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Abstract—We analyze physical-layer security based on the
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in terms of the statistical dependence between the messages

premise that the coding mechanism for secrecy over noisy transmitted and the observations of eavesdroppers.

channels is tied to the notion of channel resolvability. Ingead
of considering capacity-based constructions, which associate to
each message a sub-code that operates just below the capwci
of the eavesdropper’s channel, we considethannel-resolvability-

The theoretical foundation of physical-layer securityhis t

rearly works of Wynerl[[L] and Csiszar & Kornerl [2], which

prove the existence of coding schemes ensuring reliability

based constructions, which associate to each message a sub-codand secrecy for the wiretap channel; however, the recent

that operates just above the resolvability of the eavesdrqer's
channel. Building upon the work of Csisar and Hayashi, we
provide further evidence that channel resolvability is a paverful
and versatile coding mechanism for secrecy by developing selts
that hold for strong secrecy metrics and arbitrary channels

Specifically, we show that at least for symmetric wiretap
channels, random capacity-based constructions fail to adébve
the strong secrecy capacity while channel-resolvabilitypased
constructions achieve it. We then leverage channel resollbdity
to establish the secrecy-capacity region of arbitrary brodcast
channels with confidential messages and a cost constraintrfo
strong secrecy metrics. Finally, we specialize our result® study
the secrecy capacity of wireless channels with perfect chael
state information, mixed channels and compound channels i
receiver Channel State Information (CSI), as well as the seet-
key capacity of source models for secret-key agreement. Byihg
secrecy to channel resolvability, we obtain achievable ras for
strong secrecy metrics with simple proofs.

Index Terms—information-theoretic security, wiretap channel,
secret-key agreement, information-spectrum, channel redvabil-
ity, wireless channels.

|. INTRODUCTION

In virtually every communication system, the problems
reliability and secrecy are handled in fundamentally défe

ways. Typically, error-correcting schemes in the physic
layer guarantee reliable communications, while encrypti

surge of information-theoretic results regarding the taipe
channel has fostered few practical engineering solutidhs

state of affairs is partly due to the fact that most works
extend the coding schemes &f [1]] [2], in which the coding
mechanism that guarantees secrecy is tied to channel tapaci
This mechanism will be precisely defined in Secfion IlI; asth
point, suffice to say that the codes [ [1]] [2] are a union of
sub-codes that operate just below the capacity of the eaves-
dropper’s channel as the blocklength grows large. Although
such coding schemes have been successfully used to study
many multiuser information-theoretic secrecy problemf [3
[4], deriving secrecy from channel capacity leaves opema fe
lingering issues:

1) wiretap channel models that incorporate the limitations
of modern communication systems, such as the presence
of memory, are difficult to analyze;

2) the results obtained by tying secrecy to channel capacity
are deemed too weak for cryptographic applications.

This paper builds upon an original observation of CsisBir |
and the work of Hayashi[6] to explore an alternative apphoac

Qtp physical-layer security that addresses the aforemeedio

Issues; the premise of the approach is to relate the coding

dlnechanism for secrecy to the notion of channel resolvabil-
dy [7], [B] and not to channel capacity.

algorithms and key-exchange protocols in the upper Igyers
ensure data secrecy. Physical-layer security puts fonaard A. Motivating Examples

alternative role for the physical layer, whereby reliapitand

To motivate the usefulness of channel resolvability, wet sta

secrecy can be handled jointly by means of appropriate godigith two intuitive examples that shed light on the mecharsism

schemes. The idea is to recognize the presence of noise could exploit to ensure information-theoretic segurit
every communication channel, including the channel of a po-

tential adversary who eavesdrops on transmitted signadstca EXample 1 (One-time pad) Consider a binary message

exploit knowledge of noise statistics to prevent eavesueop

W € {0,1} thatis encoded into a codewo#las Z = W K,

from retrieving information. Unlike most existing secyrit Where K ~ B (3) is a secret key andb denotes modulo-
schemes, physical-layer security can guarantee infoomati tWo addition. The crypto lemmal[9] shows that the output

theoretic security, by which secrecy is measured quaintist
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1specific cryptographic schemes are implemented at all upgers of the
protocol stack, including MAC, transport, network, and laggtion layers.

distributionsp 7|y —o andpz -, are identical and equal to
the uniform distribution o{0, 1}; hence, messages are statis-
tically indistinguishable for an eavesdropper only obsegv

Z. From an operational perspective, note that the encoder
exploits the keys to ensure that all messages induce the same
output distribution.

Example 2 (Transmission over a noisy Gaussian channel)
Consider an uncoded messa§E uniformly distributed in

the set{—1,+1} and observed by an eavesdropper at the
output of a real additive white Gaussian noise channel as
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Z = W + N, where N ~ N(0,02). As illustrated in secret keys from a noisy source by communicating over a
Figure [1, the output distributiong;w—_; and pzw—,1 public channel. The resulting keys have to be secure with
become indistinguishable from the average distributignas respectto an eavesdropper who obtains correlated obserwat
the noise variance increases. Specificallygagoes to infinity, from the source and observes all messages exchanged over
the public channel. This architecture differs from the tape
Dz channel by exclusively focusing on the rate of the secret key
that can be distilled from the source and by ignoring the obst
public communication. The counterpart of secrecy capasity
the secret-key capacifydefined as the supremum of the secret
key rates that can be distilled. Although the aforementione
architectures model fundamentally different communarati
-1 +1 scenarios, they are related in that a coding scheme for the
wiretap channel can be used to design a coding scheme for
Fig. 1. Distributions of channel outputs for uncoded traission of{—1, +1} secret-key agreement and vice-versa.
over an AWGN channel. ; . . . .
The early information-theoretic security results obtdifar
one can show that, for each € {—1,+1}, the variational the wiretap channel and source model for secret-key agmteme

distance betweepy| ., andp is at mosw(gf%)_ In other are criticized in some circles for measuring statisticgbete
words, if the noise introduces enough randomness, then @fgnce in terms of the average information rate leaked to the

channel itself ensures that all messages approximatelyded eavesdropper-I(W; Z). The weakness of this metric from
the same output distribution. a cryptographic standpoint has been highlighted in matipl

S S works [4], [15], [16], which have instead advocated using th
In each examplle, statistical indistinguishability is obéal average information leaket{1V; Z). The analysis of secure
because there exists a source of randomness (key or chaRaglmunication architectures under this more stringemesgc
noise) and a coding mechanism by which all messages indyGgiric has been performed with different methods, such as
the same distribution for the eavesdropper’s observatithis raph-coloring techniques|[5], privacy amplification][LE7],
mechanism is reminiscent of the codes analyzed.in [7], [8],q channel resolvability [6]/ [18]. The results presenited
[10] to study the notion oéhannel resolvabilityAt this point, g naper further clarify the relation between secrecy and
the connection between secrecy and channel resolvabiély Mynannel resolvability and highlight the potential of chehn
seem contrived but, nevertheless, it suggests the positifil o5qyapility for solving secure communication problems.
ensuring secrecy b_y means that are different f_rom thosajbase-l-he connection between secrecy and channel resolvabil-
on channel capacity and used In [1]] [2]; this was alreaqy, is petter illustrated by studying secure communication
observed in[[5] and more formally explored il [6]. In they  hitactures beyond the traditional memoryless setting;
remainder of this paper, we further expand upon this '_d%%rticular, the distinction between the coding mechanifms
and we not only highlight the benefits of explicitly connegti \|iapility and secrecy becomes apparent in the expression
secrecy to channel resolvability but also show the limowsi ¢ e resyits themselves. In this context, the information
of an approach based on channel capacity. spectrum methods pioneered by Han and Verd turn out to
be convenient mathematical tools, as they allow us to aralyz
B. Related Work general channels by focusing on the properties of mutual
Most communication architectures providing informationinformation as a random variable. We note that these tools
theoretic security are based on two models of communicatidrave already been used to study some information-theoretic
Thewiretap channelintroduced by Wynei 1] and generalizedsecurity problems and our results provide extensions of [6]
by Csiszar & Korner[[2], models an architecture in whiclZ9]-[21].
a transmitter encodes messagésinto codewordsX of n
symbols for transmission to a receiver, in the presence of an
eavesdropper that obtains noisy observatignsf X. In the
case of discrete memory'ess ChanndE’ [’ [2] have Showdn this Section, we h|ghl|ght the results presented in this
the existence of coding schemes simultaneously ensuri@pPer, preliminary versions of which have been reported
reliable transmission to the receiver and secrecy withem;lspin [22], [23].
to the eavesdropper. In particular, it is possible to charae o We clarify the relation between information-theoretic se-
the secrecy capacityof a wiretap channel, defined as the  curity and statistical independence by investigatingralte
supremum of all reliable and secure rates. The extension of natives to the average mutual information raf&W’; Z),
this result to Gaussian_[L1] and wireless channels (see, for which is used as thale facto metric in most earlier
instance, [[I2] and references therein) suggests the jmitent works. The average mutual information rate is actually
of such coding schemes to secure communication networks a normalized Kullback-Leibler divergence between the
at the physical layer. An alternative to the wiretap channel joint distributionpy,z and the product distributiopyy, pz;
is the source model for secret-key agreemarnttoduced by the closeness of these two distributions can be measured
Maurer [13] and Ahlswede & Csiszar [14], which considers an by other means, such as the variational distance or even
architecture in which two legitimate parties attempt tatitlis the cumulative distribution function (CDF) of the random

pZ\W:A\

& Pzw=+1

Summary of Results
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variablel (W; Z). By establishing relations among differ- Il. NOTATION
ent metrics (Proposition] 1) we highlight the importance_ To fix notation for the sequel, consider three random vari-

of choosing a measure of statistical dependence thataﬁlesX Y, and Z with sample values:, y, and > taking
not only simple enough to be analytically tractable bl{}alues in alphabetst, ¥, and 2, respeétively. The joint

also strong enough to be cryptographically relevant. Thig ity distribution is denoteghyy », and the marginal
discussion also provides the basis for elegant conve bability distributions are denoted byx, py, and p

proofs. . . S Unless mentioned otherwise, alphabets are assumed to be
. We _prowde ewd_ence that channel reso_lvaplllty IS & CORpstract alphabets, including countably infinite or caumbins
ygnlenr: mgchamsm (I;OI’ szqure communlcaugn by forlm Iphabets. If the alphabets are finite, then the probability
1Ing t e ideas introduced in Examyile 1 and Exanip ‘?,aistributions correspond to probability mass functiorighe
Specifically, we connect secrecy to channel resolvabiliyi,papets are uncountable, then the probability disiohst

to analyze the fundamental limits of Shannon's ClphEf:rorrespond to probability densities, which we assume Bxist
system (Theorerfll 1) and of the broadcast channel w e mutual informationbetweenX and Y is the random
confidential messages (TheorEm 2). In the latter case, Viabl

show that at least for some specific wiretap channels,

deriving secrecy from channel resolvability is more pow- I(X;Y) 2 log pxy(X,Y) )

erful than deriving secrecy from channel capacity (Propo- px (X)py (Y)

sition[d); we also derive the secrecy-capacity region fathe average of this random variable is the usambrage
general broadcast channels with a cost constraint and fagitual informatiopwhich we denote bi(X; Y). For discrete

strong secrecy metrics (Theoréth 2 and Thedrém 3); random variables](X; Y) has the familiar expression
o We further leverage the connection between secrecy and

channel resolvability to revisit various models of secure  L(X;Y) £ Exy[I(X;Y)]

communication. We fi_rst provide_a simple proof of the B Z Z (z.9)1 pxy(2,y)
strong secrecy capacity of ergodic-fading wireless chan- = PXY A Y08 @) py (y)
nels with full channel state information (Propositigh 3). TEXYEY

