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The Embedding Capacity of Information Flows
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Abstract—Given two independent point processes and a certain
rule for matching points between them, what is the fraction @
matched points over infinitely long streams? In many applicéion
contexts, e.g., secure networking, a meaningful matchingute is
that of a maximum causal delay, and the problem is related to
embedding a flow of packets in cover traffic such that no traffic
analysis can detect it. We study the best undetectable embdidg
policy and the corresponding maximum flow rate —that we call
the embedding capacity— under the assumption that the cover
traffic can be modeled as arbitrary renewal processes. We find 3 — 3
that computing the embedding capacity requires the inversin T‘ T ‘T
of very structured linear systems that, for a broad range of
renewal models encountered in practice, admits a fully angtical Fig. 1. Notional sketch of the addressed problem, with afrspochs of

expressilon in terms of thg renewgl fun(?tion of the processes processesS and 7 matched according to a delay constraiit Matched
Our main theoretical contribution is a simple closed form of points are marked by circles, unmatched by diamonds.

such relationship. This result enables us to explore propgies
of the embedding capacity, obtaining closed-form solutios for
selected distribution families and a suite of sufficient coditions
on the capacity ordering. We evaluate our solution on real

network traces, which shows a noticeable match for tight . . .
delay constraints. A gap between the predicted and the actiia constraint has been recognized as a relevant problem in the

embedding capacities appears for looser constraints, andifther ~ CONtext of secure networking, where the focus is on informa-

investigation reveals that it is caused by inaccuracy of the tion flowing that is anonymous with respect to an attacking

renewal traffic model rather than of the solution itself. eavesdropper_[3], or, in a reversed perspective, clandesti
with respect to a legitimate traffic analyst [4].

. INTRODUCTION In these contexts —to which we specifically refer in the

ONSIDER the pair of timing sequences represented lg}zper— the two processes represent the sequences of time
‘ the point processes and 7 in Fig. [, where points ochs (traffic patterns) at which successive packets @ave

are matched according to some prescribed rule. What is des of the network and, for security requirements, packet

maximum achievable fraction of matched points (embeddir%(gﬁl e?hcryptfdfsto that t_he_y dqtno:treveatl ;pelf |a[[chara¢trter|s d
capacity) given the two processes and the matching rule?.’ eacl 0 ranslr)mssm? |sedanno € kept secret, an
How do statistical properties of the point processes affeet timing analysis can be performed,
maximum fraction of matching? The main theme of this paper Given that nodes are unable to hide the act of transmission,
is that of providing analytical tools for computing the erdbe they must hide the information flow packets into their normal
ding capacity of two independent and identically distréalit transmission scheduling, which provigever traffic for the
renewal processes, when the coupling rule is formulated desired flow. The nodes can mask the timing relationships
terms of a causal delay constraint. by properly delaying the transmission of information paske
The above problem naturally arises in many applicativgnd/or multiplexing information packets with dummy pasket
scenarios: from intelligence applications aimed at trgciror packets from other flows. With a sufficient amount of
relationships among individuals (e.g., in social netwirks perturbation, an information flow can be disguised as traffic
the discovering of neuron connections by measurementsaghitrary patterns. In particular, the flow can appear igahto
firing sequences, and so forth [1]./ [2]. An application closéndependent traffic following certain transmission scheslu
to the communication area concerns the anonymous relaying o
of messages in distributed architectures, or the deteatfon AS @ consequence, every transmission schedule (or cover
clandestine information flows in wireless systems. In fadfaffic) has certain capacity of being utilized to transmibr-

the evaluation of the embedding capacity under causal def@gtion flows covertly. The matching capability of a partaul
schedule takes the operational meaning of eanbedding

S. Marano and V. Matta are with DIIIE, University of Salernia Ponte don capacity that is, the maximum fraction of information packets
Melillo 1-84084, Fisciano (SA), Italy. E-mails{marano, vmatth@unisa.it. that can be embedded in the cover traffic following this
T. He is with IBM T. J. Watson Research Center, Hawthorne, E¥nail: . . .
the@us.ibm.com. L. Tong is with ECE Department, Cornelivérsity, Ithaca, schedule, leaving no chances of discovering the presence of
NY 14853 USA. E-mail: ltong@ece.cornell.edu. the flow itself.


http://arxiv.org/abs/1103.2431v2

2 SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY ON MARH 10, 2011

A. Summary of Results In another caseS represents the pattern of the packets

The embedding capacity for a Poisson process under cal&fismitted to a multiaccess relay through an ingoing link
delay constraint is known, segl[4]. The Poisson assumptiéfid 7 is the pattern for an outgoing link,, both among
however, rarely fits real traffic and, to date, analyticahiatas Multiple ingoing/outgoing links. It is known that informan

for arbitrary renewal traffic are still missing. The contriton IS flowing from L, through the multiaccess relay, but it is not
of this paper is in filling this gap. known whether or not the outgoing link; is being used for

We find that the embedding capacity is related to tH{Bis. The monitoring agent is interest_ed in tracing_ the eaaft
invariant distribution of a certain Markov chain. First, wehe flow, and the multiaccess relay intends to hide the route
prove the existence of such distribution, so that capacfy Scheduling the two links independently.
evaluation requires the solution of an integral equatioe. W. L
attack this problem by exploiting the powerful tools offdzrec' Related Work & Orgamzatlor.\ _ .
by the Riemann-Hilbert theory, which allows us to derive the The roots of packet embedding into cover traffic can be

fo||owing approximation for the embedding Capacity: traced back to the early '80s. The problem of avoiding traffic
\A analysis using special relay policies was first considand8]i
* g PV with the adoption of the so-called MIX relays, that perform
1+ 2 m(t)dt multiplexing, scrambling and encryption of the incoming
AA o traffic in order to eliminate the correlation with the outiggi

where) is the rate of the processes, is the delay constraint, traffic. Since then, several studies have been made in coder t
andm(t) is the renewal function of the (scaled to unit ratelnprove relay performances, see elg. [6], [7]. More regentl
underlying process. The accuracy of this formula is exoellelt has been shown how statistically independent transamissi
for a very broad range of renewal processes of interest ffhedules can achieve perfectly anonymous relaying, with
the applications, see Seffl V. We also show HGwcan be emphasis on the maximization of the carried information
computed to any degree of approximation by inverting a vef@pacity [3].

structured linear system, and provide a first-order coect AlSO related to our problem is the network security issue
expressed in closed form. referred to as stepping-stone attack [8], [9], in which amead

The significance of the above formula is th@t depends S&7y launches an attack_through a sequence of comprom_isgd
only on the renewal function which is the key quantity iFervers, and one wo_uld like to trace the sequence to thenorigi
renewal theory, as such, is well studied and understood. 3hthe attack. For wireless networks, an ad hoc network may
many cases of practical interest, the integral involved c&§ Subject to the worm-hole attack [10], where the attacker
be evaluated explicitly, from which physical insights cam bhijacks the packets of a node and channels them through a
gained. covert tunnel. In such scenarios, the maximum information

The above expression is then used to relate the physifaie sustainable by the attackers is related to the embgddin
parameters and properties of the renewals to the embeddf@@acity of the node traffic patterns. _
performance. In the asymptotic regime of largd, the dis- rom an information theoretic perspective, the problem of
persion indexy is the only relevant quantity, and the capacity€CUreé communications, in terms of maximizing the_ rehat_)le
scales ad —v/(\A). Stochastic variability is instead the keyrate to a legitimate receiver with secrecy constraints with
(for any \A) to compare different interarrival distributions:'€SPECt to an eavesdropper, has been extensively stutfied, s

less variable interarrivals yield a larger embedding cipac the pioneering works [11]1 [12], [13], up to recent extemsip
including multiaccess| [14], fading [15], feedback [[16],dan

