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The Embedding Capacity of Information Flows
Under Renewal Traffic

Stefano Marano, Vincenzo Matta, Ting He, and Lang Tong

Abstract—Given two independent point processes and a certain
rule for matching points between them, what is the fraction of
matched points over infinitely long streams? In many application
contexts, e.g., secure networking, a meaningful matching rule is
that of a maximum causal delay, and the problem is related to
embedding a flow of packets in cover traffic such that no traffic
analysis can detect it. We study the best undetectable embedding
policy and the corresponding maximum flow rate —that we call
the embedding capacity— under the assumption that the cover
traffic can be modeled as arbitrary renewal processes. We find
that computing the embedding capacity requires the inversion
of very structured linear systems that, for a broad range of
renewal models encountered in practice, admits a fully analytical
expression in terms of the renewal function of the processes.
Our main theoretical contribution is a simple closed form of
such relationship. This result enables us to explore properties
of the embedding capacity, obtaining closed-form solutions for
selected distribution families and a suite of sufficient conditions
on the capacity ordering. We evaluate our solution on real
network traces, which shows a noticeable match for tight
delay constraints. A gap between the predicted and the actual
embedding capacities appears for looser constraints, and further
investigation reveals that it is caused by inaccuracy of the
renewal traffic model rather than of the solution itself.

I. I NTRODUCTION

CONSIDER the pair of timing sequences represented by
the point processesS and T in Fig. 1, where points

are matched according to some prescribed rule. What is the
maximum achievable fraction of matched points (embedding
capacity) given the two processes and the matching rule?
How do statistical properties of the point processes affectthe
maximum fraction of matching? The main theme of this paper
is that of providing analytical tools for computing the embed-
ding capacity of two independent and identically distributed
renewal processes, when the coupling rule is formulated in
terms of a causal delay constraint.

The above problem naturally arises in many applicative
scenarios: from intelligence applications aimed at tracing
relationships among individuals (e.g., in social networks), to
the discovering of neuron connections by measurements of
firing sequences, and so forth [1], [2]. An application closer
to the communication area concerns the anonymous relaying
of messages in distributed architectures, or the detectionof
clandestine information flows in wireless systems. In fact,
the evaluation of the embedding capacity under causal delay
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Fig. 1. Notional sketch of the addressed problem, with arrival epochs of
processesS and T matched according to a delay constraint∆. Matched
points are marked by circles, unmatched by diamonds.

constraint has been recognized as a relevant problem in the
context of secure networking, where the focus is on informa-
tion flowing that is anonymous with respect to an attacking
eavesdropper [3], or, in a reversed perspective, clandestine
with respect to a legitimate traffic analyst [4].

In these contexts —to which we specifically refer in the
paper— the two processes represent the sequences of time
epochs (traffic patterns) at which successive packets leavetwo
nodes of the network and, for security requirements, packets
are encrypted so that they do not reveal special characteristics.
Still, the act of transmission itselfcannot be kept secret, and
timing analysis can be performed.

Given that nodes are unable to hide the act of transmission,
they must hide the information flow packets into their normal
transmission scheduling, which providecover traffic for the
desired flow. The nodes can mask the timing relationships
by properly delaying the transmission of information packets
and/or multiplexing information packets with dummy packets
or packets from other flows. With a sufficient amount of
perturbation, an information flow can be disguised as trafficof
arbitrary patterns. In particular, the flow can appear identical to
independent traffic following certain transmission schedules.

As a consequence, every transmission schedule (or cover
traffic) has certain capacity of being utilized to transmit infor-
mation flows covertly. The matching capability of a particular
schedule takes the operational meaning of anembedding
capacity, that is, the maximum fraction of information packets
that can be embedded in the cover traffic following this
schedule, leaving no chances of discovering the presence of
the flow itself.

http://arxiv.org/abs/1103.2431v2
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A. Summary of Results

The embedding capacity for a Poisson process under causal
delay constraint is known, see [4]. The Poisson assumption,
however, rarely fits real traffic and, to date, analytical formulas
for arbitrary renewal traffic are still missing. The contribution
of this paper is in filling this gap.

We find that the embedding capacity is related to the
invariant distribution of a certain Markov chain. First, we
prove the existence of such distribution, so that capacity
evaluation requires the solution of an integral equation. We
attack this problem by exploiting the powerful tools offered
by the Riemann-Hilbert theory, which allows us to derive the
following approximation for the embedding capacity:

C∗ ≈ λ∆

1 +
2

λ∆

∫ λ∆

0

m(t)dt

whereλ is the rate of the processes,∆ is the delay constraint,
andm(t) is the renewal function of the (scaled to unit rate)
underlying process. The accuracy of this formula is excellent
for a very broad range of renewal processes of interest for
the applications, see Sect. V. We also show howC∗ can be
computed to any degree of approximation by inverting a very
structured linear system, and provide a first-order correction
expressed in closed form.

The significance of the above formula is thatC∗ depends
only on the renewal function which is the key quantity in
renewal theory, as such, is well studied and understood. In
many cases of practical interest, the integral involved can
be evaluated explicitly, from which physical insights can be
gained.

The above expression is then used to relate the physical
parameters and properties of the renewals to the embedding
performance. In the asymptotic regime of largeλ∆, the dis-
persion indexγ is the only relevant quantity, and the capacity
scales as1− γ/(λ∆). Stochastic variability is instead the key
(for any λ∆) to compare different interarrival distributions:
less variable interarrivals yield a larger embedding capacity.

B. Relevance to Secure Networking

One applicative scenario of interest is that of secure net-
working. Consider two packet streams in a network, whose
transmission timestamps are represented by point processes
S = (S1, S2, . . . ) and T = (T1, T2, . . . ). We assume that
the packet content is fully protected by encryption, while
the transmission patterns are relatively easy to obtain by
a monitoring agent, which is capable of performing traffic
(actually timing) analysis.

In one possible scenario,S andT are transmission activities
of two nodesN1 andN2 in a wireless network. The existence
of a flow fromS to T implies thatN2 is acting as a relay for
(part of the transmissions from)N1, thus revealing a multi-
hop route that is otherwise unobservable in protocol or content
domain. The monitoring agent is interested in discovering
whether or not such relaying exists; conversely, the nodes
would like to hide the presence of the information flow (e.g.,
to preserve anonymity) by transmitting independently.

In another case,S represents the pattern of the packets
transmitted to a multiaccess relay through an ingoing linkL1,
and T is the pattern for an outgoing linkL2, both among
multiple ingoing/outgoing links. It is known that information
is flowing fromL1 through the multiaccess relay, but it is not
known whether or not the outgoing linkL2 is being used for
this. The monitoring agent is interested in tracing the route of
the flow, and the multiaccess relay intends to hide the route
by scheduling the two links independently.

C. Related Work & Organization

The roots of packet embedding into cover traffic can be
traced back to the early ’80s. The problem of avoiding traffic
analysis using special relay policies was first considered in [5],
with the adoption of the so-called MIX relays, that perform
multiplexing, scrambling and encryption of the incoming
traffic in order to eliminate the correlation with the outgoing
traffic. Since then, several studies have been made in order to
improve relay performances, see e.g. [6], [7]. More recently,
it has been shown how statistically independent transmission
schedules can achieve perfectly anonymous relaying, with
emphasis on the maximization of the carried information
capacity [3].

Also related to our problem is the network security issue
referred to as stepping-stone attack [8], [9], in which an adver-
sary launches an attack through a sequence of compromised
servers, and one would like to trace the sequence to the origin
of the attack. For wireless networks, an ad hoc network may
be subject to the worm-hole attack [10], where the attacker
hijacks the packets of a node and channels them through a
covert tunnel. In such scenarios, the maximum information
rate sustainable by the attackers is related to the embedding
capacity of the node traffic patterns.

From an information theoretic perspective, the problem of
secure communications, in terms of maximizing the reliable
rate to a legitimate receiver with secrecy constraints with
respect to an eavesdropper, has been extensively studied, since
the pioneering works [11], [12], [13], up to recent extensions,
including multiaccess [14], fading [15], feedback [16], and
broadcast [17] channels, among many others. We stress that
the specific scenario of interest for this paper is instead secure
networking with focus on anonymous relaying of information,
according to the model proposed in [3], [4].

Formal studies of the embedding properties of renewals have
been carried out in [3], [4] , with extensions to distributedde-
tection with communication constraints [18], [19]. The authors
of [4] settled up the problem from the traffic analyzer’s per-
spective, where the role of the embedding capacity is replaced
by that of undetectable flow. They found a closed formula for
the capacity under the Poisson regime. General renewal traffic
models in many applications (inside the communication area
as well as outside that) are far from being approximated as
Poisson, such that several extensions of the above studies in
this direction have been proposed, see [20], [21]. However,a
tractable analytical formula for the embedding capacity under
arbitrary renewal traffic is still missing.

