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Strong Secrecy from Channel Resolvability
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Abstract—We analyze physical-layer security based on the
premise that the coding mechanism for secrecy over noisy
channels is tied to the notion of channel resolvability. Instead
of considering capacity-based constructions, which associate to
each message a sub-code that operates just below the capacity
of the eavesdropper’s channel, we considerchannel-resolvability-
based constructions, which associate to each message a sub-code
that operates just above the resolvability of the eavesdropper’s
channel. Building upon the work of Csisźar and Hayashi, we
provide further evidence that channel resolvability is a powerful
and versatile coding mechanism for secrecy by developing results
that hold for strong secrecy metrics and arbitrary channels.

Specifically, we show that at least for symmetric wiretap
channels, random capacity-based constructions fail to achieve
the strong secrecy capacity while channel-resolvability-based
constructions achieve it. We then leverage channel resolvability
to establish the secrecy-capacity region of arbitrary broadcast
channels with confidential messages and a cost constraint for
strong secrecy metrics. Finally, we specialize our resultsto study
the secrecy capacity of wireless channels with perfect channel
state information, mixed channels and compound channels with
receiver Channel State Information (CSI), as well as the secret-
key capacity of source models for secret-key agreement. By tying
secrecy to channel resolvability, we obtain achievable rates for
strong secrecy metrics with simple proofs.

Index Terms—information-theoretic security, wiretap channel,
secret-key agreement, information-spectrum, channel resolvabil-
ity, wireless channels.

I. I NTRODUCTION

In virtually every communication system, the problems of
reliability and secrecy are handled in fundamentally different
ways. Typically, error-correcting schemes in the physical-
layer guarantee reliable communications, while encryption
algorithms and key-exchange protocols in the upper layers1

ensure data secrecy. Physical-layer security puts forwardan
alternative role for the physical layer, whereby reliability and
secrecy can be handled jointly by means of appropriate coding
schemes. The idea is to recognize the presence of noise in
every communication channel, including the channel of a po-
tential adversary who eavesdrops on transmitted signals, and to
exploit knowledge of noise statistics to prevent eavesdroppers
from retrieving information. Unlike most existing security
schemes, physical-layer security can guarantee information-
theoretic security, by which secrecy is measured quantitatively
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1Specific cryptographic schemes are implemented at all upperlayers of the
protocol stack, including MAC, transport, network, and application layers.

in terms of the statistical dependence between the messages
transmitted and the observations of eavesdroppers.

The theoretical foundation of physical-layer security is the
early works of Wyner [1] and Csiszár & Körner [2], which
prove the existence of coding schemes ensuring reliability
and secrecy for the wiretap channel; however, the recent
surge of information-theoretic results regarding the wiretap
channel has fostered few practical engineering solutions.This
state of affairs is partly due to the fact that most works
extend the coding schemes of [1], [2], in which the coding
mechanism that guarantees secrecy is tied to channel capacity.
This mechanism will be precisely defined in Section III; at this
point, suffice to say that the codes in [1], [2] are a union of
sub-codes that operate just below the capacity of the eaves-
dropper’s channel as the blocklength grows large. Although
such coding schemes have been successfully used to study
many multiuser information-theoretic secrecy problems [3],
[4], deriving secrecy from channel capacity leaves open a few
lingering issues:

1) wiretap channel models that incorporate the limitations
of modern communication systems, such as the presence
of memory, are difficult to analyze;

2) the results obtained by tying secrecy to channel capacity
are deemed too weak for cryptographic applications.

This paper builds upon an original observation of Csiszár [5]
and the work of Hayashi [6] to explore an alternative approach
to physical-layer security that addresses the aforementioned
issues; the premise of the approach is to relate the coding
mechanism for secrecy to the notion of channel resolvabil-
ity [7], [8] and not to channel capacity.

A. Motivating Examples

To motivate the usefulness of channel resolvability, we start
with two intuitive examples that shed light on the mechanisms
one could exploit to ensure information-theoretic security.

Example 1 (One-time pad). Consider a binary message
W ∈ {0, 1} that is encoded into a codewordZ asZ =W⊕K,
whereK ∼ B

(

1
2

)

is a secret key and⊕ denotes modulo-
two addition. The crypto lemma [9] shows that the output
distributionspZ|W=0 and pZ|W=1 are identical and equal to
the uniform distribution on{0, 1}; hence, messages are statis-
tically indistinguishable for an eavesdropper only observing
Z. From an operational perspective, note that the encoder
exploits the keyK to ensure that all messages induce the same
output distribution.

Example 2 (Transmission over a noisy Gaussian channel).
Consider an uncoded messageW uniformly distributed in
the set{−1,+1} and observed by an eavesdropper at the
output of a real additive white Gaussian noise channel as
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Z = W + N , where N ∼ N (0, σ2). As illustrated in
Figure 1, the output distributionspZ|W=−1 and pZ|W=+1

become indistinguishable from the average distributionpZ as
the noise variance increases. Specifically, asσ goes to infinity,

pZ|W=−1

−1 +1

pZ|W=+1

pZ

Fig. 1. Distributions of channel outputs for uncoded transmission of{−1,+1}
over an AWGN channel.

one can show that, for eachm ∈ {−1,+1}, the variational
distance betweenpZ|W=m andpZ is at mostO(σ− 1

2 ). In other
words, if the noise introduces enough randomness, then the
channel itself ensures that all messages approximately induce
the same output distribution.

In each example, statistical indistinguishability is obtained
because there exists a source of randomness (key or channel
noise) and a coding mechanism by which all messages induce
the same distribution for the eavesdropper’s observations; this
mechanism is reminiscent of the codes analyzed in [7], [8],
[10] to study the notion ofchannel resolvability. At this point,
the connection between secrecy and channel resolvability may
seem contrived but, nevertheless, it suggests the possibility of
ensuring secrecy by means that are different from those based
on channel capacity and used in [1], [2]; this was already
observed in [5] and more formally explored in [6]. In the
remainder of this paper, we further expand upon this idea
and we not only highlight the benefits of explicitly connecting
secrecy to channel resolvability but also show the limitations
of an approach based on channel capacity.

B. Related Work

Most communication architectures providing information-
theoretic security are based on two models of communication.
Thewiretap channel, introduced by Wyner [1] and generalized
by Csiszár & Körner [2], models an architecture in which
a transmitter encodes messagesW into codewordsX of n
symbols for transmission to a receiver, in the presence of an
eavesdropper that obtains noisy observationsZ of X. In the
case of discrete memoryless channels, [1], [2] have shown
the existence of coding schemes simultaneously ensuring
reliable transmission to the receiver and secrecy with respect
to the eavesdropper. In particular, it is possible to characterize
the secrecy capacityof a wiretap channel, defined as the
supremum of all reliable and secure rates. The extension of
this result to Gaussian [11] and wireless channels (see, for
instance, [12] and references therein) suggests the potential
of such coding schemes to secure communication networks
at the physical layer. An alternative to the wiretap channel
is the source model for secret-key agreementintroduced by
Maurer [13] and Ahlswede & Csiszár [14], which considers an
architecture in which two legitimate parties attempt to distill

secret keys from a noisy source by communicating over a
public channel. The resulting keys have to be secure with
respect to an eavesdropper who obtains correlated observations
from the source and observes all messages exchanged over
the public channel. This architecture differs from the wiretap
channel by exclusively focusing on the rate of the secret key
that can be distilled from the source and by ignoring the costof
public communication. The counterpart of secrecy capacityis
thesecret-key capacity, defined as the supremum of the secret
key rates that can be distilled. Although the aforementioned
architectures model fundamentally different communication
scenarios, they are related in that a coding scheme for the
wiretap channel can be used to design a coding scheme for
secret-key agreement and vice-versa.

The early information-theoretic security results obtained for
the wiretap channel and source model for secret-key agreement
are criticized in some circles for measuring statistical depen-
dence in terms of the average information rate leaked to the
eavesdropper1

n
I(W ;Z). The weakness of this metric from

a cryptographic standpoint has been highlighted in multiple
works [4], [15], [16], which have instead advocated using the
average information leakedI(W ;Z). The analysis of secure
communication architectures under this more stringent secrecy
metric has been performed with different methods, such as
graph-coloring techniques [5], privacy amplification [16], [17],
and channel resolvability [6], [18]. The results presentedin
this paper further clarify the relation between secrecy and
channel resolvability and highlight the potential of channel
resolvability for solving secure communication problems.

The connection between secrecy and channel resolvabil-
ity is better illustrated by studying secure communication
architectures beyond the traditional memoryless setting;in
particular, the distinction between the coding mechanismsfor
reliability and secrecy becomes apparent in the expressions
of the results themselves. In this context, the information-
spectrum methods pioneered by Han and Verdú turn out to
be convenient mathematical tools, as they allow us to analyze
general channels by focusing on the properties of mutual
information as a random variable. We note that these tools
have already been used to study some information-theoretic
security problems and our results provide extensions of [6],
[19]–[21].

C. Summary of Results

In this section, we highlight the results presented in this
paper, preliminary versions of which have been reported
in [22], [23].

• We clarify the relation between information-theoretic se-
curity and statistical independence by investigating alter-
natives to the average mutual information rate1

n
I(W ;Z),

which is used as thede facto metric in most earlier
works. The average mutual information rate is actually
a normalized Kullback-Leibler divergence between the
joint distributionpWZ and the product distributionpW pZ;
the closeness of these two distributions can be measured
by other means, such as the variational distance or even
the cumulative distribution function (CDF) of the random
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variableI(W ;Z). By establishing relations among differ-
ent metrics (Proposition 1) we highlight the importance
of choosing a measure of statistical dependence that is
not only simple enough to be analytically tractable but
also strong enough to be cryptographically relevant. This
discussion also provides the basis for elegant converse
proofs.

• We provide evidence that channel resolvability is a con-
venient mechanism for secure communication by formal-
izing the ideas introduced in Example 1 and Example 2.
Specifically, we connect secrecy to channel resolvability
to analyze the fundamental limits of Shannon’s cipher
system (Theorem 1) and of the broadcast channel with
confidential messages (Theorem 2). In the latter case, we
show that at least for some specific wiretap channels,
deriving secrecy from channel resolvability is more pow-
erful than deriving secrecy from channel capacity (Propo-
sition 2); we also derive the secrecy-capacity region for
general broadcast channels with a cost constraint and for
strong secrecy metrics (Theorem 2 and Theorem 3);

• We further leverage the connection between secrecy and
channel resolvability to revisit various models of secure
communication. We first provide a simple proof of the
strong secrecy capacity of ergodic-fading wireless chan-
nels with full channel state information (Proposition 3).
We then show that known achievable rates for mixed
channels and compound channels with receiver CSI can
be obtained with conceptually simple proofs, and that
these results hold under stronger secrecy metrics than was
previously established (Proposition 4 and Proposition 5).

• We finally exploit the general characterization of secrecy
capacity to bound the secret-key capacity of a general
discrete source model for secret-key agreement (Proposi-
tion 7). The form of the result, which involves conditional
entropy instead of mutual information, suggests that the
mechanism behind secret-key agreement is not channel
resolvability but rather channel intrinsic randomness [5],
[24].

D. Outline

The remainder of the paper is organized as follows. Sec-
tion II sets the notation used throughout the paper. SectionIII
introduces and compares several secrecy metrics that can be
used to measure information-theoretic security. Section IV
analyses the fundamental limits of secure communication for
Shannon’s cipher system. Section V, which forms the core
of the paper, proves the impossibility of achieving strong
secrecy capacity with random codes deriving secrecy from
channel capacity for some wiretap channels and establishes
the secrecy-capacity region of general broadcast channelswith
confidential messages. Section VI presents applications of
the general results to wireless channels, mixed channels and
compound channels, and secret-key agreement, which may be
of independent interest. Section VII offers some concluding
remarks. The technical details of the proofs are organized
into a series of lemmas, whose proofs are relegated to the
appendices to streamline the presentation.

II. N OTATION

To fix notation for the sequel, consider three random vari-
ablesX , Y , andZ with sample valuesx, y, and z taking
values in alphabetsX , Y, and Z, respectively. The joint
probability distribution is denotedpXY Z , and the marginal
probability distributions are denoted bypX , pY , and pZ .
Unless mentioned otherwise, alphabets are assumed to be
abstract alphabets, including countably infinite or continuous
alphabets. If the alphabets are finite, then the probability
distributions correspond to probability mass functions; if the
alphabets are uncountable, then the probability distributions
correspond to probability densities, which we assume exist.2

The mutual informationbetweenX and Y is the random
variable3

I(X ;Y ) , log
pXY (X,Y )

pX(X) pY (Y )
.

The average of this random variable is the usualaverage
mutual information, which we denote byI(X ;Y ). For discrete
random variables,I(X ;Y ) has the familiar expression

I(X ;Y ) , EXY [I(X ;Y )]

=
∑

x∈X

∑

y∈Y
pXY (x, y) log

pXY (x, y)

pX(x) pY (y)
.

The conditional mutual information betweenX andY given
Z and the average conditional mutual information are accord-
ingly defined as

I(X ;Y |Z) , log
pXY |Z(X,Y |Z)

pX|Z(X |Z) pY |Z(Y |Z)
and I(X ;Y |Z) , EXY Z [I(X ;Y |Z)],

respectively. Similarly, theentropyandaverage entropyof X
are

H(X) , log
1

pX(X)
and H(X) , EX [H(X)],

and the conditional entropy and average conditional entropy
of X given Y are

H(X |Y ) , log
1

pX|Y (X |Y )

and H(X |Y ) , EXY [H(X |Y )].

All the usual relations between average mutual information
and average entropy that result from basic properties of joint,
marginal, or conditional probability distributions can beshown
to hold with probability one for the mutual information and
entropy random variables. In particular, the chain rules of
mutual information and entropy hold with probability one.

The average mutual informationI(X ;X ′) between two
random variablesX ∈ X andX ′ ∈ X is a Kullback-Leibler
divergence, which measures the closeness of the distributions
pXpX′ and pXX′ . We will often use an alternative measure

2We note that more general situations can be treated with the approach of
Pinsker [25].

