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Abstract—The two-user multiple-input multiple-output
(MIMO) interference channel (IC) with arbitrary number
of antennas at each terminal is considered and the degrees
of freedom (DoF) region is characterized in the presence of
noiseless channel output feedback from each receiver to its
respective transmitter and availability of delayed channel state
information at the transmitters (CSIT). It is shown that hav ing
output feedback and delayed CSIT can strictly enlarge the DoF
region of the MIMO IC when compared to the case in which
only delayed CSIT is present. The proposed coding schemes
that achieve the corresponding DoF region with feedback and
delayed CSIT utilize both resources, i.e., feedback and delayed
CSIT in a non-trivial manner. It is also shown that the DoF
region with local feedback and delayed CSIT is equal to the
DoF region with global feedback and delayed CSIT, i.e., local
feedback and delayed CSIT is equivalent to global feedback and
delayed CSIT from the perspective of the degrees of freedom
region. The converse is proved for a stronger setting in which
the channels to the two receivers need not be statistically
equivalent.

Index Terms—Interference Channel, MIMO, Output Feed-
back, Delayed CSIT.

I. I NTRODUCTION

In many wireless networks, multiple pairs of transmit-
ters/receivers wish to communicate over a shared medium. In
such situations, due to the broadcast and superposition nature
of the wireless medium, the effect of interference is inevitable.
Hence, management of interference is of extreme importance
in such networks. Various interference management techniques
have been proposed over the past few decades. The more
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traditional approaches to deal with interference either treat it
as noise (in the low interference regime) or decode and then
remove it from the received signal (in the high interference
regime). However, such techniques are not strong enough
to achieve the optimal performance of the network even in
the simple interference channel with two pairs of multiple-
input multiple-output (MIMO) transceivers. Recently, more
sophisticated schemes, such as interference alignment [1], [2]
and (aligned) interference neutralization [3], [4] have been
proposed for managing interference, which can significantly
increase the achievable rate over the interference networks
(also see [5] for an excellent tutorial on interference align-
ment). However, these techniques are usually based on avail-
ability of instantaneous (perfect) channel state information at
the transmitters (p-CSIT). Such an assumption is perhaps not
very realistic in practical systems, at least when dealing with
fast fading links.

Quite surprisingly, it is shown by Maddah-Ali and Tse
[6] that even delayed (stale) CSIT is helpful to improve the
achievable rate of wireless network with multiple flows, even
if the channel realizations vary independently across time.
In [6], the authors studied a two user multiple-input single-
output (MISO) broadcast channel (BC) with two transmit
antennas and one antenna at each receiver, where the channels
between the transmitter and receivers change over time from
one channel use to the next independently, and channel state
information is available to the transmitters only at the end
of each channel use. They showed that the sum degrees of
freedom (DoF) of4/3 is achievable for this network, which
is in contrast to DoF= 1, which is known to be optimal for
the case of no CSIT. This result is also extended in [6] to the
K user MISO BC, and extensions to certain MIMO BCs have
been reported in [7].

This usefulness of delayed CSIT for interference networks
is further explored in [8], where it is shown that for the single
input single output (SISO) three user interference channel
(IC) and the two user X-channel,9/8 and 8/7 DoF are
achievable with delayed CSIT respectively. The DoF region of
the two-user MIMO interference channel with delayed CSIT is
completely characterized by Vaze and Varanasi [9]. It is shown
that, depending on the number of antennas at each terminal,
the DoF with delayed CSIT can be strictly better than that of
no CSIT [10], [11], and worse than that with instantaneous
CSIT [12].

The role of output feedback in the performance of wireless
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communication systems has received considerable attention
over the past few decades. It is well known that feedback does
not increase the capacity of point-to-point discrete memoryless
channels [13]. Unlike the point-to-point case, feedback can
increase the capacity of the multiple-access channel [14]
and broadcast channel [15]. The effects of feedback on the
capacity region of the static (non-fading) interference channel
have been studied in several recent papers (see [16], [17]
and references therein). In particular, the approximate capac-
ity of the 2-user symmetric Gaussian interference channel
is obtained in [17], where it is shown that simple coding
schemes achieve within a constant gap from the symmetric
capacity in the presence of noiseless feedback. The entire
approximate feedback capacity region of the2-user Gaussian
interference channel with arbitrary channel gains has been
characterized independently in [16], which reveals that output
feedback strictly improves the number of generalized degrees
of freedom of the interference channel. These works show that
in the case of static channels, presence of output feedback not
only has impact on the capacity of the channel (e.g. in the
multiple access and broadcast channels), but can also enlarge
the number of generalized degrees of freedom.

On the other hand, the usefulness of output feedback for
the fast fading interference and X-channels with no CSIT was
presented in [8]. It is shown in [8] that6/5 and4/3 DoF are
achievable for the three user SISO IC and the two user SISO
X-channel respectively with output feedback. An immediate
consequence is that output feedback is beneficial when no
channel state information is available at the transmitters. One
question that can be raised here is whether output feedback
can be helpful with delayed CSIT or not. For the case of the
broadcast channel (BC), this question is answered in a negative
way in [7]: having output feedback in addition to delayed CSIT
does not increase the DoF region of the MIMO BC.