The remainder of this paper is organized as follows. Sec-
tion II formalizes the problem, the main results of the paper
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are presented in Sect. III, and Sect. IV is devoted to the main
mathematical derivations. Sect. V concerns the application
of the main theoretical findings to specific examples, while
Sect. VI addresses the problem of classification and ordering
of renewal processes in terms of their embedding capacity.
Finally, Sect. VII presents the results of experiments on real
network traces, and conclusions follow in Sect. VIII. An
appendix contains some mathematical derivations.

II. PROBLEM FORMULATION

Capital letters denote random variables, and the correspond-
ing lowercase the associate realizations, whilePr andE denote
probability and expectation operators, respectively.

Consider two point processesS = (S1, S2, . . . ) and T =
(T1, T2, . . . ) defined over the semi-axist ∈ (0,∞). Points that
are matched over the two processes form aninformation flow
in the sense that one point in a matched pair can be thought
of as a relayed copy of the other. We are interested in delay-
sensitive directional flows, for which matched points obey a
causal bounded delay constraint as follows.

DEFINITION 1 (Information flow) Processes
W = (W1,W2, . . . ) and Z = (Z1, Z2, . . . ) form a ∆-
bounded-delay information flow in the directionW → Z
if for every realization{wi} and {zi}, there is a one-one
mapping{wi} → {zi} that satisfies the causal bounded delay
constraint0 ≤ zi − wi ≤ ∆, ∀i. ⋄
Here∆ > 0 is a known constant representing the maximum
tolerable delay during relaying.

Given point processesS = (S1, S2, . . . ) and T =
(T1, T2, . . . ), an information flow can be generated by finding,
for each realization of the processes, subsequences that admit
a valid one-one mapping. This is controlled by an embedding
policy.

DEFINITION 2 (Embedding policy) An embedding policyǫ
selects subsequencesWǫ of S and Zǫ of T to form an
information flow. ⋄
The name “embedding” is due to the fact that to an outsider
who cannot observe the selection, it is not known which points
belong to an information flow or even if there is a flow, and
thus the flow is embedded in the overall processes(S, T ). For
the same reason,(S, T ) is calledcover traffic.

Let E = {ǫ} be the set of admissible embedding policies.
Given ǫ ∈ E , the cover traffic(S, T ) is decomposed into

S = Wǫ ⊕ Uǫ, T = Zǫ ⊕ Vǫ,

where(Wǫ,Zǫ) forms a valid information flow. Here⊕ is the
superposition operator for point processes:{ci}= {ai} ⊕ {bi}
means that{ci} = {ai} ∪ {bi} with c1 ≤ c2 ≤ . . . .

Given the cover traffic, each embedding policy has a certain
capability of hosting information flows, quantified as follows.

DEFINITION 3 (Efficiency) Given cover traffic(S, T ), the
efficiency of an embedding policyǫ ∈ E is measured by

η(ǫ) := lim
t→∞

NWǫ(t) +NZǫ(t)

NS(t) +NT (t)
,

whereNWǫ(t), NZǫ(t) are the counting processes for the
embedded information flow, so areNS(t), NT (t) for the cover
traffic (assuming the limit exists almost surely). ⋄
That is, the efficiency is the asymptotic fraction of matched
points in the cover traffic. We are interested in the highest
efficiency that we call theembedding capacity.

DEFINITION 4 (Embedding capacity)C∗ = supǫ∈E η(ǫ). ⋄
The embedding capacityC∗ is a function of the cover traffic
and the flow constraints (e.g.,∆), omitted for simplicity.
We shall focus on the case that the cover trafficS and
T are independent and identically distributed (i.i.d.) renewal
processes, with interarrival random variablesX and Y , re-
spectively. Throughout the paper it is assumed thatX and
Y are absolutely continuous with known Probability Density
Function (PDF)f(t) and Cumulative Distribution Function
(CDF) F (t), and that the rate of the processes, denoted byλ,
is finite and nonzero, i.e.,0 < λ = 1/E[X ] = 1/E[Y ] < ∞.
When the second moment is finite, we define the dispersion
index as

γ = λ2 VAR[X ] = λ2 VAR[Y ] <∞. (1)

III. C HARACTERIZATION OF THE EMBEDDING CAPACITY

A. Optimal Embedding Policy

As a first step toward embedding capacity evaluation, we
need to find an optimal embedding policy that maximizes the
number of matched points for any given cover traffic, thus
achieving the embedding capacity. This has been achieved
by an existing algorithm called theBounded Greedy Match
(BGM) [22]. It is a simple algorithm that classifies the points of
two arbitrary point processes as “matched” and “unmatched”
by sequentially matching points in the two processes under
a causal delay constraint∆ and marking the points violating
this constraint as unmatched.

The BGM algorithm works as follows. Given realizations
of two point processes, all the points initially “undetermined”,
the BGM repeats the following steps, see Fig. 1:

1) Consider the first (in the direction of increasing time)
undetermined point in the first process, sayp(1);

2) Find the first undetermined point in the second process
in the interval[p(1), p(1) +∆], if any, denoted byp(2);

3) If such a point exists, mark bothp(1) and p(2) as
“matched”; otherwise, markp(1) as “unmatched”; in
either case, mark all undetermined points in the second
process beforep(1) “unmatched”.

Matched and unmatched points are also referred to as “flow”
and “chaff”, respectively. The BGM is optimal in the sense
that, given two arbitrary realizations of point processes and an
arbitrary value of∆, the algorithm finds the maximum number
of matched points satisfying the delay bound [3], [4], [22].

B. Embedding capacity in terms of a Markov Chain

Our second step in deriving the embedding capacityC∗

consists of modeling the behavior of BGM by a Markov chain,
whose stationary distribution is directly related toC∗.
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Fig. 2. Three situations arising from applying the BGM procedure to point processesS andT . Chaff points are denoted by “⋄”. Left: the point atS1 is
unmatched, and it is a chaff point in the first process.Center: all points are matched (no chaff).Right: a chaff point is present in the second process.

With reference to Fig. 2, let us consider the time difference
between the first points, that isZ1 = T1 − S1. According to
the BGM algorithm, we have the following three possibilities:

(i) If Z1 > ∆, the points cannot be matched, and the one in
S is labeled as chaff. To decide the nature (chaff/non chaff)
of the point inT , we must check whether it can be matched
to the next arrival inS, thus computing, see Fig. 2(a),

Z2 = T1 − S2 = Z1 −X,

whereX is the random variable representing the interarrivals
in S.

(ii) If 0 ≤ Z1 ≤ ∆, the points match. To check the nature
of the next incoming points, we update the process as, see
Fig. 2(b),

Z2 = T2 − S2 = Z1 + Y −X,

whereY is the random variable representing the interarrivals
in T (recall thatY has the same distribution asX).

(iii) If Z1 < 0, the points cannot be matched, and the one in
T is labeled as chaff. To decide the nature of point inS, we
must check whether it can be matched to the next arrival in
T , thus computing, see Fig. 2(c),

Z2 = T2 − S1 = Z1 + Y.

By repeating for the successive points, we see that a Markov
process can be compactly defined in terms of the original
renewals by the following recursion rule

Zn =






Zn−1 −Xn, if Zn−1 > ∆,
Zn−1 + Yn −Xn, if 0 ≤ Zn−1 ≤ ∆,
Zn−1 + Yn, if Zn−1 < 0,

(2)

whereXn and Yn are the interarrivals of the first and the
second process at thenth step of the chain, following the
common PDFf(t).

The Markov chain defined in (2) is schematically illustrated
in Fig. 3. According to the constitutive equation (2), the

increment of the Markov chain is the interarrival difference
Y −X if the chain is currently between0 and∆, which implies
the matching is successful (e.g.,Z1, Z8); the increment isY
if the chain is below0, in which case the reference point
in the second process is marked as chaff and the reference
point in the first process remains the same (e.g.,Z3, Z4);
similarly, the increment is−X if the chain is above∆, when
the reference point in the first process becomes chaff and that
in the second process remains unchanged (e.g.,Z7). Note that
the number of steps of the Markov chain lying inside (resp.
outside) the barriers0 and∆ defines the number of flow (resp.
chaff) points marked by the BGM algorithm. This suggests
that a relationship exists between the asymptotic distribution
of the chain and the fraction of flow points, i.e., the embedding
capacity. This is made precise in the next section.