We then show that known achievable rates for mixethe conditional mutual information between andY given
channels and compound channels with receiver CSI c@nand the average conditional mutual information are accord-
be obtained with conceptually simple proofs, and thatgly defined as
these results hold under stronger secrecy metrics than was (X,Y]2)
previously established (Propositibh 4 and Proposfiion 5). I(X;Y|Z) 2 log Pxv|z\ 4,

o We finally exploit the general characterization of secrecy px1z(X|2) py|z(Y]Z)
capacity to bound the secret-key capacity of a general and I(X;Y|Z) £ Exyz[[(X;Y]|Z)],
discrete source model for secret-key agreement (Proposi- ) o
tion[Z). The form of the result, which involves conditional€SPectively. Similarly, thentropyandaverage entropyf X
entropy instead of mutual information, suggests that tiEe
mechanism behind secret-key agreement is not channel (
resolvability but rather channel intrinsic randomnéss [5]

)£ log and H(X) 2 Ex[H(X)],

px(X)
24). and the conditional entropy and average conditional egtrop
of X givenY are

D. Outline 1

: : . H(X|Y) £ log —————

The remainder of the paper is organized as follows. Sec- x|y (X[Y)
_tionI]]]sets the notation used throughout the paper. Sefffibn and H(X|Y) 2 Exy[H(X|Y)].
introduces and compares several secrecy metrics that can be
used to measure information-theoretic security. Sediigh All the usual relations between average mutual information
analyses the fundamental limits of secure communication fand average entropy that result from basic properties at,joi
Shannon’s cipher system. Sectibh V, which forms the corearginal, or conditional probability distributions candiewn
of the paper, proves the impossibility of achieving stron hold with probability one for the mutual information and
secrecy capacity with random codes deriving secrecy fro@itropy random variables. In particular, the chain rules of
channel capacity for some wiretap channels and establish@gtual information and entropy hold with probability one.
the secrecy-capacity region of general broadcast chawitls ~ The average mutual informatiof( X; X') between two
confidential messages. Sectibn] VI presents applications refdom variablesy € & and X’ € A" is a Kullback-Leibler
the general results to wireless channels, mixed channels alivergence, which measures the closeness of the distritsiti
compound channels, and secret-key agreement, which mayhex’ andpx x.. We will often use an alternative measure
of independent interest. Sectién VIl offers some conclgdin

remarks. The technical details of the proofs are Organizgé\é‘@rﬂ[{‘g]mat more general situations can be treated withptheach of
into a series of lemmas, whose proofs are relegated to th@umess indicated otherwise, logarithms and exponentialthé paper are

appendices to streamline the presentation. taken to base two.
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in terms of thevariational distancebetween the distributions, however, exact statistical independence betw&énand Z
defined 48 is extremely stringent and, for tractability, it is convemi
Ao to use a slightly weaker measure of secrecy, by which we
Vipx,px) = 2;15( [Px[A] - Pxr[A]l. only require and Z to be asymptoticallyindependent as
- . . . . the parametemn tends to infinity. Note that there is some
The variational distance is not as convenient to manipwate . o o
leeway in the definition of asymptotic independence because

the average mutual information, but we provide simple rules
o . . one can choose how to measure the dependence befiieen
for variational distance calculus in AppendiX A.

Given two real numbers, b we define[a, b] as the set of gnd Z. For i.rPStar!CG: giyen any distanaefor the spacelof
integers{n € N : |a| < n’ < 5]} To simplify notation joint probability distributions or1,2"#] x 2", the quantity

all vectors of lengthn are denoted by boldface letters; fo(Pwz;pwpz) could be used as a metric, and asymptotic

. statistical independence then amounts to the condition
instance x denotes the vector of sample values, ..., z,)
while X denotes the random vect@k,, ..., X,,). Given two lim d(pwz;pwpz) = 0.

n—oo

random vectorX andY, characterized by a joint probability ) o _
distribution pxv, the probability distribution of1I(X;Y In the following, we specify six reasonable choices for segr
is referred to as themutual information rate sSectrurﬂn metrics. The first metric measures statistical dependesiog u

addition, thespectral-inf mutual information ratés defined the Kullback-Leibler divergence:

as [10] S1 (pwz, pwpz) = D(pwzllpwpz) = L(W; Z).
p-liminf lI(X;Y) N The secrecy conditiohim,, ,~ S1 (pwz, pwpz) = 0 corre-
n—oo M sponds to the well-knowstrong secrec{l15]. A second metric
1 - . . L
sup {B  lim P {—I(X;Y) - [3] _ O} ’ that we V.VI|| find particularly useful is based on the variatib
n—oo | n distance:
and thespectral-sup mutual information rate defined as Se (pwz, pwpz) = Vipwz, pwpz)-
p-IimsuplI(X;Y) N For anye > 0, the a_symptotic independence 6f andZ can
n—oo M also be measured in terms of the CDFI¢iV; Z):
1
inf {a : lim P [—I(X;Y) > a] = o} . Ss (pwz, pwpz) = PII(W;Z) > €],
n—oo n

Operationally, the spectral-inf mutual information ragtates in which case the secrecy condition

to channel capacity [26] whereas the spectrql-sup mut_tm_Hn Ve > 0 1Lm S3 (pwz, pwpz) =0

mation rate relates to the channel resolvability [7]. Samijl, el _

given an arbitrary sequendg, theentropy rate spectruris the means that the random variabléiV’; Z) converges in proba-
distribution of the random variablé 7 (X), and the spectral- bility to zero. Finally, one could also weaken the metrice\ah

inf entropy rate is defined as by introducing a normalization by a factor efas
| 1 £1lp

o-liminf L H(X) 2 sup{ﬁ: lim P[—H(X) - [3] _ 0}7 S4 (pwz, Pwpz) 7 (pwzlpwpz)
n—oo T noeo [T Ss (pwz, pwprz) = - V(pwz, pwpz),

while the spectral-sup entropy rate is fore>0 S¢(pwz,pwpz) 2 p[%](w; Z) > E}_

p-Iimsule(X) = inf{a: lim P[EH(X) > a] = 0}. The secrecy conditiofim,, . S4 (pwz, pwpz) = 0 corre-
n—oo M noee Ln sponds to thaveak secrecynitially introduced by Wyner([[1].
The spectral-sup and spectral-inf mutual information and The secrecy conditioBdim,, ., Si(pwz, pwpz) = 0 may
entropy rates play a fundamental role in the analysis cdloé#i not be equivalent for all € [1, 6]; by establishing an ordering
communication and randomness generation [7]] [26]] [27@mong these metrics, we formalize what it means for a metric
They also play a role in the analysis of secure communicstioito be “stronger” than another. Farj < [1,6], we say that
and our results combine these quantities in various ways. S; is strongerthan§; (or equivalently thaf; is weakerthan
S;), and we writeS; > S; if and only if

[1l. PRELIMINARIES: SECRECYMETRICS lim Su(pwa, pwpz) = 0= lim S;(pwz, ppz) 0.
Let n € N* and R > 0. Let W ¢ [[1’2nR]] be a n—00 oo

random variable that represents a message in a commumicaBiy construction, itis clear that; = S4, Sz = S5 andSs = Se;
scheme. Assume that an eavesdropper has some knowldtguever, we establish a more precise result.

about W represented by another random varialdles 2",
characterized by the joint probability distributigiyz. As
mentioned in the introduction, messa§E is information-
theoretically secure if it is statistically independent Bf S1 2= S2 = S3 =S4 =S5 = Se-

Proposition 1. The secrecy metric§; for i € [1,6] are
ordered as follows.

4This general definiton of variational distance reduces to 5The limit should be understood for amy> 0 in the case of metric§3
> sex Ipx(x) —px/(z)| if X is countable. and Se.
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Proof: The relationss; > S, andS, = S5 directly follow K
from Pinsker’s inequality([25, Corollary p.16]. Similaylthe | S E

relationsS, = S3 andSs = Sg follow from [25, Corollary | ALICE ' ! : ——
p.18]; hence, we only need to prove tisat= S;. 1 W ENCODER Loz DECODER.~. 1i 1
Let ¢,7 > 0. Assume thatlim, o S3(pwz,pwpz) = m
0, so thatlim, ,. P[I(W;Z) >¢] = 0. Note that metric «_____ ' S '
S4(pwz,pwpz) can be written as Eve
§4(pWZ’prZ) Fig. 2. Shannon’s cipher system for a general common sodn@domness.
= 2I(W;Z)

=E[11(W;Z)],
=E[LIW;Z)1{I(W;Z) < —¢

} eavesdropper (Eve). Alice and Bob have access to a common
+E[2I(W;Z)1 {—e < I(W;Z

discrete source of randomne§g, {pk }»>1), characterized

) < 6}] by an alphabettC and a sequence of symbol probabilities
+E [%I(W; Z)1 {e < I(W;Z) < n(R+ 7)}} {pk }n>1, which is used to encod&” into a codeword? € Z.
+IE[%I(W;Z)11 (I(W:Z) > n( +7)}]. Bob’s estimate of the message usidgand the source of

R A
randomnes¥ is denoted byiV.
Clearly, we haveE[LI(W;Z)1{I(W;Z) < —€}] < 0,
E[2I(W;Z)1 {—e < I(W;Z) < ¢}] < £, and Definition 1. A (2", n) cipher &, consists of
n(R+)}] « an encoding functiorf,, : [1,2"%] x K* — Z;

1 . .
E[IW:Z)1{e <1(W:Z) « a decoding functiony,, : Z x K" — [1,2"F].
(R+~)PI(W;Z) > €.

<
<
The reliability performance of a ciphét, is measured in
terms of the probability of erroP.(&,) £ ]P’CLW £ W|E,

lim B[ZI(W;Z)L{I(W;Z) > n(R+7)}] =0. while its secrecy performance is measured in terms of the
secrecy metritS;(€,) £ S; (Pwze,, PWDz|E,)-

Following [10, p. 223], we can also prove that

Therefore lim,, oo S4(pwz, pwpz) = 0 andSsz = Sy. [ ]
A direct consequence of Propositibh 1 is that any secubfinition 2. A rate R is achievable for secrecy metr; for

communication scheme satisfying the secrecy conditioh wighannon'’s cipher system if there exists a sequen¢2'df, n)

the strongest secrecy metfig automatically satisfies it with ciphers{&,},>1 such that

the secrecy metric§; for i € [2,6]. Conversely, any secure

communication scheme that does not satisfy the secrecy con- . .

dition with the weakest metri§s cannot satisg it with any )(;f nh—>néo Pe(én) =0 and nh—>Holo Si(€n) = 0.

the metricsS; for i € [1,5]. Therefore, to establish a coding

theorem for a secure communication scheme, we can proMg secrecy capacitg’! of Shannon’s cipher system is the

Although the ordering in Proposition] 1 follows strictly

from mathematical properties, the idea that some metries #heorem 1. The secrecy capacity of Shannon’s cipher system

stronger than others is also meaningful from a cryptogxapl}é the same for all metrics; with i € [2, 6] and is given by
perspective. One can construct examples of communication ! ’

schemes that present obvious security loopholes while stil

satisfying a secrecy condition with metfig (see, for instance, Cse = p-liminf lH(K). (1)
the examples in[]4],[128],[129]). It is now accepted that n—00

information-theoretic secrecy conditiihshould hold at least

with metricsS; or Ss. If the source(K, {pk}n>1) is memoryless, then the secrecy

capacity is also the same for metfig.