In this work, we study this question for the two-user MIMO
IC, in which each transmitter is provided with the past state
information of the channel (i.e., with delayed CSIT), as well
as the received signal (output feedback) from its respective
receiver. It turns out that existence of output feedback can
increase the DoF region of the interference channel. This is
indeed surprising as it has been shown in [18] and [19] that
with perfect (instantaneous) CSIT, any form of cooperation
(which may include feedback) does not increase the DoF
region of the MIMO interference channel under the time-
varying/frequency-selective channel model. The benefit of
output feedback with delayed CSIT becomes apparent from the
following observation: in the presence of output feedback with
delayed channel state information, Transmitter1 in addition to
being able to reconstruct the interference it caused at Receiver
2, can also reconstruct a part of the signal intended to Receiver
2. This is in contrast to the case of the MIMO BC, where all
information symbols are created at one transmitter, and hence
output feedback in addition to delayed CSIT does not increase
the DoF region of the MIMO BC, even though it may increase
the capacity region.

The main contribution of this paper is the characterization
of the DoF region of the two user MIMO IC with local output
feedback and delayed CSIT. It is also shown that this DoF

region remains the same even if global feedback is present
from both receivers to both transmitters. That is, local feedback
and delayed CSIT is equivalent to the enhanced setting of
global feedback and delayed CSIT from the perspective of
the degrees of freedom region. We note here that the same
set of results have also been reported independently in [20].
Our results are stronger in the sense that we do not assume
the channels at the two receivers to be statistically equivalent.
Typically most of the converse proofs for delayed CSIT
scenarios are based on the assumption in which the channels to
different receivers are generated from identical distributions.
Recently, a novel approach was presented in [21], in which the
restrictive statistical equivalence assumption was relaxed and
a strengthened converse was proved for the two user MISO
broadcast channel with delayed CSIT. Our converse approach
is inspired by the approach taken in [21]. Furthermore, from
our converse proof we find an interesting connection of the
MIMO IC with feedback and delayed CSIT to a physically
degraded cognitive MIMO IC with no CSIT. Parts of this work
have been presented in [22].

II. MIMO IC WITH FEEDBACK AND DELAYED CSIT

We consider the(M1,M2, N1, N2) MIMO-IC for which the
transmitters are denoted asTx1 andTx2; and the receivers as
Rx1 andRx2. Txm intends to send a messageWm to Rxm,
for m = 1, 2 and the messagesW1 andW2 are independent.
The channel outputs at the Receivers are given as

Y1(i) = H11(i)X1(i) +H12(i)X2(i) + Z1(i)

Y2(i) = H21(i)X1(i) +H22(i)X2(i) + Z2(i),

whereXm(i) is the signal transmitted by themth transmit-
ter Txm; Hnm(i) ∈ CNn×Mm denotes the channel matrix
between thenth receiver andmth transmitter; andZn(i) ∼
CN (0, INn

), for n = 1, 2, is additive noise at Receivern. The
power constraints areE||Xm(i)||2 ≤ P , for ∀ m, i.

We make the following assumptions for the channel matri-
ces:

• A1: All elements ofHnm(i) are independently and iden-
tically distributed (i.i.d.) from a continuous distribution,
which we symbolically denote byλnm.

• A2: The distributionsλ11, λ12, λ21, λ22 arenot necessar-
ily identical.

• A3: The channel matrices vary in an i.i.d. manner across
time.

We denote byH(i) = {H11(i),H12(i),H21(i),H22(i)}
the collection of all channel matrices at timei. Furthermore,
H

i−1 = {H(1),H(2), . . . ,H(i − 1)} denotes the set of all
channel matrices up till time(i− 1). Similarly, we denote by
Y i−1
n = {Yn(1), . . . , Yn(i− 1)} the set of all channel outputs

at Receivern up till time (i− 1).
We assume that both receivers have the knowledge of

global and instantaneous channel state information, i.e.,both
receivers have access toHi = {H(1),H(2), . . . ,H(i)} at
time i, for all i. Depending on the availability of the amount
of feedback and channel state information at the transmitters,
permissible encoding functions and the corresponding DoF
regions can be different. Below, we enumerate the permissible
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Y2

H(i)

(Y i−1
1 ,Hi−1)

Tx1 Rx1

Rx2(Y i−1
2 ,Hi−1)Tx2

X2

X1 Y1

Fig. 1. The MIMO-IC with local output feedback and delayed CSIT.

encoding functions and the corresponding DoF regions for
several scenarios as follows:

• No CSIT: DoFNo−CSIT

Xm(i) = fm,i(Wm), m = 1, 2.

• Perfect CSIT: DoFp−CSIT

Xm(i) = fm,i(Wm,Hi), m = 1, 2.

• Delayed CSIT: DoFd−CSIT

Xm(i) = fm,i(Wm,Hi−1), m = 1, 2.

• Local output feedback: DoFFB

Xm(i) = fm,i(Wm, Y i−1
m ), m = 1, 2.

• Local output feedback and delayed CSIT: DoFFB,d−CSIT

Xm(i) = fm,i(Wm, Y i−1
m ,Hi−1), m = 1, 2.

• Global output feedback and delayed CSIT:
DoFGFB,d−CSIT

Xm(i) = fm,i(Wm, Y i−1
1 , Y i−1

2 ,Hi−1), m = 1, 2.