) broadcast [[17] channels, among many others. We stress that
B. Relevance to Secure Networking the specific scenario of interest for this paper is insteadrse
One applicative scenario of interest is that of secure neietworking with focus on anonymous relaying of information
working. Consider two packet streams in a network, whosgcording to the model proposed id [3]] [4].
transmission timestamps are represented by point pracessd=ormal studies of the embedding properties of renewals have
S = (51,52,...) and T = (T1,Tz,...). We assume that been carried out i [3]]4] , with extensions to distributbet
the packet content is fully protected by encryption, whileection with communication constrainis [18]. [19]. Thelauts
the transmission patterns are relatively easy to obtain by [4] settled up the problem from the traffic analyzer’s per-
a monitoring agent, which is capable of performing traffispective, where the role of the embedding capacity is reglac
(actually timing) analysis. by that of undetectable flow. They found a closed formula for
In one possible scenariS,and7 are transmission activities the capacity under the Poisson regime. General renew#ttraf
of two nodesN; and N, in a wireless network. The existencemodels in many applications (inside the communication area
of a flow from S to 7 implies thatV, is acting as a relay for as well as outside that) are far from being approximated as
(part of the transmissions fromY;, thus revealing a multi- Poisson, such that several extensions of the above stutlies i
hop route that is otherwise unobservable in protocol orexnt this direction have been proposed, se€ [20]] [21]. Howexer,
domain. The monitoring agent is interested in discoverirtgactable analytical formula for the embedding capacitgiam
whether or not such relaying exists; conversely, the nodasbitrary renewal traffic is still missing.
would like to hide the presence of the information flow (e.g., The remainder of this paper is organized as follows. Sec-
to preserve anonymity) by transmitting independently. tion [Il formalizes the problem, the main results of the paper
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are presented in Se€t]lll, and Séci] IV is devoted to the maimere Ny (t), Nz:(t) are the counting processes for the
mathematical derivations. Se¢tl V concerns the applicatiembedded information flow, so alés(¢), Nr(t) for the cover
of the main theoretical findings to specific examples, whileaffic (assuming the limit exists almost surely). o

Sect[V] addresses the problem of classification and orgeriphat is, the efficiency is the asymptotic fraction of matched

of renewal processes in terms of their embedding capacifyints in the cover traffic. We are interested in the highest

Finally, Sect[ VIl presents the results of experiments al reefficiency that we call thembedding capacity

network traces, and conclusions follow in Sect__VIll. An ) .,

appendix contains some mathematical derivations. DEFINITION 4 (Embedding capacityy™ = sup.cs 7(€).  ©

The embedding capacity™ is a function of the cover traffic

and the flow constraints (e.g4), omitted for simplicity.

We shall focus on the case that the cover trafficand
Capital letters denote random variables, and the corr@spol™ are independent and identically distributed (i.i.d.) reake

ing lowercase the associate realizations, wRilandE denote processes, with interarrival random variabl&sand Y, re-

probability and expectation operators, respectively. spectively. Throughout the paper it is assumed tRa&nd
Consider two point processes = (51,52,...) and7 = Y are absolutely continuous with known Probability Density

(T, T>,...) defined over the semi-axis= (0, o). Points that Function (PDF)f(¢#) and Cumulative Distribution Function

are matched over the two processes formrdarmation flow (CDF) F'(¢), and that the rate of the processes, denoted,by

in the sense that one point in a matched pair can be thoughfinite and nonzero, i.e < A = 1/E[X] = 1/E[Y] < .

of as a relayed copy of the other. We are interested in delay¢hen the second moment is finite, we define the dispersion

sensitive directional flows, for which matched points obey iadex as

causal bounded delay constraint as follows.

Il. PROBLEM FORMULATION

v = A VAR[X] = M2 VAR[Y] < cc. 1)
DEFINITION 1 (Information flow) Processes
W = (Wy,Wa,...) and 2 = (Z1,Z,,...) form a A-
bounded-delay information flow in the directio’v — Z
if for every realization{w;} and {z;}, there is a one-one A. Optimal Embedding Policy

mapping{w;} — {2} that satisfies the causal bounded delay As j first step toward embedding capacity evaluation, we

Ill. CHARACTERIZATION OF THE EMBEDDING CAPACITY

constraint0 < z; — w; < A, Vi. ¢ need to find an optimal embedding policy that maximizes the

Here A > 0 is a known constant representing the maximumumber of matched points for any given cover traffic, thus

tolerable delay during relaying. achieving the embedding capacity. This has been achieved
Given point processesS = (S1,52,...) and 7 = by an existing algorithm called thBounded Greedy Match

(Th,Ts, . ..), aninformation flow can be generated by findinglBGM) [22]. It is a simple algorithm that classifies the points of

for each realization of the processes, subsequences théit adwo arbitrary point processes as “matched” and “unmatched”

a valid one-one mapping. This is controlled by an embeddiby sequentially matching points in the two processes under

policy. a causal delay constraift and marking the points violating

. : . . this constraint as unmatched.

sDeEIgl:'\tlglsoL:\E)szeésgtc):f}:gnci‘ E)SOI:;r)% 2? i;n 2.8(?[3”]1(9)”?10';? The B(_BM algorithm works as_follqvv_s_. Gi\:en realiza}t’i,ons
of two point processes, all the points initially “undetened”,

information flow. o . the BGM repeats the following steps, see . 1:
The name “embedding” is due to the fact that to an outsider . . . N . . .
1) Consider the first (in the direction of increasing time)

who cannot observe the selection, it is not known which oint undetermined point in the first process, 94y
belong to an information flow or even if there is a flow, and . ) . A ' '
thus the flow is embedded in the overall procegsesy ). For 2) i':r:ﬁ;?ﬁt;':jglrQ?)ete(rlr?'zez]pﬁ";tn? fjler]sﬁec dor;;)g;?cess
i ] b, p , , ,
the same reasoits, 7) is calledcover traffic .. 3) If such a point exists, mark botp(* and p(» as
Let & = {¢} be the set of admissible embedding policies. “matched” otherwise ’marlp(l) as “unmatched” in
Givene € &, the cover traffiS, 7)) is decomposed into either case, mark all undetermined points in the second
S=W U, T=2zaVr process beforg(!) “unmatched”.

o ) ) Matched and unmatched points are also referred to as “flow”
where(W, Z¢) forms a valid information flow. Here is the  and “chaff”, respectively. The BGM is optimal in the sense
superposition operator for point processgs:}= {a;} & {bi} that, given two arbitrary realizations of point processes an
means thafc;} = {a;} U {b;} with c1 <cp < ... arbitrary value ofA, the algorithm finds the maximum number

Given the cover traffic, each embedding policy has a certayih matched points satisfying the delay boufd [3], [4].][22].
capability of hosting information flows, quantified as foli.

DEFINITION 3 (Efficiency) Given cover traffi¢S, T), the B, Embedding capacity in terms of a Markov Chain

efficiency of an embedding polieye £ is measured by Our second step in deriving the embedding capacity

— Nyye(t) + Nz(t) consists of modeling the behavior of BGM by a Markov chain,
n(e) = e Ns(t) + Nr(t) ' whose stationary distribution is directly related@s.
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Fig. 2. Three situations arising from applying the BGM pihwe to point processeS and 7. Chaff points are denoted by". Left: the point atS; is
unmatched, and it is a chaff point in the first proceSenter: all points are matched (no chaffiRight: a chaff point is present in the second process.

With reference to Fid.12, let us consider the time differendacrement of the Markov chain is the interarrival differenc
between the first points, that 5, = 77 — S;. According to Y —X if the chain is currently betwedhandA, which implies
the BGM algorithm, we have the following three possibibtie the matching is successful (e.¢/;, Zg); the increment is”
(i) If Z, > A, the points cannot be matched, and the one ihthe chain is below0, in which case the reference point
S is labeled as chaff. To decide the nature (chaff/non chaff) the second process is marked as chaff and the reference
of the point in7, we must check whether it can be matcheBoint in the first process remains the same (e43., Z1);

to the next arrival inS, thus computing, see Figl@), similarly, the increment is- X if the chain is above\, when
the reference point in the first process becomes chaff ard tha
Zy =T — 5 =21 - X, in the second process remains unchanged (&-).,Note that
where X is the random variable representing the interarrivald® number of steps of the Markov chain lying inside (resp.
insS outside) the barrier@ and A defines the number of flow (resp.

chaff) points marked by the BGM algorithm. This suggests
%hat a relationship exists between the asymptotic didiohbu
Bt'the chain and the fraction of flow points, i.e., the embaddi
capacity. This is made precise in the next section.