3Unless indicated otherwise, logarithms and exponentials in the paper are
taken to base two.
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in terms of thevariational distancebetween the distributions,
defined as4

V(pX , pX′) , 2 sup
A⊆X

|PX [A]− PX′ [A]| .

The variational distance is not as convenient to manipulateas
the average mutual information, but we provide simple rules
for variational distance calculus in Appendix A.

Given two real numbersa, b we defineJa, bK as the set of
integers{n ∈ N : ⌊a⌋ 6 n 6 ⌈b⌉}. To simplify notation,
all vectors of lengthn are denoted by boldface letters; for
instance,x denotes the vector of sample values(x1, . . . , xn)
while X denotes the random vector(X1, . . . , Xn). Given two
random vectorsX andY, characterized by a joint probability
distribution pXY, the probability distribution of1

n
I(X;Y)

is referred to as themutual information rate spectrum. In
addition, thespectral-inf mutual information rateis defined
as [10]

p-liminf
n→∞

1

n
I(X;Y) ,

sup

{

β : lim
n→∞

P

[

1

n
I(X;Y) < β

]

= 0

}

,

and thespectral-sup mutual information rateis defined as

p-limsup
n→∞

1

n
I(X;Y) ,

inf

{

α : lim
n→∞

P

[

1

n
I(X;Y) > α

]

= 0

}

.

Operationally, the spectral-inf mutual information rate relates
to channel capacity [26] whereas the spectral-sup mutual infor-
mation rate relates to the channel resolvability [7]. Similarly,
given an arbitrary sequenceX, theentropy rate spectrumis the
distribution of the random variable1

n
H(X), and the spectral-

inf entropy rate is defined as

p-liminf
n→∞

1

n
H(X) , sup

{

β : lim
n→∞

P

[

1

n
H(X) < β

]

= 0

}

,

while the spectral-sup entropy rate is

p-limsup
n→∞

1

n
H(X) , inf

{

α : lim
n→∞

P

[

1

n
H(X) > α

]

= 0

}

.

The spectral-sup and spectral-inf mutual information and
entropy rates play a fundamental role in the analysis of reliable
communication and randomness generation [7], [26], [27].
They also play a role in the analysis of secure communications,
and our results combine these quantities in various ways.

III. PRELIMINARIES: SECRECY METRICS

Let n ∈ N∗ and R > 0. Let W ∈ J1, 2nRK be a
random variable that represents a message in a communication
scheme. Assume that an eavesdropper has some knowledge
aboutW represented by another random variableZ ∈ Zn,
characterized by the joint probability distributionpWZ. As
mentioned in the introduction, messageW is information-
theoretically secure if it is statistically independent ofZ;

4This general definition of variational distance reduces to∑
x∈X

|pX(x)− pX′(x)| if X is countable.

however, exact statistical independence betweenW and Z

is extremely stringent and, for tractability, it is convenient
to use a slightly weaker measure of secrecy, by which we
only requireW and Z to be asymptoticallyindependent as
the parametern tends to infinity. Note that there is some
leeway in the definition of asymptotic independence because
one can choose how to measure the dependence betweenW
and Z. For instance, given any distanced for the space of
joint probability distributions onJ1, 2nRK × Zn, the quantity
d(pWZ; pW pZ) could be used as a metric, and asymptotic
statistical independence then amounts to the condition

lim
n→∞

d(pWZ; pW pZ) = 0.

In the following, we specify six reasonable choices for secrecy
metrics. The first metric measures statistical dependence using
the Kullback-Leibler divergence:

S1 (pWZ, pW pZ) , D(pWZ‖pW pZ) = I(W ;Z).

The secrecy conditionlimn→∞ S1 (pWZ, pW pZ) = 0 corre-
sponds to the well-knownstrong secrecy[15]. A second metric
that we will find particularly useful is based on the variational
distance:

S2 (pWZ, pW pZ) , V(pWZ, pW pZ).

For anyǫ > 0, the asymptotic independence ofW andZ can
also be measured in terms of the CDF ofI(W ;Z):

S3 (pWZ, pW pZ) , P[I(W ;Z) > ǫ],

in which case the secrecy condition

∀ǫ > 0 lim
n→∞

S3 (pWZ, pW pZ) = 0

means that the random variableI(W ;Z) converges in proba-
bility to zero. Finally, one could also weaken the metrics above
by introducing a normalization by a factor ofn as

S4 (pWZ, pW pZ) ,
1
n
D(pWZ‖pW pZ)

S5 (pWZ, pW pZ) ,
1
n
V(pWZ, pW pZ),

for ǫ > 0 S6 (pWZ, pW pZ) , P
[

1
n
I(W ;Z) > ǫ

]

.

The secrecy conditionlimn→∞ S4 (pWZ, pW pZ) = 0 corre-
sponds to theweak secrecyinitially introduced by Wyner [1].

The secrecy conditions5 limn→∞ Si(pWZ, pW pZ) = 0 may
not be equivalent for alli ∈ J1, 6K; by establishing an ordering
among these metrics, we formalize what it means for a metric
to be “stronger” than another. Fori, j ∈ J1, 6K, we say that
Si is strongerthanSj (or equivalently thatSj is weakerthan
Si), and we writeSi � Sj if and only if

lim
n→∞

Si(pWZ, pW pZ) = 0 ⇒ lim
n→∞

Sj(pWZ, pW pZ) = 0.

By construction, it is clear thatS1 � S4, S2 � S5 andS3 � S6;
however, we establish a more precise result.

Proposition 1. The secrecy metricsSi for i ∈ J1, 6K are
ordered as follows.

S1 � S2 � S3 � S4 � S5 � S6.

5The limit should be understood for anyǫ > 0 in the case of metricsS3
andS6.
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Proof: The relationsS1 � S2 andS4 � S5 directly follow
from Pinsker’s inequality [25, Corollary p.16]. Similarly, the
relationsS2 � S3 and S5 � S6 follow from [25, Corollary
p.18]; hence, we only need to prove thatS3 � S4.

Let ǫ, γ > 0. Assume thatlimn→∞ S3(pWZ, pW pZ) =
0, so that limn→∞ P[I(W ;Z) > ǫ] = 0. Note that metric
S4(pWZ, pW pZ) can be written as

S4(pWZ, pW pZ)

= 1
n
I(W ;Z)

= E
[

1
n
I(W ;Z)

]

,

= E
[

1
n
I(W ;Z)1 {I(W ;Z) 6 −ǫ}

]

+ E
[

1
n
I(W ;Z)1 {−ǫ < I(W ;Z) 6 ǫ}

]

+ E
[

1
n
I(W ;Z)1 {ǫ < I(W ;Z) 6 n(R+ γ)}

]

+ E
[

1
n
I(W ;Z)1 {I(W ;Z) > n(R + γ)}

]

.

Clearly, we haveE
[

1
n
I(W ;Z)1 {I(W ;Z) 6 −ǫ}

]

< 0,
E
[

1
n
I(W ;Z)1 {−ǫ < I(W ;Z) 6 ǫ}

]

6 ǫ
n

, and

E
[

1
n
I(W ;Z)1 {ǫ < I(W ;Z) 6 n(R+ γ)}

]

6 (R+ γ)P[I(W ;Z) > ǫ].

Following [10, p. 223], we can also prove that

lim
n→∞

E
[

1
n
I(W ;Z)1 {I(W ;Z) > n(R+ γ)}

]

= 0.

Therefore,limn→∞ S4(pWZ, pW pZ) = 0 andS3 � S4.
A direct consequence of Proposition 1 is that any secure

communication scheme satisfying the secrecy condition with
the strongest secrecy metricS1 automatically satisfies it with
the secrecy metricsSi for i ∈ J2, 6K. Conversely, any secure
communication scheme that does not satisfy the secrecy con-
dition with the weakest metricS6 cannot satisfy it with any of
the metricsSi for i ∈ J1, 5K. Therefore, to establish a coding
theorem for a secure communication scheme, we can prove
achievability with metricS1 and a converse with metricS6.

Although the ordering in Proposition 1 follows strictly
from mathematical properties, the idea that some metrics are
stronger than others is also meaningful from a cryptographic
perspective. One can construct examples of communication
schemes that present obvious security loopholes while still
satisfying a secrecy condition with metricS4 (see, for instance,
the examples in [4], [28], [29]). It is now accepted that
information-theoretic secrecy conditions6 should hold at least
with metricsS1 or S2.

IV. SECRECY FROMCHANNEL RESOLVABILITY FOR

SHANNON’ S CIPHER SYSTEM

As a first illustration of the connection between secrecy and
channel resolvability, we elaborate on Example 1 and revisit
Shannon’s cipher system. We consider the model illustrated
in Figure 2, in which a messageW uniformly distributed in
J1, 2nRK is to be communicated reliably from a transmitter
(Alice) to a legitimate receiver (Bob) in the presence of an

6The conditions could be further strengthened by imposing anexponential
convergence withn; however, except in the case of exponentially information
stable channels [5], such as memoryless channels, we were unable to prove
general results with this additional constraint.

ENCODER DECODER

Eve

K

Alice Bob

Z
ŴW

Fig. 2. Shannon’s cipher system for a general common source of randomness.

eavesdropper (Eve). Alice and Bob have access to a common
discrete source of randomness(K, {pK}n>1), characterized
by an alphabetK and a sequence of symbol probabilities
{pK}n>1, which is used to encodeW into a codewordZ ∈ Z.
Bob’s estimate of the message usingZ and the source of
randomnessK is denoted byŴ .

Definition 1. A (2nR, n) cipher En consists of

• an encoding functionfn : J1, 2nRK ×Kn → Z;
• a decoding functiongn : Z ×Kn → J1, 2nRK.

The reliability performance of a cipherEn is measured in
terms of the probability of errorPe(En) , P

[

Ŵ 6=W |En
]

while its secrecy performance is measured in terms of the
secrecy metric7 Si(En) , Si(pWZ|En

, pW pZ|En
).

Definition 2. A rateR is achievable for secrecy metricSi for
Shannon’s cipher system if there exists a sequence of

(

2nR, n
)

ciphers{En}n>1 such that

lim
n→∞

Pe(En) = 0 and lim
n→∞

Si(En) = 0.

The secrecy capacityC(i)
SC of Shannon’s cipher system is the

supremum of achievable rates for secrecy metricSi.

Theorem 1. The secrecy capacity of Shannon’s cipher system
is the same for all metricsSi with i ∈ J2, 6K and is given by

CSC = p-liminf
n→∞

1

n
H(K). (1)

If the source(K, {pK}n>1) is memoryless, then the secrecy
capacity is also the same for metricS1.

Proof: We first show that all rates below p-liminf
n→∞

1
n
H(K)

are achievable for secrecy metricS2. Let ǫ, γ > 0 andR ,
p-liminf

n→∞
1
n
H(K) − γ. Let UR be the random variable with

uniform distribution onJ1, 2nRK. By [27, Lemma 3], there
exists an encoding functionfn : Kn → J1, 2nRK such that
V
(

pfn(K), pUR

)

6 ǫn with limn→∞ ǫn = 0. A messageW
is then encoded asZ = fn(K) ⊕ W , where⊕ represents
the addition modulo⌈2nR⌉. By construction, Bob retrievesW

7We will drop the conditioning onEn when this is clear from the context.
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without error sinceW = Z ⊕ fn(K). We have

S2(En) = V(pWZ , pW pZ)

= EW

[

V
(

pZ|W , pZ
)]

6 EW

[

V
(

pZ|W , pUR

)]

+ V(pUR
, pZ)

6 2EW

[

V
(

pZ|W , pUR

)]

= 2EW

[

V
(

pfn(K), pUR

)]

6 2ǫn,

where we have used Lemma 7, the definition ofZ, and the
independence offn(K) and W . Therefore, the rateR is
achievable and, sinceγ can be chosen arbitrarily small, we
conclude that

C
(2)
SC > p-liminf

n→∞

1

n
H(K). (2)

If the source(K, pK) is i.i.d., one can modify the proof of [27,
Lemma 3] to show that, ifR , H(K) − γ, there exists
a function fn : Kn → J1, 2nRK and αγ > 0, such that
V
(

pfn(K), pUR

)

6 2−αγn. Following the same steps as above,
we then obtain thatS2(En) 6 2 ·2−αγn. Finally, [5, Lemma 1]
shows that there existsβγ > 0 such that, forn large enough
S1(En) 6 2−βγn.

We now prove the converse part of the result. LetR be an
achievable rate for secrecy metricS6. There exists a sequence
of (2nR, n) ciphers{En}n>1 such thatlimn→∞ Pe(En) = 0
and limn→∞ S6(En) = 0. For every n ∈ N

∗, and with
probability one, we have

1
n
H(W ) = 1

n
H(W |Z) + 1

n
I(W ;Z)

= 1
n
I(W ;K|Z) + 1

n
H(W |ZK) + 1

n
I(W ;Z)

= 1
n
H(K)− 1

n
H(K|WZ)− 1

n
I(K;Z)

+ 1
n
H(W |ZK) + 1

n
I(W ;Z).

SinceR = p-liminf
n→∞

1
n
H(W ), p-liminf

n→∞
1
n
H(K|WZ) > 0, and

p-liminf
n→∞

1
n
I(K;Z) > 0, we obtain

R 6 p-liminf
n→∞

1

n
H(K) + p-limsup

n→∞

1

n
H(W |ZK)

+ p-limsup
n→∞

1

n
I(W ;Z).

Note that p-limsup
n→∞

1
n
I(W ;Z) = 0 by assumption.

The Verdú-Han Lemma [10], [26] also guarantees that
p-limsup

n→∞
1
n
H(W |ZK) = 0; hence, we have

C
(6)
SC 6 p-liminf

n→∞

1

n
H(K). (3)

Combining (2) and (3) with Proposition 1, we conclude that,
for every i ∈ J2, 6K, C(i)

SC = p-liminf
n→∞

1
n
H(K). If the source is

memoryless, then for everyi ∈ J1, 6K, C(i)
SC = H(K).