V. SECRECY FROMC,:HANNEL RESOLVABILITY FOR Proof: We first show that all rates below p-limidfH (K)
SHANNON’S CIPHER SYSTEM nooo

H A
As a first illustration of the connection between secrecy aifi® gchlfvable for secrecy metfig. Lete,y > 0 andR =
channel resolvability, we elaborate on Examiple 1 and mviﬂ'“i“”f +H(K) — 7. Let Ur be the random variable with
Shannon’s cipher system. We consider the model '”Us_tratggiform distribution on[1,2"%]. By [27, Lemma 3], there
in Figure[2, in which a messagé’ uniformly distributed in eyists an encoding functiof, : K" — [1,2"%] such that
[[1,_2"3]} is to b_e_ commum(_:ated rellab_ly from a transmlttey(pfn(K)’pUR) < €, With lim,_ €, = 0. A messageV’
(Alice) to a legitimate receiver (Bob) in the presence of &g then encoded ag — fu(K) ® W, where® represents
o nR ) .
5The conditions could be further strengthened by imposingxgonential the addition mOdUIcm ] By construction, Bob retrieveld’
convergence witn; however, except in the case of exponentially information

stable channelg[5], such as memoryless channels, we wetdeuto prove
general results with this additional constraint. "We will drop the conditioning o€, when this is clear from the context.
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without error sincéV = Z & f,(K). We have

S2(En) = V(pwz,pwpz) o ! Vo

,,,,,,,,,,,,,,,, s W
=Ew [V(pziw,pz)] o

<Ew [V(pziw,pus)] + V(pug,pz) L{FODER},W
< 2Ew [V(pziw,pUs)] |

= 2Ew [V(py, k), PUx)]
Fig. 3. Broadcast channel with confidential messages.
< 2ep,

where we have used Lemria 7, the definitionZfand the

independence off,,(K) and W. Therefore, the rate? is communication can be interpreted as channel resolvability
achievable and, since can be chosen arbitrarily small, wewhich we confirm in the next section. From a cryptographic
conclude that perspective, Theoref 1 shows that the secure communication
rate is maximized if the legitimate terminals make sure that
their keys are almost perfectly uniform. This has operation
significance in a practical situation if the mechanism paang
secret keys is biased and do_es not yield perfectly uniform
keys. Finally, the fact thaCsé remains identical for all
metricsS; with ¢ € [2,6] suggests that asymptotic statistical
|hdependence is indeed a fundamental measure of secrecy.

.1
2 > p-liminf = H(K). )

n—oo N
If the source(K, px ) is i.i.d., one can modify the proof df [27,
Lemma 3] to show that, ifR £ H(K) — v, there exists
a function f,, : K* — [1,2"f] and o, > 0, such that
V(py, %), Pus) < 2™, Following the same steps as above
we then obtain tha$,(&,) < 2-27*". Finally, [5, Lemma 1]
shows that there exist8, > 0 such that, forn large enough
S1(E) < 2-Fm ot g g V. SECRECY FROMCHANNEL RESOLVABILITY OVER

We now prove the converse part of the result. Rebe an NO'S.Y CHANNELS

achievable rate for secrecy metfig. There exists a sequence We now turn our attention to the problem of secure commu-
of (2% n) ciphers{&,},>1 such thatlim, ., P.(E,) = 0 nication over noisy channels. We consider a broadcast @hann

and lim, . S¢(€,) = 0. For everyn € N* and with With confidential messageY, Y, {Wyzx }n>1, Z) charac-

probability one, we have terized by an input alphabet, two output alphabet® and
Z, and a sequence of transition probabilitifdyzx }n>1.
1 _ 1 1 . ~
AHW) = SHW|Z) + 3 1(W; Z) The channels X, {Wy(x }ns1,Y) and (X, {Wzx bns1, 2
=1I(W;K|Z)+ LH(W|ZK) + L 1(W; Z) obtained from the marginals are called theain channel
= %H(K) — %H(K|WZ) — %I(K; 7) and theeavesdropper’'s channetespectively. The inputs to

+LH(W|ZK) + L1(W; 7) the channels are also subject to cost constréine RT;
" " e specifically, there exists a sequence of cost functiong.,,>1
Since R = p-liminf L H(W), p-liminf L H(K|WZ) > 0, and with ¢, : X* — R,, such that any sequence € X"

o-liminf lI(I%?%O) > 0. we obtain transmitted through the channel should .sati%m(x) <P
n—oo Following standard practice, the transmitter is named élic
the receiver observing outplt is named Bob, and the receiver
< p- I|m|nf H(K) + p-limsup— H(W|ZK observing outpuf is named Eve. As illustrated in Figué 3,
nTreo nreo Alice wishes to transmit a common messadg to both Bob
+ p-limsup— I(W 7). and Eve and an individual messaidg for Bob alone, viewing
n—00 Eve as an eavesdropper for messége Bob's estimates of
Note that p-limsupt/(W;Z) = 0 by assumption. the messages are denotediby and 1V, while Eve’s estimate
The Verdﬂ-ng?oT_emmaE[JO],EQG] also guarantees théﬁ denoted byy.
p-limsupL H(W|ZK) = 0; hence, we have Definition 3. A (27 2nH1 ) wiretap codeC,, consists of
e « a common message 98f, = [1,2"%];
9 < p-liminf lH(K). (3) « an individual message sév, = [1, 2"31]}
n—oo T . an auxiliary message s@v’ = [1,2"F»], with R/, > 0f

Combining [2) and|]3) with Proposmdﬂ 1, we conclude that, used to randomize the encoding of messages;
for everyi € [2,6], clY) = p- I|m|nf ~H(K). If the source is  « a source of local randomnes$R,pr), which is only

() known to Alice and can be used to further randomize
memoryless, then for evenye [[1, 6], Csc’ = H(K). | the encoding:
The coding scheme used in TheorEim 1 extractssthace « an encoding functiorf, : Wo x Wi x W' x R — X™,
intrinsic randomnessf (K, {pk }»>1) to protect the message such thatt e, (f,, (mo, m1,m’,r)) < P;
with a one-time pad. Nevertheless, the message is kepttsecre o decoding functiom,, : " — Wy x Wy x W';
from the eavesdropper because the encoder exploits the ran- 4 decoding functiorh,, : 2" — W.
domness of the source to control the distribution of the gave

dropper’s observation; hence, the coding mechanism faireec 8Aithough Ry and R; are fixed parameters, we alloR’, to vary with n.
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The auxiliary message is denoted Bby’. All messages considered; therefore, we restrict ourselves to the specise
Wo, W1, W’ are assumed to be uniformly distributed in theiof full secrecy rates?; = R., for which we can leverage the
respective sets. The size of the auxiliary message set aasult of Propositio11.
the source of local randomnegR, pr) can be optimized as

part of the code design, and the eavesdropper is assumedcapacity-Based Wiretap Codes and Strong Secrecy

to know the codeC,,, which includes the stat|st_|ch of We now define the subclass ahpacity-basedwiretap

the source of local randomness. In the remainder of the
. . . ?odes

paper, we clearly identify the channel inputs and outputs

obtained when using a codg, by introducing a bar in the Definition 5. A (20,271 n) capacity-based wiretap code

notation of the corresponding random variables. For instanC,, is a (2", 2" n) wiretap code such that :

the random variable representing a codeword chose@i,in . the auxiliary message rate i® = C. — ¢,, Where

is denotedX, those representing the corresponding channel C. is the eavesdropper’s channel capacity afig},,>;

outputs are _depoteﬁ’ andZ. The joint distribution between satisfieslim,,_,o €, = 0;
Wo, W1,X,Y,Z is « there exists a decoding functidd, : 2" x W, — W/,
which allows the eavesdropper to estimate the auxiliary
Pwowixvz(mo, mi, %, y,2) = Wyzx (y, 2[x) messagéV’ from the observation oZ and ;.

% . (4 ~ . .
Pxjwow, (X[mo, m1) pws (mo) pw (ma) - (4) We let W’ denote Eve's estimate a¥’. The reliability of

The reliability of a cod€,, is measured in terms of the averaga capacity-based wiretap codg is then measured in terms

probability of error of the modified average probability of error
Pe(Cn) £ B3 (Ca) £ P [(Wo, W1, W) o (W, Wi, W)
P [(Wo, Wl, W’) #+ (Wo, W, W’) or WO #+ Wy Cn} or (Wo, W/) # (W, W/) Cn} .
\é\'hge |t2 gecrec¥ IS measEJred |fn tgrmsloé the secrecy MeHfinition 6. A rate pair (Ro, R1) is achievable for secrecy
i(Cn) = Si(pw,zc,.- PWi Pz, ) for @ € [1.6]. metric S; with capacity-based wiretap codes if there exists

Definition 4. A rate pair (R, R;) is achievable for secrecy a sequence of2m%, 2mf1 ) capacity-based wiretap codes

metric S; over a broadcast channel if there exists a sequengéx}.>1 such that

of (2nfo 2nB1 n) codes{C,},>1 such that lim P*(C,) =0 and lim Si(Cp) = 0.
lim P.(C,) =0 and lim S;(C,) =0. e e _
n—00 n—00 The constraintlim,,_,» P¥(C,) = 0 ensures that, given

The secrecy-capacity regioR(. is the closure of the set of knowledge of Z and W;, the eavesdropper could reliably

rate pairs achievable for secrecy metii;, and the secrecy decode the auxiliary messad&’. Nevertheless, since the

capacity for secrecy metri§; is eavesdropper does not have access to the mesgagehis

property is solely used to impose structure on the code.

However, note that this also impodés.,, ., €,v/n = oo [30,

In the absence of a common message, = 0), a Theorem 49]. The denomination “capacity-based code” id use

broadcast channel with confidential messages is concisBgcause the set of codewords associated to a known pair of
called a wiretap channel, and (a, 2%, n) code is simply messagesWoy, W;) forms a sub-code of rat&;, = Ce — e,
denoted as g2"f',n) code. Note that our definition of awhich stems from a sequence of capacity-achieving codes for
wiretap code explicitly introduces the randomness usetien tEve’s channel.

encoding process. The randomness is split between a sourchs formalized in [31, Theorem 1], capacity-based wiretap
of local randomness and an auxiliary message with unifor¢@des are implicitly used in most works that show the existen
distribution that we require the legitimate receiver toatie. ©Of wiretap codes achieving secrecy rates for mefiic In

This allows us to distinguish the part of the randomness tH&is section, we show that this may be an intrinsic limitatio
merely acts as artificial random noise from the part that$elpy proving that sequences of random capacity-based wiretap
secrecy without reducing the reliable communication ratgéodes that achieve the weak secrecy capamatynotachieve
Since the source of local randomness can be arbitrarilyeshosthe strong secrecy capacity.

our definition incurs no loss of generality and allows us to Specifically, we consider a discrete memoryless wiretap
explicitly define the class ofapacity-based wiretap codés channel (X, Y, Wy z x, Z) without cost constraint¥fx &
Section V-A. X" ¢,(x) = n and P = 1) in which the eavesdropper’s

o . channel and the main channel are both symmBtviee further
Remark 1. Csisar and Komer [2] analyze the fundamental 5sme that the main channel is more capable than the

limits of secure communication more precisely by StUdy'%vesdropper’s channel and has capaGify < %log|X| bits.

the rate-equivocation regioiify, 121, R.), where Re < Ri The former assumption ensures that, without loss of optiypal
represents the equwocatlon-ra}ﬁ%l(WﬂZ) of the eavesdrop- \ye can assume no source of local randomn@@spr) is
per about the individual message. Unlike the rafes and

Ry, the notion of equivocation depends on the secrecy metriéMore specifically, we use Gallager's notion of symmefry [8294].

C% £ sup{R; : (0, R;)is achievable for secrecy metrf;}.
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available [2] and that the secrecy capacityis= C,,, — C.; i € [2,6] and is given by
the latter one is a technical assumption required to simplif
the analysis.

