =
1

2

0 1 1 0

−1 0 0 −1

0 −1 0 1

1 0 −1 0
. . .

. . .

0 −1 0 1

1 0 −1 0

, (41)

where empty boxes have to be understood as having zeros

=
0 0

0 0
, (42)

and ellipsis between two identical boxes have to be un-
derstood as an arbitrarily large sequence of identical
boxes. From now on, the absolute value of a vector means
component-wise absolute value. For example

|ν| = 1

2

0 1 1 0

1 0 0 1

0 1 0 1

1 0 1 0
. . .

. . .

0 1 0 1

1 0 1 0

.

Also, an inequality ”�” between two vectors means
components-wise inequality ”≤”. For example ν � |ν|.
Define the vectors

βa = µ+ (−1)aν , (43)

β = µ+ |ν| . (44)
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One can check that the Braunstein-Caves Bell inequality,
defined in (4) and (6), can be written as

β · PA,B|X,Y =
1

2
+M〈W 〉 ≥ 1 . (45)

Above, the symbol “·” represents the scalar product be-
tween the vectors β and PA,B|X,Y .

Lemma 4 If PA,B|X,Y is an arbitrary 2N -partite non-
signaling distribution then for any a = (a1, . . . , aN ) we
have

PA|X(a,0) =

(
N⊗

n=1

βan

)
· PA,B|X,Y , (46)

where 0 = (0, . . . , 0).

Proof: Let us first consider the bound (46) for one
pair of systems (N = 1). The non-signaling constraint
PA|X,Y (0, 0, 0) = PA|X,Y (0, 0,M − 1) can also be ex-
pressed as the scalar product

−1 −1 1 1

0 0 0 0

. . .
. . .

· PA,B|X,Y = 0

and the non-signaling constraint PB|X,Y (0, 0, 0) =
PB|X,Y (0, 1, 0) can be expressed as

−1 0

−1 0

1 0

1 0
. . .

. . .
. . .

· PA,B|X,Y = 0 .

The remaining non-signaling constraints can be written
in an analogous fashion. A linear combination of those

equalities gives

1 1 τ τ

1 1 τ τ

1 1 1 1

1 1 1 1
. . .

. . .

1 1 1 1

1 1 1 1

· PA,B|X,Y = 0 , (47)

where τ = 1− 2M . If PA,B|X,Y is a non-signaling distri-
bution, the following equalities hold.

PA|X(0, 0) =

1 1

0 0

. . .
. . .

· PA,B|X,Y

=
1

2

0 1 1 1

−1 0 0 0

1 0

1 0
. . .

. . .
. . .

· PA,B|X,Y

=
1

2

0 1 2 1

−1 0 1 0

0 −1 0 1

1 0 −1 0
. . .

. . .

0 −1 0 1

1 0 −1 0

· PA,B|X,Y

The second and third equalities follow by adding linear
combinations of non-signaling constraints. The above
plus (47) times 1/4M gives

PA|X(0, 0) = (µ+ ν) · PA,B|X,Y .

Under the relabeling

(A,B)→ (A⊕ 1, B ⊕ 1) ,
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we have the transformations

PA|X(0, 0) → PA|X(1, 0) ,

µ → µ ,

ν → −ν ,

which imply PA|X(a, 0) = βa · PA,B|X,Y . The general-
ization to N pairs of systems is straightforward. Each
non-signaling constraint involves a linear combination of
the entries of PA,B|X,Y where all indexes remain constant
except the ones corresponding to one system (like for in-
stance a1, x1). Hence we can apply the above argument
to each of the N pairs separately, obtaining (46). 2

C. Privacy amplification

The following analysis of privacy amplification is sim-
ilar to the one in [21], but has the advantage that it is
valid for any choice of error correction scheme. On the
other hand, it has the disadvantage that it needs a ran-
dom hash function G, in particular a two-universal one
[41], while the one in [21] works with a deterministic hash
function.