The coding scheme used in Theorem 1 extracts thesource
intrinsic randomnessof (K, {pK}n>1) to protect the message
with a one-time pad. Nevertheless, the message is kept secret
from the eavesdropper because the encoder exploits the ran-
domness of the source to control the distribution of the eaves-
dropper’s observation; hence, the coding mechanism for secure

DECODER

DECODERENCODER
W0

X Y

Z

WYZ|X

Alice Bob

Eve

Ŵ1

Ŵ0

W̃0

W1

Fig. 3. Broadcast channel with confidential messages.

communication can be interpreted as channel resolvability,
which we confirm in the next section. From a cryptographic
perspective, Theorem 1 shows that the secure communication
rate is maximized if the legitimate terminals make sure that
their keys are almost perfectly uniform. This has operational
significance in a practical situation if the mechanism providing
secret keys is biased and does not yield perfectly uniform
keys. Finally, the fact thatC(i)

SC remains identical for all
metricsSi with i ∈ J2, 6K suggests that asymptotic statistical
independence is indeed a fundamental measure of secrecy.

V. SECRECY FROMCHANNEL RESOLVABILITY OVER

NOISY CHANNELS

We now turn our attention to the problem of secure commu-
nication over noisy channels. We consider a broadcast channel
with confidential messages

(

X ,Y, {WYZ|X}n>1,Z
)

charac-
terized by an input alphabetX , two output alphabetsY and
Z, and a sequence of transition probabilities{WYZ|X}n>1.
The channels

(

X , {WY|X}n>1,Y
)

and
(

X , {WZ|X}n>1,Z
)

obtained from the marginals are called themain channel
and theeavesdropper’s channel, respectively. The inputs to
the channels are also subject to cost constraintP ∈ R+;
specifically, there exists a sequence of cost functions{cn}n>1

with cn : Xn → R+, such that any sequencex ∈ Xn

transmitted through the channel should satisfy1
n
cn(x) 6 P .

Following standard practice, the transmitter is named Alice,
the receiver observing outputY is named Bob, and the receiver
observing outputZ is named Eve. As illustrated in Figure 3,
Alice wishes to transmit a common messageW0 to both Bob
and Eve and an individual messageW1 for Bob alone, viewing
Eve as an eavesdropper for messageW1. Bob’s estimates of
the messages are denoted byŴ0 andŴ1 while Eve’s estimate
is denoted byW̃0.

Definition 3. A
(

2nR0 , 2nR1 , n
)

wiretap codeCn consists of

• a common message setW0 = J1, 2nR0K;
• an individual message setW1 = J1, 2nR1K;
• an auxiliary message setW ′ = J1, 2nR

′
nK, withR′

n > 0,8

used to randomize the encoding of messages;
• a source of local randomness(R, pR), which is only

known to Alice and can be used to further randomize
the encoding;

• an encoding functionfn : W0 ×W1 ×W ′ ×R → Xn,
such that1

n
cn(fn(m0,m1,m

′, r)) 6 P ;
• a decoding functiongn : Yn → W0 ×W1 ×W ′;
• a decoding functionhn : Zn → W0.

8AlthoughR0 andR1 are fixed parameters, we allowR′
n to vary withn.
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The auxiliary message is denoted byW ′. All messages
W0,W1,W

′ are assumed to be uniformly distributed in their
respective sets. The size of the auxiliary message set and
the source of local randomness(R, pR) can be optimized as
part of the code design, and the eavesdropper is assumed
to know the codeCn, which includes the statisticspR of
the source of local randomness. In the remainder of the
paper, we clearly identify the channel inputs and outputs
obtained when using a codeCn by introducing a bar in the
notation of the corresponding random variables. For instance,
the random variable representing a codeword chosen inCn
is denotedX̄, those representing the corresponding channel
outputs are denoted̄Y and Z̄. The joint distribution between
W0,W1, X̄, Ȳ, Z̄ is

pW0W1X̄ȲZ̄(m0,m1,x,y, z) =WYZ|X(y, z|x)
pX̄|W0W1

(x|m0,m1) pW0
(m0) pW1

(m1) . (4)

The reliability of a codeCn is measured in terms of the average
probability of error

Pe(Cn) ,
P

[

(Ŵ0, Ŵ1, Ŵ
′) 6= (W0,W1,W

′) or W̃0 6=W0

∣

∣

∣Cn
]

while its secrecy is measured in terms of the secrecy metric
Si(Cn) , Si(pW1Z̄|Cn

, pW1
pZ̄|Cn

) for i ∈ J1, 6K.

Definition 4. A rate pair (R0, R1) is achievable for secrecy
metric Si over a broadcast channel if there exists a sequence
of (2nR0 , 2nR1 , n) codes{Cn}n>1 such that

lim
n→∞

Pe(Cn) = 0 and lim
n→∞

Si(Cn) = 0.

The secrecy-capacity regionR(i)
BCC is the closure of the set of

rate pairs achievable for secrecy metricSi, and the secrecy
capacity for secrecy metricSi is

C (i)
WT , sup{R1 : (0, R1) is achievable for secrecy metricSi}.
In the absence of a common message(R0 = 0), a

broadcast channel with confidential messages is concisely
called a wiretap channel, and a(1, 2nR1 , n) code is simply
denoted as a(2nR1 , n) code. Note that our definition of a
wiretap code explicitly introduces the randomness used in the
encoding process. The randomness is split between a source
of local randomness and an auxiliary message with uniform
distribution that we require the legitimate receiver to decode.
This allows us to distinguish the part of the randomness that
merely acts as artificial random noise from the part that helps
secrecy without reducing the reliable communication rate.
Since the source of local randomness can be arbitrarily chosen,
our definition incurs no loss of generality and allows us to
explicitly define the class ofcapacity-based wiretap codesin
Section V-A.

Remark 1. Csisźar and Körner [2] analyze the fundamental
limits of secure communication more precisely by studying
the rate-equivocation region(R0, R1, Re), whereRe 6 R1

represents the equivocation-rate1
n
H
(

W1|Z̄
)

of the eavesdrop-
per about the individual message. Unlike the ratesR0 and
R1, the notion of equivocation depends on the secrecy metric

considered; therefore, we restrict ourselves to the special case
of full secrecy ratesR1 = Re, for which we can leverage the
result of Proposition 1.

A. Capacity-Based Wiretap Codes and Strong Secrecy

We now define the subclass ofcapacity-basedwiretap
codes.

Definition 5. A
(

2nR0 , 2nR1 , n
)

capacity-based wiretap code
Cn is a

(

2nR0 , 2nR1 , n
)

wiretap code such that :

• the auxiliary message rate isR′
n = Ce − ǫn, where

Ce is the eavesdropper’s channel capacity and{ǫn}n>1

satisfieslimn→∞ ǫn = 0;
• there exists a decoding functionh′n : Zn × W1 → W ′,

which allows the eavesdropper to estimate the auxiliary
messageW ′ from the observation of̄Z andW1.

We let W̃ ′ denote Eve’s estimate ofW ′. The reliability of
a capacity-based wiretap codeCn is then measured in terms
of the modified average probability of error

P
∗
e(Cn) , P

[

(Ŵ0, Ŵ1, Ŵ
′) 6= (W0,W1,W

′)

or (W̃0, W̃
′) 6= (W0,W

′)
∣

∣

∣Cn
]

.

Definition 6. A rate pair (R0, R1) is achievable for secrecy
metric Si with capacity-based wiretap codes if there exists
a sequence of(2nR0 , 2nR1 , n) capacity-based wiretap codes
{Cn}n>1 such that

lim
n→∞

P
∗
e(Cn) = 0 and lim

n→∞
Si(Cn) = 0.

The constraintlimn→∞ P∗
e(Cn) = 0 ensures that, given

knowledge of Z̄ and W1, the eavesdropper could reliably
decode the auxiliary messageW ′. Nevertheless, since the
eavesdropper does not have access to the messageW1, this
property is solely used to impose structure on the code.
However, note that this also imposeslimn→∞ ǫn

√
n = ∞ [30,

Theorem 49]. The denomination “capacity-based code” is used
because the set of codewords associated to a known pair of
messages(W0,W1) forms a sub-code of rateR′

n = Ce − ǫn,
which stems from a sequence of capacity-achieving codes for
Eve’s channel.

As formalized in [31, Theorem 1], capacity-based wiretap
codes are implicitly used in most works that show the existence
of wiretap codes achieving secrecy rates for metricS4. In
this section, we show that this may be an intrinsic limitation,
by proving that sequences of random capacity-based wiretap
codes that achieve the weak secrecy capacitycannotachieve
the strong secrecy capacity.

Specifically, we consider a discrete memoryless wiretap
channel

(

X ,Y,WY Z|X ,Z
)

without cost constraint (∀x ∈
Xn cn(x) = n and P = 1) in which the eavesdropper’s
channel and the main channel are both symmetric.9 We further
assume that the main channel is more capable than the
eavesdropper’s channel and has capacityCm < 1

2 log |X | bits.
The former assumption ensures that, without loss of optimality,
we can assume no source of local randomness(R, pR) is

9More specifically, we use Gallager’s notion of symmetry [32,p. 94].



8 IEEE TRANSACTIONS ON INFORMATION THEORY, TO APPEAR

available [2] and that the secrecy capacity isCs = Cm −Ce;
the latter one is a technical assumption required to simplify
the analysis.

Proposition 2. Let {Cn}n>1 be a sequence of(2nR, n)
random capacity-based wiretap codes, obtained by generating
codeword symbols independently and uniformly at random.
Let the rateR′

n of the auxiliary message be such thatR′
n =

Ce − ǫn andR+R′
n = Cm − ǫn. Then, there existsη, α > 0,

such that, forn sufficiently large,

P[S2(Cn) > η, P
∗
e(Cn) 6 ǫ′n and S4(Cn) 6 3ǫ′n]

> 1− 2−αnǫ2n ,

with ǫ′n , max(ǫn, log |X | 2−αnǫ2n , n−1), i.e., with high
probability over the random code ensemble, a sequence of
capacity-based random codes achieves the weak secrecy ca-
pacity but does not achieve the strong secrecy capacity.

Proof: See Appendix B
We conjecture that the inability to achieve strong secrecy

holds for any capacity-based wiretap codes, and not just
random codes, as well as for any discrete memoryless channel,
and not just symmetric channels. Despite its lack of gener-
ality, Proposition 2 shows that a random coding argument
with capacity-based wiretap codes is not powerful enough to
prove strong secrecy results, which suggests exploiting a more
powerful mechanism to ensure secrecy. In the remainder of the
paper, we derive secrecy from channel resolvability and show
that the resulting codes do not suffer from the limitations of
capacity-based wiretap codes.

Remark 2. If the main channel is noiseless and the eaves-
dropper’s channel is symmetric, a slight modification of the
proof of Proposition 2 shows that no capacity-based wiretap
code (including non-random codes) achieves secrecy capacity
for metrics S2 and S1. This fact was independently noted
in [33] for metric S1 using results for finite blocklength
channel coding [30]. Our approach builds on a similar result
established for secret-key agreement in [34].

B. General Broadcast Channels with Confidential Messages
and Cost Constraint

In this section, we establish the secrecy-capacity region of
a general broadcast channel with confidential messages for
secrecy metricsSi with i ∈ J2, 6K; the alphabets and transition
probabilities of the channel{WYZ|X}n>1 are arbitrary, so that
the model includes continuous channels and channels with
memory. Following the conclusions drawn from Proposition 2,
we analyze codes that are more powerful than capacity-based
wiretap codes and whose secrecy is tied to the notion of
channel resolvability.

Theorem 2. The secrecy-capacity region of a broadcast chan-
nel

(

X ,Y, {WYZ|X}n>1,Z
)

with confidential messages and
cost constraintP is the same for all secrecy metricsSi with

i ∈ J2, 6K and is given by

RBCC =

⋃

{UVX}n>1
∈P



















































(R0, R1) ∈ R2
+ :

R0 6 min

(

p-liminf
n→∞

1

n
I(U;Y),

p-liminf
n→∞

1
n
I(U;Z)

)

,

R1 6 p-liminf
n→∞

1

n
I(V;Y|U)

− p-limsup
n→∞

1
n
I(V;Z|U)



















































(5)

where

P , {{UVX}n>1 : ∀n ∈ N
∗ U → V → X → YZ forms

a Markov chain andP
[

1
n
cn(X) 6 P

]

= 1
}

.

Notice that the form of the secrecy-capacity region is
the natural generalization of that obtained for memoryless
channels in [2, Corollary 1]; however, the main channel
statistics affect the secure rateR1 through their “worst
realization” p-liminf

n→∞
1
n
I(V;Y|U) while the eavesdropper’s

channel statistics affect it through their “best realization”
p-limsup

n→∞
1
n
I(V;Z|U). Intuitively, as illustrated in Figure 4,

this occurs because the worst case for secure communication
is when the main channel conveys the smallest information
rate to the legitimate receiver while the eavesdropper’s channel
leaks the largest information rate to the eavesdropper. It
will be apparent in the proof that this asymmetry, which
disappears in the case of memoryless channels, arises because
the coding mechanisms used to ensure reliability and secrecy
are different.

limit distribution of 1
n
I(V;Z|U)

p-limsup
n→∞

1
n
I(V;Y|U)

R1

p-liminf
n→∞

1
n
I(V;Y|U)

limit distribution of 1
n
I(V;Y|U)

p-liminf
n→∞

1
n
I(V;Z|U) p-limsup

n→∞

1
n
I(V;Z|U)

Fig. 4. Illustration of secure rates in Theorem 2.

Proof of Theorem 2:We start with the achievability part
of the proof, for which we create a codebook by combining
superposition coding and binning schemes. Letn ∈ N∗ and
ǫ, γ, R0, R1, R

′ > 0. DefineM0 , ⌈2nR0⌉, M1 , ⌈2nR1⌉
andM ′ , ⌈2nR′⌉. Let U be an arbitrary alphabet and fix a
distributionpU on Un. Fix a conditional distributionpX|U on
Xn ×Un such thatP

[

1
n
cn(X) 6 P

]

= 1. Let U,X,Y,Z be
the random variables with joint distribution

pUXYZ(u,x,y, z) ,WYZ|X(y, z|x)pX|U(x|u)pU(u). (6)

• Code generation: Randomly generateM0 sequences
uk ∈ Un with k ∈ J1,M0K according topU. For each
k ∈ J1,M0K, generateM1M

′ sequencesxklm ∈ Xn

with (l,m) ∈ J1,M1K × J1,M ′K according topX|U=uk
.