(7)) If 0 < Z; < A, the points match. To check the natur
of the next incoming points, we update the process as,
Fig. [(b),

Zo=Ty—So=7,+Y — X,

whereY is the random variable representing the interarrivals .
in 7 (recall thatY has the same distribution &§). C. Main Results

(i4i) If Z1 <0, the points cannot be matched, and the one inThe first theorem we present, whose proof is deferred to
T is labeled as chaff. To decide the nature of poinSSinwe  appendiXA, establishes a connection between the embedding
must check whether it can be matched to the next arrival @&pacﬂy and the invariant distribution of the BGM Markov
T, thus computing, see Figl(2), chain, expressed as the solution of an integral equation.

Zo=Tr—S1=71+Y. THEOREM 1 (C* by Markov chain) LetS and 7 be two

: . . independent and identically distributed renewal processe
By repeating for the successive points, we see that a Markoy, . . .
) : .. With interarrival PDF f(t). Let A be the delay constraint,
process can be compactly defined in terms of the origina . )
. . and define a Markov chain by1(2). Assume BGM can match
renewals by the following recursion rule

at least one pair of points i® and 7 almost surely.

Zn—1— Xn, if Z,1>A, a) The invariant PDFA(t) of the Markov chain exists and
Zn=9q Zn-1+Yn— Xy, !f 0<Zn1<4A, (2) solves the following homogeneous Fredholm integral equati
Zn—1+Yn, it Z,_1 <0, of the second kind [23]
where X,, andY,, are the interarrivals of the first and the o Yoo
second process at theth step of the chain, following the p(;) = / h(r)f(t —T)dT+/ h(r)f(T —t)dr
common PDFf(t). —o0 A

The Markov chain defined i }2) is schematically illustrated A b d 3
in Fig. 3. According to the constitutive equatiofl (2), the T o (T)fo(t = 7)dr, ®)
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where fy(t) is the convolution betweerf(t) and f(—t),
defined asf,"* f(r)f(r — t)dr.

b) The embedding capacity can be written as

. 2[2h(nat
14 [P h(ydt

(4)

O :
Since now, we shall assume that the hypotheses of The —24;?( Z;+Y) Zy=2Z,-X
rem 1 are in force. The next theorems, whose proofs are giv
in Sect[1V, accordingly focus on the solution of the intdgre Z,1
equation relevant to capacity computation. We first intaedu A /\
the following definitions. \

DEFINITION 5 (u-PDF) The probability density functiok(t)

of the interarrivals scaled to unit mean, that is, the randor 5 N e >
variablesAX and \Y’, will be called u-PDF. o \/n/ "

DEFINITION 6 (u-RF) The Renewal Function

Fig. 3. Construction of a sample path of the Markov processél panel)
m(t) = E[N(t)], from a realization of the two point processes (upper). Inupper panel, the
points marked with &” are those classified as chaff by the BGM algorithm.
whereN (t) is the number of arrivals irf0, ¢t) of the processes

scaled to unit rate, having interarrival random variablas< ) . . . .
and \Y', will be called u-RFE. o Capacity of two independent and identically distributed re

_ newal processes with rat®, under delay constrainf\, can
THEOREM 2 (Exact value ofC*) Under the assumption of he approximated as

finite second moment for the interarrivals, the embedding ca

pacity of two independent and identically distributed reaé C*~(C = 7
A : (7)
processes with rate, under delay constraind, is 14 2 m(t)dt
AA
. _29(0) ’
= T+ 0(0)’ (5) m(t) being the u-RF. &

Again, let us apply eq[{7) in the Poisson regime. The u-RF

whereQ(f) is the solution of of an exponential random variable 1s(t) = ¢, that inserted

in ives
Q(f) +2 /Q(u)éR {%} AASINGAA(f — v)]dv @9 A
— 14
_ C = (exponential)
— aasingra 1) L22H0 ) 1+234
2 implying that, in this particular case, formuld (7) is exa.,

K(f) being the Fourier transform of the u-PDFE(t), and C* =C. This can be understood by looking at the technique
sin(t) = sin(rt)/(nt). ¢ used to get the approximatﬂ»in the proof of Theorem 3.

o ) The relevance of Theorem 3 stems from the fact that, for the
As a check, let us specialize the above equation 10 tQeyicq) interarrival distributions encountered in manypiqa-
case of exponential interarrivals, for which embedding C§pns the accuracy of the fully analytical approximatié) (
pacity s available in closed form [4]. It is easily seen thaleems 1o be excellent irrespective of the range of the ptoduc
%{#@)} = 0, allowing direct solution of eq.[{6), and \A, the tailweight of the distribution, its variance (and even

computation of2(0) = AA/(24+AA). Substituting into eq[{5), for infinite second moment), as confirmed by the examples in

this yields Sect[V. Accordingly, Theorem 3 provides us with an accurate
\A and mathematically tractable expression for the embedding
e (exponential) capacity under arbitrary renewal traffic.
1+A4A We would like to emphasize that the characterizatidn (7)
that matches the known result from [4]. relates the sought capacity to the u-RF of the underlying

Note that Theorem 2 still gives an implict solution to thgrocess. This highlights the role of the renewal function
problem in terms of an integral equation, which does net(t), and reveals that its averagé j;JAA m(t)dt is the key
have a closed-form solution in general. On the other hamgljantity in determining”. Thus, different traffic models can
eq. [6) turns out to be amenable to approximate solutio® classified with respect to their embedding capabilitiess j
thus yielding the results stated in the next two theorems. in terms of that average.

THEO.REM 3 (Approximation OfC”f) Und?r the assumption. 1The termsk # 0 neglected in eq.[123), are rigorously zero in the
of finite second moment for the interarrivals, the embeddirgponential case, since the integral [al(10) is zero.
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We now state a corollary characterizing the asymptotic bsee thatA is very structured and its degrees of freedom grow
havior of the capacity in the limit oA > 1/\. From a known only linearly with N; in fact, A is completely specified by
property of the renewal function [24(t) — ¢ — (v — 1)/2 assigning one row and the main diagonal. This structureris ve
in the limit of t — oo, where~ is the dispersion index definedconvenient for numerical tractability. Finally, it is exged
in eq. [3). Simply plugging that expression in €. (7) woulthat the solution becomes more and more accurate as the
givel — C ~ v/(\A). Indeed, we have the following result. system sizeV increases. In the section devoted to numerical
experiments, we show that tlzero-orderapproximationC' is
well satisfying in many cases of interest. Even when this is
Jot strictly true, a first-order correction (12) offers veggod

COROLLARY 1 (Scaling law forC) Under the assumption
of finite second moment for the interarrival&mnya —o0[1 —
C)(AA) = ~, i.e., the embedding capacity in Theorem 3 scal

results.
as : . .
11—~ REMARK 2. Let us consider a random variable with u-PDF
AAT k(t) which is zero fort < a, somea > 0. We havem(t) =0

for ¢t < a. This implies that, in the ranggA < a, the cross

The corollary reveals that, for large values of the produt@ms Aox With k 7 0 vanish, so that the approximatidd (7)
M\, the key quantity in determining the capacity is thé exact, and gives the linear relationsiiy = AA in the
dispersion index: giveMA > 1, the ability for a type of considered range, as verified \dt¢see Fig[h). This is also
(renewal) traffic to hide information flows in independengonsistent with earlier approximation and simulation fasu
realizations only depends on the value of the dispersioexnd [21].
~, and different traffic models sharing the same dispersion
index behave similarly. IV. PROOFS OFTHEOREMS2-4VIA RIEMANN-HILBERT

Finally, to improve on the approximation in Theorem 3, we THEORY
provide the following theorem that expresses the embeddin
capacity as the solution to a simple linear system. Con,sidS
for any integerN > 1, the following system

N
> A9

k=—N

9n the following, we make use of suitable normalization

f the relevant physical quantities, aimed at simplifyimg t

mathematical derivation. Indeed, the problem possesses a
k A natural scale-freeproperty. For a given distribution of the