BCC —

(Ro, Rl) (S Ri :
L1
Ry < min | p-liminf —I(U;Y),
n

n—oo
> )

Proposition 2. Let {C,},>1 be a sequence of2"% n)

random capacity-based wiretap codes, obtained by gemeyati
codeword symbols independently and uniformly at random.
Let the rateR,, of the auxiliary message be such that =
C.—e¢, and R+ R/, = C,,, — €,,. Then, there exists, a > 0,

U

p-liminf 11(U; Z)

n—oo
such that, forn sufficiently large {UVX 0z €7 | .
; y large, Ry < p-liminf —1(V;Y|U)
n—oo N
— p-limsup11(V;Z|U
P[S2(Cr) >, PiH(C,) <€, and S4(Ch) < 3€),] n—ro00 ( 0
>1-— 2fomefl (5)
- ’ where

A

with €, £ max(e,, log| X279, n71), ie., with high —p 2 {{uVX} _, :V¥neN*U =V = X — YZ forms
probability over the random code ensemble, a sequence of a Ma/rkov chain andP’[lc (X) < P] _ 1}
capacity-based random codes achieves the weak secrecy ca- nn = '
pacity but does not achieve the strong secrecy capacity. Notice that the form of the secrecy-capacity region is
. the natural generalization of that obtained for memoryless
Proof: See Appendix B channels in [[2, Corollary 1]; however, the main channel
We conjecture that the inability to achieve strong secregyqtistics affect the secure rat®; through their “worst

holds for any capacity-based wiretap codes, and not jyglization” p-liminf17(V;Y|U) while the eavesdropper’s
random codes, as well as for any discrete memoryless cha

nnel n—00 . o -
and not just symmetric channels. Despite its lack of genqu_anneI lstatlst|cs affect _'t_ through_ their be?t rgalma‘tl
ality, Proposition[R shows that a random coding argumeﬂ'tliTiUPﬁl(V;zm)' Intuitively, as illustrated in Figurél4,
with capacity-based wiretap codes is not powerful enough tfvs occurs because the worst case for secure communication
prove strong secrecy results, which suggests exploitingi@mis when the main channel conveys the smallest information
powerful mechanism to ensure secrecy. In the remaindeeof tiate to the legitimate receiver while the eavesdroppeesobl
paper, we derive secrecy from channel resolvability andvshdeaks the largest information rate to the eavesdropper. It
that the resulting codes do not suffer from the limitatiofis ovill be apparent in the proof that this asymmetry, which
capacity-based wiretap codes. disappears in the case of memoryless channels, arisessgecau

) ) ) the coding mechanisms used to ensure reliability and sgcrec
Remark 2. If the main channel is noiseless and the eavegye (ifferent.

dropper’s channel is symmetric, a slight modification of the
proof of Propositiorl 2 shows that no capacity-based wiretap !imit distribution of 11(V: Z|U)

code (including non-random codes) achieves secrecy chpaci
Ry

for metrics Sy and S;. This fact was independently noted
p-liminf 17(V;Y|U) p-limsup 21(V: Y|U)

limit distribution of 11(V;Y[U)

in [B3] for metric S; using results for finite blocklength
channel coding([30]. Our approach builds on a similar result>iminf ;/(V:ZJU) - plimsup 5 1(V; Z]U)
established for secret-key agreement(in [34].

Fig. 4. lllustration of secure rates in Theor€in 2.

] ] . Proof of Theorerfi]2:We start with the achievability part
B. General Broad.cast Channels with Confidential Messaggg ihe proof, for which we create a codebook by combining
and Cost Constraint superposition coding and binning schemes. ket N* and
%’Y,RQ,Rl,R/ > 0. Define M, e |‘2nR0‘|, M, £ (Qan—l

In this section, we establish the secrecy-capacity regfon N (2an1' Let 2/ be an arbitrary alphabet and fix a

a general broadcast channel with confidential messages Jor bt - ditional distributi
secrecy metric§; with i € [2, 6]; the alphabets and transition X"Zm ;{Eionp ‘i] Ol? Z”ép .1F|x ;COQ ;'Ofal tStr'UUt)'g%"‘ZJ En
probabilities of the channgliVyz x }.>1 are arbitrary, so that x suc t. a [ﬁcﬁ( .).\ ]_. ._et i €
the model includes continuous channels and channels V\}iﬂ? random variables with joint distribution

memory. Following the conclusions drawn from Proposilibn 2 pyxvyz(u, x,y, z) £ Wyzx (v, z|x)px|u (x|u)pu (u). (6)
we analyze codes that are more powerful than capacity-based

wiretap codes and whose secrecy is tied to the notion of® Code gene_raﬂon: Randomly gengrateMo sequences
channel resolvability. u, € U™ with k € [1, M,] according topy. For each

k € [1,My], generateM; M’ sequencexy, € X"

Theorem 2. The secrecy-capacity region of a broadcast chan-
nel (X,y, {WYZ|X}@1,Z) with confidential messages and
cost constraintP is the same for all secrecy metri€s with

with (I,m) € [1, M;] x [1, M'] according topx|u—u,-
We denote byC,, the random variable representing the
generated code and g, one of its realizations.



BLOCH AND LANEMAN: STRONG SECRECY FROM CHANNEL RESOLVABILTY 9

« Encoding: To transmit a message pdk, 1) € [1, My] x  then,lim, . E[P.(C,)] < € andlim,,_,, E[S2(C},)] < e.
[1, M;], Alice generates an auxiliary message uni- By Markov’s inequality and the union bound, there exists at
formly at random in[1, M'] and sends the codewordleast one sequence ¢2"f 2nf1 n) codes{C,},>1 such

Xpim through the channel. thatlim,, .o P.(C,) < 3¢ andlim,,_,~ S2(C,,) < 3e. Sincee
o Bob’s decoding: Define the sets and~ can be chosen arbitrarily small, we conclude that
’Tl”é{(u,y)eunxy”: (Ro,Rl)ERz :
1 log Pyu(yw) > 1 log Mo + 7} 7 Ry < min ( p- liminf I(U;Y),
n O mn mn n

7' = {wxy) €U ><(’|‘ X>y : U p-liminf 17(U; Z)> . b CRre,

1 pY‘XU y X7 u 1 / {UX} cP n—oo

—log——————" > —logM M . nz1 1

n 8 pyju(yla) n o8 +7 < p-liminf —I(X;Y|U)

n—oo

Upon observingy, Bob decodeg as the received com- - p- Ilmsup%I(X; Z|U)
mon message ifi;, is the unique sequencedh, such that nreo @)

(ur,y) € T*; otherwise, a random message is chosen.
Similarly, he decodebas the received individual messagavhere
andm as the received auxiliary message if there exists .
a unique codeworcy;,,, such that(uy, Xgim,y) € T3 P ={UX},, : ¥n e N'U = X — YZ forms
otherwise, random messages are chosen. a Markov chain and®|[1¢,(X) < P|] =1}.

o Eve’s decoding:Define the set .
Finally, note that the source of local randomnéRspr) can

T3 2 {(uz) eU" x 2" be used to prefix an arbitrary chann@?, {px|v}n>1, X)

1 pziu(zju) _ 1 to the broadcast channé,P(,y, {WYZ|X}n>1aZS- That this

n log pz(2) z = log Mo+ - prefix is useful for secrecy applications is well establis[a.
Upon observings, Eve decoded as the received com- By applying the proof above to the concatenatgd channel

{V Y, {pyz|v}n>1, Z), we conclude that the region given

mon message ifu; is the unique sequence such tha
(ug,z) € 73; otherwise, a random message is chosen. In TheorenL? is included in the capacity regifyc..
Wk, Z ' 9 We now turn to the converse part of the proof. Consider a

The following lemmas, whose proofs are relegated to ARp . :
. ) > - 5 quence of codef’, },,>1 achieving the rate paifRo, R1)
pendix(Q, provide sufficient conditions to guarantee rélitgb for secrecy metri&s. Forn € N*, let U denote the choice of

and secrecy. a common message uniformly at random[in27#0] and let

Lemma 1 (Reliability conditions) W denote the choice of an individual message uniformly at
1 random in[1,2"%1]. Let’ Y andZ denote the channel outputs
If Ry < min (p-liminf —I(U;Y) — 27, corresponding to the transmission of the messagg paiW ).
novoo T ) As shown in AppendiXD, the following lemma holds.
P;'jfjigf -1(U2) ~ 27) Lemma 3. If lim,, 0 Pe(Cp) = 0 and lim,, 0 S¢(Cp) = 0,
then
and R, + R’ < p- I|m|nf I(X;Y|U) — 27, ] ]
n—oeo Ry < min (p—liminf —I1(U0;Y), p-liminf —1(U; Z))
thenlim,, o E[P.(C,)] < e. n—oo M n—o0 7;
Lemma 2 (Secrecy from channel resolvability condition) < Pp- ||T|nf I(W;Y|U) - p-IirﬂsupﬁI(W; Z|U).
If R > p-limsup— I(X Z|U) 4 2y Note that, by assumptiolJW — X — YZ forms a
n—oo Markov chain. DefineV £ (U, W), which is such that

then Tim E[Sy(Cn)] <€ UV — X — YZ forms a Markov chain. With probability
Combining Lemmdll and Lemnfia 2, we obtain that if "€ W€ have
1 I(W;Y|U) =1(V;Y|U) and I(W;Z|U)=1(V;Z[U);
Ry < min (p-liminf —I(U;Y) — 2y

n—oo T therefore, an achievable pdiR,, R1) must satisfy
,Ilmlnf U;Z) -2 1 S
pn%oo n K ) 7) Ry < min (p—hmmf —I1(U0;Y), p-liminf —1(U; Z)) ,
n—oo I n—soo N
andR, < pI|m|nf 1(X; Y|U) and R; < pllmlnf I(V;Y|U) — p-limsup— I( ;Z|U0),

n—roo n—roo
n—oo

— p-limsup— I(X Z|U) — 4y whereU — V — X — YZ forms a Markov chainyy zx =
n—o0 Wyzx, andP [L1¢, (X) < P] = 1. Taking the union over all
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possible process6dJVX},,>; gives the desired outer boundwhere
for the secrecy-capacity regidR!)

BCC*

Since the outer bound foR¢). and the inner bound for P = {{VX},, :¥n € N,V = X — YZ forms
R&). match, we conclude using Proposit[dn 1 that the secrecy- a Markov chain and? [Lc,(X) < P] =1} .

capacity region is the same for all metrics [2, 6]. [ |
A few comments regarding Theoreld 2 are now in or-

1

der. First, the achievability part of the proof is based o Memoryless Broadcast Channels with Additive Cost Con-

an explicit operational interpretation of secrecy in terafs straint

channel resolvability; in Lemmi 2, codes are constructed soWe now consider memoryless channels (not necessarily
that, for a given messagd/, and taking the average overdiscrete) with an additive cost constraint. This is a specia
the random codebook selection, the probability distrdouti case of the general model, in which the transition probizdsli
induced at the eavesdropper’s channel output by all messatgetor as

Wi is asymptotically the same in the sense of variational n

distance. Second, the existence of a sequence of codes simul Wz x (v, z/x) = H Wy z1x (Y3, zilzi)

taneously satisfying the reliability and secrecy condisias =1

obtained by handling the constraints separately, as riltet . g

by the segarate regults of Lemrha 1 F;nd Lgnﬁla 2. TaRd the cost constraint Sat'sﬂe%(x) = 2o clay) for
contrasts with the approach dfl [1]][2], in which the tweome cost functior: : X — R*. For t_hls spe_C|_aI class of
constraints are handled somewhat simultaneously by usﬁ_%anne_ls and constraints, and under m".d conditions, thltre
capacity-based wiretap codes. As should be clear from g>eCtiorlV-B extends to metrig;. For discrete memoryless

condition R’ > p-limsup 2 I(X: Z[U) obtained in Lemmal2, f:hannels With(_)ut cost consf[raint, this reSl_JIt was thained
P n—o0 Pl U) ) . al independently in[[35],[[36] using secure multiplex codingla
the_ codes const_rL_Jcted are not capaC|ty—pgsed wiretap ’dwesprivacy amplification.
which the condition would read’ < p-liminf 17(X; Z|U);
. . n—00 . Theorem 3. The secrecy-capacity region of a memoryless
essentially, channel resolvability enables the analysodes broadcast channe()(, Y, Wy z1x. Z) with confidential mes-

operating at rates beyond the capacity of the eavesdrapper o :
channel. Finally, we note that, as in Sectiad IV, the secre Sages and additive cost constraifitis the same for all secrecy

C . o o
capacity region is invariant with respect to the metris |¥1etr|csSZ— with i € [2, 4] and is given by

for i € [2,6]; nevertheless, practical coding schemes should (Ro, R1) € R :
be designed to provide secrecy with respect to the strongest, . — U Ry < min ((U;Y),(U; Z)) , (9)
metric. (UVX)eP Ry < I[(V; Y|U) — (V; Z|U)