We denote byCn the random variable representing the
generated code and byCn one of its realizations.
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• Encoding: To transmit a message pair(k, l) ∈ J1,M0K×
J1,M1K, Alice generates an auxiliary messagem uni-
formly at random inJ1,M ′K and sends the codeword
xklm through the channel.

• Bob’s decoding:Define the sets

T n
1 , {(u,y) ∈ Un × Yn :

1

n
log

pY|U(y|u)
pY(y)

>
1

n
logM0 + γ

}

,

T n
2 , {(u,x,y) ∈ Un ×Xn × Yn :

1

n
log

pY|XU(y|x,u)
pY|U(y|u) >

1

n
logM1M

′ + γ

}

.

Upon observingy, Bob decodesk as the received com-
mon message ifuk is the unique sequence inCn such that
(uk,y) ∈ T n

1 ; otherwise, a random message is chosen.
Similarly, he decodesl as the received individual message
andm as the received auxiliary message if there exists
a unique codewordxklm such that(uk,xklm,y) ∈ T n

2 ;
otherwise, random messages are chosen.

• Eve’s decoding:Define the set

T n
3 , {(u, z) ∈ Un ×Zn :

1

n
log

pZ|U(z|u)
pZ(z)

>
1

n
logM0 + γ

}

.

Upon observingz, Eve decodesk as the received com-
mon message ifuk is the unique sequence such that
(uk, z) ∈ T n

3 ; otherwise, a random message is chosen.
The following lemmas, whose proofs are relegated to Ap-
pendix C, provide sufficient conditions to guarantee reliability
and secrecy.

Lemma 1 (Reliability conditions).

If R0 6 min

(

p-liminf
n→∞

1

n
I(U;Y)− 2γ,

p-liminf
n→∞

1

n
I(U;Z) − 2γ

)

andR1 +R′ 6 p-liminf
n→∞

1

n
I(X;Y|U)− 2γ,

then limn→∞ E[Pe(Cn)] 6 ǫ.

Lemma 2 (Secrecy from channel resolvability condition).

If R′ > p-limsup
n→∞

1

n
I(X;Z|U) + 2γ

then lim
n→∞

E[S2(Cn)] 6 ǫ.

Combining Lemma 1 and Lemma 2, we obtain that if

R0 6 min

(

p-liminf
n→∞

1

n
I(U;Y)− 2γ

, p-liminf
n→∞

1

n
I(U;Z) − 2γ

)

andR1 6 p-liminf
n→∞

1

n
I(X;Y|U)

− p-limsup
n→∞

1

n
I(X;Z|U) − 4γ,

then, limn→∞ E[Pe(Cn)] 6 ǫ and limn→∞ E[S2(Cn)] 6 ǫ.
By Markov’s inequality and the union bound, there exists at
least one sequence of(2nR0 , 2nR1 , n) codes{Cn}n>1 such
that limn→∞ Pe(Cn) 6 3ǫ and limn→∞ S2(Cn) 6 3ǫ. Sinceǫ
andγ can be chosen arbitrarily small, we conclude that

⋃

{UX}n>1
∈P



















































(R0, R1) ∈ R2
+ :

R0 6 min

(

p-liminf
n→∞

1

n
I(U;Y),

p-liminf
n→∞

1
n
I(U;Z)

)

,

R1 6 p-liminf
n→∞

1

n
I(X;Y|U)

− p-limsup
n→∞

1
n
I(X;Z|U)



















































⊆ R(2)
BCC

(7)

where

P , {{UX}n>1 : ∀n ∈ N
∗ U → X → YZ forms

a Markov chain andP
[

1
n
cn(X) 6 P

]

= 1
}

.

Finally, note that the source of local randomness(R, pR) can
be used to prefix an arbitrary channel

(

V , {pX|V}n>1,X
)

to the broadcast channel
(

X ,Y, {WYZ|X}n>1,Z
)

. That this
prefix is useful for secrecy applications is well established [2].
By applying the proof above to the concatenated channel
(

V ,Y, {pYZ|V}n>1,Z
)

, we conclude that the region given
in Theorem 2 is included in the capacity regionR(2)

BCC.
We now turn to the converse part of the proof. Consider a

sequence of codes{Cn}n>1 achieving the rate pair(R0, R1)
for secrecy metricS6. Forn ∈ N∗, let Ū denote the choice of
a common message uniformly at random inJ1, 2nR0K and let
W̄ denote the choice of an individual message uniformly at
random inJ1, 2nR1K. Let Ȳ andZ̄ denote the channel outputs
corresponding to the transmission of the message pair(Ū,W̄).
As shown in Appendix D, the following lemma holds.

Lemma 3. If limn→∞ Pe(Cn) = 0 and limn→∞ S6(Cn) = 0,
then

R0 6 min

(

p-liminf
n→∞

1

n
I
(

Ū; Ȳ
)

, p-liminf
n→∞

1

n
I
(

Ū; Z̄
)

)

R1 6 p-liminf
n→∞

1

n
I
(

W̄; Ȳ|Ū
)

− p-limsup
n→∞

1

n
I
(

W̄; Z̄|Ū
)

.

Note that, by assumption,̄UW̄ → X̄ → ȲZ̄ forms a
Markov chain. DefineV̄ , (Ū,W̄), which is such that
Ū → V̄ → X̄ → ȲZ̄ forms a Markov chain. With probability
one, we have

I
(

W̄; Ȳ|Ū
)

= I
(

V̄; Ȳ|Ū
)

and I
(

W̄; Z̄|Ū
)

= I
(

V̄; Z̄|Ū
)

;

therefore, an achievable pair(R0, R1) must satisfy

R0 6 min

(

p-liminf
n→∞

1

n
I
(

Ū; Ȳ
)

, p-liminf
n→∞

1

n
I
(

Ū; Z̄
)

)

,

and R1 6 p-liminf
n→∞

1

n
I
(

V̄; Ȳ|Ū
)

− p-limsup
n→∞

1

n
I
(

V̄; Z̄|Ū
)

,

whereŪ → V̄ → X̄ → ȲZ̄ forms a Markov chain,pȲZ̄|X̄ =

WYZ|X, andP
[

1
n
cn(X̄) 6 P

]

= 1. Taking the union over all
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possible processes{ŪV̄X̄}n>1 gives the desired outer bound
for the secrecy-capacity regionR(6)

BCC.

Since the outer bound forR(6)
BCC and the inner bound for

R(2)
BCC match, we conclude using Proposition 1 that the secrecy-

capacity region is the same for all metricsi ∈ J2, 6K.

A few comments regarding Theorem 2 are now in or-
der. First, the achievability part of the proof is based on
an explicit operational interpretation of secrecy in termsof
channel resolvability; in Lemma 2, codes are constructed so
that, for a given messageW0 and taking the average over
the random codebook selection, the probability distribution
induced at the eavesdropper’s channel output by all messages
W1 is asymptotically the same in the sense of variational
distance. Second, the existence of a sequence of codes simul-
taneously satisfying the reliability and secrecy conditions is
obtained by handling the constraints separately, as illustrated
by the separate results of Lemma 1 and Lemma 2. This
contrasts with the approach of [1], [2], in which the two
constraints are handled somewhat simultaneously by using
capacity-based wiretap codes. As should be clear from the
conditionR′ > p-limsup

n→∞
1
n
I(X;Z|U) obtained in Lemma 2,

the codes constructed are not capacity-based wiretap codes, for
which the condition would readR′ < p-liminf

n→∞
1
n
I(X;Z|U);

essentially, channel resolvability enables the analysis of codes
operating at rates beyond the capacity of the eavesdropper’s
channel. Finally, we note that, as in Section IV, the secrecy-
capacity region is invariant with respect to the metricsSi

for i ∈ J2, 6K; nevertheless, practical coding schemes should
be designed to provide secrecy with respect to the strongest
metric.

Remark 3. If the eavesdropper’s channel is exponentially
information stable, so that

PUXZ

[

1

n
I(X;Z|U) >

1

n
logM ′ + ǫ

]

decays exponentially fast withn for any ǫ > 0, then a
closer look at the proof of Theorem 2 shows thatS2(Cn),
and consequentlyS1(Cn), would also decay exponentially fast
with n. We do not explore this issue further for arbitrary
channels but we analyze it more precisely in the next section
for memoryless channels.

Without a common message (R0 = 0), we obtain in a
similar way the secrecy capacity of a general wiretap channel
established by Hayashi [6, Theorem 5].

Corollary 1. The secrecy capacity of a wiretap channel
(

X ,Y, {WYZ|X}n>1,Z
)

with cost constraintP is identical
for secrecy metricsSi with i ∈ J2, 6K and is given by

Cs = sup
{VX}n>1∈P

(

p-liminf
n→∞

1

n
I(V;Y)

−p-limsup
n→∞

1

n
I(V;Z)

)

, (8)

where

P , {{VX}n>1 : ∀n ∈ N
∗,V → X → YZ forms

a Markov chain andP
[

1
n
cn(X) 6 P

]

= 1
}

.

C. Memoryless Broadcast Channels with Additive Cost Con-
straint

We now consider memoryless channels (not necessarily
discrete) with an additive cost constraint. This is a special
case of the general model, in which the transition probabilities
factor as

WYZ|X(y, z|x) =
n
∏

i=1

WY Z|X(yi, zi|xi)

and the cost constraint satisfiescn(x) =
∑n

i=1 c(xi) for
some cost functionc : X → R+. For this special class of
channels and constraints, and under mild conditions, the result
of Section V-B extends to metricS1. For discrete memoryless
channels without cost constraint, this result was obtained
independently in [35], [36] using secure multiplex coding and
privacy amplification.

Theorem 3. The secrecy-capacity region of a memoryless
broadcast channel

(

X ,Y,WY Z|X ,Z
)

with confidential mes-
sages and additive cost constraintP is the same for all secrecy
metricsSi with i ∈ J2, 4K and is given by

RBCC =
⋃

(UV X)∈P







(R0, R1) ∈ R2
+ :

R0 6 min (I(U ;Y ), I(U ;Z))
R1 6 I(V ;Y |U)− I(V ;Z|U)







, (9)

where

P , {(UVX) : U → V → X → Y Z forms a

Markov chain andE[c(X)] 6 P} .

If the rates on the boundary ofRBCC are obtained for some
random variablesUV XY Z such that the integrals defining
the moment generating functions ofI(V ;Z|U) andc(X) con-
verge uniformly in a neighborhood of0 and are differentiable
at 0, thenRBCC is also the secrecy-capacity region for metric
S1.

Proof: See Appendix E.
The conditions that yieldRBCC for metric S1 are suffi-

cient conditions required to obtain exponential upper bounds
when applying Chernov bounds. These conditions are not
too restrictive and are automatically satisfied for discrete
memoryless channels and for Gaussian channels with additive
power constraint. Improved exponents can be obtained in such
cases using techniques as in [37].

In the absence of a common message(R0 = 0), we obtain in
a similar way the following result, which was already obtained
for discrete memoryless channels by Csiszár [5] and Maurer
and Wolf [16] with different techniques.

Corollary 2. The secrecy capacity of a memoryless wiretap
channel

(

X ,Y,WY Z|X ,Z
)

with additive cost constraintP is
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the same for all secrecy metricsSi with i ∈ J2, 4K and is given
by

Cs = sup
(VX)∈P

(I(V ;Y )− I(V ;Z)) ,

where

P , {(V X) : V → X → Y Z forms a Markov chain

andE[c(X)] 6 P} .
If the random variablesV XY Z maximizingCs are such
that the integrals defining the moment generating functions
of I(V ;Z) and c(X) converge uniformly in a neighborhood
of 0 and are differentiable at0, thenCs is also the secrecy
capacity for metricS1.

For general memoryless channels, the converse part of
Theorem 3 and Corollary 2 follows from standard arguments
with metricS4 [2]; however, for discrete memoryless channels,
the converse is obtained by specializing Theorem 2 and holds
for metric S6.

Remark 4. In the proof of Theorem 3, we can actually
establish a stronger result than the one stated. If the conditions
for the moment generating functions ofI(V ;Z|U) and c(X)
are satisfied, we can show thatS1(Cn) vanishes exponentially
fast withn.

VI. A PPLICATIONS

In this section, we illustrate the usefulness of deriving
secrecy from channel resolvability by considering several
problems in which the derivation of achievable secrecy rates
is tremendously simplified. In particular, results for wireless
channels, mixed wiretap channels and compound wiretap
channels come almost “for free”. For simplicity, we only
consider cases in which the common message rate is zero
(R0 = 0).

A. Ergodic Wireless Channels with Full CSI

We consider the situation in which Alice and Bob commu-
nicate over an ergodic-fading wiretap channel and have access
to the instantaneous fading gains for both the main channel and
the eavesdropper’s channel. Specifically, at each timek > 1,
the relationships between input and outputs are given by

Yk = Hm,kXk +Nm,k,

Zk = He,kXk +Ne,k,

where {Hm,k}k>1, {He,k}k>1 are fading gains known to
all parties and{Nm,k}k>1, {Ne,k}k>1 are i.i.d. complex
Gaussian zero-mean noise processes with respective variance
σ2
m andσ2

e . In addition, the channel inputs are subject to the
long-term power constraint1

n

∑n
k=1 E

[

X2
k

]

6 P .

Proposition 3. The secrecy capacity of the ergodic wireless
channel with full CSI for secrecy metricS1 is

Cs = max
γ

E

[

log

(

1 +
|Hm|2 γ(Hm, He)

σ2
m

)

− log

(

1 +
|He|2 γ(Hm, He)

σ2
e

)]

, (10)

where the maximization is over all power allocation functions
γ : C2 → R+ such thatE[γ(Hm, He)] 6 P .