()\_A) = —1In, h=-=N,...,N, interarrival process, we note that doubling the arrivakerat

2 “speeds up” the system so that the sample paths can be

wherel;, = 1 for h = 0, andI;, = 0 otherwise. The analytical 'édrawn on a time axis scaled by a factyrand halving
expressions of the entriesy,;,, defining a2N +1 by 2N +1 A leaves unchanged the number of matches. We accordingly

matrix A, are introduce thenormalized delay = AA, and work in terms of
A the unit-mean random variables with u-PRR). It is further
Agp =1 — & + 2 m(t)dt 8) convenient to symmetrize the problem by shifting the Markov
2 AA Jo ’ chain, as well as the corresponding boundaries, which yield
A - 2 (A 0 { (27rkt) to the following Fredholm equation
= — m COS | ———
W PV AA _s/2 too
t [ orkt u(t) = / u(T)k(t — 7)dT + / u(T)k(T — t)dr
+ 27k (1 - )\_A) sin ()\—A)] dt, k 7& 0, (9) 750/02 §5/2
2(—1)k 4 okt + / u(T)ko(t — 7)dr, (13)
Ao, = A /0 m(t) cos A dt, k # 0, (10) _s/2
(—1)r—F N X wherek(t) is the convolution betweeh(t) and k(—t).
Apk = (h—k) [2(=1)"Aon = k(=1)"Aok] ,  h# k. (11) Equation [IB) is a homogeneous Fredholm equation of the

second kind, and we have three different regions where the
THEOREM4 (Linear system approximation @¢f*) Under the integrals look like convolutions. Were the integral eqigva
assumption of finite second moment for the interarrivals, [&o a convolution as a whole, a simple transform method
c* = % as in Theorem 2. Then, assuming thdt would be directly applicable. To elaborate, let us first con-
is invertible, 2(0) can be approximated asA/2 times the sider what would happen if the function was known within
(0,0)-entry of matrix A", namelyQ(0) = 22 {A™'}q. In  the strip [-§/2,4/2]. In this case, the equation would be
particular, specializing forN = 1, the capacity becomes nonhomogeneous, and will be classified as a convolutioa-typ

AA equation with two distinct kernels. For this case a powerful
C* ~ 5 SV yF . (12) approach, that can be traced back to Carleman and to Wiener
R — t)dt + 2 oL
+ AA g m( ) + Agr — Aq 2The same conclusion can be also argued as follows. For delagaller

than the minimum allowed interarrival tim&,, — S,_; > A, such that the
probability thatS;, matches is the probability that the first arrival aftgg
REMARK 1. Note that, in the aPproximation corresponding té 7 occurs beforeSy + A and it can be computed, due to independence
. . A2 . between the processes, by using the residual lifetime ildision [24]:
N =1, a correction tern® Ao A, appears, with respect tOPr[Sk matche ~ )\fA[l — F(t)]dt. This impliesPr[S;, matches~ XA,
C in eq. [7), which uses onlylgo. Also, from eqs.[[B)}EI1) we for AA < a. By ergodicity, C* = AA in the considered range.
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and Hopf, still prescribes transforming the equation in thehe corresponding Fourier transforms will be accordingly
Fourier domain[[25] . After transformation, the problemisal denoted byV ™ (f), V—(f) and Q(f). Note that from [(4),

in the class of the so-called Riemann-Hilbert boundary &alyve are just interested %A h(t)dt = f 52t = 0(0).

problems. Transforming both sides of the mtegral equat|- (13) into
The Riemann-Hilbert probleﬁw in a nutshell, consists in the Fourier domain gives

finding two functions, analytic in the upper and lower half N insf B _inéf

planes, respectively, whose difference on the real axiglsqu V(e =V (f)e +Q(f)

a known function[[25][[25]. Direct application of this apph = VHHeE™IK(f) =V (fle ™I K(f)

would require that the sought stationary distribution bevkn + QHIKS,

within [—4/2, §/2], but this is not our case. Generalizations of _ _ _
the method have been proposed. They include the Carlem@therea is the conjugate of.. The above equation can be
Vekua regularization method, which suggests to initialgat recast as

the unknown function as known, and formulating a new + indf - —ind f
: A T . VT(f)e V=(f)e
integral equation in terms of the function in the interval Ky . 1-K() - W(f), (15)
[-d/2,0/2], and the work by Jones [27], see al501[28]. The _
proof that follows is based on these approaches. where we define

Before, we need some basic notation and concepts about 1—|K(f)? K(f)
one-sided functions and their analytic Fourier transform¥ (f) = (f)|1 —K(f)]2 =Q(f) |1 +2% 1-K(H[]
which will be useful in the following. For a generic func- (16)

tion g(t), let g*(t) = g(¢) 1(t) and g~ (t) = —g(t) 1(—1), _
where 1(¢) is the Heaviside unit-step function(¢) = 1 for Multiplied by e~/ eq. [I5) becomes

t > 0,and 1(t) = 0 for t < 0. In the Fourier domain, 4 _ —iomsf
oo o f V % .
this meansG™*(f) = o+ g(t)e?™rtdt, and G=(f) = (/) = (f)e_ — W(f)e o/
By replacing the real parametgiby a complex varlable = and using the factorization i (114):
f+iy, the above mtegrals beconi& (» fo et dt W(f)e= ™5 = [W(f)e ™I — [W(f)e ™.
andG~(z) = — [°_ g(t)e>=dt, WhICh are analytlc in those
regions of the complex plane of the variablén which they Combining the above equations gives
are absolutely convergent [25FE ™ (z) is analytic for3(z) > V() -
0, andG~ (Z) for %(Z) < 0. 1_7” + [W(f)eiwréf]
From Sokhotski-Plemelj formula [25], or simply decompos- ( B _iomsf
ing the Fourier integral into the left and the right part, vesré — v (f)‘i ' W —indf1~ (17)
_ + W (e ™)
that, on the real axis, 1-K(f)
. _ . . . V+(Z) . .
G (f) = G(f) + Z”H/[G(f)]v G (f) = G(f)+ ZH[G(f)]’ By construction the functionz; is analytic in the upper
2 2 (14) half plane&{z} > 0, continuous on the real axis, with a
where the Hilbert transform[G(f)] = f ”)dz/ has been single pole located at = 0. By the known property of the
= L . S :
introduced (the integral is in the sense 0 f Cauchy pr|nC|p(z:irlw";lracte”StIC functionk™(0) = i2, such that(tfr;'es,igglfe .has
value). order one. On the other hand, the functﬁnw is
analytic in3{z} < 0, continuous on the real axis, with a single
pole of order one located at = 0. Similar considerations
A. Proof of Theorem 2 apply to[W (f)e~™f ]+ and[W (f)e~i™f]~, with the further
Consider the the unknown functiar(t) in eq. [I3) and let property that there are no poles
us define The asymptotic behavior of the involved functions is essen-
tially determined by Fourier transforms, such that we agsum
u(t) = vt (t —6/2) — v~ (t+6/2) + w(t), boundedness at infinity.
where Summarizing, the LHS and RHS of e[1.117) define functions
that are analytic in the upper half and lower half planes,
vt —6/2) = wu(t)1(t—5/2), respectively. They are further bounded at infinity, and cigie
- _ L on the real axisx = f, where there is a single pole of order
vi(E+9/2) = —u(t)1(=t—9/2), one located at = 0.
H = u(t) 0/2<t<4/2
w( B 0 otherwise ’ “Note that, under the assumption of finite second moment,
3 ) - 1im§R{ K(f) }_’Y—l
Actually, there has been some uncertainty about the ofiginaeer of the 50 I-K(f) S~ 2

approach. According to Muskhelishvili_[26]The problem formulated above

is often called the Riemann problem, but the Author considleis name to where the last equality straightforwardly follows by refgehapplication of
be incorrect [....], because it was first considered by D. Hitbessentially in  De L'Hopital rule, and fromk’(0) = i27 and K’/ (0) = —4x2(1++). This
the form in which it is statet! ensures thatV (f) is well-behaved.
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An application of the analytic continuation theorem 1[29{Using (ii7) and (iv) gives identical results.)
will allow to glue togethethe two functions in the upper and The LHS of the above is equivalent to low-pass filtering of
lower half planes, obtaining a function which is analytic if¥(f), namely [ W (v)d sindd(f — v)]dv, so that, by further
the whole plane, except for the single pole of order one asing the explicit form[(16) of¥ (f), and the properties of

the origin. The generalized Liouville theorem [29] definke t Q(f), we get the desired claim. .
only admissible form that such a function can assume;
wherec is a constant to be determifed For later use, note that at LHS and RHS of éq. (6) appear
Restricting to the real-axis only, we finally get: Fourier transforms of functions that vanish outside thegean
VH(f) . [-0/2,6/2]. In view of the sampling theorern [B0], the samples
Tt [(W(f)e ™" = = taken ath/§, h integer, define the whole functions. These
Vt(f)(g—)i%‘sf I . samples are
) —imdf1T _ &
T ry T =5 A8 o5 4 /Q(u)%{%} 5sind(8v — h)dv
Computing ¢ is made possible by the condition that the 1-Q(0)
soughtu(t) should be a probability density function, which =0 ——F—1Iy,