C. Main Results

The first theorem we present, whose proof is deferred to
appendix A, establishes a connection between the embedding
capacity and the invariant distribution of the BGM Markov
chain, expressed as the solution of an integral equation.

THEOREM 1 (C∗ by Markov chain) LetS and T be two
independent and identically distributed renewal processes,
with interarrival PDF f(t). Let ∆ be the delay constraint,
and define a Markov chain by (2). Assume BGM can match
at least one pair of points inS andT almost surely.

a) The invariant PDFh(t) of the Markov chain exists and
solves the following homogeneous Fredholm integral equation
of the second kind [23]

h(t) =

∫ 0

−∞

h(τ)f(t − τ)dτ +

∫ +∞

∆

h(τ)f(τ − t)dτ

+

∫ ∆

0

h(τ)f0(t− τ)dτ, (3)
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where f0(t) is the convolution betweenf(t) and f(−t),
defined as

∫ +∞

0 f(τ)f(τ − t)dτ .

b) The embedding capacity can be written as

C∗ =
2
∫∆

0
h(t)dt

1 +
∫ ∆

0 h(t)dt
. (4)

♦
Since now, we shall assume that the hypotheses of Theo-

rem 1 are in force. The next theorems, whose proofs are given
in Sect. IV, accordingly focus on the solution of the integral
equation relevant to capacity computation. We first introduce
the following definitions.

DEFINITION 5 (u-PDF) The probability density functionk(t)
of the interarrivals scaled to unit mean, that is, the random
variablesλX andλY , will be called u-PDF. ⋄
DEFINITION 6 (u-RF) The Renewal Function

m(t) := E[N(t)],

whereN(t) is the number of arrivals in(0, t) of the processes
scaled to unit rate, having interarrival random variablesλX
andλY , will be called u-RF. ⋄
THEOREM 2 (Exact value ofC∗) Under the assumption of
finite second moment for the interarrivals, the embedding ca-
pacity of two independent and identically distributed renewal
processes with rateλ, under delay constraint∆, is

C∗ =
2Ω(0)

1 + Ω(0)
, (5)

whereΩ(f) is the solution of

Ω(f) + 2

∫
Ω(ν)ℜ

{
K(ν)

1−K(ν)

}
λ∆sinc[λ∆(f − ν)]dν

= λ∆sinc(λ∆ f)
1− Ω(0)

2
, (6)

K(f) being the Fourier transform of the u-PDFk(t), and
sinc(t) = sin(π t)/(πt). ♦

As a check, let us specialize the above equation to the
case of exponential interarrivals, for which embedding ca-
pacity is available in closed form [4]. It is easily seen that
ℜ
{

K(f)
1−K(f)

}
= 0, allowing direct solution of eq. (6), and

computation ofΩ(0) = λ∆/(2+λ∆). Substituting into eq. (5),
this yields

C∗ =
λ∆

1 + λ∆
(exponential),

that matches the known result from [4].
Note that Theorem 2 still gives an implict solution to the

problem in terms of an integral equation, which does not
have a closed-form solution in general. On the other hand,
eq. (6) turns out to be amenable to approximate solutions,
thus yielding the results stated in the next two theorems.

THEOREM 3 (Approximation ofC∗) Under the assumption
of finite second moment for the interarrivals, the embedding

Z
1 Z
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8
= Z

7 
– X
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Y X

!
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n

Fig. 3. Construction of a sample path of the Markov process (lower panel)
from a realization of the two point processes (upper). In theupper panel, the
points marked with “⋄” are those classified as chaff by the BGM algorithm.

capacity of two independent and identically distributed re-
newal processes with rateλ, under delay constraint∆, can
be approximated as

C∗ ≈ C =
λ∆

1 +
2

λ∆

∫ λ∆

0

m(t)dt

, (7)

m(t) being the u-RF. ♦
Again, let us apply eq. (7) in the Poisson regime. The u-RF

of an exponential random variable ism(t) = t, that inserted
in (7) gives

C =
λ∆

1 + λ∆
(exponential),

implying that, in this particular case, formula (7) is exact, i.e.,
C∗ = C. This can be understood by looking at the technique
used to get the approximation1 in the proof of Theorem 3.

The relevance of Theorem 3 stems from the fact that, for the
typical interarrival distributions encountered in many applica-
tions, the accuracy of the fully analytical approximation (7)
seems to be excellent irrespective of the range of the product
λ∆, the tailweight of the distribution, its variance (and even
for infinite second moment), as confirmed by the examples in
Sect. V. Accordingly, Theorem 3 provides us with an accurate
and mathematically tractable expression for the embedding
capacity under arbitrary renewal traffic.

We would like to emphasize that the characterization (7)
relates the sought capacity to the u-RF of the underlying
process. This highlights the role of the renewal function
m(t), and reveals that its average1λ∆

∫ λ∆

0 m(t)dt is the key
quantity in determiningC. Thus, different traffic models can
be classified with respect to their embedding capabilities just
in terms of that average.

1The termsk 6= 0 neglected in eq. (23), are rigorously zero in the
exponential case, since the integral in (10) is zero.
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We now state a corollary characterizing the asymptotic be-
havior of the capacity in the limit of∆ ≫ 1/λ. From a known
property of the renewal function [24],m(t)− t → (γ − 1)/2
in the limit of t→ ∞, whereγ is the dispersion index defined
in eq. (1). Simply plugging that expression in eq. (7) would
give 1− C ∼ γ/(λ∆). Indeed, we have the following result.

COROLLARY 1 (Scaling law forC) Under the assumption
of finite second moment for the interarrivals,limλ∆→∞[1 −
C](λ∆) = γ, i.e., the embedding capacity in Theorem 3 scales
as

1− C ∼ γ

λ∆
.

♦
The corollary reveals that, for large values of the product

λ∆, the key quantity in determining the capacity is the
dispersion index: givenλ∆ ≫ 1, the ability for a type of
(renewal) traffic to hide information flows in independent
realizations only depends on the value of the dispersion index
γ, and different traffic models sharing the same dispersion
index behave similarly.

Finally, to improve on the approximation in Theorem 3, we
provide the following theorem that expresses the embedding
capacity as the solution to a simple linear system. Consider,
for any integerN ≥ 1, the following system

N∑

k=−N

Ahk Ω

(
k

λ∆

)
=
λ∆

2
Ih, h = −N, . . . , N,

whereIh = 1 for h = 0, andIh = 0 otherwise. The analytical
expressions of the entriesAhk, defining a2N +1 by 2N + 1
matrix A, are

A00 = 1− λ∆

2
+

2

λ∆

∫ λ∆

0

m(t)dt, (8)

Akk = 1 +
2

λ∆

∫ λ∆

0

m(t)

[
cos

(
2πkt

λ∆

)

+2πk

(
1− t

λ∆

)
sin

(
2πkt

λ∆

)]
dt, k 6= 0, (9)

A0k =
2 (−1)k

λ∆

∫ λ∆

0

m(t) cos

(
2πkt

λ∆

)
dt, k 6= 0, (10)

Ahk =
(−1)h−k

(h− k)

[
h(−1)hA0h − k(−1)kA0k

]
, h 6= k. (11)

THEOREM 4 (Linear system approximation ofC∗) Under the
assumption of finite second moment for the interarrivals, let
C∗ = 2Ω(0)

1+Ω(0) as in Theorem 2. Then, assuming thatA

is invertible,Ω(0) can be approximated asλ∆/2 times the
(0, 0)-entry of matrixA−1, namelyΩ(0) = λ∆

2 {A−1}00. In
particular, specializing forN = 1, the capacity becomes

C∗ ≈ λ∆

1 +
2

λ∆

∫ λ∆

0

m(t)dt+ 2
A2

01

A01 −A11

. (12)

♦
REMARK 1. Note that, in the approximation corresponding to
N = 1, a correction term2 A2

01

A01−A11
appears, with respect to

C in eq. (7), which uses onlyA00. Also, from eqs. (8)–(11) we

see thatA is very structured and its degrees of freedom grow
only linearly with N ; in fact, A is completely specified by
assigning one row and the main diagonal. This structure is very
convenient for numerical tractability. Finally, it is expected
that the solution becomes more and more accurate as the
system sizeN increases. In the section devoted to numerical
experiments, we show that thezero-orderapproximationC is
well satisfying in many cases of interest. Even when this is
not strictly true, a first-order correction (12) offers verygood
results.
REMARK 2. Let us consider a random variable with u-PDF
k(t) which is zero fort < a, somea > 0. We havem(t) = 0
for t < a. This implies that, in the rangeλ∆ < a, the cross
termsA0k with k 6= 0 vanish, so that the approximation (7)
is exact, and gives the linear relationshipC∗ = λ∆ in the
considered range, as verified later2 (see Fig. 6). This is also
consistent with earlier approximation and simulation results
in [21].