Sketch of proof: We only sketch the achievability part
of the proof; the converse for secrecy metricS4 is established
in [12]. Because the channel gains are instantaneously known
to all parties, the ergodic wireless channel can be demulti-
plexed into a set of independent Gaussian wiretap channels,
each characterized by a specific realization(hm, he) of the
channel gains and subject to a power constraintγ(hm, he).
Upon substitutingV = 0 and X ∼ N (0, γ(hm, he)) in
Corollary 2, we obtain the following achievable rate for metric
S1 and for each channel:

log

(

1 +
|hm|2 γ(hm, he)

σ2
m

)

− log

(

1 +
|he|2 γ(hm, he)

σ2
e

)

.

Hence, using the ergodicity of the channel, we conclude that
all the ratesR > 0 such that

R < max
γ

E

[

log

(

1 +
|Hm|2 γ(Hm, He)

σ2
m

)

− log

(

1 +
|He|2 γ(Hm, He)

σ2
e

)]

are achievable for metricS1, whereγ : C2 → R+ satisfies
E[γ(Hm, He) 6 P ].

The result of Proposition 3 has already been established
in [28] with a completely different approach; deriving secrecy
from channel resolvability and leveraging Corollary 2 provides
a much simpler and direct proof, which can be generalized to
include the effect of imperfect CSI [38], [39].

B. Mixed and Compound Channels with receiver CSI

As another application, we study mixed and compound
wiretap channels with receiver CSI. These models have prac-
tical relevance since they allow one to analyze situations in
which the channel is imperfectly known to the transmitter, ei-
ther because the channel estimation mechanism is imperfector
because the channel is partially controlled by the eavesdropper.

Let K ∈ N∗ and let {αk}k∈J1,KK be such that∀k ∈
J1,KK αk > 0 and

∑K
k=1 αk = 1. Consider the wiretap

channels(X ,Y,
{

WYkZk|X
}

n>1
,Z) for k ∈ J1,KK. The

mixed wiretap channelis the channel
(

X ,Y,WYZ|X,Z
)

whose transition probabilities satisfy

WYZ|X(y, z|x) =
K
∑

k=1

αkWYkZk|X(y, z|x).

Proposition 4. The secrecy capacity of the mixed wiretap
channel with power constraintP is the same for all secrecy
metricsSi with i ∈ J2, 6K and is given by

sup
{V,X}n>1

∈P

(

min
k∈J1,KK

p-liminf
n→∞

1

n
I(V;Yk)

− max
k∈J1,KK

p-limsup
n→∞

1

n
I(V;Zk)

)

, (11)
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where

P , {{VX}n>1 : ∀n ∈ N
∗, ∀k ∈ J1,KK, V → X → YkZk

forms a Markov chain andP
[

1
n
cn(X) 6 P

]

= 1
}

.

Proof: Using [10, Lemma 1.4.2], we obtain

p-liminf
n→∞

1

n
I(V;Y) = min

k∈J1,KK

(

p-liminf
n→∞

1

n
I(V;Yk)

)

p-limsup
n→∞

1

n
I(V;Z) = max

k∈J1,KK

(

p-limsup
n→∞

1

n
I(V;Zk)

)

.

The result follows by substituting these equalities in Corol-
lary 1.

Note that for i ∈ J1, 2K, we haveSi(pW Z̄, pW pZ̄) 6
∑K

k=1 αkSi(pW Z̄k
, pW pZ̄k

). Therefore, a code ensuring se-
crecy for the mixed wiretap channel may not guarantee secrecy
over each individual wiretap channel. If one wants to ensure
secrecy over all possibleK channels, one must consider a
compound wiretap channel, in which the transmitter has no
knowledge (even statistical knowledge) of which channel in
the set is used for transmission; however, to avoid unnecessary
mathematical complications, we assume that receivers can
estimate channel statistics perfectly and always know from
which channel they obtain observations; hence, we refer to this
model as a compound channel with receiver CSI. For every
channelk ∈ J1,KK, the performance of a codeCn is measured
in terms of the average probability of errorP(k)

e (Cn) and in
terms of the secrecy metricS(k)

i (Cn) , Si(pW Z̄k
, pW pZ̄k

); the
notion of achievable rate is accordingly modified as follows.

Definition 7. A rateR is achievable over a compound wiretap
channel with receiver CSI for secrecy metricSi if there exists
a sequence of(2nR, n) wiretap codes{Cn}n>1 such that

∀k ∈ J1,KK lim
n→∞

P
(k)
e (Cn) = 0 and lim

n→∞
S

(k)

i (Cn) = 0.

Unlike the mixed wiretap channel, there is no distribution
associated to the choice of the channel in the set, and secrecy
and reliability must be guaranteed for any realized channel.

Proposition 5. The secrecy capacity of a compound wiretap
channel with receiver CSI and with cost constraintP is the
same for all secrecy metricsSi with i ∈ J2, 6K and is given by

sup
{V,X}n>1

∈P

(

min
k∈J1,KK

p-liminf
n→∞

1

n
I(V;Yk)

− max
k∈J1,KK

p-limsup
n→∞

1

n
I(V;Zk)

)

, (12)

where

P , {{VX}n>1 : ∀n ∈ N
∗, ∀k ∈ J1,KK, V → X → YkZk

forms a Markov chain andP
[

1
n
cn(X) 6 P

]

= 1
}

.

Proof: We start with the achievability part of the proof,
which is similar to that of Theorem 2. Letn ∈ N∗ and
ǫ, γ, R1, R

′ > 0. DefineM1 , ⌈2nR1⌉ andM ′ , ⌈2nR′⌉.
Fix a distributionpX on Xn such thatP

[

1
n
cn(X) 6 P

]

= 1.
Let X, {Yk}k∈J1,KK, {Zk}k∈J1,KK be the random variables
with joint distribution

∀k ∈ J1,KK pXYkZk
(x,y, z) ,WYkZk|X(y, z|x)pX(x) .

• Code generation:Randomly generateM1M
′ sequences

xlm ∈ Xn with (l,m) ∈ J1,M1K × J1,M ′K according
to pX. We denote byCn the random random variable
representing the generated code and byCn one of its
realizations.

• Encoding: To transmit a messagel ∈ J1,M1K, Alice
generates an auxiliary messagem uniformly at random
in J1,M ′K and transmits the codewordxlm through the
channel.

• Bob’s decoding for channelk ∈ J1,KK: Define the set

T n
k , {(x,y) ∈ Xn × Yn

k :

1

n
log

WYk|X(y|x)
pYk

(y)
>

1

n
logM1M

′ + γ

}

.

Note that the decoding rule depends on the channel index
k since we have assumed that Bob knows which channel
is being observed. Upon observingyk, Bob decodesl as
the received individual message andm as the received
auxiliary message if there exists a unique codewordxlm

such that(xlm,yk) ∈ T n
k ; otherwise, a random message

is chosen.
The following lemmas provide sufficient conditions to guar-
antee reliability and secrecy. Their proofs are similar to those
provided in Appendix C and are omitted.

Lemma 4 (Reliability conditions). For eachk ∈ J1,KK,

If R1 +R′ 6 p-liminf
n→∞

1

n
I(X;Yk)− 2γ

then lim
n→∞

E[P(k)
e (Cn)] 6 ǫ.

Lemma 5 (Secrecy from channel resolvability condition). For
eachk ∈ J1,KK,

If R′ > p-limsup
n→∞

1

n
I(X;Zk) + 2γ then lim

n→∞
E[S(k)

2 (Cn)] 6 ǫ.

Using Lemmas 4 and 5, we obtain that if

R1 6 min
k∈J1,KK

p-liminf
n→∞

1

n
I(X;Yk)

− max
k∈J1,KK

p-liminf
n→∞

1

n
I(X;Zk)− 4γ

then∀k ∈ J1,KK

{

limn→∞ E[P(k)
e (Cn)] 6 ǫ

limn→∞ E[S(k)

2 (Cn)] 6 ǫ
.

Using Markov’s inequality and the union bound, we can
show there exists at least one sequence of(2nR1 , n) codes
{Cn}n>1 such that

∀k ∈ J1,KK lim
n→∞

P
(k)
e (Cn) 6 (K + 1)ǫ

and lim
n→∞

S
(k)

2 (Cn) 6 (K + 1)ǫ.

SinceK is fixed andǫ, γ can be chosen arbitrarily small, we
conclude that all ratesR1 such that

0 6 R1 < sup
{X}n>1

∈P

(

min
k∈J1,KK

p-liminf
n→∞

1

n
I(X;Yk)

− max
k∈J1,KK

p-limsup
n→∞

1

n
I(X;Zk)

)

(13)
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are achievable, where

P ,
{

{Xn}n>1 : P
[

1
n
cn(X) 6 P

]

= 1
}

.

The achievability of the rates below the secrecy capacityC (2)
s

in (12) is then obtained by introducing a prefix channel as in
the proof of Theorem 2.

We now turn to the converse part of the proof. Consider
a sequence of wiretap codes{Cn}n>1 achieving rateR1 for
secrecy metricS6. For n ∈ N∗, let V̄ denote the choice of
a message uniformly at random inJ1, 2nR1K. By definition,
for everyn ∈ N∗ and k ∈ J1,KK, V̄ → X̄ → ȲkZ̄k forms
a Markov chain andP

[

1
n
c(X̄) 6 P

]

= 1. By the Verdú-Han
Lemma [26, Theorem 4], we obtain

R1 6 min
k∈J1,KK

p-liminf
n→∞

1

n
I
(

V̄; Ȳk

)

. (14)

By definition of the metricS6, we also have

max
k∈J1,KK

p-limsup
n→∞

1

n
I
(

V̄; Z̄k

)

= 0. (15)

Subtracting (15) to (14), and maximizing over all processes
{V̄X̄}, we obtain the desired result.

Although the secrecy capacity of a compound wiretap
channel with receiver CSI is identical to that of a mixed
wiretap channel, the coding schemes achieving it may be
fundamentally different.

Proposition 6. Given a memoryless compound wiretap chan-
nel with receiver CSI and additive cost constraintP , all rates
R1 such that

0 6 R1 < sup
(VX)∈P

(

min
k∈J1,KK

I(V ;Yk)− max
k∈J1,KK

I(V ;Zk)

)

(16)

are achievable for secrecy metricsSi with i ∈ J2, 6K, where

P , {V X : ∀k ∈ J1,KK, V → X → YkZk forms

a Markov chain andE[c(X)] 6 P} .
If the random variables maximizing(16) are such that, for
all k ∈ J1,KK, the integrals defining the moment generating
functions of I(V ;Yk) and c(X) converge uniformly in a
neighborhood of0 and are differentiable at0, then the rates
are also achievable for metricS1.

Proof: The proof of Proposition 6 follows from steps
similar to those used in the proof of Proposition 5 and
Theorem 3 and is omitted.

If the receivers do not know which channel they observe,
the counterpart of Proposition 6 was independently derived
in [40]. Note that deriving secrecy from channel resolvability
circumvents the enhancement argument used in [41, Theorem
1], which is required to show achievability using capacity-
based wiretap codes. Similarly, when applied to Gaussian com-
pound wiretap channels with power constraint, Proposition6
strengthens [42, Theorem 1] with receiver CSI.

Remark 5. The general result of Proposition 5 holds provided
the number of channelsK is fixed and independent of the
numbern of channel uses; nevertheless, in the special case of

public authenticated channel

ENCODER DECODER
X Y

K̂K

BobAlice

pXYZ

Z

Eve

A

Fig. 5. Secret-key agreement from general source.

Proposition 6, for which we establish secrecy for metricS1,
we can show that, for eachk ∈ J1,KK, S(k)

1 6 (K + 1)2−ǫkn

for someǫk > 0. Therefore, Proposition 6 also holds if the
number of compound channels grows exponentially withn as
K = 2βn with β < mink∈J1,KK ǫk.

C. Secret-Key Agreement from General Sources.

As a last application, we exploit a connection between
secret-key agreement and wiretap coding to analyze the
fundamental limits of secret-key agreement for a general
source model. Specifically, we consider adiscrete source
(X ,Y,Z, {pXYZ}n>1) with three components taking values
in discrete alphabets. As illustrated in Figure 5, Alice andBob
attempt to distill a secret key from their correlated observations
X andY, respectively, and a message transmitted by Alice
over public authenticated channel with unlimited capacity. The
key should remain secret from an eavesdropper who observes
Z and the public message.

Definition 8. A (2nR, n) key-distillation strategySn consists
of:

• a key alphabetK = J1, 2nRK;
• an alphabetA used by Alice to communicate over the

public channel;
• a source of local randomness for Alice(RX , pRX

);
• a source of local randomness for Bob(RY , pRY

);
• an encoding functionf : Xn ×RX → A;
• a key-distillation functionκa : Xn ×RX → K;
• a key-distillation functionκb : Yn ×A×RY → K;

The random variables corresponding to the public mes-
sage, Alice’s key, and Bob’s key are denoted byA, K, and
K̂, respectively. The performance of a secret-key distillation
strategySn is measured in terms of the average probability
of error Pe(Sn) , P

[

K 6= K̂
∣

∣

∣
Sn

]

, the secrecy of the key

Si(Sn) , Si(pKZA|Sn
, pK|Sn

pZA|Sn
) for i ∈ J1, 6K, and the

uniformity of the keyU(Sn) , log⌈2nR⌉ −H(K).

Definition 9. A key rateR is achievable for secrecy metricSi
for a source if there exists a sequence{Sn}n>1 of

(

2nR, n
)

key-distillation strategies such that

lim
n→∞

Pe(Sn) = 0, lim
n→∞

Si(Sn) = 0, lim
n→∞

U(Sn) = 0.

The forward secret-key capacityC (i)
SK is the supremum of

achievable key rates for metricSi.

Proposition 7. The forward secret-key capacity of a discrete
source(X ,Y,Z, {pXYZ}n>1) for secrecy metricsSi with i ∈
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J2, 6K satisfies

p-liminf
n→∞

1

n
H(X|Z)− p-limsup

n→∞

1

n
H(X|Y) 6 C (i)

SK

6 min

(

p-liminf
n→∞

1

n
I(X;Y), p-liminf

n→∞

1

n
I(X;Y|Z)

)

. (17)

If the discrete source is i.i.d., Proposition 7 holds for secrecy
metric S1, as already known from [5], [16].