A coding scheme with block lengthn for the MIMO-IC
for a given feedback and CSIT configuration1 consists of a
sequence of encoding functions{Xm(i)}ni=1, for m = 1, 2
and two decoding functions

Ŵ1 = gn1 (Y
n
1 ,Hn), Ŵ2 = gn2 (Y

n
2 ,Hn).

A rate pair (R1(P ), R2(P )) is achievable if there exists a
sequence of coding schemes such thatP(Wm 6= Ŵm) → 0
as n → ∞ for both m = 1, 2. The capacity regionC(P ) is
defined as the closure of the set of all achievable rate pairs
(R1(P ), R2(P )). We define the DoF region as follows:

DoF=
{
(d1, d2)

∣∣∣∣dm ≥ 0, and∃(R1(P ), R2(P )) ∈ C(P )

s.t. dm = lim
P→∞

Rm(P )

log2(P )
,m = 1, 2

}
.

1A configuration could correspond to either one of the following scenarios:
No CSIT, Perfect CSIT, Delayed CSIT, Local output feedback,Local output
feedback and delayed CSIT, or Global output feedback and delayed CSIT.

III. M AIN RESULTS AND DISCUSSION

The main contribution of this paper is a
complete characterization of DoFFB,d−CSIT

and DoFGFB,d−CSIT, stated in the following theorem:

Theorem 1: The DoF region of the two user MIMO IC with
local feedback and delayed CSIT is equal to the DoF region
with global feedback and delayed CSIT, i.e.,

DoFGFB,d−CSIT = DoFFB,d−CSIT, (1)

and this region is given by the set of all non-negative pairs
(d1, d2) that satisfy

d1 ≤ min(M1, N1) (2)

d2 ≤ min(M2, N2) (3)

d1 + d2 ≤ min
{
M1 +M2, N1 +N2,

max(M1, N2),max(M2, N1)
}

(4)

d1
min(N1 +N2,M1)

+
d2

min(N2,M1)
≤

min(N2,M1 +M2)

min(N2,M1)
(5)

d1
min(N1,M2)

+
d2

min(N1 +N2,M2)
≤

min(N1,M1 +M2)

min(N1,M2)
.

(6)

For comparison, we recall the DoF region with perfect,
instantaneous CSIT at the transmitters DoFp−CSIT [12]:

d1 ≤ min(M1, N1) (7)

d2 ≤ min(M2, N2) (8)

d1 + d2 ≤ min
{
M1 +M2, N1 +N2,

max(M1, N2),max(M2, N1)
}
. (9)

In addition, the DoF region with delayed CSIT, DoFd−CSIT

was characterized in [9]. This region is given by the set of
inequalities as in Theorem 1 along with two more inequalities.
In particular, to characterize DoFd−CSIT, [9] defines two
mutually exclusive conditions:

Condition1 :

M1 > N1 +N2 −M2 > N1 > N2 > M2 > N2

(
N2 −M2

N1 −M2

)

(10)

Condition2 :

M2 > N1 +N2 −M1 > N2 > N1 > M1 > N1

(
N1 −M1

N2 −M1

)
.

(11)

If condition 1 holds, then DoFd−CSIT is given by the inequal-
ities in Theorem 1 and the following additional bound (bound
L4 in [9]):

d1 + d2

(
N1 + 2N2 −M2

N2

)
≤ N1 +N2. (12)

If condition 2 holds, then DoFd−CSIT is given by the inequal-
ities in Theorem 1 and the following additional bound (bound
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L5 in [9]):

d2 + d1

(
N2 + 2N1 −M1

N1

)
≤ N1 +N2. (13)

Hence, from Theorem 1, we have the following relationship:

DoFNo−CSIT ⊆ DoFd−CSIT ⊆ DoFFB,d−CSIT ⊆ DoFp−CSIT.

Converse proof for Theorem 1: the upper bounds (2)-(3)
are straightforward from the point-to-point MIMO channel.
It has been shown in [18] and [19] that any form of feed-
back/cooperation does not increase DoFp−CSIT. Therefore,
DoFp−CSIT is an outer bound on the DoF region with
global feedback and delayed CSIT. Hence, to show that
DoFGFB,d−CSIT is contained in the region given by (2)-(6),
we need only to prove the bounds (5) and (6) for the case
of global feedback and delayed CSIT. Since (5) and (6) are
symmetric, we need to prove that if(d1, d2) ∈ DoFFB,d−CSIT,
then (d1, d2) must satisfy the bound (5). We establish the
bound (5) in the Section VI-B2.

Coding schemes with feedback and delayed CSIT that
achieve the region DoFFB,d−CSIT stated in Theorem 1 are
presented in Section IV.

IV. CODING FORMIMO IC WITH LOCAL FEEDBACK AND

DELAYED CSIT

In this section, we present coding schemes that achieve the
DoF region for the MIMO IC stated in Theorem 1. We assume
without loss of generality, thatN1 ≥ N2. We refer the reader
to Table I in reference [9].

• If (M1,M2, N1, N2) are such that

DoFFB,d−CSIT = DoFd−CSIT, (14)

coding schemes presented in [9] which use delayed
CSIT only suffice for our problem. The condition (14)
corresponds to cases A.I, A.II, B.0, B.I, and B.II, as
defined in [9].