Remark 3. If the eavesdropper's channel is exponentiallwhere
information stable, so that
PL{UVX):U—-V =X —YZ forms a

Puxz lI(X; Z|U) > 1 log M’ + ¢ Markov chain andE[c(X)] < P}.
n n
If the rates on the boundary d®... are obtained for some
decays exponentially fast with for any ¢ > 0, then a random variablesUV XY Z such that the integrals defining
closer look at the proof of Theorel 2 shows ’tPSa(C ) the moment generating functions@#’; Z|U) and ¢(X) con-
0 verge uniformly in a neighborhood 6fand are differentiable

and consequentl$; (C,,), would also decay exponentially fast . : . .
with n. We do not explore this issue further for arbitraryalt 0, thenRqc. is also the secrecy-capacity region for metric
channels but we analyze it more precisely in the next sectigh'

for memoryless channels. Proof: See AppendiXE. [ |
) B L The conditions that yieldRg.. for metric S; are suffi-
.V\./||thout athcommon messagtdz((f_ 0), wel Opt"’t'n 'nhg cient conditions required to obtain exponential upper fisun
SITIt?Ir' Vr:aﬁ bel_siecre%cgp_?ﬁlyo asgenera wiretap chaniig, e, applying Chernov bounds. These conditions are not
established by HayasHil[6, Theorem 5]. too restrictive and are automatically satisfied for diseret

Corollary 1. The secrecy capacity of a wiretap channelemoryless channels and for Gaussian channels with aelditiv
(X, Y, {Wyzx}n>1,Z) with cost constraintP is identical POWer constraint. Improved exponents can be obtained in suc

for secrecy metric§; with i € [2,6] and is given by cases using techniques asinl[37].
In the absence of a common messéagg = 0), we obtain in

a similar way the following result, which was already ob&ain
Cy=  sup <p-|iminf lI(V;Y) for discrete memoryless channels by Csiszar [5] and Maurer

a {(VX},51€P \ n—oo N and Wolf [16] with different techniques.

—p-IimsuplI(V; Z)> , (8) Corollary 2. The secrecy capacity of a memoryless wiretap
channel()(, YV, Wy zix, Z) with additive cost constrain® is

n—oo N
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the same for all secrecy metri€s with i € [2,4] and is given where the maximization is over all power allocation funato

by v : C? — R* such thatE[y(H,,, H.)] < P.
Cs= sup (I(V;Y)-1(V;Z2)), Sketch of proof: We only sketch the achievability part
(VX)eP of the proof; the converse for secrecy meficis established
where in [12]. Because the channel gains are instantaneously know

PL{(VX):V — X — YZ forms a Markov chain to all pgmes, the ergodlc wireless chan_nel can be demulti-
plexed into a set of independent Gaussian wiretap channels,
andE[c(X)] < P}. each characterized by a specific realizatién,, h.) of the
If the random variablesV’ XY Z maximizingC, are such channel gains and subject to a power constraifit,,, hc).
that the integrals defining the moment generating functiobpon substitutingV” = 0 and X' ~ N(0,7(hm, he)) in
of I(V; Z) and ¢(X) converge uniformly in a neighborhoodCorollaryI], we obtain the following achievable rate for net
of 0 and are differentiable a0, thenC, is also the secrecy S1 and for each channel:

capacity for metricS;.

pacly 1 S LY TN O S| (e
For general memoryless channels, the converse part log o2, & 2 ‘

Theoren{ B and Corollafy 2 follows from standard arguments _ -

with metricS, [2]; however, for discrete memoryless channel$jence, using the ergodicity of the channel, we conclude that

the converse is obtained by specializing Theotém 2 and hoklkthe ratesiz > 0 such that

for metric Sg. )
Hm HmaHe
log <1 L Ha A >>

€

Remark 4. In the proof of Theoreni]3, we can actually R<m$x]E

2
establish a stronger result than the one stated. If the dah Tim

for the moment generating functions &fV; Z|U) and ¢(X) |He|* ~(H,,, H)
are satisfied, we can show th&t(C,,) vanishes exponentially —log {1+ o2
fast withn. ‘

are achievable for metri§,, wherey : C?> — R* satisfies
E[y(Hp, H,) < PJ. u

In this section, we illustrate the usefulness of deriving The result of Propositiofil3 has already been established
secrecy from channel resolvability by considering severg| [2g] with a completely different approach; deriving secy
problems in which the derivation of achievable secrecysratgom channel resolvability and leveraging Corollaty 2 fidms
is tremendously simplified. In particular, results for &5 a much simpler and direct proof, which can be generalized to

channels, mixed wiretap channels and compound wiretgR|ude the effect of imperfect CSI[38]. [39].
channels come almost “for free”. For simplicity, we only

consider cases in which the common message rate is zero ) _
(Ro = 0). B. Mixed and Compound Channels with receiver CSI

VI. APPLICATIONS

o ) As another application, we study mixed and compound
A. Ergodic Wireless Channels with Full CSI wiretap channels with receiver CSI. These models have prac-
We consider the situation in which Alice and Bob commutical relevance since they allow one to analyze situations i
nicate over an ergodic-fading wiretap channel and havesacce/hich the channel is imperfectly known to the transmittér, e
to the instantaneous fading gains for both the main chamel aher because the channel estimation mechanism is imperfect
the eavesdropper’s channel. Specifically, at each #nme1, because the channelis partially controlled by the eavegdo
the relationships between input and outputs are given by Let K € N* and let {ak}ke[[l.K]} be such thatvk e
Yie = Him 6 Xk + Noies [1,K] ar > 0 and ZkK:lak = 1. Consider the wiretap
7 ' channels(X, Y, {Wy, z,x } Z) for k € [1,K]. The
Z = H X N ) A 3 ) k kIX 217 )
F ekt e’k’. . mixed wiretap channeis the channel(X, Y, Wyzx, Z)
where {H,, 1 }x>1, {Hex}r>1 are fading gains known to whose transition probabilities satisfy
all parties and{N,, x}x>1, {Ner}tr>1 are ii.d. complex
Gaussian zero-mean noise processes with respective arian -
02, ando2. In addition, the channel inputs are subject to the W zx(y, 2x) = ;akWYka‘X(y’Z|X)'
long-term power constraint > | E[X?] < P. =1

K

. ) o Proposition 4. The secrecy capacity of the mixed wiretap
Proposition 3. The secrecy capacity of the ergodic Wirelesg,,nne| with power constrain is the same for all secrecy

channel with full CSI for secrecy metr&; is metricsS; with i € [2,6] and is given by

_ | Hyn|* 7 (o, He) :
Cs = mvaXE [log (1 + 02 sup ( min _p-liminf —7(V;Y})
" {V.X},5,€P \FEILK] nooo M

|He|27(HmaHe) 1
—log [ 1+ = el )| (10) _ i 2Iv
( o2 kgﬁ%}(q]pl!rﬂiuf)nl(vvzk) , (11)
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where « Code generation:Randomly generaté/,; M’ sequences

N i Xim € X™ with (I,m) € [1, M;] x [1, M'] according

P={{VX}, 5, :Vne N, Vk € [LK], V= X = Y Z to px. We denote byC,, the random random variable
forms a Markov chain an@®[1c,(X) < P] =1}. representing the generated code anddpyone of its

Proof: Using [10, Lemma 1.4.2], we obtain realizations. _ .
« Encoding: To transmit a message € [1,M;], Alice
p-liminf lI(V;Y) = min <p-|iminf lI(VQYk)> generates an auxiliary messageuniformly at random
oo M REILKT\ oo T in [1, M'] and transmits the codeword,, through the
channel.

p-IimsuplI(V; Z) = max <p-|imsuplI(V; Zk)>.
n n

n—00 ke[[vi]] n—00

« Bob’s decoding for channelk € [1, K]: Define the set
The result follows by substituting these equalities in Goro T2 {(x,y) € X" x VI

lary . [

1 W- 1
Note that fori € [1,2], we haveS;(pyz.pwpz) < —1ogM > —1ogM1M’+~y}.
S axSi(pwz, . pwpz, ). Therefore, a code ensuring se- " PY(y) "

crecy for the mixed wiretap channel may not guarantee sgcrec  Note that the decoding rule depends on the channel index
over each individual wiretap channel. If one wants to ensure k since we have assumed that Bob knows which channel
secrecy over all possibl& channels, one must consider a  is being observed. Upon observigg, Bob decodes as
compound wiretap channein which the transmitter has no the received individual message andas the received
knowledge (even statistical knowledge) of which channel in  auxiliary message if there exists a unique codeweqrg

the set is used for transmission; however, to avoid unnaggss  such that(x;,,,yx) € 7,"; otherwise, a random message
mathematical complications, we assume that receivers can is chosen.

estimate channel statistics perfectly and always know froTihe following lemmas provide sufficient conditions to guar-
which channel they obtain observations; hence, we refdtiso tantee reliability and secrecy. Their proofs are similarhtose
model as a compound channel with receiver CSI. For evesyovided in AppendiX_C and are omitted.

channelt € [1, K], the performance of a codk, is measured
in terms of the average probability of err®”(C,,) and in
terms of the secrecy metri&”(C,.) £ S;(pwz,, pwpz, ); the
notion of achievable rate is accordingly modified as follows

Lemma 4 (Reliability conditions) For eachk € [1, K],

o1
If Ry + R < p-liminf —I(X;Y}) — 2y
n—oo N
Definition 7. A rate R is achievable over a compound wiretap then lim E[P{(Cy)] <e.

n—oo
channel with receiver CSI for secrecy metSicif there exists . .
a sequence of2", 1) wiretap codes{Cy},>1 such that Lemma 5 (Secrecy from channel resolvability conditiorijor

eachk € [1, K],
Vk € [1,K] lim PP(C,) =0 and lim S{(C,)=0.
n—oo n—o0o

1
If R > p-limsup—I1(X;Z 2v then lim E[S$(C,,)] <e.
Unlike the mixed wiretap channel, there is no distribution P n—o0 pn ( k)2 novoo IS7(Cl < €

associated to the choice of the channel in the set, and secreqsing Lemmag4 and 5, we obtain that if
and reliability must be guaranteed for any realized channel

. o1
Proposition 5. The secrecy capacity of a compound wiretap 1 < kelfl[f[lllr}{]] p-liminf EI(X;YIC)
channel with receiver CSI and with cost constraitis the e

. . o |
same for all secrecy metri& with i € [2,6] and is given by — max_p-liminf —I(X;Z) — 4y
keﬂl,Kﬂ n—oo N
. .1 li EP®(C.)] <
su min _p-liminf —I(V;Y imp 00 E[PE(Ch)] < €
{Vyx}yilep <ke[[1,K]]p7Hoo n ( ) thenvk € [1, K] { lim;, 00 E[SY(Cr)] < €
. 1 ' Using Markov’s inequality and the union bound, we can
T el P ETEOUpﬁI(V’ Z’“)) (12 show there exists at least one sequencg0f', n) codes
where {Cpn}n>1 such that

P2{{VX},s, VneN, Vke[LK],V—=X—Y;2Z, VYkellLE] lim FO(Co) < (K +1)e
forms a Markov chain an@®[1c,(X) < P] =1}. and lim S$(C,) < (K + 1)e.

n—roo
Proof: We start with the achievability part of the proof,since i is fixed ande, v can be chosen arbitrarily small, we
which is similar to that of Theorerh] 2. Let € N* and ¢onclude that all rate®; such that
€,7,Ri, R > 0. Define M, 2 [2"%1] and M’ £ [27F'].
Fix a distributionpx on X" such that?[1¢,(X) < P] = 1. <R < swp < min _p-liminf lI(X~Yk)
Let X, {Yi}rep k], {Zr}reqi,x) be the random variables h (X} oo €P \FEILK] nosoo 7 ’
with joint distribution

1
— -limsup—I1(X;Z 13
Vk € [1, K] pxv,z.(X,y,2) & Wy, 7z, x (¥, zx)px (x) . kg[l%i((]] P n—oo P ( k)) (13)
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{ Bos;
|

are achievable, where

P L {Xntnz1 : P[Eea(X) < P] =1}, | ‘

>
=
Q
=

The achievability of the rates below the secrecy capaCity T >

. . . . : ; . . Eve!
in (I2) is then obtained by introducing a prefix channel as in - .
the proof of Theorerfil2. 4 _ 1

We now turn to the converse part of the proof. Consider public authenticated channel

a sequence of wiretap cod¢s,, },>1 achieving rateR; for
secrecy metricSg. Forn € N*, let V denote the choice of
a message uniformly at random _ﬁrl,Q"Jfl]}. By definition,
for everyn € N* and kle [1,K], V.= X = Y)Z, forms - proposition[®, for which we establish secrecy for mefic
a Markov chain and®[1¢(X) < P}_: 1. By the Verd-Han e can show that, for each e [1, K], SO < (K + 1)2-n
Lemma [26, Theorem 4], we obtain for somee;, > 0. Therefore, Propositiof]6 also holds if the

. PP R number of compound channels grows exponentially wits

Ry < -liminf —I(V;Y}g). 14 . .
'S kel P ( ) 19k = 25 with B < mingep k7 €k

Fig. 5. Secret-key agreement from general source.