Corollary 3. The secret-key capacity of an i.i.d discrete source
(X ,Y,Z, pXY Z) for secrecy metricS1 satisfies

max (I(X ;Y )− I(X ;Z), I(X ;Y )− I(Y ;Z))

6 C (1)
SK 6 min (I(X ;Y ), I(X,Y |Z)) .

Proof of Theorem 7 and Corollary 3:The achievability
part of Theorem 7 is based on the construction of a conceptual
wiretap channel as in [13]. Assume that Alice, Bob and Eve
observen realizationsX, Y andZ of the source, respectively.
Consider an arbitrary process{U}n>1 such thatU ∈ Xn.
Assume that Alice forms the signalU ⊕ X on the public
channel, in which⊕ denotes the symbol-wise modulo-X
addition. This operation creates a conceptual wiretap channel
with input U, in which Bob observes the outputsY and
U ⊕X while Eve observes the outputsZ andU ⊕X. From
Corollary 1, the secrecy capacity of this conceptual channel
for secrecy metricsSi with i ∈ J2, 6K is at least

sup
U

(

p-liminf
n→∞

1

n
I(U;Y,U ⊕X)

−p-limsup
n→∞

1

n
I(U;Z,U ⊕X)

)

.

In particular, we can choose forU an i.i.d. process such that,
for all j ∈ N∗, Uj is independent ofXYZ and uniformly
distributed inX . Then, with probability one,

I(U;Y,U⊕X) = log
pU⊕X,Y|U(U⊕X,Y|U)

pU⊕X,Y(U⊕X,Y)

= log
pX|YU(X|YU) pY|U(Y|U)

pU⊕X|Y(U⊕X|Y) pY(Y)

= log pX|Y(X|Y)− log
1

|X |n ,

where the last inequality follows frompY|U(Y|U) = pY(Y),
pX|YU(X|YU) = pX|Y(X|Y) since U is independent
of XY and pU⊕X|Y(U⊕X|Y) = 1

|X |n by the crypto
lemma [9]. Therefore,

p-liminf
n→∞

1

n
I(U;Y,U ⊕X)

= log |X | − p-limsup
n→∞

1

n
H(X|Y). (18)

Similarly, one obtains

p-limsup
n→∞

1

n
I(U;Z,U ⊕X)

= log |X | − p-liminf
n→∞

1

n
H(X|Z). (19)

Combining (18) and (19), we conclude that any rateR such
that

R < p-liminf
n→∞

1

n
H(X|Z)− p-limsup

n→∞

1

n
H(X|Y)

is an achievable rate for the conceptual wiretap channel.
Since this channel allows one to transmit uniformly distributed
messages,R is also an achievable secret-key rate for the source
model. For i.i.d. discrete sources, a similar proof based on
Corollary 2 in place of Corollary 1 shows that the result
holds for metricS1 as well. The proof of the converse is an
information-spectrum version of the converse in [14] and is
omitted for brevity.

In Proposition 7, achievable key rates are expressed in terms
of conditional entropy; except in some special cases, such
as i.i.d. sources, this is rather different from the achievable
secrecy rates for wiretap channels in Corollary 1, which are
expressed in terms of mutual information. In particular, if
p-liminf

n→∞
1
n
H(X) = p-limsup

n→∞
1
n
H(X), then,

p-liminf
n→∞

1

n
H(X|Z)− p-limsup

n→∞

1

n
H(X|Y)

> p-liminf
n→∞

1

n
I(X;Y) − p-limsup

n→∞

1

n
I(X;Z).

This distinction suggests that the coding mechanism for secret-
key distillation, which one would have to exploit to design
secret-key distillation strategies without relying on theexis-
tence of wiretap codes, is not linked to channel resolvability;
indeed, the first author has argued in a previous work that
secret-key distillation is more easily understood in termsof
channel intrinsic randomness[5], [24] and privacy amplifi-
cation [17], [37]. In that respect, the proof of Proposition7
provides limited insight into the design of practical secret-key
distillation strategies.

VII. C ONCLUSION

We have analyzed several models of secure communication
by building upon the work of Csiszár [5] and Hayashi [6] and
by exploiting the idea that the coding mechanism to ensure
secrecy can be tied to channel resolvability. This approach
has allowed us to establish several results for generic chan-
nels and for stronger secrecy metrics than the usual average
mutual information rate between messages and eavesdropper’s
observations.

From a technical point of view, deriving secrecy from
channel resolvability provides a conceptually simple approach
to analyze the secure achievable rates of many models. Al-
though we have limited applications to mixed, compound, and
wireless channels, the connection between secrecy and channel
resolvability is useful in many other settings. Examples of
secure communication models for which deriving secrecy from
channel resolvability simplifies the analysis include queuing
channels [43], wireless channels with imperfect state informa-
tion [38], [39], runlength-limited channels [44], and two-way
wiretap channels [45].

From a practical perspective, we believe that the connec-
tion between strong secrecy and channel resolvability opens
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intriguing perspectives for code design. In particular, wehave
provided evidence that this connection circumvents a weakness
of capacity-based wiretap codes, which cannot always achieve
the strong secrecy capacity. This observation is consistent
with practical code constructions achieving strong secrecy
rates [33], [46] and other approaches based on privacy am-
plification [16], [29], [35].

Our results can be extended in several directions. For
instance, the coding mechanisms for secrecy presented in
Section IV for Shannon’s cipher system and in Section V for
wiretap channels can be combined without much difficulty
using a coding scheme similar to that proposed in [47].
One could also further investigate the nature of the coding
mechanisms for secrecy in secret-key agreement models. Some
results along these lines are already available, for instance
in [5], [24], [34].

APPENDIX A
SUPPORTINGLEMMAS

Lemma 6 (Chernov bound). Let X be a real-valued random
variable with moment generating functionφX : R → R :
s 7→ E

[

esX
]

. Let{Xi}ni=1 be i.i.d. with distributionpX . If the
integral definingφX converges uniformly in a neighborhood
of 0 and is differentiable at0 then,∀ǫ > 0 ∃αǫ > 0 such that

P

[

1

n

n
∑

i=1

Xi > E[X ] + ǫ

]

6 2−αǫn.

Lemma 7 (Basic properties of variational distance). Let X1,
X2, andX3 be random variables defined on the same alphabet
X . Then,

V(pX1
; pX3

) 6 V(pX1
; pX2

) + V(pX2
; pX3

),

and V(pX1
; pX2

) 6 V(pX1
pX3

; pX2X3
)

= EX3

[

V
(

pX1
, pX2|X3

)]

.

Lemma 8 (Data-processing inequality for variational dis-
tance). Let X1 and X2 be random variables defined on the
same alphabetX . LetWZ|X be the transition probability from
X to Z and define the random variablesZ1 andZ2 such that

∀(z, x) ∈ Z × X pZ1X1
(z, x) =WZ|X(z|x)pX1

(x)

and pZ2X2
(z, x) =WZ|X(z|x)pX2

(x).

Then,V(pZ1
, pZ2

) 6 V(pX1
, pX2

).

APPENDIX B
PROOF OFPROPOSITION2

LetCn be the random variable that denotes a randomly gen-
erated capacity-based wiretap code, whose codeword symbols
are generated i.i.d. according to the uniform distributionqX .
Let pZ be the output distribution of the eavesdropper’s channel
corresponding to the input onX , i.e.

∀z ∈ Z, pZ(z) =
∑

x∈X
WZ|X(z|x) 1

|X | .

Let pZ be the distribution ofn i.i.d. random variables dis-
tributed according topZ . The proof of the proposition relies
on the following lemmas.

Lemma 9. ConsiderMn , 2nR codewords of lengthn,
obtained by generating codeword symbols independently and
uniformly at random inX . If R < 1

2 log |X |, there exists
α0 > 0 such that the probability that allMn codewords are
distinct satisfies

P[all Mn codewords are distinct] > 1− 2−α0n.

Proof: The proof follows from the same technique as
in [48, Lemma 6], which we recall for convenience. Note that,

P (all Mn codewords are distinct)

=

Mn−1
∏

i=0

|X |n − i

|X |n =

Mn−1
∏

i=0

(

1− i

|X |n
)

Sinceln(1 − x) > −x
1−x

for x ∈ [0, 1), we have

P (all Mn codewords are distinct)

> exp

(

−
Mn−1
∑

i=0

i

|X |n − i

)

> exp

(

− (Mn − 1)(Mn − 1)

|X |n − (Mn − 1)

)

.

Sincee−x > 1− x, we obtain

P (all Mn codewords are distinct)

> 1− (Mn − 1)2

|X |n − (Mn − 1)
> 1− M2

n

|X |n −Mn

SubstitutingMn = 2nR, we obtain

P (all Mn codewords are distinct) > 1− 22nR

|X |n − 2nR
,

which goes to1 asn goes to infinity providedR < 1
2 log |X |.

Lemma 10. There existsα1 > 0, such that, forn sufficiently
large,

P[P∗
e(Cn) 6 ǫ′n and S4(Cn) 6 3ǫ′n] > 1− 2−α1nǫ

2

n ,

with ǫ′n , max(ǫn, log |X | 2−α1nǫ
2

n , n−1).

Proof: The existence of α1 > 0 such that
P

[

P∗
e(Cn) 6 2−α1nǫ

2

n

]

> 1−2−α1nǫ
2

n follows from a standard
random coding argument. Consider a codeCn such that
P∗
e(Cn) 6 2−α1nǫ

2

n . Then, forn large enough,

S4(Cn) = 1
n
I
(

W1; Z̄
)

= 1
n
I
(

W1W
′; Z̄
)

− 1
n
I
(

W ′; Z̄|W1

)

(a)

6 1
n
I
(

X̄; Z̄
)

− 1
n
H(W ′|W1) +

1
n
H
(

W ′|W1Z̄
)

(b)

6 Ce − (Ce − ǫn) +R′
P
∗
e(Cn) + 1

n

6 3ǫ′n

where(a) follows becauseW1W
′ → X̄ → Z̄ forms a Markov

chain, and(b) follows from Fano’s inequality.
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Lemma 11. There existsβ, α2 > 0, such that, forn large
enough

P
[

V(pZ̄, pZ) 6 2−βn
]

> 1− 2−α2n.

Proof: This result follows from [10, Theorem 6.3.1]
by remarking that memoryless channels are exponentially
information stable or, alternatively, from [49, Lemma 19].

For n ∈ N∗, let Cn denote a randomly generated code such
that all codewords are distinct and

P
∗
e(Cn) 6 ǫ′n, S4(Cn) 6 3ǫ′n, andV(pZ̄, pZ) 6 2−βn. (20)

For n large enough, Lemma 9, Lemma 10, and Lemma 11
guarantee that this occurs with probability at least1− 2−αnǫ2n

for someα < α1 and n large enough. With a slight abuse
of notation, we also letCn ⊂ Xn denote the codebook and
let f−1

n : Cn → M1 be the restriction toM1 of the inverse
mapping offn, which is well defined since codewords are
distinct. Let us introduce the functionsφn andψn as

φn :Cn → M1 : x 7→ f−1
n (x)

and ψn :Zn ×M1 → Cn : (z,m) 7→ fn(m,hn(z,m)).

The functionsφn andψn define the encoder and decoder of
a source code for the compression of the sourceX̄ ∈ Cn
(the choice of codewords uniformly at random in the code)
with Z̄ as correlated side information at the receiver, whose
probability of decoding error isP∗

e(Cn). We now leverage the
results obtained by Hayashi [50] and generalized by Watan-
abeet al. [34] that establish a tradeoff between probability and
error and resolvability for source coding of arbitrary sources.
Combining [34, Theorem 10] and the proof of [34, Theorem
11], we obtain,∀b > 0, ∀n ∈ N∗

P
∗
e(Cn) + S2(Cn) > 1−

(

2−b
√
n+1 + PX̄Z̄[An]

)

, (21)

with

An ,

{

(x, z) ∈ Cn ×Zn :
2−b

√
n

|M1|
< pX̄|Z̄(x|z) 6

2b
√
n

|M1|

}

.

Note that |M′| = 2n(Ce−ǫn) and pX̄
(

X̄
)

= 1
|M1||M′| .

Therefore, by Bayes’s rule

PX̄Z̄[An] = PX̄Z̄

[

2−b
√
n

|M1|
< pX̄|Z̄

(

X̄|Z̄
)

6
2b

√
n

|M1|

]

= PX̄Z̄

[

2−b
√
n

|M1|
< WZ|X(Z̄|X̄)

pX̄
(

X̄
)

pZ̄
(

Z̄
) 6

2b
√
n

|M1|

]

= PX̄Z̄

[

Q+
n

]

− PX̄Z̄

[

Q−
n

]

,

where we have defined

Q±
n ,

{

(x, z) ∈ Cn ×Zn : log
WZ|X(z|x)
pZ̄(z)

6 ±b√n+ n(Ce − ǫn)
}

.

We analyzePX̄Z̄[Q+
n ] andPX̄Z̄[Q−

n ] by introducing the sets

A±
n ,

{

(x, z) ∈ Cn ×Zn : log
WZ|X(z|x)
pZ(z)

6 ±2b
√
n+ n(Ce − ǫn)

}

Bn ,

{

(x, z) ∈ Cn ×Zn : log
pZ̄(z)

pZ(z)
< b

√
n

}

and Dn ,

{

(x, z) ∈ Cn ×Zn : log
pZ̄(z)

pZ(z)
> −b√n

}

.

Using the law of total probability and the fact thatQ+
n ∩

Bn ⊂ A+
n , we now upper boundPX̄Z̄[Q+

n ] as follows.

PX̄Z̄

[

Q+
n

]

= PX̄Z̄

[

Q+
n ∩ Bn

]

+ PX̄Z̄

[

Q+
n ∩ Bc

n

]

6 PX̄Z̄

[

A+
n

]

+ PX̄Z̄[Bc
n]. (22)

We first establish a bound onPX̄Z̄[Bc
n].