Definition 5 A random function G : {0, 1}N → {0, 1}Ns

is called two-universal [41] if for any pair a,a′ ∈ {0, 1}N
such that a 6= a′ we have

prob{G(a) = G(a′)} ≤ 2−Ns . (48)

Lemma 6 If G : {0, 1}N → {0, 1}Ns is a two-universal
random function, then for any subset A ⊆ {0, 1}N we
have

∑

k,g

PG(g)
∣∣∣
∑

a∈A

(
δkg(a) − 2−Ns

)∣∣∣ ≤
√

2Ns |A| , (49)

where k runs over {0, 1}Ns .

Proof In what follows we take the square of the left-hand
side of (49); use the convexity of the square function; sum
over k; partially sum over a,a′, g; use the two-universality
of G; and a trivial bound.

(∑

k,g

PG(g)
∣∣∣
∑

a∈A

(
δkg(a) − 2−Ns

)∣∣∣
)2

≤
∑

k,g

2−NsPG(g)
∑

a,a′∈A

(
22Nsδkg(a)δ

k
g(a′) + 1− 21+Nsδkg(a)

)

=
∑

g

PG(g)
∑

a,a′∈A

(
2Ns δ

g(a)
g(a′) − 1

)

= 2Ns

∑

a,a′∈A: a6=a′

(∑

g

PG(g) δ
g(a)
g(a′)

)
+ 2Ns |A| − |A|2

≤
(
|A|2 − |A|

)
+ 2Ns |A| − |A|2

≤ 2Ns |A| .

2

Theorem 7 Let PA,B,E|X,Y,Z be a (2Nr+1)-partite non-
signaling distribution. Suppose that Alice’s systems are
measured with X = 0, obtaining the outcomes A. Let
C = f(A) where f : {0, 1}Nr → {0, 1}Nc is a given func-
tion, and K = G(A) where G : {0, 1}Nr → {0, 1}Ns is a
two-universal random function. Then

∑

k,c,g

max
z

∑

e

∣∣∣Pk,c,e,g|z − 2−NsPc,e,g|z
∣∣∣

≤
√

2
Nr+Ns+Nc+1

〈∏Nr

n=1

(
1
2 +MWn

)〉
, (50)

where Wn = (An ⊕ Bn ⊕ δ0
Xn
δM−1
Yn

) and the expecta-
tion in (50) is taken with respect to the distribution

Pa,b|x,y
∏Nr

n=1Qxn,xn , where Qxn,yn is defined in (5).

Proof For any subset A ⊆ {0, 1}Nr we have the following
chain of component-wise inequalities.

∑

k,g

PG(g)
∣∣∣
∑

a∈A

(
δkg(a) − 2−Ns

) Nr⊗

n=1

βan

∣∣∣

�
∑

k,g

PG(g)
(
µ⊗Nr

∣∣∣
∑

a∈A

(
δkg(a) − 2−Ns

)∣∣∣+

+ |ν| ⊗ µ⊗Nr−1
∣∣∣
∑

a∈A
(−1)a1

(
δkg(a) − 2−Ns

)∣∣∣+

+ · · ·+ |ν|⊗Nr

∣∣∣
∑

a∈A
(−1)a1+···+aNr

(
δkg(a) − 2−Ns

)∣∣∣
)

� µ⊗Nr

√
2Ns |A|+ |ν| ⊗ µ⊗Nr−1

√
21+Ns |A|

+ · · ·+ |ν|⊗Nr

√
21+Ns |A|

�
√

21+Ns |A| β⊗Nr . (51)

In the first step we used the expansion

N⊗

n=1

βan (52)

= µ⊗Nr + (−1)a1ν ⊗ µ⊗Nr + · · ·+ (−1)a1+···+aNr ν⊗Nr ,

as well as the component-wise triangular inequality. In
the second step we used the following triangular inequal-
ity for any u ∈ {0, 1}Nr

∣∣∣
∑

a∈A
(−1)a·u

(
δkg(a) − 2−Ns

)∣∣∣

≤
∣∣∣

∑

a∈A: a·u=0 mod 2

(
δkg(a) − 2−Ns

)∣∣∣

+
∣∣∣

∑

a∈A: a·u=1 mod 2

(
δkg(a) − 2−Ns

)∣∣∣ ,

Lemma 6, and the concavity of the square-root function

M∑

i=1

√
ti ≤

√√√√M

M∑

i=1

ti . (53)
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For the last inequality all terms are summed up by using
β = µ+ |ν|.