By definition of the metricSg, we also have
1 C. Secret-Key Agreement from General Sources.

releK D-ETEOUDEI(V;Z;C) =0. (15)  As a last application, we exploit a connection between

] ’ o secret-key agreement and wiretap coding to analyze the
Subtracting [(15) to[(14), and maximizing over all processgsngamental limits of secret-key agreement for a general
{VX}, we obtain the desired result. B source model. Specifically, we consider discrete source

Although the secrecy capacity of a compound wiret .V, Z, {pxvz},~,) With three components taking values

channel with receiver CSI is identical to that of a mixeg, giscrete alphabne/ts. As illustrated in Figlite 5, Alice &ub
wiretap channel, the coding schemes achieving it may B&empt to distill a secret key from their correlated obations

fundamentally different. X andY, respectively, and a message transmitted by Alice

Proposition 6. Given a memoryless compound wiretap charfver public authenticated channel with unlimited capaditye

nel with receiver CSI and additive cost constraitall rates key should remain secret from an eavesdropper who observes
R; such that Z and the public message.

Definition 8. A (2"% n) key-distillation strategys,, consists
of:
(16) « a key alphabefC = [1,2"%];
« an alphabetA used by Alice to communicate over the
public channel;
PLLVX: Vke[l,K],V — X — YiZ forms « a source of local randomness for AImﬁRX,pRX.);
) « a source of local randomness for BORy, pr, );
a Markov chain and[¢(X)] < P} . « an encoding functiorf : X" x Ry — A;

If the random variables maximizin8) are such that, for ~* & key-distillation functions, : X" x Rx — K;
all k € [1, K], the integrals defining the moment generating * & key-distillation functions;, : Y™ x A x Ry — K;
functions of I(V;Y%) and c(X) converge uniformly in @  The random variables corresponding to the public mes-
neighborhood of) and are differentiable a0, then the rates sage, Alice’s key, and Bob's key are denoted Ay K, and
are also achievable for metrig; . K, respectively. The performance of a secret-key distilati

Proof: The proof of Propositiofi]6 follows from Stepsstrategysn is measured in }erms of the average probability
similar to those used in the proof of Propositith 5 an@f error P.(S,) = P[K o K‘Sn] the secrecy of the key
Theoren{ B and is omitted. B S(S,) 2 Si(przals, PKr|s.Pzals,) Tor i € [1,6], and the

If the receivers do not know which channel they observgniformity of the keylU(S,,) £ log[2"?] — H(K).

the counterpart of Proposition 6 was independently derived _ )
in [40]. Note that deriving secrecy from channel resolvigpil Definition 9. A key rateR is achievable for secrecy metii
circumvents the enhancement argument usedin [41, Theor@ha source if there exists a sequenf, },,>1 of (2%, n)
1], which is required to show achievability using capacity<€y-distillation strategies such that
based wiretap codes. Similarly, when applied to Gaussiem co  1;, p,(5,) =0, lim S;(S,) =0, lim U(S,) = 0.
pound wiretap channels with power constraint, Propos[@on 7o n—roo n—+oo
strengthend [42, Theorem 1] with receiver CSI. The forward secret-key capacitg'l

i)

SK
Remark 5. The general result of Propositiénd 5 holds provideél(:hlevable key rates for metri;.
the number of channel& is fixed and independent of theProposition 7. The forward secret-key capacity of a discrete
numbern of channel uses; nevertheless, in the special casesufurce(X'’, Y, Z, {pxyz}@l) for secrecy metric§; with i €

0< Ry < sup ( min I(V;Y}) — max ]I(V;Zk))
(VX)eP \K€[L,K] ke[1,K]

are achievable for secrecy metri€s with i € [2, 6], where

is the supremum of
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[2,6] satisfies Combining [I8) and[{19), we conclude that any r&esuch
) . that
p-liminf — H(X|Z) — p-limsup—H (X|Y) < C{
n

n—oo N n—00

R < p-liminf lH(X|Z) - p-Iimsule(X|Y)
n n

< min (p'“f_t““f ~I(XY), p-Ianlnf EI(X;Y|Z)) - (17) is an achievable rate for the conceptual wiretap channel.
) o ) Since this channel allows one to transmit uniformly disttéad
I the discrete source is i.i.d., Proposition 7 holds forseg  messages? is also an achievable secret-key rate for the source

metricS,, as already known fronm [5][16]. model. For i.i.d. discrete sources, a similar proof based on
Corollary 3. The secret-key capacity of an i.i.d discrete sourdgorollary 2 in place of Corollary]1 shows that the result
(X,Y, Z,pxvz) for secrecy metri, satisfies holds for metricS; as well. The proof of the converse is an
information-spectrum version of the converse [in|[14] and is
max (I(X;Y) - I(X;2),[(X;Y) - 1(Y; Z)) omitted for brevity. ]
< C9 < min (I(X;Y),[(X,Y]2)) In Propositiori V7, achievable key rates are expressed irsterm
X SK X bl ) ) M

of conditional entropy; except in some special cases, such
Proof of Theorenl]7 and Corollafyl 3The achievability as i.i.d. sources, this is rather different from the acHiwa

part of Theorenl7 is based on the construction of a conceptsatrecy rates for wiretap channels in Corollaly 1, which are
wiretap channel as in [13]. Assume that Alice, Bob and Evexpressed in terms of mutual information. In particular, if
observen realizationsX, Y andZ of the source, respectively. p-liminf %H(X) = p-Iimsup%H(X), then,
Consider an arbitrary proceqdU},,>; such thatU € X™. n—reo nreo
Assume that Alice forms the signdl © X on the public 1 _ 1
channel, in which@® denotes the symbol-wise moduft- p'“T'”f EH(X|Z)—p-I|TsupﬁH(X|Y)
addition. This operation creates a conceptual wiretap roblan e 1" OO 1
with input U, in which Bob observes the outpu® and > p-liminf —I(X;Y) — p-limsup—I1(X; Z).
U @ X while Eve observes the outpufsand U & X. From oo M nooe N

Corollary[1, the secrecy capacity of this conceptual channghis distinction suggests that the coding mechanism faesec
for secrecy metric§; with i € [2,6] is at least key distillation, which one would have to exploit to design

secret-key distillation strategies without relying on tids-
tence of wiretap codes, is not linked to channel resolvgbili
indeed, the first author has argued in a previous work that
_ 1 secret-key distillation is more easily understood in temhs
—p-I|msupEI(U;Z,U69X)) : channel intrinsic randomnes], [24] and privacy amplifi-
n—oo . .
cation [17], [37]. In that respect, the proof of Propositidn

In particular, we can choose fd# an i.i.d. process such that,proyides limited insight into the design of practical sedrey
for all j € N*, U; is independent oXYZ and uniformly gistjllation strategies.

distributed inX’. Then, with probability one,

sup (p-liminf lI(U; Y, U@ X)

18] n—oo N

Uae X, YU VIlI. CONCLUSION
I(U;Y,U® X) = log pU@X,Y|U( |U) o
ruex,y(Ue X,Y) We have analyzed several models of secure communication
_q pxyu(X[YU) pyu(Y|U) by building upon the work of Csiszar]|[5] and HayasHi [6] and
=08 puexy (U e X|Y)py(Y) by exploiting the idea that the coding mechanism to ensure
1 secrecy can be tied to channel resolvability. This approach
= log px v (X[Y) — log T has allowed us to establish several results for generic-chan

_ _ nels and for stronger secrecy metrics than the usual average
where the last inequality follows fromyu (Y |U) = py(Y), mutual information rate between messages and eavesdi®pper

pxyu(X[YU) = pxy(X[Y) since U is independent gpservations.
of XY and puexy(U®X[|Y) = m by the crypto  From a technical point of view, deriving secrecy from
lemma [9]. Therefore, channel resolvability provides a conceptually simple apph
1 to analyze the secure achievable rates of many models. Al-
p-liminf EI(U;Y, U o X) though we have limited applications to mixed, compound, and
n—oo

1 wireless channels, the connection between secrecy andehan
= log |X| — p-limsup—H(X|Y). (18) resolvability is useful in many other settings. Examples of
n

nreo secure communication models for which deriving secrecyfro
Similarly, one obtains channel resolvability simplifies the analysis include dogu
channels[[43], wireless channels with imperfect statermts
p-Iimsup%I(U; Z,UaX) tion [38], [39], runlength-limited channels[44], and tway
n—oo

wiretap channels [45].
= log |X| — p-liminf lH(X|Z). (199 Froma practical perspective, we believe that the.z.connec-
n—oo M tion between strong secrecy and channel resolvability ®pen
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intriguing perspectives for code design. In particular,vase Lemma 9. Consider M,, £ 2"% codewords of length,

provided evidence that this connection circumvents a wesd&n obtained by generating codeword symbols independently and

of capacity-based wiretap codes, which cannot always eehieiniformly at random inX. If R < %log|X|, there exists

the strong secrecy capacity. This observation is congistery > 0 such that the probability that alM,, codewords are

with practical code constructions achieving strong secredistinct satisfies

rates [33], [46] and other approaches based on privacy am- o .

plification [16], [29], [35]. P[all M, codewords are distinft> 1 — 2~ 0™,

insct):r:céestur:(tas c%?j?ngemiétﬁ:rigislnfo?e\slzz:?lec(i;r%(;gcs)gﬁiegoir Proof: The proof follows from the same technique as
. . ; in'[48, Lemma 6], which we recall for convenience. Note that,

Section IV for Shannon’s cipher system and in Secfiidn V for T@ ]

wiretap channels can be combined without much difficulty P (all M, codewords are distingt

using a coding scheme similar to that proposed [in| [47]. " Mo Mo

One could also further investigate the nature of the coding _ 1”—[ |xX|" =i _ 1”—[ 1_ {

mechanisms for secrecy in secret-key agreement modelse Som |X|" |x|"

. . . =0
results along these lines are already available, for igstan

i=0

in [5], [24], [34]. Sinceln(1 —z) > =% for z € [0, 1), we have
APPENDIXA PP (all M,, codewords are distingt
SUPPORTINGLEMMAS Mp—1 ;
Lemma 6 (Chernov bound)Let X be a real-valued random 2 exp <— Z W)
1=0

variable with moment generating functiafy : R — R :
s+ E[eX]. Let{X;}7, be iid. with distributionpx. If the > exp <_ (M, — 1) (M — 1)) '
integral defininggx converges uniformly in a neighborhood |X[" = (M, — 1)

of 0 and is differentiable a6 then,Ve > 0 Ja,. > 0 such that Sincee—=

> 1 — z, we obtain

1 - —eN
P lg > Xi>E[X]+e| <27 PP (all M,, codewords are distingt
. i:1 . .. . (Mn — 1)2 Mﬁ
Lemma 7 (Basic properties of variational distanceé)et X1, >1- m 21— m
X5, and X5 be random variables defined on the same alphabet " "
X. Then, SubstitutingM,, = 2%, we obtain
(levaa) (leapX2) + (szvaa)v P (a” Mn codewords are dlStln):E 1 - =,
and V(px,;px,) < V(px,px53Px5 ;) | X" —2n
=Ex, [V(pXusz\Xa)] which goes tol asn goes to infinity provided? < 1 log | X|.
Lemma 8 (Data-processing inequality for variational dis- u

tance) Let X, and X, be random variables defined on thq emma 10. There existsy; > 0, such that, forn sufficiently
same alphabet’. LetVz x be the transition probability from |5ge,