IV. PROOFS OFTHEOREMS2-4 VIA RIEMANN -HILBERT

THEORY

In the following, we make use of suitable normalization
of the relevant physical quantities, aimed at simplifying the
mathematical derivation. Indeed, the problem possesses a
natural scale-freeproperty. For a given distribution of the
interarrival process, we note that doubling the arrival rate
“speeds up” the system so that the sample paths can be
redrawn on a time axis scaled by a factor2, and halving
∆ leaves unchanged the number of matches. We accordingly
introduce thenormalized delayδ = λ∆, and work in terms of
the unit-mean random variables with u-PDFk(t). It is further
convenient to symmetrize the problem by shifting the Markov
chain, as well as the corresponding boundaries, which yields
to the following Fredholm equation

u(t) =

∫ −δ/2

−∞

u(τ)k(t − τ)dτ +

∫ +∞

δ/2

u(τ)k(τ − t)dτ

+

∫ δ/2

−δ/2

u(τ)k0(t− τ)dτ, (13)

wherek0(t) is the convolution betweenk(t) andk(−t).
Equation (13) is a homogeneous Fredholm equation of the

second kind, and we have three different regions where the
integrals look like convolutions. Were the integral equivalent
to a convolution as a whole, a simple transform method
would be directly applicable. To elaborate, let us first con-
sider what would happen if the function was known within
the strip [−δ/2, δ/2]. In this case, the equation would be
nonhomogeneous, and will be classified as a convolution-type
equation with two distinct kernels. For this case a powerful
approach, that can be traced back to Carleman and to Wiener

2The same conclusion can be also argued as follows. For delay∆ smaller
than the minimum allowed interarrival time,Sk − Sk−1 > ∆, such that the
probability thatSk matches is the probability that the first arrival afterSk

in T occurs beforeSk + ∆ and it can be computed, due to independence
between the processes, by using the residual lifetime distribution [24]:
Pr[Sk matches] ≈ λ

∫

∆

0
[1− F (t)]dt. This impliesPr[Sk matches] ≈ λ∆,

for λ∆ < a. By ergodicity,C∗ = λ∆ in the considered range.
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and Hopf, still prescribes transforming the equation in the
Fourier domain [25] . After transformation, the problem falls
in the class of the so-called Riemann-Hilbert boundary value
problems.

The Riemann-Hilbert problem,3 in a nutshell, consists in
finding two functions, analytic in the upper and lower half
planes, respectively, whose difference on the real axis equals
a known function [25] [26]. Direct application of this approach
would require that the sought stationary distribution be known
within [−δ/2, δ/2], but this is not our case. Generalizations of
the method have been proposed. They include the Carleman-
Vekua regularization method, which suggests to initially treat
the unknown function as known, and formulating a new
integral equation in terms of the function in the interval
[−δ/2, δ/2], and the work by Jones [27], see also [28]. The
proof that follows is based on these approaches.

Before, we need some basic notation and concepts about
one-sided functions and their analytic Fourier transforms,
which will be useful in the following. For a generic func-
tion g(t), let g+(t) = g(t) 1(t) and g−(t) = −g(t) 1(−t),
where1(t) is the Heaviside unit-step function1(t) = 1 for
t > 0, and 1(t) = 0 for t < 0. In the Fourier domain,
this meansG+(f) =

∫ +∞

0 g(t)ei2πftdt, and G−(f) =

−
∫ 0

−∞
g(t)ei2πftdt.

By replacing the real parameterf by a complex variablez =
f+iy, the above integrals becomeG+(z) =

∫ +∞

0
g(t)ei2πztdt

andG−(z) = −
∫ 0

−∞
g(t)ei2πztdt, which are analytic in those

regions of the complex plane of the variablez in which they
are absolutely convergent [25]:G+(z) is analytic forℑ(z) >
0, andG−(z) for ℑ(z) < 0.

From Sokhotski-Plemelj formula [25], or simply decompos-
ing the Fourier integral into the left and the right part, we have
that, on the real axis,

G+(f) =
G(f) + iH[G(f)]

2
, G−(f) =

−G(f) + iH[G(f)]

2
,

(14)
where the Hilbert transformH[G(f)] = 1

π

∫ G(ν)
f−ν dν has been

introduced (the integral is in the sense of Cauchy principal
value).

A. Proof of Theorem 2

Consider the the unknown functionu(t) in eq. (13) and let
us define

u(t) = v+(t− δ/2)− v−(t+ δ/2) + ω(t),

where

v+(t− δ/2) = u(t) 1(t− δ/2),

v−(t+ δ/2) = −u(t) 1(−t− δ/2),

ω(t) =

{
u(t) δ/2 ≤ t ≤ δ/2
0 otherwise

.

3Actually, there has been some uncertainty about the original pioneer of the
approach. According to Muskhelishvili [26] “The problem formulated above
is often called the Riemann problem, but the Author considers this name to
be incorrect [. . . ], because it was first considered by D. Hilbert essentially in
the form in which it is stated.”

The corresponding Fourier transforms will be accordingly
denoted byV +(f), V −(f) and Ω(f). Note that, from (4),
we are just interested in

∫∆

0 h(t)dt =
∫ δ/2

−δ/2 u(t)dt = Ω(0).
Transforming both sides of the integral equation (13) into

the Fourier domain gives

V +(f)eiπδf − V −(f)e−iπδf +Ω(f)

= V +(f)eiπδf K̄(f)− V −(f)e−iπδfK(f)

+ Ω(f)|K(f)|2,

where ā is the conjugate ofa. The above equation can be
recast as

V +(f)eiπδf

1−K(f)
=
V −(f)e−iπδf

1− K̄(f)
−W (f), (15)

where we define

W (f) = Ω(f)
1− |K(f)|2
|1−K(f)|2 = Ω(f)

[
1 + 2ℜ

{
K(f)

1−K(f)

}]
.

(16)

Multiplied by e−iπδf , eq. (15) becomes

V +(f)

1−K(f)
=
V −(f)e−i2πδf

1− K̄(f)
−W (f)e−iπδf ,

and using the factorization in (14):

W (f)e−iπδf = [W (f)e−iπδf ]+ − [W (f)e−iπδf ]−.

Combining the above equations gives

V +(f)

1−K(f)
+ [W (f)e−iπδf ]

+

=
V −(f)e−i2πδf

1− K̄(f)
+ [W (f)e−iπδf ]

−
. (17)

By construction the functionV +(z)
1−K(z) is analytic in the upper

half planeℑ{z} > 0, continuous on the real axis, with a
single pole located atz = 0. By the known property of the
characteristic function,K ′(0) = i2π, such that this pole has
order one. On the other hand, the functionV −(f)e−i2πδf

1−K̄(f)
is

analytic inℑ{z} < 0, continuous on the real axis, with a single
pole of order one located atz = 0. Similar considerations
apply to[W (f)e−iπδf ]+ and[W (f)e−iπδf ]−, with the further
property that there are no poles.4

The asymptotic behavior of the involved functions is essen-
tially determined by Fourier transforms, such that we assume
boundedness at infinity.

Summarizing, the LHS and RHS of eq. (17) define functions
that are analytic in the upper half and lower half planes,
respectively. They are further bounded at infinity, and coincide
on the real axisz = f , where there is a single pole of order
one located atz = 0.

4Note that, under the assumption of finite second moment,

lim
f→0

ℜ

{

K(f)

1−K(f)

}

=
γ − 1

2
,

where the last equality straightforwardly follows by repeated application of
De L’Hôpital rule, and fromK ′(0) = i2π andK ′′(0) = −4π2(1+γ). This
ensures thatW (f) is well-behaved.
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An application of the analytic continuation theorem [29]
will allow to glue togetherthe two functions in the upper and
lower half planes, obtaining a function which is analytic in
the whole plane, except for the single pole of order one at
the origin. The generalized Liouville theorem [29] defines the
only admissible form that such a function can assume:c/z,
wherec is a constant to be determined5.