In the rest of this proof the following notation is used.
We denote by PA,B,e|X,Y,z = PA,B,E|X,Y,Z(e, z) the vec-
tor with entries PA,B,E|X,Y,Z(a,b, e,x,y, z) for all val-
ues of a,b,x,y and fixed values of e, z. Following this
notation we can write Pa = PA(a). For any subset
A ⊆ {0, 1}Nr and any set of coefficients ηa we have the
following chain of equalities and inequalities,

∑

e

Pe|z
∣∣∣
∑

a∈A
ηa Pa|e,z

∣∣∣

=
∑

e

Pe|z
∣∣∣
∑

a∈A
ηa

Nr⊗

n=1

βan · PA,B|X,Y,e,z
∣∣∣

≤
∑

e

Pe|z
∣∣∣
∑

a∈A
ηa

Nr⊗

n=1

βan

∣∣∣ · PA,B|X,Y,e,z

=
∣∣∣
∑

a∈A
ηa

Nr⊗

n=1

βan

∣∣∣ ·
∑

e

Pe|z PA,B|X,Y,e,z

=
∣∣∣
∑

a∈A
ηa

Nr⊗

n=1

βan

∣∣∣ · PA,B|X,Y , (54)

where we have respectively used: Lemma 4, the convexity
of the absolute value function, the linearity of the scalar
product, and the definition of the conditional distribu-
tion. The following establishes (50).

∑

k,c,g

max
z

∑

e

∣∣∣Pk,c,g,e|z − 2−NsPc,g,e|z
∣∣∣

=
∑

k,c,g

max
z

∑

e

Pg,e|z
∣∣∣Pk,c|g,e,z − 2−NsPc|e,z

∣∣∣

=
∑

k,c,g

Pg max
z

∑

e

Pe|z
∣∣∣
∑

a∈f−1(c)

(
δkg(a) − 2−Ns

)
Pa|e,z

∣∣∣

≤
∑

k,c,g

Pg

∣∣∣
∑

a∈f−1(c)

(
δkg(a) − 2−Ns

) Nr⊗

n=1

βan

∣∣∣ · PA,B|X,Y

≤
∑

c

√
21+Ns |f−1(c)| β⊗Nr· PA,B|X,Y

≤
√

21+Ns+Nc+Nr β⊗Nr · PA,B|X,Y , (55)

In the above we have respectively used: the definition
of conditional distribution and the fact that C,E,Z are
independent from G; equality Pc =

∑
a∈f−1(c) Pa and

the independence of A, E, Z from G; inequality (54) with
A = f−1(c); the component-wise inequality (51) together
with the fact that the components of the vector PA,B|X,Y
are positive; and the last inequality follows from (53) and∑
c |f−1(c)| = 2Nr . 2

D. Security from estimated information

According to the previous theorem, the security of the
secret key can be bounded in terms of the quantity

β⊗Nr · PAr,Br|Xr,Yr
=

〈
Nr∏

n=1

(
1

2
+MWn

)〉
, (56)

which does not depend on E at all, but only on the dis-
tribution of data held by the honest parties! This is a
particular manifestation of the monogamy of non-local
correlations. However, also the distribution PAr,Br|Xr,Yr

that occurs in (56) is not necessarily known. Hence, in
order to be of use, we need to relate it to an observable
quantity, such as W̄ , defined in (13). This is the purpose
of Lemma 8 below.

To simplify notation, we restrict to the relevant pairs
of systems, that is, the ones that are used to either es-
timate the amount of non-locality n ∈ Ne, or the ones
constituting the raw key n ∈ Nr. These are the ones that
are not discarded in the protocol.