X to Z and define the random variablég and Z, such that

]P)[]P):(Cn) < € and 84(011) < 36’/n.] > 1 _ 2-(!177,6i7

/
n

V(z,z) € Zx X pzx,(2,2) = Wz x(z|lr)px, (v)

1 —Q ’n.52 —
and pz, x, (2, ) = W x (2[)px, (@). with ¢/, £ max(e,, log |X'| 271" n=1),

Then,V(pz,,pz,) < V(px,,px,)- Proof: The Exstence of a > 0 such that
]P’{IP’;(Cn) < 270 | > 1-27 %174 follows from a standard
APPENDIX B random coding2argument. Consider a codg such that

PROOF OFPROPOSITIONZ] P*(C,) < 27", Then, forn large enough,

Let C,, be the random variable that denotes a randomly gen- S4(Cp) = lH(W .7)
erated capacity-based wiretap code, whose codeword sgmbol A/ = T b g . .
are generated i.i.d. according to the uniform distributign = EH(Wlw §Z) - HH(W §Z|W1)
Let pz be the output distribution of the eavesdropper’s channel @ e 5 1 , 1 P
corresponding to the input of, i.e. i (X3 Z) — SH(W' W) + SH(W' WA Z)
b
1 < e e tn /]P)* n 1
Vze Z, pz(z) = Y Wyx(zle) 5 Ce = (Ce —en) + R'PL(Cy) + 5
TEX %] < 3e,

Let pz be the distribution ofn i.i.d. random variables dis- where(a) follows becauséV; W’ — X — Z forms a Markov
tributed according tgz. The proof of the proposition relies j5in and(b) follows from Fano’s inequality. -

on the following lemmas.
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Lemma 11. There existss,as > 0, such that, forn large We analyzePx;[Q;'] andPxz[Q,,] by introducing the sets

enough W,
AL £ {(x,z) €Cpx 2™ 1ogM
pz(z)

P[V(pgz,pz) <27°" > 1 —27%m,
| ] < +26v/n+n(Ce —€,)}
Proof: This result follows from [[1D, Theorem 6.3.1] B2 () ey x 2 log pz(2)
by remarking that memoryless channels are exponentially n ’ " : pz(2)
information stable or, alternatively, frorh [49, Lemma 19k p2(2)
Forn € N*, letC,, denote a randomly generated code sucR"d Dn {(x, 2) € C, x 2" : log 2 2(2) > b\/_}

that all codewords are distinct and

Using the law of total probability and the fact thaxt N
andV(pz,pz) <27°". (20) B. C A, we now upper bounéx;[Q;"] as follows.

For n large enough, Lemmi 9, Lemnial 10, and Lenimh 11 Pxz[Qn] = Pxz[Qn N Bu] +Pxz[Q) N 5]
guarantee that this occurs with probability at lehst2—n<. < Pxz [Ar] +Pxz(B). (22)
for somea < «; andn large enough. With a slight abuseWe first establish a bound dpg[B].

of notation, we also let,, ¢ X™ denote the codebook and

let f,7! : C,, — M; be the restriction toM; of the inverse P |BS] = b\/_ Z by pz(2) 1 {log pz(2) > b\/ﬁ}

PX(Cn) < €, Sa(Cp) < 3€,

n’

mapping of f,,, which is well defined since codewords are o=t} pz(z)
distinct. Let us introduce the functiors, and,, as 5(2)
b\/— > pala)los s
bn Cr — My i x = (%) vezn Pz
and 1, :Z" x My = Cyp, : (z,m) = fn(m, hp(z,m)). b\/— D(pz||pz)- (23)

The functionsg,, and),, define the encoder and _decoder
a source code for the compression of the souXces C,
(the choice of codewords uniformly at random in the code
with Z as correlated side information at the receiver, who

bzllp bz
probability of decoding error i®%(C,,). We now leverage the%( Ipz) Z 2

O\fNe defineuz £ min,cz. pz(2)>0Pz(2) and we upper bound
e divergence as follows.

1
pz(z)

zEZ"
results obtained by Hayashi [50] and generalized by Watan- _ 1
abeet al. [34] that establish a tradeoff between probability and =H(Z) - H(Z) + Z (pz(z) — pz(z))log pp
error and resolvability for source coding of arbitrary smms. zE€Z" )
Combining [34, Theorem 10] and the proof bf [34, Theorem < [H(Z) — H(Z)| + nV(pz, pz) log —
11], we obtain¥b > 0, Vn € N* Kz
(a) |1Z]" 1
< V(pz, log —— V(pz, log —
BC) +52(Ca) > 1 (27 £ ByglA). (@) 0202108 50, gy TV PR 08
(b) 1
with < <1og |Z] + 8 +log u_> n2=" (24)
Z
N Lo 27V 20V where(a) follows from [@ Lemma 2.7] an¢b) follows from
An =4 (%,2) €Cn x 27 vl <pxjz(xlz) < M the fact thatr — «log 21 is monotonously increasing far

small enough.
Note that |M'| = 27(Ce=<) and pg (X) = o |1|M’|' To upper b(_)und]P’XZ[A_j{], recall that the_ eavesdropf
! per's channel is symmetric; hence, there exists a partition
{Zi}iep kg Of Z such that:
—by/n obyn 1) Vz, & € X, there exists a permutation.;z : Z — Z that
PxzlAn] = Pxz |M| <pxz(X|Z) < | satisfies

Therefore, by Bayes'’s rule

3

1

_po |2 W (Z|X) % (X) - 20V Vi € [1, k] mez(Zi) = Zi
= Pxz |M | Z) My Vz € Z Wyx (2|z) = Wy x (ms(2)|)
= PXZ[Q } sz[97]7 2) The output distributiorpz correponding to a uniform

input distribution is locally uniform, i.e.

Vie [1,k] ,\Vz,2' € 2 pz(z) = pz(2).

where we have defined

w.

w Consequently, upon defining, £ 2by/n + n(C. — ¢,) and
bz\z for any z € X, we can rewriteP¢z[.A;"] as shown on top of

< 20V +n(Ce — En)} : the next page, wheré:) follows because the eavesdropper’s

Q,jf = {(x,z) €Cp x Z" :log
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[A+ = Z Z Wzx (z]x)1 {logw < bn}

xEC, | "| zEZ™ pz(z)
" WZ|X(21|:E1)
w zi|zi log ——""" <b,
S e P (H 2l ) {Z P2 (=)
@ 1 = WZIX(W:E w(ZZ)kE)
= I w 77-171 Zz x 1 ! < by,
x; C ZGZZ" (H o | ) {; pZ(ﬂ-m m(zz))
® ! - Z\X Zz|$)
R (HW z1x W) {Zl <bn
xeChp zcZn \i1=1
c Zi|%
© P[ log 21X - 17) < bnl
i=1 pZ( 1)
channel is symmetrigpp) follows because the functions,,z Combining equationg (22)-(P8), we obtain

are permutations, an@) follows by defining the i.i.d. random

variablesZ; as the eavesdropper’s channel output when tfle [A,] = Pgz [Qﬂ _ PXZ[Q_]

channel input is the symbal. Note that the random variables " "
1

2b Vren
log Waix (Zi%) are also iid., with mean’. since the channel < = [T T e Fdeas 2 p
. PZ(Zi,)_ f . = 2 2b _ \/ne \/ﬁ 0'3
is symmetric, variances > 0, and third momenip < oc; e
1
therefore, % <10g |Z| + B + log u_) 9=hn | 9=bvn
1 < WZ\X(Zi|5E) 4b 2
sz[A:] =P |— log——= — C, < cr
Vno ; pz(Z;) S \/ﬁ o3
1
< % ﬁe"]. +£ (log|Z|+B+1og—> 9= An 4 9=tV
o o b Wz

From the Berry-Esseen Theorem|[51], there exists a universa (29)

constantc > 0 such that

2 e Combining [29) with [(21), and using the assumption

) lim,, o P%(C,) = 0 from (20), we have
Pgz[A1] < / vde 4+ ——L . (25) oo te
! Vo \/_ - 4b
Similarly, using the law of total probability, the fact that Vb>0 lim So(C,) > 1— ——.
A-ND, C Q, ND,, and the inclusion-exclusion principle, noree ov2m
we lower boundPx[Q. | as follows.
xz[2] Therefore, there exists > 0 such that, forn large enough,
Pxz[9n] =Pxz[Q, NDy] + Pxz[Q, ND%] S2(C,) = 7n. Notice that Propositiofil1 immediately implies
> Pxy [A’ N Dn} that there existg* > 0 such thaflim,, -, S1(C,) > n*.
=Pxz[A, | + Pxz[Dnl [A, UD,]
> Pxz[A,] +Pxz[Da] — 1
_ c APPENDIXC
> Pxz[A,] — Pxz[D])] (26) LEMMAS USED IN THEACHIEVABILITY PROOF OF
Note that, THEOREM[2
7\ Z
Pxz[D5] = Y pa(z)1 {10g pZEZ; < —b\/ﬁ} The following notation is used throughout this appendix. We
ZEZn bz recall thatU, X, Y, Z are the random variables defined by the
<9 bvm Z pz(z) random code generation with distribution given[ih (6). Fay a
rezn (k,1,m) € [1, Mo] x [1, M1] x [1, M’], the random variables
< 9 bV, 27) representing the codewords, and x;,;,,, obtained with the
random code generation are denotedUby and Xy, .
and, following the reasoning leading {0 {25), The random variables that correspond to the use of a specific
2 ey code(,, are denoted byU, XY, Z with distribution given
Px3 [A / *_dx _cr (28) by {@). The channel outputs that correspond to the trangmiss
\/27T Vn o3 of u, andxy;,, are denoted by x;,,, andZg;,,, respectively.
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A. Proof of Lemmall
By symmetry of the random code construction, we have

E[Pe(Cn)]
My My

(CpnlWo =k, Wy =1, W' =m
—ZZZ [Wo )

MoM M’
k=11=1 m=1

=E[Pe(Cp|Wo =1,W; =1, W' =1)],
which can be analyzed in terms of the events
El(k) £ {(Ijkalll) S 71n|W0 = Wl = W/ = 1}
Ey(k) £{(Uy,Z111) € T3 |Wo =Wy = W' =1}

E3(kvlvm)

£ {(ﬂkaxklmaYlll) T Wy =W, =

W =1},

IEEE TRANSACTIONS ON INFORMATION THEORY, TO APPEAR

sub-codebooK x; }ic1,a7 t0 be a “channel resolvability
code”.

We establish the existence of such codebooks with a random
coding argument following that used inl [7], ]10]. The presen
of a common message makes the proof slightly more involved
but the steps remain essentially the same. On taking the
average ovet’,, for both sides of[(31), we obtain

Ec, [S2(Cn)] < 2Egw, [Ec, [V (pziow, - pzv)]]

By symmetry of the random code construction, the inner
expectation in[(32) is the same for all values ©Gf = uy
andW; = [; hence, we have

Ec, [S2(Cn)l
Let 7 > 0. On using [I0, Lemma 6.3.1] we finally upper

(32)

< 2E¢, [V(pZ\ﬁ:U1W1:1 ,pziu-u,)]. (33)

It follows from standard arguments (see, for instange] [180UNd [3B) as

Chapter 3]) that£[P.(C,,)] < € for n large enough provided

Llog My < p-liminf 27(U;Y) — 2y
n—oo
Llog My < p- Iiminf L1(U;Z) — 24 (30)

Llog My M p I|m|nf SI(X;Y(|U) — 2.

n—oo
B. Proof of Lemma&l2

We start by developing an upper bound $¥C,,) that will
be simpler to analyze. First, we have

SZ(Cn) £ V(pW127PW1pZ) < V(pﬁwlzvaJgﬁZ)
= Egw, [V(pziow,» Pzo)]-
Next, we use Lemm@l 7 to further bouSd(C

S2(Cy)

) as follows.