• If (M1,M2, N1, N2) are such that

DoFFB,d−CSIT ⊃ DoFd−CSIT, (15)

we present a novel coding scheme that achieves
DoFFB,d−CSIT.

We present the optimal coding schemes for the case of
arbitrary(M1,M2, N1, N2)-MIMO IC in Section VI-A. In the
following sub-sections, we highlight the contribution of our
coding scheme through two examples that capture its essential
features and lead to valuable insights for the case of the general
(M1,M2, N1, N2)-MIMO IC.

A. (6, 2, 4, 3)-IC with Feedback and Delayed CSIT

We first focus on the case of the(6, 2, 4, 3)-MIMO IC.
For comparison purposes, we note here the DoF regions with
no-CSIT, perfect CSIT, delayed CSIT, output feedback and
delayed CSIT. For all these four regions, we have the following
bounds:

d1 ≤ 4; d2 ≤ 2.

(1, 2)

2

4

d2

d1

(2, 2)

(6,2,4,3)-MIMO IC

(
11
5 ,

9
5

)

Perfect-CSIT [12]

Feedback + Delayed-CSIT

Delayed-CSIT [9]

No-CSIT [11]

(
5
3 , 2
)

Fig. 2. DoF region for the(6, 2, 4, 3)-MIMO-IC with various assumptions.

Besides these, we have the following additional bounds:

• No-CSIT:

d1 +
3

2
d2 ≤ 4.

• Perfect CSIT:

d1 + d2 ≤ 4.

• Delayed CSIT (Case B-III, [9]):

d1 + d2 ≤ 4; d1 +
8d2
3

≤ 7.

• Output feedback and delayed CSIT (Theorem 1):

d1 + d2 ≤ 4;
d1
6

+
d2
3

≤ 1.

It can be verified that this region is the same as the DoF region
with perfect CSIT, since the boundd1

6 + d2

3 ≤ 1 is redundant
asd1 ≥ 2 ≥ d2 is a valid choice (see Figure 2).

The main contribution of the coding scheme is to show the
achievability of the point(2, 2) under the assumption of output
feedback and delayed CSIT. To show the achievability of point
(2, 2), we will show that in three uses of the channel, we can
reliably transmit6 information symbols to Receiver1, and6
information symbols to Receiver2.

Encoding at Transmitter2: Transmitter2 sends fresh in-
formation symbols on both its antennas fori = 1, 2, 3, i.e.,
the channel input of Transmitter2, denoted asX2(i) for
i = 1, 2, 3, can be written as

X2(1) = [v1 v2]
T , X2(2) = [v3 v4]

T , X2(3) = [v5 v6]
T .

At i = 1, Transmitter1 sends6 information symbols on its6
antennas, i.e., it sends

X1(1) = [u1 u2 u3 u4 u5 u6]
T . (16)

Let us denote byu = (u1, . . . , u6) the vector of information
symbols intended for Receiver1. The outputs at Receivers1
and2 at i = 1 (ignoring noise) are given as

Y1(1) =




A1(u) +B1(v1, v2)
A2(u) +B2(v1, v2)
A3(u) +B3(v1, v2)
A4(u) +B4(v1, v2)


 ,
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T
x2

L1(P1, Q1, v3, v4)

L2(P1, Q1, v3, v4)

L3(P1, Q1, v3, v4)

C1(P1, Q1, v3, v4)

C2(P1, Q1, v3, v4)

C3(P1, Q1, v3, v4)

C4(P1, Q1, v3, v4)

D1(P2, Q2, v5, v6)

D2(P2, Q2, v5, v6)

D3(P2, Q2, v5, v6)

D4(P2, Q2, v5, v6)

M1(P2, Q2, v5, v6)

M2(P2, Q2, v5, v6)

M3(P2, Q2, v5, v6)

u1

u2

u3

u4

u5

u6

v1
v2

i = 1

P1(u) +Q1(v1, v2)

P2(u) +Q2(v1, v2)

P3(u) +Q3(v1, v2)

A1(u) + B1(v1, v2)

A2(u) + B2(v1, v2)
A3(u) + B3(v1, v2)
A4(u) + B4(v1, v2)

i = 2

P1(u)

Q1(v1, v2)

v3
v4

i = 3

P2(u)

Q2(v1, v2)

v5

v6

i = 1 i = 2 i = 3

H(i)

(Y i−1
1 ,Hi−1)

T
x1

R
x1

R
x2

(Y i−1
2 ,Hi−1)

Fig. 3. Coding scheme with FB and delayed CSIT:(6, 2, 4, 3)-MIMO-IC.

Y2(1) =




P1(u) +Q1(v1, v2)
P2(u) +Q2(v1, v2)
P3(u) +Q3(v1, v2)


 .

Upon receivingY1(i) (channel output feedback) from Re-
ceiver 1 and H(1) (delayed CSIT), Transmitter1 can use
(u1, . . . , u6, Y1(1), H(1)) to solve for(v1, v2). Consequently,
it can reconstructQ1(v1, v2) andQ2(v1, v2) which constitute
a part of the received signal,Y2(1), at Receiver2. In addition,
having access to delayed CSIT,H(1), it can also compute
P1(u) and P2(u), a part of the interference it caused at
Receiver2. In the next two time instants, i.e., ati = 2 and3,
Transmitter1 sends

X1(2) = [P1(u) Q1(v1, v2) φ φ φ φ]T (17)

X1(3) = [P2(u) Q2(v1, v2) φ φ φ φ]T , (18)

whereφ denotes a constant symbol known to all terminals.