Restricting to the real-axis only, we finally get:

V +(f)

1−K(f)
+ [W (f)e−iπδf ]

+
=
c

f

V −(f)e−i2πδf

1− K̄(f)
+ [W (f)e−iπδf ]

−
=
c

f
. (18)

Computing c is made possible by the condition that the
soughtu(t) should be a probability density function, which
is equivalent toU(0) = 1, or V +(0) − V −(0) = 1 − Ω(0).
Using eqs. (18), we can write

V +(f) = [1−K(f)][W (f)e−iπδf ]
+
+ c

1−K(f)

f

V −(f)

ei2πδf
= [1− K̄(f)][W (f)e−iπδf ]

−
+ c

1− K̄(f)

f
,

that, evaluated atf = 0, yield V +(0) − V −(0) = −i 4π c,
where we usedlimf→0

1−K(f)
f = −K ′(0) = −i2π. The

conditionV +(0)− V −(0) = 1− Ω(0) will thus give

c = i
1− Ω(0)

4π
. (19)

If we repeat the above development by multiplying eq. (15)
by the complex exponentialeiπδf , we get a similar result,
namely6

V +(f)ei2πδf

1−K(f)
+ [W (f)eiπδf ]

+
=
c

f

V −(f)

1− K̄(f)
+ [W (f)eiπδf ]

−
=
c

f
. (20)

Putting together eqs. (18) and (20), along with the found
value of the constant (19), gives the system of equations

V +(f)

1−K(f)
+ [W (f)e−iπδf ]

+
= i

1− Ω(0)

4πf
(i)

V +(f)ei2πδf

1−K(f)
+ [W (f)eiπδf ]

+
= i

1− Ω(0)

4πf
(ii)

V −(f)

1− K̄(f)
+ [W (f)eiπδf ]

−
= i

1− Ω(0)

4πf
(iii)

V −(f)e−i2πδf

1− K̄(f)
+ [W (f)e−iπδf ]

−
= i

1− Ω(0)

4πf
. (iv)

Solving for V +(f)/[1 − K(f)] in equations(i) and (ii)
gives

[
W (f)eiπδf

]+
e−iπδf −

[
W (f)e−iπδf

]+
eiπδf

= δsinc(δf)
1− Ω(0)

2
.

5Actually, according to the generalized Liouville theorem,the overall
function should be equal toc0 + c1/z. On the other hand, we are looking
for a solutionU(f) in the class of the functions which vanish at infinity,
implying c0 = 0.

6The structure of the equation is such that the same values of the constant
c = i[1− Ω(0)]/(4π) is obtained.

(Using (iii) and (iv) gives identical results.)
The LHS of the above is equivalent to low-pass filtering of

W (f), namely
∫
W (ν)δ sinc[δ(f − ν)]dν, so that, by further

using the explicit form (16) ofW (f), and the properties of
Ω(f), we get the desired claim. •

For later use, note that at LHS and RHS of eq. (6) appear
Fourier transforms of functions that vanish outside the range
[−δ/2, δ/2]. In view of the sampling theorem [30], the samples
taken ath/δ, h integer, define the whole functions. These
samples are

Ω(h/δ) + 2

∫
Ω(ν)ℜ

{
K(ν)

1−K(ν)

}
δsinc(δν − h)dν

= δ
1− Ω(0)

2
Ih,

whereIh = 1 for h = 0 andIh = 0 otherwise.
Also the unknown functionΩ(f) is bandlimited, so that

it can be represented by the Shannon seriesΩ(f) =∑
k Ω(k/δ)sinc(δf − k). Substituting into the above equation

we get ∑

k

AhkΩ(k/δ) =
δ

2
Ih, (21)

where

A00 = 1 +
δ

2
+ 2

∫
ℜ
{

K(ν)

1−K(ν)

}
δsinc2(δν)dν

Akk = 1 + 2
∫
ℜ
{

K(ν)
1−K(ν)

}
δsinc2(δν − k)dν, k 6= 0

Ahk = 2
∫
ℜ
{

K(ν)
1−K(ν)

}
δsinc(δν − h)sinc(δν − k)dν, h 6= k

(22)
having used the orthogonality property of the sinc functions.

Thanks to the results of appendix B, the above integrals in
the Fourier domain can be expressed in the time domain as
given in eqs. (8)–(11). We are now in the position of proving
the remaining claims.

B. Proof of Theorem 3

Let us consider only the termh = 0 in (21):

A00Ω(0) +
∑

k 6=0

A0kΩ(k/δ) =
δ

2
. (23)

The rationale behind the approximation of Theorem 3 amounts
to neglect the cross-termsA0k, for k 6= 0, which can be easy
understood by considering the two limiting regimes.

Consider firstδ ≪ 1. By triangle inequality

|A0k| ≤
2

δ

∫ δ

0

m(t) dt ≈ 0

where the approximation follows bym(0) = 0.
As to δ ≫ 1, from a renewal theorem for interarrivals with

finite second moment [24], we know that

lim
t→∞

[m(t)− t] =
γ − 1

2
. (24)

Thus, from (10) we write, fork 6= 0

A0k = (−1)k
2

δ

∫ δ

0

[
m(t)− t− γ − 1

2

]
cos(2πkt/δ) dt,
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which follows by
∫ δ

0
t cos(2πkt/δ) = 0. Then, by triangle

inequality

|A0k| ≤
2

δ

∫ δ

0

∣∣∣∣m(t)− t− γ − 1

2

∣∣∣∣ dt ≈ 0,

where the last approximation is a consequence of the Cesáro
mean theorem and eq. (24).

We note also that|Ω(k/δ)| < Ω(0) for all k 6= 0, and
consistently we neglect all terms withk 6= 0 in eq. (23).
Solving forΩ(0) is now possible:

Ω(0) ≈ δ

2A00
=

δ

1− δ

2
+

2

δ

∫ δ

0

m(t)dt

,

yielding, in view of eq. (5), the desired result.

C. Proof of Corollary 1

We know that the true embedding capacity tends to unity
as δ diverges. In order to quantify the convergence rate, we
consider the limiting behavior of

1− C =
1 + 2

δ

∫ δ

0 m(t) dt− δ

1 + 2
δ

∫ δ

0
m(t) dt

. (25)

Now,

2

δ

∫ δ

0

m(t) dt =
2

δ

∫ δ

0

[m(t)− t] dt+ δ ∼ γ − 1 + δ,

by simple application of the Cesáro mean theorem and of the
renewal theorem used before, see (24). From (25), we get the
desired result:

lim
δ→∞

[1− C]δ = γ.

D. Proof of Theorem 4

Let us consider the series in eq. (21). By truncating it to
2N+1 terms, we get the following representation, withh, k ∈
[−N,N ],

N∑

k=−N

AhkΩ(k/δ) =
δ

2
Ih.

Let A denote the matrix made of theAhk ’s. Recalling that we
are not interested in computing the whole functionΩ(f), but
just its value at the origin, we get

Ω(0) = {A−1}00
δ

2
.

It is possible to explicit the solution forN = 1. Using the
symmetries involved, we easily get

{A−1}00 =
1

A00 + 2
A2

01

A01−A11

,

which, along with eq. (5), yields the desired result (12).

V. EXAMPLES

The analytical expression ofC provided by Theorem 3
turns out to be quite accurate for virtually all the interarrival
distributions used in our simulation studies, many of whichare
typical of network applications. Part of these extensive com-
puter investigations are summarized in Sects. V-A and V-B.
In fact, to find an example where the refinements offered by
Theorem 4 provide meaningful improvements overC, we need
to choose carefully the kind of interarrival distributions, as
discussed later.

A. Examples with Capacity in Closed Form

We start with studying some well-known interarrival distri-
butions, for which the renewal function is available in closed
form.

• Erlang family
The Gamma random variable u-PDF is

k(t) = ξ
(ξt)ξ−1

Γ(ξ)
e−ξt, t ≥ 0, ξ > 0. (26)

When the parameterξ is integer, the interarrival distribu-
tion belongs to the Erlang family, a case for which the
renewal function has been computed in closed form [31]

m(t) = t+

ξ−1∑

h=1

θh

ξ (1− θh)

(
1− e−ξ(1−θh)t

)
,

with θ = ei
2π
ξ .

The (approximation of the) embedding capacity is ac-
cordingly

C =
λ∆

1 + λ∆+ 2

ξ−1∑

h=1

θh

ξ(1− θh)

(
1− 1− e−ξ(1−θh)λ∆

λ∆ ξ(1 − θh)

) .

• Weibull distribution
The u-PDF for the Weibull random variable is

k(t) =

(
b

σ

)(
t

σ

)b−1

e−(t/σ)b , t ≥ 0, b > 0

(27)
whereσ = [Γ(1 + 1/b)]−1. The pertinent u-RF is [32]:

m(t) =

∞∑

n=1

(−1)n−1 an [Γ(1 + 1/b) t]
n b

Γ(1 + n b)
,

where the coefficientsan are defined recursively by

a1 = α1 . . . an = αn −
n−1∑

j=1

αj an−j ,

with

αn =
Γ(1 + n b)

n!
.