< Egw, [V(pZ|fJW1apZ\U) + V(pZ\UaPZu’Jﬂ
= Egw, [V(pzmwl apZ\U)} + EU[ (pZ\U,pzmﬂ
< Egw, [V(pZ|GW1 apZ\U)}

+EBg [V(pwipziu, pzw, 0)]
= 2Egw, [V(pziow, Pziu)]- (31)

Notice that the term in brackets on the right hand side is
variational distance between the following two distribouis:

° pZ|fJ:uk,W1:l(Z) - Zm 1 A{/WZ‘X( |xklm)a

Ec, [S2(Cn)] < 4—— + 44,

(34)

>H

Note that the expectation ovérl, reduces to the expectation
overU; and{Xi1;}jeq,mp- Writing A,, explicitly, we obtain
Equation[(3b) shown on top of the next page, where equality
(a) follows from the definition ofpz g—u,w, =1,c, (2), €qual-
ity (b) follows by remarking that all codewords are generated
according to the same densit|y and equality(c) follows
by noting that

o Wzx(z[x111)pxju(x111|w1) = pzxju(z, x111/u;) ac-

cording to [6);

log
with

Pz G=Uu,w,=1 (Z)
bzju=u, (Z)

A, £ Ec, lPZU—Ulwl—l [1og

o for anyu; such thatpx u(xi1m|u1) > 0,
1 M’
PziO=uwi=1(2) = 35 > Wax (z[x11m)
m=1
1 M’
=5 Z pzxu(z[X11mur).
M m=1

a
By adapting the proof technique developed [in][10, Chapter

which 6] and after some calculations, one can further bodndto

represents the distribution induced at the eavesdroppét¥ain

channel output by theM’ codewords{xi;}ic1,a]
selected with a uniform distribution;

Pz|U=u, (2) = X, Wzx (2|X)px|U=u, (x), which rep-

resents the distribution induced at the eavesdropper’s
channel output by an input process with distribution

PX|U=u, (x).
Therefore, asufficient conditiorfor S, (C,,) to vanish is that,
for every pair (k,1) € [1,Mo] x [1,M;], the variational

distance between the two distributions vanishes as wels Th

is possible if each set of codewordgy; }ic1,01) approxi-
mates the same process with distributiofjuy—., (z) at the

channel resolvability reviewed in Sectibn Il is about. It

words, a sufficient condition to guarantee secrecy is for each

where p

enough prowded
eavesdropper’s output, which is exactly what the concept of

T

<
Ecn [82(Cn)] ~ 10g€

lo
| logp
n

log M’ 4 -
og }-i—
n

log M’
+4IP’UXZ[ I(X;Z|U) > gn }
9-n7
2

- 7] . (36)

+mm[amw

4 log M’
—+ p Psz|: (X Z|U) gn

£2—1

Therefore,Ec, [S2(Ch)] < e for n large

1
~log M’ > p-limsup— I(X Z|U) + 2.
n

n—r00

(37)



BLOCH AND LANEMAN: STRONG SECRECY FROM CHANNEL RESOLVABILTY

Z Wz|x(Z|X11m)]l {log
Z pxju(X11m[ur)

19

> pxju X u)

Z pZ\fJ:ulwlzl(z) 1 {10g

pZ\ﬁ:ulwlzl(Z)
pz|U(Z|u1)

=

Z pxju(Xiin|ur)

Ty EXT
pZ\ﬁ:ulwlzl(Z)
pZ\U(Z|u1)

)

A= > pulm) > pxjuxifu)--
u U™ X111 €EX™ Tygpp EX™
zEZ"
’
@ 1 <
= 55 pu(u) Z pxju(Xifur) -
m=1u,eUn X111 EX™
zEZ"
®)
= Z pu(uy) Z Px|U(X112|u1)"'
u eU” X112€X™

Z Z Wz x (z[x111)pxju (X111 |u1)1 {log

X111 €EX ™ Zz€EZ™

= pu(u1) Z pxju(xiizfur) -

Ty €EXT

Pz G=u, W, =1 (z)
Pz|U(Z|u1)

>T},

Z pX\U(X11M’|U-1)

u ey X112€X™ Ty €EX™
M PZ|XU(Z|X11mu1)
> Y pzxu(zxin|ui)i < log i > (2lw) (35)
X111€EX ZzEZ" m=1 pZ‘U zim
APPENDIXD Hence,
LEMMA USED IN THE CONVERSEPROOF OFTHEOREMI[Z] | _
R, < p-liminf —H(W)
To prove Lemmal3, note that, with probability one, nee
o o o < p- I|m|nf I(W;Y|U) —p- I|m|nf I(W;Z|U)
L1(W;Z) = L1(W;20) - L1(W;U|Z) n—yoo n—yoo
=11(W;Z|U) - 11(W;U|Z) + p-limsup— I(W Z|U) + p- Ilmsup H(W|YU)
— — J— — n—00
= L11(W;Z|U) - 1H(U|Z) + tH(U|WZ),
" " " As seen above, p- Ilmsugl(W Z|U) = 0 and, since

where the second equality follows from the independence @f,, , . P

W andU. Consequently,

lim Sg(C,,) = p-limsup— I(W Z)

=00 n—o00
> p-limsup— I(W Z|U) — p-Iimsule(fHZ)
n—oo n—oo N
+ p- I|m|nf H(U|WZ).
n—oo
Since  limy, o0 Pe(Cr) = 0, note that
p-liminf L7 (UWZ) = 0 and p-liminf1H(U|Z) = 0
b;_fﬁ% Verd(-Han Lemma. A$im7:>§ S6(Cn) = 0, we
finally obtain
p-limsup— I( ;Z|U) =0
n—oo
Note that, with probability one,
H(W) = H(W) — H(W[YU) + H(W[YD)
=I(W;Y|U) — I(W; Z|U) + 1(W; Z|U)
+ H(W[YD)

P.(C,) = 0 “We have p-liminfl H(W|YU) = 0.

n—roo

Therefore,

| — = . 1 _
Ry < p-liminf —1(W;Y|U) — p-limsup—1(W; Z|U).
n—oo I n—soo N
Finally, with probability one,

H(U) = I(0;Y) + H(Y|U) = I(U; Z) + H(Z[0)

Ry < min (p-liminf I(U

n—oo

Y). p-liminf I(U;

n—oo

from which conclude after a similar reasoning that
APPENDIXE

z)) |
PROOF OFTHEOREM[3|

We prove Theorerfl3 with small modifications of the proof
of Theorem[R. Specifically, we establish secrecy $or by
showing that there exist sequences of codés}, > for
which S2(C,,) decreases exponentially fast with and by
using [5, Lemma 1] to obtain an upper bound ®r(C,,).

We handle the power constraint by using an appropriate
distribution during the random code generation process as
in [10, Section 3.2]. We note that a similar technique hasibee

used by He and Yener in [562].
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Let~,d,e > 0. LetU/ be an arbitrary discrete alphabet andlemma 12 (Reliability conditions)

fix a distributionp;; onf. Fix a conditional distribution ¢

on X x U such thatE |¢(X)| < P — 4. Let U, X, Z be the
random variables with joint distribution

Paxo (2% w) = [ [ Wz x (zilzi)pg o (w:lui)pe (u:).
i=1

We assume thdll, X, Z are such that the integrals defining the

moment generating functions ef X) and I( X; Z|U) con-

verge uniformly in a neighborhood 6fand are differentiable

at 0.
Define the sefP,, as

Pnﬁ{xeX":—

:LZC(CCZ) < P} .

=1
Lemma [6 shows that there exisiss > 0 such that
]P’[X € 73"} > 1 —2-%", In the sequel, we defing, £

1 —2-"% . Define the set, c U™ as follows:
Gn = {u ' Pxg—u X ¢ P,|U = u] < 2_"%} :
Upon using Markov’s inequality, we obtain
Po|U¢ G| =Py

< Eg

:Pqu] {X ¢ 'Pﬂfj} > 2771%}
Prjo[X ¢ PO 27
X ¢ P oG

VAN

2*"(065*%)
1=, (38)

Now, we define the random variabl&$, X, Z as follows.
First,

1 i .
VueU" pu(u) = WPU(U) if ueg,
0 else
From Eq. [38), we have
Yueld” pulu) < pg(u) o)

Next,V(x,u) € X" x G,

By construction, we have

V(x,u) € X" x G, pxju(xlu) < IL(XM (40)
Finally, V(z,x,u) € Z" x X™ x G,

pzxu(z,x,u) = Wz x (z[x)pxju(x[u) pu(u).  (41)

We repeat the random coding argument in the proof
Theorem[R using the distributiopxy defined by [(411) and
with the following lemmas.

If Ry < min (]I(U,f/) — 27,]1([7; Z) — 27)
and Ry + R} < n(;z;m) — 2,

thenlim,, , E[P.(C,)] < e.

Proof: Following [10, Proof of Theorem 3.6.2], one can
show that

p-liminf L1(U;Y) > 1(0:7

mint )
)

p-liminf lI(U; Z)>1
n

n—oo

and p-liminf 2 7(X; Y[U) > H(X;mﬁ).
n

n—oo

Hence, the result follows directly from Lemrha 1. [ |

Lemma 13 (Secrecy from channel resolvability conditions)
There existsys 4 > 0, such that

If R, > H(X;Z|U) +27 then lim E[S,(C,)] < 27

Proof: Note that [[31L) still holds. Upon using Lemraa 7,
we obtain

Ec, [82(Cn)] Ec, [V(pZ\fJ:Ul,lel,CnapZ\U:Ul)]

<2
< 2Ee, [V(szzul,wl:l,cn,sz:Ul)}

+2E¢, {V(pz\szul 7pZ|U:U1)} . (42)

First, we bound the second term on the right-hand side
of @2). For allu; € G,, we obtain the bound shown in
Equation [4B) on the next page, whete) follows from
Lemmal[8, (b) follows becausePx y—u,[BNP;] 0 by

Eqg. (413), and¢) follows from the bound in Eq[(40); therefore,
for n large enough, there exists > 0, such that

Ec, {V(sz:Ul,I?Z\U:UI)} < 27 P (44)

We now bound the first term on the right-hand side[of (42).
Applying [10, Lemma 6.3.1], we obtain

T

2Ec,, {V(pZ\fJ:Ul W1:17PZ|ﬁ:U1)} < 4loge

ST

+4Ec,
Pz16=u, (Z)

IEDZ|'0:U1 wWi=1 llog
(45)

Mote that[(4b) is similar td(34), and the only differencefis t
presence oﬁ)zlﬁ instead ofpzy in the denominator; using

the definition ofpzxy in (@), the bounds in(39) and_(40),
and repeating the steps leading frdml(34)[fd (36), one abtain
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(a)
V(pZ‘ﬁ:ulapZ|U:u1) < V(pquj:ulvp)qU:ul)
=2 sup PX|U:u1 [A] — ]P)X\fj:u] [A]’
Ag){n
< s > [Py 8] - Prjoy, (8]
ACX™ pe (A A}
(b) .
< swp 30 ([Prwmw [BNPa] ~ Prioa, BOPE] ~ Prioy, B0 P )
ACY™ Be (4 A0}
(c) .
< sup. > (Prio—w BNPu (— —1) +Pgg_y, [BNP;]
ACY" pe (4 A0} "
1
S(=-D+ A=), (43)
n
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