The channel outputs at Receiver1 at i = 2, 3 are given as
follows:

Y1(2) =




C1(P1(u), Q1(v1, v2), v3, v4)
C2(P1(u), Q1(v1, v2), v3, v4)
C3(P1(u), Q1(v1, v2), v3, v4)
C4(P1(u), Q1(v1, v2), v3, v4)


 ,

Y1(3) =




D1(P2(u), Q2(v1, v2), v5, v6)
D2(P2(u), Q2(v1, v2), v5, v6)
D3(P2(u), Q2(v1, v2), v5, v6)
D4(P2(u), Q2(v1, v2), v5, v6)


 .

Decoding at Receiver1: Note thatY1(2) is comprised of
4 equations in4 variables(P1(u), Q1(v1, v2), v3, v4), whose
coefficients are drawn from a continuous distribution. There-
fore, they are linearly independent almost surely, and the
coefficient matrix is full-rank. Hence, Receiver1 can decode
4 symbols (P1(u), Q1(v1, v2), v3, v4) by matrix inversion.
Similarly, Y1(3) is comprised of4 (almost surely) linearly in-
dependent equations in4 variables(P2(u), Q2(v1, v2), v5, v6).
Hence Receiver1 can decode(P2(u), Q2(v1, v2), v5, v6) from
Y1(3). Having decoded(Q1(v1, v2), Q2(v1, v2)), it can solve
for (v1, v2) and compute{Bj(v1, v2)}4j=1, the interference

caused ati = 1. Upon subtractingBj(v1, v2) from the output
at the jth antenna corresponding toY1(1), Receiver1 ob-
tains(A1(u), A2(u), A3(u), A4(u), P1(u), P2(u)), i.e., it has
6 linearly independent equations in6 variables(u1, . . . , u6).
Hence all6 information symbols(u1, . . . , u6) can be decoded
by Receiver1 in three uses of the channel.

The channel outputs at Receiver2 at i = 2, 3 are given as
follows:

Y2(2) =




L1(P1(u), Q1(v1, v2), v3, v4)
L2(P1(u), Q1(v1, v2), v3, v4)
L3(P1(u), Q1(v1, v2), v3, v4)


 ,

Y2(3) =




M1(P2(u), Q2(v1, v2), v5, v6)
M2(P2(u), Q2(v1, v2), v5, v6)
M3(P2(u), Q2(v1, v2), v5, v6)


 .

Decoding at Receiver2: at Receiver 2, we have 9
linearly independent equations (fromY2(1), Y2(2), Y2(3))
in 9 variables (v1, . . . , v6, P1(u), . . . , P3(u)), where
(P1(u), . . . , P3(u)) is the additive interference at
i = 1. Hence it can decode6 information symbols
(v1, v2, v3, v4, v5, v6) in three uses of the channel. Hence, we
have shown the achievability of the point(2, 2) with channel
output feedback and delayed CSIT.

Remark 1: It is instructive to compare this coding scheme
to the case of delayed CSIT. In particular, the point(5/3, 2)
lies on the boundary of DoFd−CSIT. In the coding scheme
that achieves this point, it suffices to transmit5 symbols to
Receiver1 and 6 symbols to Receiver2 in three channel
uses. Under the delayed CSIT assumption, Transmitter1 can
at best reconstruct the interference it caused at Receiver2.
In the terminology of the coding scheme described above,
Transmitter1 can reconstruct(P1(u), P2(u), P3(u)). In sub-
sequent channel uses, Transmitter1 sendsP1(u) andP2(u)
in i = 2, andP3(u) in i = 3. At the end of transmission,
note that Receiver2 still has 9 equations in9 variables,
(v1, . . . , v6, P1(u), . . . , P3(u)), therefore it can reliably de-
code(v1, . . . , v6).

The difference between the optimal coding schemes for
these two models is highlighted by the decoding capability
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of Receiver1. For instance, in the scheme with delayed CSIT
alone, Receiver1 has 11 linearly independent equations (4
equations fori = 1, 4 equations ini = 2, and3 equations in
i = 3) in 12 variables(u1, . . . , u6, v1, . . . , v6); hence at best it
can decode any5 of the 6 information symbols(u1, . . . , u6).
On the other hand, in our scheme, which allows for output
feedback along with delayed CSIT, Transmitter1 can exactly
separate the interference and signal component of Receiver
2, i.e., besides knowing(P1(u), . . . , P3(u)), it can also ex-
actly reconstruct(Q1(v1, v2), Q2(v1, v2)) (see Figure 3, which
also highlights the difference of the coding schemes). This
additional knowledge of(Q1(v1, v2), Q2(v1, v2)) is useful in
transmission of one additional symbol to Receiver1 in three
channel uses.

Remark 2: We note here that for this particular example, we
can achieve the DoF region with perfect instantaneous CSIT.
Recall from [19] that the point(2, 2) can be achieved with
perfect CSIT in one shot, i.e., in one channel use. As we have
shown, output feedback and delayed CSIT can also achieve the
point (2, 2), albeit, we pay the price of a larger delay, i.e., we
can achieve this pair in three channel uses. Moreover, it is clear
that the role of feedback and delayed CSIT is crucial in the
proposed coding scheme, and it is not possible to achieve the
same point in a single shot. This observation also highlights
the delay penalty incurred by thecausal knowledge of output
feedback and delayed CSIT.