2

wherel; =1 for h = 0 and I;, = 0 otherwise.
Also the unknown functior2(f) is bandlimited, so that

is equivalent toU (0) = 1, or V*(0) — V—(0) = 1 — £(0).
Using egs.[(118), we can write

VR = [1- K(f)][W(f)efiwéf]Jr + 01 — K(f) it can be _represented by _the_ Shannon selity) =
f >k Uk /0)sindd f — k). Substituting into the above equation
V- _ s f1— 1-K we get
= n-Rwe e wed S anentesn) - on
hk = 1n,
that, evaluated af = 0, yield V*(0) — V—(0) = —idme, k 2
where we usedim;_.g %(f) = —K'(0) = —i2n. The where
conditionV*(0) — V—(0) = 1 — Q(0) will thus give S K(v)
App=1+=+2 — _Lssiné(6v)d
1) 1) 00 +2+ /%R{l_K(U)}dsm (ov)dv
Sy A =142 [R{ 5L osin€ (v — k)dv, k # 0
If we repeat the above development by multiplying égl (1 - K(v) . e .
by the complex exponential™/ we get a similar result, A =2 f%{l—K(v)}gsmo(gV h)sinddy — k)dv, h 72];
namelf . . . (22)
_ having used the orthogonality property of the sinc function
VE(f)ermT (W (f)eim" = & Thanks to the results of appendiX B, the above integrals in
1-K(f) f the Fourier domain can be expressed in the time domain as
- o iven in egs. 1). We are now in the position of provin
Vv Ef) + [W(f)ezmif] _ E (20) gh q [IB)lm ) p p g
1-K(f) ¥ the remaining claims.
Putting together eqs[_(1L8) and {20), along with the found
value of the constanE(19), gives the system of equations B- Proof of Theorem 3
VH(f) . [W(f)e‘””sfﬁ . 1-9(0) " Let us consider only the terfa = 0 in (Iﬂé):
LS EU) o Anf A009(0) + 3" Ak /) = 2. (23)
V (f)e + [W(f)eiﬂ'éfrr = 1 Q(O) (”) k0 2
1-K(f) 4 f . . L
V=(f) it g1 1 —Q(0) The rationale behind the approximation of Theorem 3 amounts
=K + [W(f)e™] = T (i4i)  to neglect the cross-termdyy, for k = 0, which can be easy
V= (f)e i2m8f Cimspre 1 9(0) . understood by considering the two limiting regimes.
1_7]—(00) +[W(f)e ] = T (iv) Consider firsty <« 1. By triangle inequality
- - . . .. 6
_Solvmg for V*(f)/[1 — K(f)] in equations(i) and (i) | Aok < 2/ m(t)dt ~ 0
gives 6 Jo
inof1t —insf _ —indf1t indf where the approximation follows by:(0) = 0.
(W (£)em™] e (W (£e 1] S As to ¢ > 1, from a renewal theorem for interarrivals with
= dsing(d f) _T(O) finite second moment [24], we know that
. y—1
SActually, according to the generalized Liouville theorethe overall )Hglo[m(t) —t= T (24)

function should be equal teg + c1/z. On the other hand, we are looking .
for a solutionU(f) in the class of the functions which vanish at infinity, 1 NUS, from [10) we write, fok # 0
implying co = 0. 5
6The structure of the equation is such that the same valudseaddnstant Aop = (_1)k 2
5 Jo

v—1
¢ = i[l — Q(0)]/(4r) is obtained. [m(t) —t— 5| cos(2mkt/d)dt,
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which follows by f(ft cos(2rwkt/d) = 0. Then, by triangle
inequality

1

|A0k|< —t—% dt ~ 0,

V. EXAMPLES

The analytical expression of' provided by Theorem 3
turns out to be quite accurate for virtually all the interaat
distributions used in our simulation studies, many of wtdach
typical of network applications. Part of these extensivenco

where the last approximation is a consequence of the CesBHer investigations are summarized in Secfs.]V-A andl V-B.

mean theorem and ed._(24).

We note also that2(k/d)] < Q(0) for all £ # 0, and
consistently we neglect all terms with # 0 in eq. [23).
Solving for©2(0) is now possible:

1) 6
5 2 /°
1— 5 + 5/0 m(t)dt

2400
yielding, in view of eq.[(b), the desired result.

Q(0) ~

C. Proof of Corollary 1

We know that the true embedding capacity tends to unity
as diverges. In order to quantify the convergence rate, we

consider the limiting behavior of

1+ 2 [0 m(t)dt — 6
1+6fo fdt

1-C =

(25)

Now,

5 [ moa=3 [

)—tldt+d~vy—1+0,

by simple application of the Cesaro mean theorem and of the
renewal theorem used before, se€ (24). Friom (25), we get the

desired result:
lim [1 — C]é = .

d—00

D. Proof of Theorem 4

Let us consider the series in ef.(21). By truncating it to

2N +1 terms, we get the following representation, with: €
[_N7 N]!

}: AneQ(k/6) = —Ih

k=—N

Let A denote the matrix made of th&,;’s. Recalling that we
are not interested in computing the whole functioff), but
just its value at the origin, we get

Q(0) =

It is possible to explicit the solution foN = 1. Using the
symmetries involved, we easily get
1

{A Yoo = g
Aoo +2 Ao1— A11

which, along with eq.[{5), yields the desired res[iil (12).

_ 1)
{A Yoo 3

In fact, to find an example where the refinements offered by
Theorem 4 provide meaningful improvements ogemwe need

to choose carefully the kind of interarrival distributiqress
discussed later.

A. Examples with Capacity in Closed Form

We start with studying some well-known interarrival distri
butions, for which the renewal function is available in eds
form.

« Erlang family

The Gamma random variable u-PDF is

(S
k(t)=¢& e s,
©=Tg
When the parameteris integer, the interarrival distribu-
tion belongs to the Erlang family, a case for which the
renewal function has been computed in closed farm [31]

o §—1 oh ) (10t
)=t+ 3 e (L),

with 0 = ¢’ &
The (approximation of the) embedding capacity is ac-
cordingly

t>0,

£>0. (26)

C:

AA
e—1
14+ AA+2
2

9]1
- \' ™
o Weibull distribution
The u-PDF for the Weibull random variable is

b\ /t\"! b
k(t) = (—) (—) e~ (/o) t>0, b>0
ag g (27)

whereo = [['(1 + 1/b)] L. The pertinent u-RF i€ [32]:

1 e—c—0mna
YN0

o0

(=1)"La, [T(1+1/b)4"°
Z I'(1+nb) ’

n=1

where the coefficients,, are defined recursively by

n—1
- § Qj Gn—j,
j=1

m(t)

] = X1 ...0p =

with
I'(1+nb)
oy = ——.
n!
This yields
C= )\A (28)

[T(1+1/b) AA]""
1+nb) (nb+1)