Lemma 8 Let Nr and Ne be two positive integers and
PA,B,E|X,Y,Z a (2Nu + 1)-partite non-signaling distribu-
tion, where Nu = Nr +Ne. Let the random variable H =
(H1, . . . ,HNu) be independent from A,B,X,Y, E, Z,
and uniformly distributed over the strings {0, 1}Nu with
Nr zeroes and Ne ones. Suppose that all Alice’s systems
n ∈ {1, . . . , N} with Hn = 0 are measured with Xn = 0
obtaining the Nr-bit outcome Ar. Suppose the Ne pairs
with Hn = 1 are measured with (Xn, Yn) following the
distribution QX,Y defined in (5), obtaining the outcome
U = [(An, Bn, Xn, Yn) : Hn = 1]. This is used to com-
pute the variable

W̄ =
1

Ne

∑

n:Hn=1

(An ⊕Bn ⊕ δ0
Xnδ

M−1
Yn

) . (57)

Let C = f(Ar) where f : {0, 1}Nr → {0, 1}Nc is a given
function. If G : {0, 1}Nr → {0, 1}Ns is a two-universal
random function with output size

Ns(w̄) = max
θ∈[0,1]

[
2NeD(w̄‖θ)− 2Nr log2(1/2 +Mθ)

]

−Nr −Nc − 2 log2(8NeNu/ε) , (58)

and K = G(Ar) then

∑

k,h,u,c,g

max
z

∑

e

∣∣∣Pk,h,u,c,e,g|z − 2−Ns(w̄)Ph,u,c,e,g|z
∣∣∣ ≤ ε

(59)
holds for any ε > 0.

Proof For each value of h define the disjoint sets

Nh
r = {n : hn = 0} ,
Nh

e = {n : hn = 1} ,
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satisfying Nh
r ∪ Nh

e = {1, . . . , Nu}. Note that these are
the same sets as (12) and (14). We also define

Wn = [An ⊕Bn ⊕ δ0
Xnδ

M−1
Yn

] for n = 1, . . . , Nu,

W = (W1, . . . ,WNu
) ,

Wr = (Wn : n ∈ Nh
r ) ,

We = (Wn : n ∈ Nh
e ) ,

U =
[
(An, Bn, Xn, Yn) : n ∈ Nh

e

]
.

The distribution for W is

Pw =
∑

a,b,x,y

Pa,b|x,y

Nu∏

n=1

Qxn,yn δ
wn
[an⊕bn⊕δ0xnδ

M−1
yn ]

,

where PA,B|X,Y is the marginal of PA,B,E|X,Y,Z and
QX,Y is defined in (5). For what follows it is also useful
to define the symmetrized version of Pw, namely

P sym
w1,...,wNu

=
∑

π

1

Nu!
Pwπ(1),...,wπ(Nu)

, (60)

where π runs over the permutations of the symbols
{1, . . . , Nu}.

For each value of h and u the conditioned distribution
PAr,Br,E|Xr,Yr,Z,h,u is (2Nr + 1)-partite non-signaling,
hence, Theorem 7 applies to it. By definition, the random
variable H is independent from Z; and by no-signaling,
the random variable U is independent from Z. Hence,
Ph,u|z = Ph,u. This allows for taking the common fac-
tor Ph,u out of the absolute value in (59), and applying
Theorem 7 to each term, obtaining:

∑

k,h,u,c,g

max
z

∑

e

∣∣∣Pk,h,u,c,e,g|z − 2−Ns(w̄)Ph,u,c,e,g|z
∣∣∣

=
∑

k,h,u,c,g

max
z
Ph,u|z

∑

e

∣∣∣Pk,c,e,g|z − 2−Ns(w̄)Pc,e,g|z
∣∣∣

=
∑

h,u

Ph,u

×
∑

k,c,g

max
z

∑

e

∣∣∣Pk,c,e,g|z,h,u − 2−Ns(w̄)Pc,e,g|z,h,u
∣∣∣

≤
∑

h,u

Ph,u

√
2
Nr+Ns(w̄)+Nc+1

×
∑

wr

Pwr|h,u
∏

n∈Nh
r

(
1

2
+Mwn

)

=
∑

h,w

Ph,w

√
2
Nr+Ns(w̄)+Nc+1 ∏

n∈Nh
r

(
1

2
+Mwn

)
(61)

The last equality follows from the fact that w̄ is a function
of we which in turn is a function of u. Hence, averaging
over (wr,u) is equivalent to averaging over (wr,we) = w.