From this example it is clear that DoFFB,d−CSIT =
DoFp−CSIT. However, this equality does not hold in general.
In the next section, we illustrate this by an example for which
DoFd−CSIT ⊂ DoFFB,d−CSIT ⊂ DoFp−CSIT, i.e., having
feedback and delayed CSIT is strictly worse than having
perfect CSIT and strictly better than having only delayed CSIT.

B. (8, 4, 6, 5)-MIMO IC

We now focus on the(8, 4, 6, 5)-MIMO IC (see Figure 4).
The main contribution is to show the achievability of the
point (8/5, 4) under the assumption of output feedback and
delayed CSIT. To this end, we will show that in5 channel
uses, Transmitter1 can send8 symbols to Receiver1 and
Transmitter2 can send20 symbols to Receiver2.

For all5 channel uses, Transmitter2 sends fresh information
symbols, i.e., it sends

X2(1) = [v1 . . . v4]
T , . . . , X2(5) = [v17 . . . v20]

T . (19)

In the first channel use, Transmitter1 sends8 fresh information
symbols, i.e.,

X1(1) = [u1 u2 . . . u8]
T . (20)

Let us denoteu = (u1, u2, . . . , u8). The outputs at Receivers
1 and2 at i = 1 (ignoring noise) are given as

Y1(1) =




A1(u) +B1(v1, v2, v3, v4)
A2(u) +B2(v1, v2, v3, v4)
A3(u) +B3(v1, v2, v3, v4)
A4(u) +B4(v1, v2, v3, v4)
A5(u) +B5(v1, v2, v3, v4)
A6(u) +B6(v1, v2, v3, v4)



,

Feedback + Delayed-CSIT

d16

d2

4
No-CSIT [11]

(8,4,6,5)-MIMO IC

Perfect-CSIT [12]

Delayed-CSIT [9]

(2, 4) (
2, 154

)

(
8
5 , 4
)

(
7
5 , 4
)

(
8
3 ,

10
3

)

(1, 4)

Fig. 4. DoF region for the(8, 4, 6, 5)-MIMO-IC with various assumptions.

Y2(1) =




P1(u) +Q1(v1, v2, v3, v4)
P2(u) +Q2(v1, v2, v3, v4)
P3(u) +Q3(v1, v2, v3, v4)
P4(u) +Q4(v1, v2, v3, v4)
P5(u) +Q5(v1, v2, v3, v4)



.

Upon receiving feedback Y1(1), and channel
state information H(1), having access to u,
Transmitter 1 can reconstruct (P1(u), . . . , P4(u)) and
(Q1(v1, v2, v3, v4), . . . , Q4(v1, v2, v3, v4)). In the subsequent
channel uses,2 ≤ i ≤ 5 Transmitter1 sends

X1(i) = [Pi−1(u) Qi−1(v1, v2, v3, v4) φ φ φ φ φ φ]T ,

whereφ denotes a constant symbol known to all terminals.
It is straightforward to verify that Receiver2 has 25 lin-
early independent equations in25 variables,(v1, . . . , v20) and
(P1(u), . . . , P5(u)). Hence, it can decode all20 information
symbols(v1, . . . , v20).

On the other hand, using Y2(i), Receiver 1
can decode Pi(u), and Qi(v1, v2, v3, v4), where
2 ≤ i ≤ 5. Therefore, from {Y2(i)}5i=2, it has
(P2(u), . . . , P5(u)) and(v1, v2, v3, v4). Using(v1, v2, v3, v4),
Receiver 1 can reconstruct the interference signals
B1(v1, . . . , v4), . . . , B6(v1, . . . , v4) for the first channel
use. Subsequently, it can subtract these and obtain
(A1(u), . . . , A6(u)). To summarize, Receiver1 can obtain
10 equations (A1(u), . . . , A6(u), P1(u), . . . , P4(u)) in 8
variables and it can reliably decode(u1, . . . , u8).

Remark 3: From Figure 4, we note that with perfect CSIT,
the pair(2, 4) is achievable; in other words, in5 channel uses,
one can send10 symbols to Receiver1 and 20 symbols to
Receiver2. However, with output feedback and delayed CSIT,
to guarantee the decodability of20 symbols at Receiver2
necessitates Transmitter1 to repeat the interference component
(P1, . . . , P4) and a part of the signal component(Q1, . . . , Q4).
This coding scheme fills up all the dimensions (for this
example, there are25) at Receiver2. However, this leaves2
dimensions redundant at Receiver1, which is the reason why
feedback and delayed CSIT cannot achieve the point(2, 4).
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V. CONCLUSIONS

In this paper, the DoF region of the MIMO-IC has been
characterized in the presence of output feedback and delayed
CSIT. It is shown that output feedback and delayed CSIT in
general outperform delayed CSIT, and can sometimes be as
good as perfect CSIT. Furthermore, the DoF region with local
feedback and delayed CSIT is the same as the DoF region
with global feedback and delayed CSIT. This implies that
from the degrees of freedom perspective, local feedback yields
the same performance as global feedback in the presence of
delayed CSIT. It is shown that whenever feedback and delayed
CSIT strictly outperform delayed CSIT, the stronger receiver
(i.e., the receiver with larger number of antennas) is able to
decode both the messages. The key enabler to this effect is
the presence of feedback in addition to delayed CSIT. The
converse is proved for the case in which the channels to the
receivers are not necessarily identically distributed andthe
techniques developed herein can be useful for other related
problems involving delayed CSIT.