1+Qz
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H 1
Exponential Erlang £=2
21 21 L |
£ £ ) 09
S o8 ¥ & os
S 8 081 |
g’ o g: oe Pareto b=3
c c >
5 04 5 04 = o7k p
5 5 & Gamma £=0.3
o2 802 %o.ef p
uEJ UEJ O areto b=1,5
1 2 3 4 5 1 2 3 4 5 o e
051 o oo ® h
ANA AA % o *
Erlang £=3 Uniform T oar ]
21 , = ! -g o
o k3 PYTYY ) L s ]
go.s go.s ....l.. %3 ...
[ @ L] [ ]
O o6 O o6 il o2 28 ]
g 2 | 4
= 0.4 = oaf 4 o1l |
Loz Loz
. . . . . . . . .
UEJ UEJ 05 1 15 2 25 3 35 4 45 5
1 2 3 4 5 1 2 3 4 AA
AA AA

. ) ) ) ) Fig. 5. Examples of different traffic models. Continuousvesrrefer to the
Fig. 4. Examples of traffic models for which the renewal fimetadmits  approximationC in Theorem 3, eq[{7), while dots are obtained by computer
simple closed form. Dots refer to computer simulations & #mbedding sjmulations.
capacity and lines refer to analytical formulas.

u-PDF is
« Uniform distribution b/ -1)
; . _ k(t) = ————1—. (29)
The u-RF for uniform random variables can be obtained (14 555)0Ht

by iteratively solving the renewal equatian [24], yieldinq:igureB shows the embedding capacity, again obtained by

et/2 _ 1 0<t<9 numerical integration ofl in (22), for the Pareto distribution
m(t) = et/2 _ 1 _ (% _ 1) et/2-1 9 << g This distribution exhibits finite se_cond _moment Whgnever
the shape parametér > 2. Accordingly, in the numerical
simulation, we first test the case= 3, which falls in the class
with similar expressions for successive intervals of langtonsidered in the assumptions of our theorems, see[Fig. 5.

2. The resulting capacity is Then, we explore by simulation a case with infinite second
(AA)? WA moment, that isp = 1.5, and Fig[5 reveal that the accuracy
-V € [0,2] of the formula is still excellent.
In all the cases examined so far, there is no doubt that
C = — AA(/\]A)2 . M€ [2,4] the express_iord) is quite accurate for any prgctical purposes.
de”2 +2e72 T (4-AA)-AA-8 We would like to present an example in which the analytical

formula [7) of Theorem 3 is less accurate and the following
shifted exponential distribution offers this opportunitgt us

In Fig.[4 the above expressions for the capacity are coﬁf%nSi(_j?She following u-PDF for the interarrivals(t) =
pared to numerical simulations. We see that the matchingz ¢ ' . fort >a, and0 <a <1.

between the approximate analytical formulas and the mesult The embedding capacity is displayed, together with the
of computer simulations is excellent. simulated data, in Fid.]6. As it can be seen, the agreement is

perfect in the range A < a and is quite good for largaA;
- this is expected in view of Remark 2, and the arguments used
B. Other Distributions in the proof of Theorem 3. However, for intermediate values

Even when the renewal function is not known explicitlyof the product\A, the approximatiort’ is not satisfying.
there exist many numerical ways to compute that. someThus, we resort to the refined approximations offered by
methods exploit the definition of the renewal function imier Theorem 4, and the results are shown again in [Hig. 6, where
of interarrival distribution[[24], other approaches aredzion the solutions obtained by using = 1 (that is, eq.[(1R)), and
the interarrival density, and even others exploit the Fauri’V = 2 (this case being solved numerically), are displayed.
domain. As it can be seen, the partial inaccuracy of the approximatio

For instance, let us consider again the Gamma farfilly (26), iS remediated with the adoption of e@.(12). Adding more
and assume thaf = 0.3. In this case, it is particularly t€rms (i.e..N > 1) gives negligible improvements.
convenient to use the Fourier domain expression Agp
given in the first equation of {22). Computing numericallg th VI. ORDERING OFEMBEDDING CAPACITIES
involved integral, we get the capacity plotted in Hi§. 5. In this section we show how the embedding capacity

A case of special interest for network applications due wan be used for comparing different renewal processes in
its tail behavior is the Pareto interarrival distributiomhose terms of their embedding capabilities. L&; and X, be two
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! " secctcccdcssdccoRnasanasss straightforward and intuitive wayless variable interarrivals
ool / . yield a larger embedding capacity
08f ! 1 THEOREM 5 Let C; and Cy be the approximate embedding
2ol J | capacities for i.i.d. renewal processes with interarrivhstri-
é TS bution X; and X5, respectively. Then
@ 06 14 Linear System N=1 1
O Linear System N=2 Xl SUX2 = Cl 2 02_
D o5 4
= 0
% 0.4 4 <>
£ ! Proof. The u-RF’s ofX; and X, can be represented as [24]
w ” | o0 o0
0
02 1 mi(t) = ZPr {/\Si(l) < t} ,  ma(t) = ZPr {)\Si(Q) < t} .
01l ? i i=1 =1 (33)
s T s s s s 35 o i s Let us focus on the single terms of the series. By assumption
AA X1<,X5, implying, in view of [31),
AA AA
Fig. 6. Example of a shifted exponential distribution, with= 0.8. Dots (1) (2)
are obtained by computer simulations, while continuousesurefer to the /0 Pr {/\Sl < t} dt < /0 Pr {/\Sl < t} dt.

different analytical approximations far* in Theorems 3 and 4. Specifically,

we display (i) C, (i) the linear system solution withv = 1 of eq. [12), Since the variability ordering is closed under convolutjsee
and (ii7) the linear system solution faN = 2. The latter two curves are g g., [33])

superimposed.
AA AA
/ Pr{AS;U < t} dtg/ Pr{/\S,(f) < t} dt.
non-negative random variables with the same average value “'° 0

E[X,] = E[Xs] = 1/), and with cumulative distribution This implies

functions denoted by () and Fx(:), respectively. The fol- A n AA n

lowing definitions and results are classical in stochastiteo / ZPr{/\Si(l) < t} dt < / ZPr{/\SZ@) < t} dt.
literature, and can be found in_[33], [24]. 0 =1 0 =1

DEFINITION 7 (Variability or convex ordering) The randomAPPIying Beppo Levi's monotone convergence theorem [34],
variable X, is less variable thanX, written X, <, X», if  We are legitimate to exchange integration and limit, yiei

. AA AA
E[p(X1)] < E[¢(X2)] for all convex functionsp : R — R, / o (£) dt < / () di
(30) 0 —Jo
provided that the expectations exist. ¢ which, in the light of eq.[(33), give€; > Cs. .
KNOwWN RESULTS [33] (Sufficient and Necessary Conditions
for convex ordering) For non-negative random variabl¥s A Ordering w.r.t. Poisson
and X, with E[X;] = E[X5] = 1/, the conditionX; <, X5

is equivalent to each of the following: It is of special interest to compare the given renewal proces

. . to Poisson traffic, and this can be conveniently done by means
/ Fi(t)dt > / Fo(t)dt, for all z,  (31) of our analytical approximation. To do so, let us define two
0 0 special categories of interarrival distributions.
Li(p) > La(p), forallpe0,1]. (32)

DEeFINITION 8 (NBUE/NWUE classes) A non-negative random
In the abovel;(p) and Ly (p) are the so-called Lorenz curvesvariable X is called New Better than Used in Expectation

of the random variables(; and X, defined as (NBUE) or New Worse than Used in Expectation (NWUE)
P if [24]:
L =\ [ F7)(u)du, forall pelo,1].
1.2(P) /o 12 () pelod] NBUE  E[X —s|X > s <E[X] Vs>0,
NWUE E[X — s|X > 5] > E[X] Vs > 0.