This yields

C =
λ∆

1 + 2

∞∑

n=1

(−1)n−1 an [Γ(1 + 1/b)λ∆]
n b

Γ(1 + n b) (n b+ 1)

. (28)
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Fig. 4. Examples of traffic models for which the renewal function admits
simple closed form. Dots refer to computer simulations of the embedding
capacity and lines refer to analytical formulas.

• Uniform distribution
The u-RF for uniform random variables can be obtained
by iteratively solving the renewal equation [24], yielding

m(t) =





et/2 − 1 0 ≤ t ≤ 2
et/2 − 1−

(
t
2 − 1

)
et/2−1 2 ≤ t ≤ 4

. . . . . .

with similar expressions for successive intervals of length
2. The resulting capacity is

C =






(λ∆)2

4e
λ∆
2 −λ∆−4

, λ∆ ∈ [0, 2]

(λ∆)2

4e
λ∆
2 +2e

λ∆
2

−1(4−λ∆)−λ∆−8
, λ∆ ∈ [2, 4]

. . . . . .

In Fig. 4 the above expressions for the capacity are com-
pared to numerical simulations. We see that the matching
between the approximate analytical formulas and the results
of computer simulations is excellent.

B. Other Distributions

Even when the renewal function is not known explicitly,
there exist many numerical ways to compute that. Some
methods exploit the definition of the renewal function in terms
of interarrival distribution [24], other approaches are based on
the interarrival density, and even others exploit the Fourier
domain.

For instance, let us consider again the Gamma family (26),
and assume thatξ = 0.3. In this case, it is particularly
convenient to use the Fourier domain expression forA00

given in the first equation of (22). Computing numerically the
involved integral, we get the capacity plotted in Fig. 5.

A case of special interest for network applications due to
its tail behavior is the Pareto interarrival distribution,whose
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Fig. 5. Examples of different traffic models. Continuous curves refer to the
approximationC in Theorem 3, eq. (7), while dots are obtained by computer
simulations.

u-PDF is

k(t) =
b/(b− 1)

(1 + t
b−1 )

b+1
. (29)

Figure 5 shows the embedding capacity, again obtained by
numerical integration ofA00 in (22), for the Pareto distribution
This distribution exhibits finite second moment whenever
the shape parameterb > 2. Accordingly, in the numerical
simulation, we first test the caseb = 3, which falls in the class
considered in the assumptions of our theorems, see Fig. 5.
Then, we explore by simulation a case with infinite second
moment, that is,b = 1.5, and Fig. 5 reveal that the accuracy
of the formula is still excellent.

In all the cases examined so far, there is no doubt that
the expressionC is quite accurate for any practical purposes.
We would like to present an example in which the analytical
formula (7) of Theorem 3 is less accurate and the following
shifted exponential distribution offers this opportunity. Let us
consider the following u-PDF for the interarrivals:k(t) =
1

1−a e
− t−a

1−a , for t ≥ a, and0 < a < 1.
The embedding capacity is displayed, together with the

simulated data, in Fig. 6. As it can be seen, the agreement is
perfect in the rangeλ∆ < a and is quite good for largeλ∆;
this is expected in view of Remark 2, and the arguments used
in the proof of Theorem 3. However, for intermediate values
of the productλ∆, the approximationC is not satisfying.

Thus, we resort to the refined approximations offered by
Theorem 4, and the results are shown again in Fig. 6, where
the solutions obtained by usingN = 1 (that is, eq. (12)), and
N = 2 (this case being solved numerically), are displayed.
As it can be seen, the partial inaccuracy of the approximation
C is remediated with the adoption of eq. (12). Adding more
terms (i.e.,N > 1) gives negligible improvements.

VI. ORDERING OFEMBEDDING CAPACITIES

In this section we show how the embedding capacityC
can be used for comparing different renewal processes in
terms of their embedding capabilities. LetX1 andX2 be two
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Fig. 6. Example of a shifted exponential distribution, witha = 0.8. Dots
are obtained by computer simulations, while continuous curves refer to the
different analytical approximations forC∗ in Theorems 3 and 4. Specifically,
we display(i) C, (ii) the linear system solution withN = 1 of eq. (12),
and (iii) the linear system solution forN = 2. The latter two curves are
superimposed.

non-negative random variables with the same average value
E[X1] = E[X2] = 1/λ, and with cumulative distribution
functions denoted byF1(·) andF2(·), respectively. The fol-
lowing definitions and results are classical in stochastic order
literature, and can be found in [33], [24].

DEFINITION 7 (Variability or convex ordering) The random
variableX1 is less variable thanX2, writtenX1 ≤v X2, if

E[φ(X1)] ≤ E[φ(X2)] for all convex functionsφ : R → R,
(30)

provided that the expectations exist. ⋄
KNOWN RESULTS [33] (Sufficient and Necessary Conditions
for convex ordering) For non-negative random variablesX1

andX2, withE[X1] = E[X2] = 1/λ, the conditionX1 ≤v X2

is equivalent to each of the following:
∫ x

0

F 1(t)dt ≥
∫ x

0

F 2(t)dt, for all x, (31)

L1(p) ≥ L2(p), for all p ∈ [0, 1]. (32)

In the above,L1(p) andL2(p) are the so-called Lorenz curves
of the random variablesX1 andX2 defined as

L1,2(p) = λ

∫ p

0

F−1
1,2 (u)du, for all p ∈ [0, 1].

Intuitively, X1 ≤v X2 if X1 gives less weight to the
extreme values with respect toX2. One way to get this is
just to ensure thatE[φ(X1)] ≤ E[φ(X2)] for convexφ, as
stated in (30). That’s why this kind of stochastic ordering
is also known as convex ordering. It is also obvious that
X1 ≤v X2 ⇒ VAR[X1] ≤ VAR[X2], and henceX1 has a
dispersion index smaller than or equal to that ofX2, a fact
that plays a major role in the regime of∆ ≫ 1/λ, as seen in
Corollary 1.

The following theorem formally relates the classical con-
cept of variability ordering to the embedding capacity in a

straightforward and intuitive way:less variable interarrivals
yield a larger embedding capacity.

THEOREM 5 Let C1 and C2 be the approximate embedding
capacities for i.i.d. renewal processes with interarrivaldistri-
butionX1 andX2, respectively. Then

X1≤vX2 ⇒ C1 ≥ C2.

♦
Proof. The u-RF’s ofX1 andX2 can be represented as [24]

m1(t) =
∞∑

i=1

Pr
{
λS

(1)
i ≤ t

}
, m2(t) =

∞∑

i=1

Pr
{
λS

(2)
i ≤ t

}
.

(33)
Let us focus on the single terms of the series. By assumption
X1≤vX2, implying, in view of (31),

∫ λ∆

0

Pr
{
λS

(1)
1 ≤ t

}
dt ≤

∫ λ∆

0

Pr
{
λS

(2)
1 ≤ t

}
dt.

Since the variability ordering is closed under convolution(see
e.g., [33])

∫ λ∆

0

Pr
{
λS(1)

n ≤ t
}
dt ≤

∫ λ∆

0

Pr
{
λS(2)

n ≤ t
}
dt.

This implies
∫ λ∆

0

n∑

i=1

Pr
{
λS

(1)
i ≤ t

}
dt ≤

∫ λ∆

0

n∑

i=1

Pr
{
λS

(2)
i ≤ t

}
dt.

Applying Beppo Levi’s monotone convergence theorem [34],
we are legitimate to exchange integration and limit, yielding

∫ λ∆

0

m1(t) dt ≤
∫ λ∆

0

m2(t) dt

which, in the light of eq. (33), givesC1 ≥ C2. •

A. Ordering w.r.t. Poisson

It is of special interest to compare the given renewal process
to Poisson traffic, and this can be conveniently done by means
of our analytical approximation. To do so, let us define two
special categories of interarrival distributions.

DEFINITION 8 (NBUE/NWUE classes) A non-negative random
variable X is called New Better than Used in Expectation
(NBUE) or New Worse than Used in Expectation (NWUE)
if [24]:

NBUE E[X − s|X > s] ≤ E[X ] ∀s ≥ 0,

NWUE E[X − s|X > s] ≥ E[X ] ∀s ≥ 0.

Due to the absence of memory, the exponential distribution
is such thatE[X − s|X > s] = E[X ], and it belongs to both
classes.