VI. A PPENDIX

A. Coding Scheme: arbitrary (M1,M2, N1, N2)

We focus on only such values of(M1,M2, N1, N2) for
which DoFd−CSIT ⊂ DoFFB,d−CSIT. A necessary condition
for this inclusion isM1 > N1 > N2 > M2. For this case, the
region in Theorem 1 can be simplified to

d2 ≤ M2 (21)

d1 + d2 ≤ N1 (22)
d1

min(M1, N1 +N2)
+

d2
N2

≤ 1. (23)

We can further subdivide this scenario into two mutually
exclusive cases, depending on whether the bound (23) is active
or not:

1) DoFFB,d−CSIT = DoFp−CSIT: In this case, the bound
(23) is not active and hence the region is the same as that
of perfect CSIT. This condition requires(M1,M2, N1, N2) to
satisfy

(N1 −M2)

min(M1, N1 +N2)
+

M2

N2
≤ 1, (24)

which is equivalent to

min(M1, N1 +N2) ≥ N2

(
N1 −M2

N2 −M2

)
. (25)

The DoF region with feedback and delayed CSIT is given
as

d2 ≤ M2 (26)

d1 + d2 ≤ N1. (27)

The main contribution is to show the achievability of the
following point:

PointP0 : (N1 −M2,M2). (28)

The (6, 2, 4, 3)-MIMO IC falls into this category.

2) DoFFB,d−CSIT ⊂ DoFp−CSIT: In this case, the bound
(23) is active and hence the region with feedback and delayed
CSIT is a strict subset of the DoF region with perfect CSIT.
This condition requires(M1,M2, N1, N2) to satisfy

(N1 −M2)

min(M1, N1 +N2)
+

M2

N2
> 1, (29)

which is equivalent to

min(M1, N1 +N2) < N2

(
N1 −M2

N2 −M2

)
. (30)

The (8, 4, 6, 5)-MIMO IC falls into this category.
The DoF region with feedback and delayed CSIT is given

as

d2 ≤ M2 (31)

d1 + d2 ≤ N1 (32)
d1

min(M1, N1 +N2)
+

d2
N2

≤ 1. (33)

The main contribution is to show the achievability of two
points:

PointP1 :

[
M̃1

(
N2 −M2

N2

)
,M2

]
, (34)

PointP2 :

[
M̃1

(
N1 −N2

M̃1 −N2

)
, N2

(
M̃1 −N1

M̃1 −N2

)]
, (35)

where we have defined̃M1 = min(M1, N1 +N2).
We have shown these two cases in Figure 5.
Achievability for P0 and P1: Let us defineT = (N1 −

M2)(N2 −M1) and

L = T max

(
M̃1

N1 −M2
,

N2

N2 −M2

)
. (36)

Note thatL is a positive integer. We will provide a scheme that
works well for bothP0 (corresponding to CaseA discussed
in Section VI-A1) and for PointP1 (corresponding to CaseB
discussed in Section VI-A2). In particular, we will show that
in L channel uses, we can transmitTM̃1 symbols to Receiver
1 and LM2 symbols to Receiver2. Note that the technical
condition distinguishing cases A and B can be equivalently
stated in terms of the value taken by the parameterL, i.e.,
L = M̃1

N1−M2

T for Case A, andL = N2

N2−M2

T for Case B.
The proposed scheme includes two Phases. Transmitter2

always sends fresh information symbols in allL channel uses
(Phase1 and Phase2). During the first Phase of transmission
which includes time slotsi = 1, . . . , T , Transmitter1 sends
M̃1 fresh information symbols in each time slot. At the end of
the first Phase, Receiver2 hasTN2 equations, each involving
an information component (a function ofTM2 information
symbols) and an interference component (which are func-
tions of TM̃1 symbols of Transmitter1). Via feedback from
Receiver1, Transmitter1 can decode theTM2 information
symbols of Transmitter2 sent over the first Phase, since
N1 ≥ M2. Then having all the information symbols of Phase
1 and the delayed CSIT, Transmitter1 can exactly recover
the TN2 interference components it caused at Receiver2
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Active

M2

P0

d1
min(M1,N1+N2)

+ d2
N2

≤ 1

Case A

M̃1 = min(M1, N1 +N2)

N1

N2 Not active

d2

N1

d1

M̃1 N1

d2

N1

M2

d1
min(M1,N1+N2)

+ d2
N2

≤ 1

Case B

P1

P2

d1

M̃1

N2

Fig. 5. Two cases for the(M1,M2, N1, N2)-MIMO-IC.

during Phase1. During Phase2 of the course of transmission
including time slotsi = T + 1, . . . , L, Transmitter1 sends
combinations of these interference components on its antennas,
while Transmitter2 keeps sendingM2 fresh symbols in each
channel use.