PX̄Z̄[Bc
n] =

1

b
√
n

∑

z∈Zn

b
√
npZ̄(z)1

{

log
pZ̄(z)

pZ(z)
> b

√
n

}

6
1

b
√
n

∑

z∈Zn

pZ̄(z) log
pZ̄(z)

pZ(z)

=
1

b
√
n
D(pZ̄‖pZ). (23)

We defineµZ , minz∈Z:pZ(z)>0 pZ(z) and we upper bound
the divergence as follows.

D(pZ̄‖pZ) = −H
(

Z̄
)

+
∑

z∈Zn

pZ̄(z) log
1

pZ(z)

= H(Z)−H
(

Z̄
)

+
∑

z∈Zn

(pZ̄(z)− pZ(z)) log
1

pZ(z)

6
∣

∣H(Z)−H
(

Z̄
)∣

∣+ nV(pZ̄, pZ) log
1

µZ

(a)

6 V(pZ̄, pZ) log
|Z|n

V(pZ̄, pZ)
+ nV(pZ̄, pZ) log

1

µZ

(b)

6

(

log |Z|+ β + log
1

µZ

)

n2−βn (24)

where(a) follows from [36, Lemma 2.7] and(b) follows from
the fact thatx 7→ x log |Z|n

x
is monotonously increasing forx

small enough.
To upper boundPX̄Z̄[A+

n ], recall that the eavesdrop-
per’s channel is symmetric; hence, there exists a partition
{Zi}i∈J1,kK of Z such that:

1) ∀x, x̃ ∈ X , there exists a permutationπxx̃ : Z → Z that
satisfies

∀i ∈ J1, kK πxx̃(Zi) = Zi

∀z ∈ Z WZ|X(z|x) =WZ|X(πxx̃(z)|x̃)
2) The output distributionpZ correponding to a uniform

input distribution is locally uniform, i.e.

∀i ∈ J1, kK , ∀z, z′ ∈ Zi pZ(z) = pZ(z
′).

Consequently, upon definingbn , 2b
√
n + n(Ce − ǫn) and

for any x̃ ∈ X , we can rewritePX̄Z̄[A+
n ] as shown on top of

the next page, where(a) follows because the eavesdropper’s
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PX̄Z̄

[

A+
n

]

=
∑

x∈Cn

1

|Cn|
∑

z∈Zn

WZ|X(z|x)1
{

log
WZ|X(z|x)
pZ(z)

6 bn

}

=
∑

x∈Cn

1

|Cn|
∑

z∈Zn

(

n
∏

i=1

WZ|X(zi|xi)
)

1

{

n
∑

i=1

log
WZ|X(zi|xi)
pZ(zi)

6 bn

}

(a)
=
∑

x∈Cn

1

|Cn|
∑

z∈Zn

(

n
∏

i=1

WZ|X(πxix̃(zi)|x̃)
)

1

{

n
∑

i=1

log
WZ|X(πxix̃(zi)|x̃)
pZ(πxix̃(zi))

6 bn

}

(b)
=
∑

x∈Cn

1

|Cn|
∑

z∈Zn

(

n
∏

i=1

WZ|X(zi|x̃)
)

1

{

n
∑

i=1

log
WZ|X(zi|x̃)
pZ(zi)

6 bn

}

(c)
= P

[

n
∑

i=1

log
WZ|X(Z̃i|x̃)
pZ(Z̃i)

6 bn

]

channel is symmetric,(b) follows because the functionsπxix̃

are permutations, and(c) follows by defining the i.i.d. random
variablesZ̃i as the eavesdropper’s channel output when the
channel input is the symbol̃x. Note that the random variables

log
WZ|X (Z̃i|x̃)

pZ(Z̃i)
are also i.i.d., with meanCe since the channel

is symmetric, varianceσ > 0, and third momentρ < ∞;
therefore,

PX̄Z̄

[

A+
n

]

= P

[

1√
nσ

n
∑

i=1

(

log
WZ|X(Z̃i|x̃)
pZ(Z̃i)

− Ce

)

6
2b

σ
−

√
nǫn
σ

]

.

From the Berry-Esseen Theorem [51], there exists a universal
constantc > 0 such that

PX̄Z̄

[

A+
n

]

6
1√
2π

∫ 2b
σ
−

√
nǫn
σ

−∞
e−

x2

2 dx+
c√
n

ρ

σ3
. (25)

Similarly, using the law of total probability, the fact that
A−

n ∩ Dn ⊂ Q−
n ∩ Dn, and the inclusion-exclusion principle,

we lower boundPX̄Z̄[Q−
n ] as follows.

PX̄Z̄

[

Q−
n

]

= PX̄Z̄

[

Q−
n ∩ Dn

]

+ PX̄Z̄

[

Q−
n ∩ Dc

n

]

> PX̄Z̄

[

A−
n ∩ Dn

]

= PX̄Z̄

[

A−
n

]

+ PX̄Z̄[Dn]− PX̄Z̄

[

A−
n ∪ Dn

]

> PX̄Z̄

[

A−
n

]

+ PX̄Z̄[Dn]− 1

> PX̄Z̄

[

A−
n

]

− PX̄Z̄[Dc
n] (26)

Note that,

PX̄Z̄[Dc
n] =

∑

z∈Zn

pZ̄(z)1

{

log
pZ̄(z)

pZ(z)
6 −b√n

}

6 2−b
√
n
∑

z∈Zn

pZ(z)

6 2−b
√
n. (27)

and, following the reasoning leading to (25),

PX̄Z̄

[

A−
n

]

>
1√
2π

∫ − 2b
σ
−

√
nǫn
σ

−∞
e−

x2

2 dx− c√
n

ρ

σ3
. (28)

Combining equations (22)-(28), we obtain

PX̄Z̄[An] = PX̄Z̄

[

Q+
n

]

− PX̄Z̄

[

Q−
n

]

6
1√
2π

∫ 2b
σ
−

√
nǫn
σ

− 2b
σ
−

√
nǫn
σ

e−
x2

2 dx+
2c√
n

ρ

σ3

+

√
n

b

(

log |Z|+ β + log
1

µZ

)

2−βn + 2−b
√
n

6
4b

σ
√
2π

+
2c√
n

ρ

σ3

+

√
n

b

(

log |Z|+ β + log
1

µZ

)

2−βn + 2−b
√
n.

(29)

Combining (29) with (21), and using the assumption
limn→∞ P

∗
e(Cn) = 0 from (20), we have

∀b > 0 lim
n→∞

S2(Cn) > 1− 4b

σ
√
2π
.

Therefore, there existsη > 0 such that, forn large enough,
S2(Cn) > η. Notice that Proposition 1 immediately implies
that there existsη∗ > 0 such thatlimn→∞ S1(Cn) > η∗.

APPENDIX C
LEMMAS USED IN THE ACHIEVABILITY PROOF OF

THEOREM 2

The following notation is used throughout this appendix. We
recall thatU,X,Y,Z are the random variables defined by the
random code generation with distribution given in (6). For any
(k, l,m) ∈ J1,M0K× J1,M1K× J1,M ′K, the random variables
representing the codewordsuk and xklm obtained with the
random code generation are denoted byUk andXklm.

The random variables that correspond to the use of a specific
codeCn are denoted bȳU, X̄, Ȳ, Z̄ with distribution given
by (4). The channel outputs that correspond to the transmission
of uk andxklm are denoted bȳYklm, andZ̄klm, respectively.
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A. Proof of Lemma 1

By symmetry of the random code construction, we have

E[Pe(Cn)]

=

M0
∑

k=1

M1
∑

l=1

M ′
∑

m=1

E[Pe(Cn|W0 = k,W1 = l,W ′ = m)]

M0M1M ′

= E[Pe(Cn|W0 = 1,W1 = 1,W ′ = 1)],

which can be analyzed in terms of the events

E1(k) ,
{

(Ūk, Ȳ111) ∈ T n
1 |W0 =W1 =W ′ = 1

}

E2(k) ,
{

(Ūk, Z̄111) ∈ T n
3 |W0 =W1 =W ′ = 1

}

E3(k, l,m)

,
{

(Ūk, X̄klm, Ȳ111) ∈ T n
2 |W0 =W1 =W ′ = 1

}

.

It follows from standard arguments (see, for instance, [10,
Chapter 3]) thatE[Pe(Cn)] < ǫ for n large enough provided

1
n
logM0 6 p-liminf

n→∞
1
n
I(U;Y) − 2γ

1
n
logM0 6 p-liminf

n→∞
1
n
I(U;Z) − 2γ

1
n
logM1M

′ 6 p-liminf
n→∞

1
n
I(X;Y|U) − 2γ.

(30)

B. Proof of Lemma 2

We start by developing an upper bound forS2(Cn) that will
be simpler to analyze. First, we have

S2(Cn) , V
(

pW1Z̄
, pW1

pZ̄
)

6 V
(

pŪW1Z̄
, pW1

pŪZ̄

)

= EŪW1

[

V
(

pZ̄|ŪW1
, pZ̄|Ū

)]

.

Next, we use Lemma 7 to further boundS2(Cn) as follows.

S2(Cn) 6 EŪW1

[

V
(

pZ̄|ŪW1
, pZ|U

)

+ V
(

pZ|U, pZ̄|Ū
)]

= EŪW1

[

V
(

pZ̄|ŪW1
, pZ|U

)]

+ EŪ

[

V
(

pZ|U, pZ̄|Ū
)]

6 EŪW1

[

V
(

pZ̄|ŪW1
, pZ|U

)]

+ EŪ

[

V
(

pW1
pZ|U, pZ̄W1|Ū

)]

= 2EŪW1

[

V
(

pZ̄|ŪW1
, pZ|U

)]

. (31)

Notice that the term in brackets on the right hand side is a
variational distance between the following two distributions:

• pZ̄|Ū=uk,W1=l(z) =
∑M ′

m=1
1

M ′WZ|X(z|xklm), which
represents the distribution induced at the eavesdropper’s
channel output by theM ′ codewords{xkli}i∈J1,M ′K

selected with a uniform distribution;
• pZ|U=uk

(z) =
∑

x
WZ|X(z|x)pX|U=uk

(x), which rep-
resents the distribution induced at the eavesdropper’s
channel output by an input process with distribution
pX|U=uk

(x).

Therefore, asufficient conditionfor S2(Cn) to vanish is that,
for every pair (k, l) ∈ J1,M0K × J1,M1K, the variational
distance between the two distributions vanishes as well. This
is possible if each set of codewords{xkli}i∈J1,M ′K approxi-
mates the same process with distributionpZ|U=uk

(z) at the
eavesdropper’s output, which is exactly what the concept of
channel resolvability reviewed in Section II is about. In other
words,a sufficient condition to guarantee secrecy is for each

sub-codebook{xkli}i∈J1,M ′K to be a “channel resolvability
code”.

We establish the existence of such codebooks with a random
coding argument following that used in [7], [10]. The presence
of a common message makes the proof slightly more involved
but the steps remain essentially the same. On taking the
average overCn for both sides of (31), we obtain

ECn
[S2(Cn)] 6 2EŪW1

[

ECn

[

V
(

pZ̄|ŪW1
, pZ|U

)]]

(32)

By symmetry of the random code construction, the inner
expectation in (32) is the same for all values ofŪ = uk

andW1 = l; hence, we have

ECn
[S2(Cn)] 6 2ECn

[

V
(

pZ̄|Ū=U1W1=1, pZ|U=U1

)]

. (33)

Let τ > 0. On using [10, Lemma 6.3.1] we finally upper
bound (33) as

ECn
[S2(Cn)] 6 4

τ

log e
+ 4An (34)

with

An , ECn

[

PZ̄|Ū=U1W1=1

[

log
pZ̄|Ū=U1W1=1

(

Z̄
)

pZ|U=U1
(Z̄)

> τ

]]

.

Note that the expectation overCn reduces to the expectation
overU1 and{X11j}j∈J1,M ′K. WritingAn explicitly, we obtain
Equation (35) shown on top of the next page, where equality
(a) follows from the definition ofpZ̄|Ū=u1W1=1,Cn

(z), equal-
ity (b) follows by remarking that all codewords are generated
according to the same densitypX|U and equality(c) follows
by noting that

• WZ|X(z|x111)pX|U(x111|u1) = pZX|U(z,x111|u1) ac-
cording to (6);

• for anyu1 such thatpX|U(x11m|u1) > 0,

pZ̄|Ū=u1W1=1(z) =
1

M ′

M ′
∑

m=1

WZ|X(z|x11m)

=
1

M ′

M ′
∑

m=1

pZ|XU(z|x11mu1).