COROLLARY 2 (Capacity Ordering in NBUE/NWUE classes)
LetCNBUE, CNWUE, andCexp denote the embedding capac-
ities given by (7) for interarrivals from the NBUE class, the
NWUE class, and the exponential distribution. The following
relationship holds:

CNWUE≤ Cexp≤ CNBUE.
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♦
Proof. Thanks to Proposition 9.6.1 in [24], the NBUE (resp.
NWUE) distributions can be shown to be less (resp. more)
variable than the exponential, implying the claimed resultas
a direct consequence of Theorem 5. •

u-PDFk(t) Ordering Relationship
GAMMA Eq. (26) ξ1 ≥ ξ2 ⇒ C1 ≥ C2.
WEIBULL Eq. (27) b1 ≥ b2 ⇒ C1 ≥ C2.
PARETO Eq. (29) b1 ≥ b2 ⇒ C1 ≥ C2.

LOGNORMAL Eq. (34) σ1 ≤ σ2 ⇒ C1 ≥ C2.

TABLE I
SUMMARY OF THE RELATIONSHIPS BETWEEN CLASSICAL AND

EMBEDDING CAPACITY ORDERING FOR TYPICAL DISTRIBUTIONS.

B. Ordering within the same distribution class

The relationship between embedding capacity ordering and
classical ordering of random variables allows easy comparison
of distributions within the same class.

For Gamma and Weibull random variables, it has been
shown that the Lorenz curves are monotonically increasing
with the shape parameters [35]. Thus, larger shape parameters
give higher embedding capacities. It is also easy to evaluate
the Lorenz curve of the Pareto random variable with a u-PDF
given in (29)

L(p) = b (1− p) [1− (1− p)1−1/b] + p,

as well as that of the Lognormal random variable

L(p) = Φ(Φ−1(p)− σ),

whose u-PDF is

k(t) =
1√

2πσ2 t
exp

{
− (log t+ σ2/2)2

2σ2

}
, t ≥ 0.

(34)
Both functions exhibit monotonic behavior with respect tob
andσ, respectively.

Therefore, using eq. (32) allows easy (convex) ordering of
the interarrivals, which in turns induces an ordering of the
embedding capacities thanks to Theorem 5. The results are
summarized in Table I.

VII. E XPERIMENTS WITH REAL NETWORK TRACES

In this section, we present some numerical tests run on
real traces. Specifically, we downloaded the TCP packet ar-
riving times (traceslbl-tcp-3.tcp and lbl-pkt-4.tcp) gathered
at the Lawrence Berkeley Laboratory, that were originally
used in [36]. Following [36] and [4], we extract packets
corresponding to Telnet connections (obtained from hearing
communication on port 23). The pipeline for the real data
processing is as follows.

• The inspected traces correspond to traffic patterns col-
lected in two different days. We consider theaggregate
traffic, that is, we do not extract informations pertaining
to the single hosts.

• We emulate the scenario of two mutually independent
point processes, by using two tranches of104 packets
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Fig. 7. Embedding capacity curve of Telnet data, for a pair oftranches
selected as described in the main text. In the lower part of the plot, the
absolute error between empirical and theoretical capacityis displayed, for a
broader set of different tranches.

each, extracted from traceslbl-tcp-3.tcp (source node)
and lbl-pkt-4.tcp(relay node).

• By means of a moving average filter over104 packets,
we select over the two traces candidate tranches having
comparable rates7. Without loss of generality, we scale
the data by dividing the interarrivals by the sample mean
computed over the union of the two tranches.

• We run the BGM algorithm on the selected tranches, with
fixed (dimensionless) observation timet = 9000.

• We also run the BGM algorithmafter scramblingthe
interarrivals, in order to remove statistical dependencies
between them, namely, to enforce the renewal assump-
tion. This is purely for testing the accuracy of the found
formulas.

In order to compute theoretical capacities, we need a candi-
date distribution for the interarrivals. We accordingly fitthe
empirical interarrival CDF of each tranche, and find that the
Weibull distribution works generally well, that is perhapsnot
unexpected, see, e.g., [37] and [38].

Consider now the capacity curves in Fig. 7. The exper-
imental curves for capacity refer to one pair of tranches
where the Weibull fit is accurate, and the two empirical CDFs
are close to each other, complying with the assumption of
identical distribution across nodes. The theoretical curve is
drawn by (28), where the shape parameterb is computed over
the union of the two tranches.

For the scrambled data the theoretical approximationC is
excellent. As to the (non-scrambled) real data, a first evidence
is that, up to values ofλ∆ in the order of unit, the curve
matches the theoretical approximation well. On the other hand,
a discrepancy emerges at larger values of the productλ∆, due
to possible dependencies among the interarrivals.

7With this selection procedure, the tranches extracted froma given trace
might also overlap. Obviously, this does not alter our analysis, in that we
only need independence between the source tranche (extracted from trace
lbl-tcp-3.tcp), and the relay tranche (extracted from theindependenttracelbl-
pkt-4.tcp).



S. MARANO, V. MATTA, T. HE, L. TONG 13

A more complete picture is obtained by applying the above
procedure to different tranches, irrespectively of the goodness
of the Weibull fit, and of the similarity between the empirical
distributions at the two nodes. The results of this latter
analysis are summarized in the bottom part of Fig. 7, where
the absolute error between the theoretical formula and the
empirical capacity is displayed, only for the case of real data.
(Again, scrambling reduces the error, this is not shown in
the plot.) The points marked with darker circles refer to the
tranche pair used for drawing the capacities displayed in the
uppermost part of the plot. As it can be seen, the theoretical
approximation follows the empirical capacity closely at small
λ∆. Also in this case, a discrepancy is observed for moderately
large values ofλ∆, with an absolute error staying in the order
of 10−1.

Summarizing, a main behavior seems to emerge — that
the theoretical predictions are very accurate for real data
well modeled by renewal processes, corroborating the whole
theoretical machinery for embedding capacity computation,
and that the possible statistical dependence among packet
interarrivals can be neglected fortight delay constraints, up
to delay values in the order of the mean interarrival time.

VIII. C ONCLUSION

We consider the problem of matching two independent
and identically distributed renewal processes, accordingto a
bounded delay criterion, with applications to communication
network scenarios. We introduce the concept ofembedding
capacity, and provide fully analytical tools and approximations
to evaluate it, relying upon the Riemann-Hilbert theory. An
exact evaluation of the capacity is reduced to a manageable
integral equation, that can be solved to any degree of ap-
proximation by inverting a highly structured linear system.
The main finding, however, is a simple approximated formula
of the embedding capacity that involves the renewal function
of the underlying processes. The approximation is excellent
for virtually all the cases of practical interest that we have
investigated, part of which are reported in the paper. Even
when this is not strictly true, we provide closed-form solutions
for first-order correction.

The analytical formula highlights the role played by dif-
ferent renewal parameters: for largeλ∆ only the dispersion
index matters, while embedding capacity ordering is induced
by the stochastic variability of the underlying interarrivals.

The experimental analysis carried on real network traces
reveals that the accuracy of the analytical expression is good
for tight delay constraints, up toλ∆ in the order of unit. For
larger delays, a partial inaccuracy is seen, and we show that
this should be ascribed to statistical dependencies unavoidably
present in real traffic patterns: the renewal model is failing,
rather than the proposed analytical approximation.

The abstract concept of matching between point processes
arises in a very large number of contexts, and we feel that our
findings can represent a contribution to these fields. To broaden
further the horizon of potential applications, refinementsand
improvements of the approach can be considered. These the
case of different renewal processes at the two nodes, the

extension to non-renewal point processes, to multi-hop flows,
and to the case of multiple input/multiple output relays, see [3],
[4].

APPENDIX A
PROOF OFTHEOREM 1

We first justify the embedding capacity formula (4). Assume
for now that the frequency forZn to fall inside the interval
[0, ∆] converges a.s. to a constantp. Then since eachZn

outside[0, ∆] represents a chaff point whereas eachZn inside
the interval represents a pair of flow points, we see that the
fraction of flow points embedded by BGM converges a.s., and
the limit, i.e., the embedding capacity, is given by2 p/(1+p).

On the other hand, by Theorem 17.1.7 in [39], if{Zn}
is a positive Harris recurrentMarkov chain, theni) p =
limn→∞

1
n

∑n
j=0 I[0, ∆](Zj) exists a.s., whereI[0, ∆](z) is

the indicator function, andii) p can be computed from the
invariant PDFh(t) by p =

∫∆

0 h(t)dt. By definition, if h(t) is
the solution to eq. (3), it will be invariant under the transition
(2), i.e., it is an invariant measure. The positive Harris property
of the chain implies thath(t) is unique and finite, and thus
can be normalized into a probability measure. It remains to
prove the property of positive Harris recurrence.