Intuitively, X; <, X, if X; gives less weight to the
extreme values with respect t§,. One way to get this is Due to the absence of memory, the exponential distribution
just to ensure thaE[¢(X1)] < E[¢(X2)] for convex¢, as is such thatE[X — s|X > s] = E[X], and it belongs to both
stated in [(3D). That's why this kind of stochastic orderinglasses.

is also known as convex ordering. It is also obvious th@EOROLLARY 2 (Capacity Ordering in NBUE/NWUE classes)
X1 <y Xp = VAR[X1] < VAR[Xo], and henceX, has a | o CnBUE CnwuE and Cexp denote the embedding capac-
dispersion |nde>_< smalle_r than or. equal to thatXf, a fac_t ities given by[(I7) for interarrivals from the NBUE class, the
that plays a major role in the regime 4f > 1/A, as seen in NWUE class, and the exponential distribution. The follayin

Corollary 1. : :
. . relationship holds:
The following theorem formally relates the classical con- P

cept of variability ordering to the embedding capacity in a CNWUE < Cexp < CNBUE
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<> o8 o Da‘la
Proof. Thanks to Proposition 9.6.1 in_[24], the NBUE (resp. = el G
NWUE) distributions can be shown to be less (resp. more)

variable than the exponential, implying the claimed ressit

=
)

>
a direct consequence of Theorem 5. . E
o 051 7
3
u-PDFE(#) | Ordering Relationship O
GAVMA Eq.[28) | & >& = C1 > Ca. 2o |
WEIBULL Eq. 21 | b1 > b2 = C1 > Ca. 3
PARETO Eq.[29) | 61> b2 = C1 > Ca. D ol |
LOGNORMAL | Eq [3) | 01 <02 = C1 > Ca. E
0.2 —
TABLE | _
SUMMARY OF THE RELATIONSHIPS BETWEEN CLASSICAL AND o1 absolute errors (different tranches)

EMBEDDING CAPACITY ORDERING FOR TYPICAL DISTRIBUTIONS

B. Ordering within the same distribution class Fig. 7. Embedding capacity curve of Telnet data, for a paitrahches
. . . . . selected as described in the main text. In the lower part efplot, the
The relationship between embedding capacity ordering aggioiute error between empirical and theoretical capasitfisplayed, for a

classical ordering of random variables allows easy corspari broader set of different tranches.
of distributions within the same class.

For Gamma and Weibull random variables, it has been
shown that the Lorenz curves are monotonically increasing €ach. extracted from tracdbl-tcp-3.tcp (source node)
with the shape parametefs [35]. Thus, larger shape parsnete andIbl-pkt-4.tcp(relay node). _ .
give higher embedding capacities. It is also easy to evaluat * BY means of a moving average filter ovey™ packets,
the Lorenz curve of the Pareto random variable with a u-PDF W€ Select over the two traces candidate tranches having

given in [29) comparable r_a'_[Es Withogt loss _of generality, we scale
i the data by dividing the interarrivals by the sample mean
Lip)=b(1—p)[1—1—p) " +p, computed over the union of the two tranches.

« We run the BGM algorithm on the selected tranches, with
fixed (dimensionless) observation time= 9000.

L(p) = ®(@ " (p) — o), « We also run the BGM algorithnafter scramblingthe

interarrivals, in order to remove statistical dependencie

between them, namely, to enforce the renewal assump-

as well as that of the Lognormal random variable

whose u-PDF is

2 2
k(t) = 1 exp {_w} , t>0. tion. This is purely for testing the accuracy of the found
V2ro2t 20 (34 formulas.

Both functions exhibit monotonic behavior with respectbto !N Order to compute theoretical capacities, we need a candi-

and o, respectively. date distribution for the interarrivals. We accordingly tfie
Thérefore using eq[(B2) allows easy (convex) ordering gpmpirical interarrival CDF of each tranche, and find that the
the interarrivals, which in turns induces an ordering of thieibull distribution works generally well, that is perhapst

embedding capacities thanks to Theorem 5. The results 4pgxpected, see, e.d.. [37] and[38].
summarized in Tablg . Consider now the capacity curves in FI[g. 7. The exper-

imental curves for capacity refer to one pair of tranches
VIl. EXPERIMENTS WITHREAL NETWORK TRACES where the Weibull fit is accurate, and the two empirical CDFs
are close to each other, complying with the assumption of

In this section, we present some numerical tests run ®bntical distribution across nodes. The theoretical eu/

real traces. Specifically, we downloaded the TCP packet af- .
riving times (tracedbl-tcp-3.tcp and Ibl-pkt-4.tcp gathered drawn by [28), where the shape paramétes computed over

-~ the union of the two tranches.

at the. Lawrence Berkeley Laboratpry, that were originally For the scrambled data the theoretical approximafibs

used in [3‘.)]' Following [[36] anq 4], we_extract paCket.SexceIIent. As to the (non-scrambled) real data, a first exdde

corresponding to Telnet connections (obtained from hgarlpS that, up to values ofA in the order of unit, the curve
atches the theoretical approximation well. On the othadha

communication on port 23). The pipeline for the real dat%
processmg is as follows. ) a discrepancy emerges at larger values of the protlidctdue
e The m_spected _traces correspond to Frafﬂc patterns cgj possible dependencies among the interarrivals.
lected in two different days. We consider thggregate
traffic, that is, we do not extract informations pertaining “with this selection procedure, the tranches extracted feogiven trace
to the single hosts. might also overlap. Obviously, this does not alter our asialyin that we

Wi | h . f v ind d only need independence between the source tranche (extré@m trace
® e emulate the scenario of two mutually indepen emﬁ-tcp-&tcp, and the relay tranche (extracted from thdependentracelbl-

point processes, by using two tranches16f packets pkt-4.tcp.
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A more complete picture is obtained by applying the abowxtension to non-renewal point processes, to multi-hopsjow
procedure to different tranches, irrespectively of thedymss and to the case of multiple input/multiple output relay®, &3,
of the Weibull fit, and of the similarity between the empitica[4].
distributions at the two nodes. The results of this latter
analysis are summarized in the bottom part of Eig. 7, where APPENDIX A
the absolute error between the theoretical formula and the PROOE OETHEOREM 1
empirical capacity is displayed, only for the case of redhda
(Again, scrambling reduces the error, this is not shown 1‘”
the plot.) The points marked with darker circles refer to th )
tranche pair used for drawing the capacities displayed én th™ A_] converges a.s. 10 a constqmt Then since e‘?‘C“?n
uppermost part of the plot. As it can be seen, the theoretié; ts_|de[0, A represents a ch_aff point whe_zreas edghinside
approximation follows the empirical capacity closely ataim the interval represents a pair of flow points, we see that the

A\A. Also in this case, a discrepancy is observed for moderat%rlgction of flow points embedded by BGM converges a.s., and

; o limit, i.e., the embedding capacity, is givendy/(1+p).
| ! A, with an absolut t the ordef < : .
;rgl]g_vla ues oAA, with an absolute error staying in the orde On the other hand, by Theorem 17.1.7 in][39],{i¥,.}

Summarizing, a main behavior seems to emerge — t 3ta p03|1t|venHarr|s recurrentMarkov chain, theni) p -
Io, a)(Z;) exists a.s., wherdy a)(z) is

the theoretical predictions are very accurate for real d g'n—ro0 w 24=0 10, .
well modeled by renewal processes, corroborating the whg £ n_‘1d|cator function, an(@ p can be co_m_p_uted_ from_the
theoretical machinery for embedding capacity computatiopvariant PDFh(t) by p = [, " h(t)dt. By definition, ifa(t) is
and that the possible statistical dependence among paé solution to eq[{3), it will be invariant under the traisi

interarrivals can be neglected ftight delay constraints, up : 'r']'e" 'r: IS an |n}{ar|arr11tmea§ure. The pos(|jt|\f/_e _Harrrsp(;jm:]y
to delay values in the order of the mean interarrival time. of the chain imp |es_t ah(t) is unique an nite, an t_ us
can be normalized into a probability measure. It remains to

prove the property of positive Harris recurrence.
VIII. CONCLUSION First, we show that the Markov chaifZz,} is v-