By adapting the proof technique developed in [10, Chapter
6] and after some calculations, one can further boundAn to
obtain

ECn
[S2(Cn)] 6 4

τ

log e

+ 4PUXZ

[

1

n
I(X;Z|U) >

logM ′

n
+

log ρ

n

]

+ 4PUXZ

[

1

n
I(X;Z|U) >

logM ′

n

]

+
4 · 2−nγ

ρ2

+
4

ρ2
PUXZ

[

1

n
I(X;Z|U) >

logM ′

n
− γ

]

. (36)

whereρ , 2τ−1
2 . Therefore,ECn

[S2(Cn)] < ǫ for n large
enough provided

1

n
logM ′ > p-limsup

n→∞

1

n
I(X;Z|U) + 2γ. (37)
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An =
∑

u1∈Un

pU(u1)
∑

x111∈Xn

pX|U(x111|u1) · · ·
∑

x
11M′∈Xn

pX|U(x11M ′ |u1)

∑

z∈Zn

pZ̄|Ū=u1W1=1(z)1

{

log
pZ̄|Ū=u1W1=1(z)

pZ|U(z|u1)
> τ

}

(a)
=

1

M ′

M ′
∑

m=1

∑

u1∈Un

pU(u1)
∑

x111∈Xn

pX|U(x111|u1) · · ·
∑

x
11M′∈Xn

pX|U(x11M ′ |u1)

∑

z∈Zn

WZ|X(z|x11m)1

{

log
pZ̄|Ū=u1W1=1(z)

pZ|U(z|u1)
> τ

}

(b)
=

∑

u1∈Un

pU(u1)
∑

x112∈Xn

pX|U(x112|u1) · · ·
∑

x
11M′∈Xn

pX|U(x11M ′ |u1)

∑

x111∈Xn

∑

z∈Zn

WZ|X(z|x111)pX|U(x111|u1)1

{

log
pZ̄|Ū=u1W1=1(z)

pZ|U(z|u1)
> τ

}

,

(c)
=

∑

u1∈Un

pU(u1)
∑

x112∈Xn

pX|U(x112|u1) · · ·
∑

x
11M′∈Xn

pX|U(x11M ′ |u1)

∑

x111∈Xn

∑

z∈Zn

pZX|U(z,x111|u1)1







log





1

M ′

M ′
∑

m=1

pZ|XU(z|x11mu1)

pZ|U(z|u1)



 > τ







(35)

APPENDIX D
LEMMA USED IN THE CONVERSEPROOF OFTHEOREM 2

To prove Lemma 3, note that, with probability one,

1
n
I
(

W̄; Z̄
)

= 1
n
I
(

W̄; Z̄Ū
)

− 1
n
I
(

W̄; Ū|Z̄
)

= 1
n
I
(

W̄; Z̄|Ū
)

− 1
n
I
(

W̄; Ū|Z̄
)

= 1
n
I
(

W̄; Z̄|Ū
)

− 1
n
H
(

Ū|Z̄
)

+ 1
n
H
(

Ū|W̄Z̄
)

,

where the second equality follows from the independence of
W̄ andŪ. Consequently,

lim
n→∞

S6(Cn) = p-limsup
n→∞

1

n
I
(

W̄; Z̄
)

> p-limsup
n→∞

1

n
I
(

W̄; Z̄|Ū
)

− p-limsup
n→∞

1

n
H
(

Ū|Z̄
)

+ p-liminf
n→∞

1

n
H
(

Ū|W̄Z̄
)

.

Since limn→∞ Pe(Cn) = 0, note that
p-liminf

n→∞
1
n
H
(

Ū|W̄Z̄
)

= 0 and p-liminf
n→∞

1
n
H
(

Ū|Z̄
)

= 0

by the Verdú-Han Lemma. Aslimn→∞ S6(Cn) = 0, we
finally obtain

p-limsup
n→∞

1

n
I
(

W̄; Z̄|Ū
)

= 0.

Note that, with probability one,

H
(

W̄
)

= H
(

W̄
)

−H
(

W̄|ȲŪ
)

+H
(

W̄|ȲŪ
)

= I
(

W̄; Ȳ|Ū
)

− I
(

W̄; Z̄|Ū
)

+ I
(

W̄; Z̄|Ū
)

+H
(

W̄|ȲŪ
)

Hence,

R1 6 p-liminf
n→∞

1

n
H
(

W̄
)

6 p-liminf
n→∞

1

n
I
(

W̄; Ȳ|Ū
)

− p-liminf
n→∞

1

n
I
(

W̄; Z̄|Ū
)

+ p-limsup
n→∞

1

n
I
(

W̄; Z̄|Ū
)

+ p-limsup
n→∞

1

n
H
(

W̄|YŪ
)

As seen above, p-limsup
n→∞

1
n
I
(

W̄; Z̄|Ū
)

= 0 and, since

limn→∞ Pe(Cn) = 0, we have p-liminf
n→∞

1
n
H
(

W̄|ȲŪ
)

= 0.

Therefore,

R1 6 p-liminf
n→∞

1

n
I
(

W; Ȳ|Ū
)

− p-limsup
n→∞

1

n
I
(

W; Z̄|Ū
)

.

Finally, with probability one,

H
(

Ū
)

= I
(

Ū; Ȳ
)

+H
(

Ȳ|Ū
)

= I
(

Ū; Z̄
)

+H
(

Z̄|Ū
)

from which conclude after a similar reasoning that

R0 6 min

(

p-liminf
n→∞

I
(

Ū; Ȳ
)

, p-liminf
n→∞

I
(

Ū; Z̄
)

)

.

APPENDIX E
PROOF OFTHEOREM 3

We prove Theorem 3 with small modifications of the proof
of Theorem 2. Specifically, we establish secrecy forS1 by
showing that there exist sequences of codes{Cn}n>1 for
which S2(Cn) decreases exponentially fast withn and by
using [5, Lemma 1] to obtain an upper bound forS1(Cn).
We handle the power constraint by using an appropriate
distribution during the random code generation process as
in [10, Section 3.2]. We note that a similar technique has been
used by He and Yener in [52].
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Let γ, δ, ǫ > 0. Let U be an arbitrary discrete alphabet and
fix a distributionpŨ onU . Fix a conditional distributionpX̃|Ũ

on X × U such thatE
[

c(X̃)
]

6 P − δ. Let Ũ, X̃, Z̃ be the
random variables with joint distribution

p
Z̃X̃Ũ

(z,x,u) =

n
∏

i=1

WZ|X(zi|xi)pX̃|Ũ (xi|ui)pŨ (ui).

We assume that̃U, X̃, Z̃ are such that the integrals defining the
moment generating functions ofc(X̃) and I

(

X̃; Z̃|Ũ
)

con-
verge uniformly in a neighborhood of0 and are differentiable
at 0.

Define the setPn as

Pn ,

{

x ∈ Xn :
1

n

n
∑

i=1

c(xi) 6 P

}

.

Lemma 6 shows that there existsαδ > 0 such that
P

[

X̃ ∈ Pn

]

> 1 − 2−αδn. In the sequel, we defineγn ,

1− 2−n
αδ
2 . Define the setGn ⊂ Un as follows:

Gn ,
{

u : P
X̃|Ũ=u

[

X̃ /∈ Pn|Ũ = u

]

< 2−n
αδ

2

}

.

Upon using Markov’s inequality, we obtain

P
Ũ

[

Ũ /∈ Gn

]

= P
Ũ

[

P
X̃|Ũ

[

X̃ /∈ Pn|Ũ
]

> 2−n
αδ

2

]

6 E
Ũ

[

P
X̃|Ũ

[

X̃ /∈ Pn|Ũ
]]

2n
αδ

2

= P
X̃

[

X̃ /∈ Pn

]

2n
αδ

2

6 2−n(αδ−αδ

2 )

= 1− γn. (38)

Now, we define the random variablesU,X,Z as follows.
First,

∀u ∈ Un pU(u) =

{

1

P
Ũ[Ũ∈Gn]

p
Ũ
(u) if u ∈ Gn

0 else.

From Eq. (38), we have

∀u ∈ Un pU(u) 6
p
Ũ
(u)

γn
. (39)

Next, ∀(x,u) ∈ Xn × Gn

pX|U(x|u) =
{

1

P
X̃|Ũ=u[X̃∈Pn|Ũ=u]

p
X̃|Ũ(x|u) if x ∈ Pn

0 else.

By construction, we have

∀(x,u) ∈ Xn × Gn pX|U(x|u) 6
p
X̃|Ũ(x|u)
γn

. (40)

Finally, ∀(z,x,u) ∈ Zn ×Xn × Gn

pZXU(z,x,u) =WZ|X(z|x)pX|U(x|u) pU(u) . (41)

We repeat the random coding argument in the proof of
Theorem 2 using the distributionpXU defined by (41) and
with the following lemmas.

Lemma 12 (Reliability conditions).

If R0 6 min
(

I

(

Ũ ; Ỹ
)

− 2γ, I
(

Ũ ; Z̃
)

− 2γ
)

andR1 +R′
1 6 I

(

X̃ ; Ỹ |Ũ
)

− 2γ,

then limn→∞ E[Pe(Cn)] 6 ǫ.

Proof: Following [10, Proof of Theorem 3.6.2], one can
show that

p-liminf
n→∞

1

n
I(U;Y) > I

(

Ũ ; Ỹ
)

,

p-liminf
n→∞

1

n
I(U;Z) > I

(

Ũ ; Z̃
)

and p-liminf
n→∞

1

n
I(X;Y|U) > I

(

X̃; Ỹ |Ũ
)

.

Hence, the result follows directly from Lemma 1.

Lemma 13 (Secrecy from channel resolvability conditions).
There existsαδ,γ > 0, such that

If R′
1 > I

(

X̃; Z̃|Ũ
)

+ 2γ then lim
n→∞

E[S2(Cn)] 6 2−αδ,γ .

Proof: Note that (31) still holds. Upon using Lemma 7,
we obtain

ECn
[S2(Cn)] 6 2ECn

[

V
(

pZ̄|Ū=U1,W1=1,Cn
, pZ|U=U1

)]

6 2ECn

[

V

(

pZ̄|Ū=U1,W1=1,Cn
, p

Z̃|Ũ=U1

)]

+ 2ECn

[

V

(

p
Z̃|Ũ=U1

, pZ|U=U1

)]

. (42)

First, we bound the second term on the right-hand side
of (42). For all u1 ∈ Gn, we obtain the bound shown in
Equation (43) on the next page, where(a) follows from
Lemma 8, (b) follows becausePX|U=u1

[B ∩ Pc
n] = 0 by

Eq. (41), and(c) follows from the bound in Eq. (40); therefore,
for n large enough, there existsβδ > 0, such that

ECn

[

V

(

p
Z̃|Ũ=U1

, pZ|U=U1

)]

6 2−βδn (44)

We now bound the first term on the right-hand side of (42).
Applying [10, Lemma 6.3.1], we obtain

2ECn

[

V

(

pZ̄|Ū=U1W1=1, pZ̃|Ũ=U1

)]

6 4
τ

log e

+ 4ECn

[

PZ̄|Ū=U1W1=1

[

log
pZ̄|Ū=U1W1=1

(

Z̄
)

p
Z̃|Ũ=U1

(Z̄)
> τ

]]

.

(45)

Note that (45) is similar to (34), and the only difference is the
presence ofp

Z̃|Ũ instead ofpZ|U in the denominator; using
the definition ofpZXU in (41), the bounds in (39) and (40),
and repeating the steps leading from (34) to (36), one obtains
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V

(

p
Z̃|Ũ=u1

, pZ|U=u1

) (a)

6 V

(

p
X̃|Ũ=u1

, pX|U=u1

)

= 2 sup
A⊆Xn

∣

∣

∣PX|U=u1
[A]− P

X̃|Ũ=u1
[A]
∣

∣

∣

6 sup
A⊆Xn

∑

B∈{A,Ac}

(∣

∣

∣PX|U=u1
[B]− P

X̃|Ũ=u1
[B]
∣

∣

∣

)

(b)

6 sup
A⊆Xn

∑

B∈{A,Ac}

(∣

∣

∣PX|U=u1
[B ∩ Pn]− P

X̃|Ũ=u1
[B ∩ Pc

n]− P
X̃|Ũ=u1

[B ∩ Pn]
∣

∣

∣

)

(c)

6 sup
A⊆Xn

∑

B∈{A,Ac}

(

P
X̃|Ũ=u1

[B ∩ Pn]

(

1

γn
− 1

)

+ P
X̃|Ũ=u1

[B ∩ Pc
n]

)

6 (
1

γn
− 1) + (1 − γn), (43)

after some calculations

2ECn

[

V

(

pZ̄|Ū=U1W1=1, pZ̃n
1
|Ũ=U1

)]

6 4
τ

log e
+

4

γ2n
P
ŨX̃Z̃

[

1

n
I
(

X̃; Z̃|Ũ
)

>
logM ′

n
+

log ρ

n

]

+
4

γ3n
P
ŨX̃Z̃

[

1

n
I
(

X̃; Z̃|Ũ
)

>
logM ′

n

]

+
4 · 2−nγ

γn(γnρ+ γn − 1)2

+
4

γn(γnρ+ γn − 1)2
P
ŨX̃Z̃

[

1

n
I
(

X̃; Z̃|Ũ
)

>
logM ′

n
− γ

]

.

(46)

If 1
n
logM ′ > I

(

X̃ ; Z̃|Ũ
)

+ 2γ, then Lemma 6 guarantees
there existsαγ > 0 such that

P
ŨX̃Z̃

[

1

n
I
(

X̃; Z̃|Ũ
)

>
logM ′

n
− γ

]

6 2−αγn. (47)

Setτ = 2−ηn for someη such that0 < 2η < min(γ, αγ); note
that ρ = ln 2

2 2−ηn + o(2−ηn). Therefore, forn large enough,

1

n
log ρ > −γ, 1

γn(γnρ+ γn − 1)
6 2 · 2ηn, 1

γ3n
6 2.

(48)

Consequently, combining (42), (44), (46), (47) and (48), we
obtain forn large enough,

ECn
[S2(Cn)] 6 4 · 2

−ηn

log e
+ 8 · 2−αγn + 8 · 2−αγn

+ 16 · 2−(γ−2η)n + 16 · 2−(αγ−2η)n + 2 · 2−βδn.

Therefore, forn large enough, there existsαγ,δ > 0 such that
E[S2(Cn)] 6 2−αγ,δn.

Using Markov’s inequality and forn sufficiently large, we
conclude that if

R0 6 min
(

I

(

Ũ ; Ỹ
)

− 2γ, I
(

Ũ ; Z̃
)

− 2γ
)

R1 6 I

(

X̃; Ỹ |Ũ
)

− I

(

X̃; Z̃|Ũ
)

− 4γ,

then there exists a specific codeCn such thatPe(Cn) 6 2ǫ and
S2(Cn) 6 2−

αγ,δ
2

n. Using [5, Lemma 1] withn large enough,
we obtainS1(Cn) 6 2−βγ,δn for someβγ,δ > 0.
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[26] S. Verdú and T. S. Han, “A general formula for channel capacity,” IEEE
Trans. Inf. Theory, vol. 40, no. 4, pp. 1147–1157, July 1994.
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from Supélec, Gif-sur-Yvette, France, the M.S. de-
gree in Electrical Engineering from the Georgia
Institute of Technology, Atlanta, in 2003, the Ph.D.
degree in Engineering Science from the Université
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