Now, let πr be any permutation of the variables wn
with n ∈ Nh

r , and πe any permutation of the variables wn
with n ∈ Nh

e . The fact that w̄ and
∏
n∈Nh

r

(
1
2 +Mwn

)

are invariant under any permutation πr and πe implies
that (61) is equal to

∑

h,w,πr,πe

Ph,(πrπew)

Nr!Ne!

√
2
Nr+Ns(w̄)+Nc+1

×
∏

n∈Nh
r

(
1

2
+Mwn

)

=
∑

w

P sym
w

√
2
Nr+Ns(w̄)+Nc+1 ∏

n∈Nh
r

(
1

2
+Mwn

)
(62)

The above equality follows from noting that the average
over all permutations πr, πe combined with the average
over all partitions (Nh

r ,Nh
e ) of {1, . . . , Nu} (or equiva-

lently the average over h) is equivalent to the average
in (60).

Since P sym
w is symmetric we can apply Lemma 3 to

upper-bound (62) in terms of a maximization over i.i.d.
distributions P iid

w1,...,wNu
= Pw1

· · ·PwNu
. These i.i.d. dis-

tributions are parametrized by the single number θ =
PW (1) ∈ [0, 1]. The following is an upper bound for (62).

(Nu + 1) max
P iid

W

∑

w

P iid
w

√
2
Nr+Ns(w̄)+Nc+1

×
∏

n∈Nh
r

(
1

2
+Mwn

)

= (Nu + 1) max
θ∈[0,1]

∑

w̄

P
(θ)
w̄

×
√

2
Nr+Ns(w̄)+Nc+1

(
1

2
+Mθ

)Nr

To obtain the above equality we use

∑

wr

P iid
wr

Nr∏

n=1

(
1

2
+Mwn

)
=

(
1

2
+Mθ

)Nr

,

and express the average over we in terms of the distribu-

tion P
(θ)
w̄ , which is

P
(θ)
w̄ =

(
Ne

New̄

)
θNew̄(1− θ)Ne(1−w̄) . (63)

It is well known [43] that the above distribution can be
bounded as

P
(θ)
w̄ ≤ 2−NeD(w̄‖θ) , (64)

where D(w̄‖θ) is the binary relative entropy defined



13

in (18). Putting everything together we obtain

∑

k,h,u,c,g

max
z

∑

e

∣∣∣Pk,h,u,c,e,g|z − 2−Ns(w̄)Ph,u,c,e,g|z
∣∣∣

≤ (Nu + 1) max
θ∈[0,1]

∑

w̄

2(Nr+Ns(w̄)+Nc+1)/2

×2−NeD(w̄‖θ)+Nr log(1/2+Mθ)

≤ (Nu + 1) max
θ∈[0,1]

∑

w̄

21/2−log2(8NeNu/ε)

= (Nu + 1)(Ne + 1)

√
2 ε

8NeNu
≤ ε , (65)

where we have used
∑
w̄ 1 = Ne + 1. 2

To avoid confusion in the following Theorem, we recall
that the the alphabets of the random variables Ar,B

′
r

and G depend on the value of T , defined in (19) or (66).
Particularly, Ar,B

′
r take values in {0, 1}Nr , and G takes

values in the set of functions {0, 1}Nr → {0, 1}Ns . But
the number Nr is a function of I,J, namely, the number
of times In = Jn = 0. And as can be seen in (17), the
quantity Ns(W̄ ) is a function of W̄ , which in turn is a
function of T .

Theorem 9 At the end of the protocol described in Sec-
tion III A, Alice holds KA, Bob holds KB, and the ad-
versary has all the information

T =
[
I,J, C,G, (An, Bn, Xn, Yn) ∀n ∈ Ne

]
(66)

and the system associated to E,Z. If the error correction
scheme has error probability

∑

t,ar 6=b′r

Pt,ar,b′r ≤ εerco (67)

then we have

∑

kA,kB ,t

max
z

∑

e

∣∣∣PkA,kB ,t,e|z − 2−Ns(w̄) δkBkA Pt,e|z
∣∣∣

≤ ε+ 2εerco . (68)