We consider the problem of matching two independefteducible [39] (all the sets mentioned in the sequel areeBo
and identically distributed renewal processes, accortiing 1he assumption that BGM can match one pair almost surely
bounded delay criterion, with applications to communimati implies that the interval0, A] is accessible from any state
network scenarios. We introduce the concepteaibedding almost surely, say.(z, [0, A]) = 1 Vz [39]. This rules out the
capacity and provide fully analytical tools and approximation§ases where the asymptotic fraction of matched points dpen
to evaluate it, relying upon the Riemann-Hilbert theory. AR the initial state (where embedding capacity does not)exis
exact evaluation of the capacity is reduced to a manageafd those where the embedding capacity is trivially zero.
integral equation, that can be solved to any degree of apLet » be the Lebesgue measure constraine@t]], i.e.
proximation by inverting a highly structured linear system?(A) = u(A N[0, A]), wherey is the Lebesgue measure.
The main finding, however, is a simple approximated formufaiven PDF f(¢), there must exiséy > 0 such thatf(¢) > do
of the embedding capacity that involves the renewal functidor all ¢ within some intervalto, to + o], and thus
of the underlying processes. The approximation is excellen +00
for virtually all the cases of practical interest that we @av fo(t) :/ FO) f(r = t)dr > 65(e0 — |t]) = 65(e0 — €1)
investigated, part of which are reported in the paper. Even 0
when this is not strictly true, we provide closed-form siwios  for all ¢ € [—e1, 1], wheree; is a constant in(0, ¢). Let
for first-order correction. 81 = 62(eo—e1). Partition[0, A] intom := [2A /e ] segments

The analytical formula highlights the role played by difof lengthe; /2, as illustrated in Fid.18, such that the transition
ferent renewal parameters: for large\ only the dispersion density from anyz € [0,A] to any point in an adjacent
index matters, while embedding capacity ordering is inducéegment is greater thai. For any setC with ¢(C) > 0,
by the stochastic variability of the underlying interaas. let eo be the Lebesgue measure of the minimum intersection

The experimental analysis carried on real network tracBstweenC and the$--segments. Let be an arbitrary point
reveals that the accuracy of the analytical expression i&lgdn [0, A] that isn segments away frord (» < m — 1) and
for tight delay constraints, up tdA in the order of unit. For Z; (i = 1,...,n) be theith segment from: to C, whereZ,
larger delays, a partial inaccuracy is seen, and we show tH¥grsects withC. The n-step transition satisfies
this should be ascribed to statistical dependencies udakblyi
present in real traffic patterns: the renewal model is fgjlin ~ £"(2,C) > | fo(z1 —2)dz1 | fo(w2 — @1)dws -
rather than the proposed analytical approximation. h =

We first justify the embedding capacity formula (4). Assume
r now that the frequency foZ,, to fall inside the interval

The abstract concept of matching between point processes / folxn — 2p—1)day
arises in a very large number of contexts, and we feel that our Znne -
findings can represent a contribution to these fields. Todena > (51%1) S1€2 > 0. (35)

further the horizon of potential applications, refinemegntsl
improvements of the approach can be considered. These Tiés implies L(z,C) > 0 for all z € [0, A]. Moreover, since
case of different renewal processes at the two nodes, the,[0,A]) =1 for all z, we haveL(z,C) > 0 for all z. That
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I I, ¢ with a suitable choice ob. Since the petite sef0, A] is

» / \ . /;\ \ oL uniformly accessibl@ from C,, we can conclude that; is
— ‘ ‘ petite, and eq.[(37) coincides with the drift conditioiv)(
O (e / A e .

2 of Theorem 13.0.1 in[[39], whence, further observing that

aperiodicity holds, we conclude th@Z,, } is positive Harrise

Fig. 8. Acces< from z by hoping through%l-segments ifo, A]. APPENDIX B

LINEAR SYSTEM COEFFICIENTS

is, any set with positivep measure is accessible from anywhere I;ﬁt us mtroId;Jce tt_he s?-c?rllle:da_nevial iiednsnzas;toclltayed
within the state space with positive probability, implyin 0 the renewal func lonn(t), tha 'S.p( ) . m(t)/dt. It is
that the chain isp-irreducible and hence-irreducible for a convenient to consider a symmetric version thereof, namely

maximal irreducibility measure), according to[[30]. p(t) = p(t) + p(=t). It holds g?g that the Fourier transform
Second, we show thafZ,} is Harris recurrent. Since it ©f () =1 s glven.byzéﬁ{lfk(f) } see [40], [41].

is y-irreducible andZL(z, [0, A]) > 0 for all z, by Theorem  Let us first consider the termg, in eq. [22). In view of

5.2.2 in [39], there exisk > 1, a nontrivial measure,, and Parseval’s formula [42]:

a nontrivial setC; C [0, A] such thatC; is v,-small, and 9 /%{ K(v) }5sinc2(6u)dy

hencev;, -petite. For sampling distribution(i) = 1/m (i = 1- K@)
1,...,m), the transition kernel of the sampled chain from any ) s
z € [0, A] satisfies = / [p(t) = 1)(1 — |t|/d)dt = 2 / p(t)(1 —t/8)dt — 4,
-5 0
. 1 €1\t where we simply notice that the Fourier transform of the
> - i
Ka(,€1) 2 mP (z.€1) > m (51 2 ) o€z, (36) triangular window of width24 is 6sinc2(5f6). Integration by

. é
where we apply [35) forC = Ci. Sincen < m — 1, Pamts then giveg [; p(t)(1 —t/8)dt = 2 [ m(t)dt, or

Ka(2,C1) > (5161/2)’”_2 J1€2, independent ot for z € 5§ 2 (9

[0, A]. Therefore,C; is uniformly accessible using from Ago =1 - 9 + 5/0 m(t)dt.
[0, A]. By Proposition 5.5.4 in[[39], we prove thaf, A]
IS vass,-petite. The fact that a petite séb, A] satisfies
L(z,[0,A]) = 1 for all z for a v-irreducible chain implies

As to the evaluation ofdy; in eq. [22),k # 0, it suffices
to use the shift property of the Fourier transform, yielding

Harris recurrence in the light of Proposition 9.1.7 [inl[39]. 2 /3:3 {LV)} 5siné (6w — k)dv
Finally, we show positivity by drift analysis. Define the i_ K(v)
function = / [p(t) — 1](1 — |t|/6) cos(2mkt/d)dt
z— A, if 2> A, -
V(z) =2X4 0, if 0<z<A, = 2 / p(t)(1 — t/5) cos(2mkt/8)dt,
-2, if z<0, 0

. . o ) that integrated by parts gives
wherel/\ is the mean interarrival time, and consider the mean

: : ) 5
drift defined in [39] as Ape =1+ %/ m(t)[cos(2mkt /) dt
0

dv(z) = /P(Z’dy)v(y) —V(z), + 27k (1 —t/0) sin(2wkt /)] dt.
Finally focusing on the termsi,; in eq. [22),h # k, it
where P(z,dy) is the transition kernel of the chain. Definesuffices to consider the even partésingd f — h)sindd f — k),

a setCy = [—2z0, A + 2] for 2 sufficiently large such that whose inverse Fourier transform is
o fltydt — [ o f@)tdt = 1/(2)). For anyz > A + 2 1 5/2 Cintne i (P T
we have, after some straightforward manipulations, 5 R e Te 11 5 dr
—5/2
o 1/2
dv(z) = =2A _/ fO)(t = z)dt = / cos[2m(h — k)T + 27kt /5 | (T — t/6) dr,
# —1/2
z—A 9]
+ / Flo)tdt + (= — A)/ F(t)dt I1(¢) being the rectangular window of width The integral is
0 z—A zero for|t| > 4. Fort € (0,4) we have
z0 8] 1/2
< =22 U f)tdt —/ f(f)fdt} < -1 / cos[2m(h — k)7 + 27kt/6]dr
0 zo+A t/6—1/2
The same holds fot < —z. It is easy to see that, inside the (=) * .
= —F 2wkt/§) — sin(2wht/0)].
setCsy, dV (=) can be bounded by a constant, such that we can 2r(h — k) [sin(2rkt/0) = sin(2rht/o) ]

write
8This can be easily shown with the same technique used to praiéerm

dV(z) < =1+4blc,(2), (37) accessibility of¢; from [0, A].
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This gives
_1\h—k 5
Ank = % 2 /0 p(t)[sin(2mkt/§) — sin(2wht/d) ] dt
(_1)h—k 2 &
_ m 5 ; m(t)[h cos(2wht/§) — k cos(2mkt/d)]dt,

where the latter is obtained integrating by parts. Equafid)
now follows as a special case, whence €q] (11) is true.
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