First, we show that the Markov chain{Zn} is ψ-
irreducible [39] (all the sets mentioned in the sequel are Borel).
The assumption that BGM can match one pair almost surely
implies that the interval[0,∆] is accessible from any state
almost surely, sayL(z, [0,∆]) ≡ 1 ∀z [39]. This rules out the
cases where the asymptotic fraction of matched points depends
on the initial state (where embedding capacity does not exist)
and those where the embedding capacity is trivially zero.

Let ϕ be the Lebesgue measure constrained to[0, ∆], i.e.
ϕ(A) = µ(A ∩ [0, ∆]), whereµ is the Lebesgue measure.
Given PDFf(t), there must existǫ0 > 0 such thatf(t) > δ0
for all t within some interval[t0, t0 + ǫ0], and thus

f0(t) =

∫ +∞

0

f(τ)f(τ − t)dτ > δ20(ǫ0 − |t|) ≥ δ20(ǫ0 − ǫ1)

for all t ∈ [−ǫ1, ǫ1], where ǫ1 is a constant in(0, ǫ0). Let
δ1 := δ20(ǫ0−ǫ1). Partition[0,∆] intom := ⌈2∆/ǫ1⌉ segments
of lengthǫ1/2, as illustrated in Fig. 8, such that the transition
density from anyz ∈ [0,∆] to any point in an adjacent
segment is greater thanδ1. For any setC with ϕ(C) > 0,
let ǫ2 be the Lebesgue measure of the minimum intersection
betweenC and the ǫ1

2 -segments. Letz be an arbitrary point
in [0,∆] that is n segments away fromC (n ≤ m − 1) and
Ii (i = 1, . . . , n) be theith segment fromz to C, whereIn
intersects withC. Then-step transition satisfies

Pn(z, C) >
∫

I1

f0(x1 − z)dx1

∫

I2

f0(x2 − x1)dx2 · · ·
∫

In∩C

f0(xn − xn−1)dxn

>
(
δ1
ǫ1
2

)n−1

δ1ǫ2 > 0. (35)

This impliesL(z, C) > 0 for all z ∈ [0,∆]. Moreover, since
L(z, [0,∆]) ≡ 1 for all z, we haveL(z, C) > 0 for all z. That
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Fig. 8. AccessC from z by hoping throughǫ1
2

-segments in[0,∆].

is, any set with positiveϕ measure is accessible from anywhere
within the state space with positive probability, implying
that the chain isϕ-irreducible and henceψ-irreducible for a
maximal irreducibility measureψ, according to [39].

Second, we show that{Zn} is Harris recurrent. Since it
is ψ-irreducible andL(z, [0, ∆]) > 0 for all z, by Theorem
5.2.2 in [39], there existk ≥ 1, a nontrivial measureνk, and
a nontrivial setC1 ⊆ [0, ∆] such thatC1 is νk-small, and
henceνδk -petite. For sampling distributiona(i) = 1/m (i =
1, . . . ,m), the transition kernel of the sampled chain from any
z ∈ [0,∆] satisfies

Ka(z, C1) ≥
1

m
Pn(z, C1) >

1

m

(
δ1
ǫ1
2

)n−1

δ1ǫ2, (36)

where we apply (35) forC = C1. Since n ≤ m − 1,
Ka(z, C1) > 1

m (δ1ǫ1/2)
m−2

δ1ǫ2, independent ofz for z ∈
[0,∆]. Therefore,C1 is uniformly accessible usinga from
[0,∆]. By Proposition 5.5.4 in [39], we prove that[0, ∆]
is νa∗δk -petite. The fact that a petite set[0, ∆] satisfies
L(z, [0,∆]) ≡ 1 for all z for a ψ-irreducible chain implies
Harris recurrence in the light of Proposition 9.1.7 in [39].

Finally, we show positivity by drift analysis. Define the
function

V (z) = 2λ






z −∆, if z > ∆,
0, if 0 ≤ z ≤ ∆,
−z, if z < 0,

where1/λ is the mean interarrival time, and consider the mean
drift defined in [39] as

dV (z) =

∫
P (z, dy)V (y)− V (z),

whereP (z, dy) is the transition kernel of the chain. Define
a setC2 = [−z0, ∆ + z0] for z0 sufficiently large such that∫ z0
0 f(t)tdt −

∫∞

z0+∆ f(t)tdt ≥ 1/(2λ). For anyz > ∆ + z0
we have, after some straightforward manipulations,

dV (z) = −2λ

[
−
∫ ∞

z

f(t)(t− z)dt

+

∫ z−∆

0

f(t)tdt+ (z −∆)

∫ ∞

z−∆

f(t)dt

]

≤ −2λ

[∫ z0

0

f(t)tdt−
∫ ∞

z0+∆

f(t)tdt

]
≤ −1.

The same holds forz < −z0. It is easy to see that, inside the
setC2, dV (z) can be bounded by a constant, such that we can
write

dV (z) ≤ −1 + b IC2
(z), (37)

with a suitable choice ofb. Since the petite set[0,∆] is
uniformly accessible8 from C2, we can conclude thatC2 is
petite, and eq. (37) coincides with the drift condition (iv)
of Theorem 13.0.1 in [39], whence, further observing that
aperiodicity holds, we conclude that{Zn} is positive Harris.•

APPENDIX B
L INEAR SYSTEM COEFFICIENTS

Let us introduce the so-calledrenewal densityassociated
to the renewal functionm(t), that isρ(t) = dm(t)/dt. It is
convenient to consider a symmetric version thereof, namely
ρ̃(t) = ρ(t) + ρ(−t). It holds true that the Fourier transform

of ρ̃(t)− 1 is given by2ℜ
{

K(f)
1−K(f)

}
, see [40], [41].

Let us first consider the termA00 in eq. (22). In view of
Parseval’s formula [42]:

2

∫
ℜ
{

K(ν)

1−K(ν)

}
δsinc2(δν)dν

=

∫ δ

−δ

[ρ̃(t)− 1](1− |t|/δ)dt = 2

∫ δ

0

ρ(t)(1 − t/δ)dt− δ,

where we simply notice that the Fourier transform of the
triangular window of width2δ is δsinc2(δf). Integration by
parts then gives2

∫ δ

0
ρ(t)(1 − t/δ)dt = 2

δ

∫ δ

0
m(t)dt, or

A00 = 1− δ

2
+

2

δ

∫ δ

0

m(t)dt.

As to the evaluation ofAkk in eq. (22),k 6= 0, it suffices
to use the shift property of the Fourier transform, yielding

2

∫
ℜ
{

K(ν)

1−K(ν)

}
δsinc2(δν − k)dν

=

∫ δ

−δ

[ρ̃(t)− 1](1− |t|/δ) cos(2πkt/δ)dt

= 2

∫ δ

0

ρ(t)(1− t/δ) cos(2πkt/δ)dt,

that integrated by parts gives

Akk = 1 +
2

δ

∫ δ

0

m(t)[cos(2πkt/δ) dt

+2πk (1− t/δ) sin(2πkt/δ)] dt.

Finally focusing on the termsAhk in eq. (22),h 6= k, it
suffices to consider the even part ofδsinc(δf−h)sinc(δf−k),
whose inverse Fourier transform is

1

δ
ℜ
{∫ δ/2

−δ/2

e−i2π(h−k) τ
δ e−i2πk t

δ Π

(
t− τ

δ

)
dτ

}

=

∫ 1/2

−1/2

cos[ 2π(h− k)τ + 2πkt/δ ] Π(τ − t/δ) dτ,

Π(t) being the rectangular window of width1. The integral is
zero for |t| > δ. For t ∈ (0, δ) we have

∫ 1/2

t/δ−1/2

cos[2π(h− k)τ + 2πkt/δ]dτ

=
(−1)h−k

2π(h− k)
[ sin(2πkt/δ)− sin(2πht/δ) ].

8This can be easily shown with the same technique used to proveuniform
accessibility ofC1 from [0,∆].
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This gives

Ahk =
(−1)h−k

2π(h− k)
2

∫ δ

0

ρ(t)[ sin(2πkt/δ)− sin(2πht/δ) ] dt

=
(−1)h−k

(h− k)

2

δ

∫ δ

0

m(t)[h cos(2πht/δ)− k cos(2πkt/δ)]dt,

where the latter is obtained integrating by parts. Equation(10)
now follows as a special case, whence eq. (11) is true.
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