Proof Using the triangular inequality

∣∣∣PkA,kB ,t,e|z − 2−Ns(w̄) δkBkA Pt,e|z
∣∣∣

≤
∣∣∣PkA,kB ,t,e|z − PkA,t,e|z δkBkA

∣∣∣

+
∣∣∣PkA,t,e|z δkBkA − 2−Ns(w̄) δkBkA Pt,e|z

∣∣∣ (69)

we can bound the left-hand side of (68) with the cor-
responding two terms. The first term can be simpli-
fied by splitting the sum into the terms with kA = kB
and kA 6= kB , and using the no-signaling constraint

∑
e PkA,kB ,t,e|z = PkA,kB ,t, that is

∑

kA,kB ,t

max
z

∑

e

∣∣∣PkA,kB ,t,e|z − PkA,t,e|z δkBkA
∣∣∣

=
∑

kA 6=kB ,t
max
z

∑

e

PkA,kB ,t,e|z

+
∑

kA,t

max
z

∑

e

∣∣∣PkA,kB=kA,t,e|z − PkA,t,e|z
∣∣∣

≤
∑

kA 6=kB ,t
max
z

PkA,kB ,t

+
∑

kA,t

max
z

∑

e

(
PkA,t,e|z − PkA,kB=kA,t,e|z

)

≤ εerco +
∑

kA,t

(PkA,t − PkA,kB=kA,t)

≤ εerco + 1− (1− εerco) = 2εerco . (70)

In the last two inequalities we have used that

∑

kA 6=kB ,t
PkA,kB ,t

=
∑

kA 6=kB ,t,ar,b′r

Pt,ar,b′r δ
kA
g(ar)

δkBg(b′r)

≤
∑

t,ar 6=b′r

Pt,ar,b′r ≤ εerco . (71)

To bound the second term in (69) we invoke Lemma 8.
However, in Lemma 8 the values of Nr, Ne and the set
Nu = Nr ∪ Ne are fixed, while here this is not the case.
To overcome this problem, we can separate the sum over
Nr, Ne,Nu and independently apply Lemma 8 to each
term with a fixed value of Nr, Ne,Nu.

∑

kA,kB ,t

max
z

∑

e

δkBkA

∣∣∣PkA,t,e|z − 2−Ns(w̄)Pt,e|z
∣∣∣

=
∑

Nr,Ne,Nu

P (Nr, Ne,Nu)
∑

k,h,u,c,g

max
z

∑

e∣∣∣Pk,h,u,c,e,g|z,Nr,Ne,Nu
− 2−Ns(w̄)Ph,u,c,e,g|z,Nr,Ne,Nu

∣∣∣

≤
∑

Nr,Ne,Nu

P (Nr, Ne,Nu) ε = ε . (72)

To understand the above equality note that, except for
the discarded pairs (with In 6= Jn) which are not con-
sidered in Lemma 8, all the information contained in t
is also contained in [Nr, Ne,Nu,h,u, c, g]. More specif-
ically, the set Nu tells us which of the pairs satisfy
In = Jn, and among those, h designates the ones with
In = 0 and In = 1. Additionally, the information
(An, Bn, Xn, Yn) ∀n ∈ Ne is contained in u.

Finally, the combination of (70) and (72) gives (68).
2
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V. CONCLUSIONS

We have showed that it is possible to generate secret
key from correlations that violate the Braunstein-Caves
inequality [29] by a sufficient amount. We proved this ac-
cording to the strongest notion of security, the so-called
universally-composable security [19, 20]. The only as-
sumption used in the security proof is that, when measur-
ing a system, the outcome does not depend on the choice
of observables measured on other systems. One clean (al-
though expensive) way to achieve this within our device-
independent scenario would be to use a separate isolated
measurement device for each of the measurements. A
more practical (but not fully device-independent) variant
is to use a single device per party, whose design is chosen
such that it can reasonably be assumed that subsequent
measurements are independent of each other (i.e., the
device should not have any internal memory).

On the technical level, we introduced a scheme for es-
timating symmetric properties of general probability dis-
tributions. Applied to our setting, this allows Alice and
Bob to treat arbitrary and unknown correlations as if
they were independent and identically-distributed sam-
ples. This may be more generally useful to quantify Bell-
inequality violations without the i.i.d. assumption.

This work is inspired by, but goes beyond the phi-
losophy of [2] in which the validity of quantum me-
chanics, in particular, Tsirelson’s bound [32], is still as-
sumed. In contrast, all we assume is no-signaling. This
idea, proposed in [5], is conceptually simpler. Never-
theless, we hope that our results also contribute to the
understanding of the more practical scenario of device-
independent quantum cryptography where quantum the-
ory is assumed to hold, but where the honest users still
do not have complete control of their quantum appa-
ratuses, or distrust them [3, 15, 16]. In this case, our
techniques may still be applied. Furthermore, with ap-
propriate modifications (cf. Appendix A), it is possible
to obtain higher key rates, compared to the pure non-
signaling scenario.
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Appendix A: Monogamy of non-local correlations

The following lemma is not necessary for the security
proof, but we include it for the following two reasons.
First, it provides insight on phenomenon of monogamy,
that is, the trade-off between Bell-inequality violation
and correlation with a third party. Second, it allows to
highly improve the secret key rate of our protocol if we
additionally assume that the global initial distribution
PA,B,E|X,Y,Z is compatible with quantum theory [17].
Note that this extra assumption does not invalidate the
fact that the security is device independent.

In order to incorporate the validity of quantum theory
as an extra assumption, we can use the results in [42],
which provide a bound for the security of the secret key
in terms of the guessing probability of the raw key. And
this is the quantity addressed by the following lemma.

Lemma 10 Let PA,B,E|X,Y,Z be an arbitrary (2N + 1)-
partite non-signaling distribution and define

Pguess(A|E,x) = max
z

∑

e

max
a

PA,E|X,Z(a, e,x, z) .

(A1)
For any x we have

Pguess(A|E,x) ≤
〈∏N

n=1

(
1
2 +MWn

)〉
, (A2)

where the expectation of Wn = (An ⊕Bn ⊕ δ0
Xn
δM−1
Yn

) is
taken with the distribution QXn,Yn defined in (5).

Proof First, note that by using the non-signaling condi-
tion we can write

PA,B|X,Y =
∑

e

PE|Z(e, z)PA,B|X,Y,E,Z(e, z) . (A3)

Now, let us show that

βa1 ⊗ · · · ⊗ βan � β⊗n , (A4)

for any n and any (a1, . . . , an) ∈ {0, 1}n. First, ex-
pand each side of this inequality according to defini-
tions (43) and (44); second, note that ∓ν⊗n � |ν⊗n| =
|ν|⊗n; and finally, use this to show that each term in
the left is component-wise bounded by the correspond-
ing term in the right. Let us show (A2) for the case
x = (0, . . . , 0). In the following chain of equalities and in-
equalities we use, respectively: the definition of Pguess in
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(A1); Lemma 4; inequality (A4) and positivity of the vec-
tors PA,B|X,Y,E,Z(e, z); the linearity of the scalar prod-
uct; decomposition (A3); and the identity (45).

Pguess(A|E,x)

= max
z

∑

e

PE|Z(e, z) max
a

PA|X,E,Z(a,x, e, z)

= max
z

∑

e

PE|Z(e, z) max
a

(
N⊗

n=1

βan

)
· PA,B|X,Y,E,Z(e, z)

≤ max
z

∑

e

PE|Z(e, z)β⊗N · PA,B|X,Y,E,Z(e, z)

= max
z
β⊗N ·

(∑

e

PE|Z(e, z)PA,B|X,Y,E,Z(e, z)

)

= β⊗N · PA,B|X,Y

=
〈∏N

n=1

(
1
2 +MWn

)〉

In order to extend this inequality to all values of x, con-
sider the relabeling. For any m ∈ {0, . . . ,M − 1}

X → X +m mod M

Y → Y +m mod M

A → A⊕ I{M −m ≤ X ≤M − 1}
B → B ⊕ I{M −m ≤ Y ≤M − 1}

. (A5)

This relabeling corresponds to a permutation of the en-
tries of the vectors (39) such that

PA|X(a, 0)→ PA|X(a,m) .

This relabeling leaves the vector β invariant. Hence, per-
forming the relabeling to each pair with m = xn, the
above inequality for x = (0, . . . , 0) is generalized to any
value of x. 2
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