At the end of Phase2, at Receiver2, we haveLN2 equations
in LM2+TN2 variables. Hence, for the decodability ofLM2

symbols at Receiver2, L must satisfyLN2 ≥ LM2 + TN2,
i.e.,

L ≥
N2

N2 −M2
T. (37)

Furthermore, at Receiver1, we haveLN1 equations inTM̃1+
LM2 variables, and hence for the decodability of̃M1 symbols
at Receiver1, L must satisfyLN1 ≥ TM̃1 + LM2, i.e.,

L ≥
M̃1

N1 −M2
T. (38)

Note that we choose this exact value ofL in (36) to ensure
the decoding requirements at both the decoders. Consequently,
we have shown the achievability of pointsP0 andP1.

Achievability for P2: Let us define

L = M̃1 −N2. (39)

We will show that inL channel uses, we can transmit̃M1(N1−
N2) symbols to Receiver1 and N2(M̃1 − N1) symbols to
Receiver2. Before proceeding, we verify the feasibility of
such a scheme. Note that Transmitter2 hasLM2 total number
of antennas (overL channel uses) to send fresh information.
Hence, for such a scheme to work, this number should exceed
the total number of information symbols to be sent to Receiver
2, i.e., we must have

LM2 ≥ N2(M̃1 −N1), (40)

which is equivalent to

M̃1 ≥ N2

(
N1 −M1

N2 −M1

)
. (41)

This condition is clearly satisfied from (30) and the fact that

M1 > M2.
We now propose the coding scheme for pointP2: Trans-

mitter 2 sendsN2(M̃1 − N1) information symbols inL
channel uses. Transmitter1 sends fresh information oñM1

antennas in the first(N1 − N2) channel uses (note that
L > (N1 − N2)). From the first(N1 − N2) channel uses,
upon receiving feedback and delayed CSIT, Transmitter1 can
reconstruct theM2(N1 − N2) information components and
N2(N1 − N2) interference components of Receiver2. In the
subsequentL−(N1−N2) channel uses, Transmitter1 forwards
these two components usingM1 antennas.

Decoding at Receiver2: at the end of transmission, Re-
ceiver 2 has access toLN2 linearly independent equations
in N2(M̃1 − N1) information symbols andN2(N1 − N2)
interference components. Thus, for Receiver2 to decode the
information symbols, we must have

LN2 ≥ N2(M̃1 −N1) +N2(N1 −N2) (42)

= N2(M̃1 −N2). (43)

Decoding at Receiver1: Receiver1 has LN1 equations
in M̃1(N1 − N2) information symbols andN2(M̃1 − N1)
interference symbols. Therefore, for decoding at Receiver1
to succeed, we must have

LN1 ≥ M̃1(N1 −N2) +N2(M̃1 −N1) (44)

= N1(M̃1 −N2). (45)

Indeed we have chosenL in (39) to satisfy both (43) and
(45) with equality. Thus, we have shown the achievability of
the pointP2 with feedback and delayed CSIT.

Remark 4: As mentioned before in both Cases A and B,
the DoF region of the IC with output feedback and delayed
CSIT is strictly larger than that for the same channel with
only delayed CSIT. This is due to the extra upper bound
which further shrinks the DoF region with only delayed CSIT
when (10) holds. Figure 6 illustrates the difference between
the two DoF regions for both Cases A and B. It is worth
mentioning that the main benefit we get from the presence of
output feedback beyond delayed CSIT is that pointsP0 (in
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Q3

N1

d2

M2

Case B

P1

N1

M2

Case A

d2

d1

P0

d1 + d2

(
N1+N2−M2

N2

)
≤ N1 +N2

d1

Q2

d1 + d2

(
N1+N2−M2

N2

)
≤ N1 +N2

P2

Q4
Q1

Fig. 6. Comparison of DoFFB,d−CSIT and DoFd−CSIT for Cases A and B.

Case A) andP1 (in Case B) are achievable in the new model,
while they are outside of the DoF region when there is only
delayed CSIT in the system.

A closer look at the coding scheme presented for pointsP0

andP1 reveals additional insights towards understanding the
role of output feedback and its benefit. First note that in both
corner points Transmitter2 operates at its full rate, and keeps
sending fresh information during the entire course of trans-
mission. Therefore, Transmitter1 has to play two important
roles simultaneously in the second Phase of transmission, i.e.,
during i = T + 1, . . . , L:

1) The received signal at Receiver2 during Phase 1 is
interfered withTN2 interference symbols, each of which
is an equations in terms of theTM̃1 information symbols
intended for Receiver1. During Phase2, Transmitter
1 keeps sending extra equations in terms of the same
interference symbols, so that Receiver2 can decode
these interference symbols, and remove them from its
received signal in order to decode its desired information
symbols.

2) SinceN1 > M2, once Receiver1 decodes its intended
information symbols, it is able to recover theTM2

information symbols intended for Receiver2, during
Phase1. This implies that it not only has to recover
its desiredTM̃1 symbols, but also theTM2 interfering
symbols sent by Transmitter1. Hence, it requires (at
least) a total ofT (M̃1+M2) equations, while it has only
receivedTN1 of them during the first Phase. Recalling
that Transmitter2 has to always send fresh symbols, it
is Transmitter1 that is supposed to provide Receiver1
with the remainingT (M̃1+M2−N2) equations in terms
of the symbols of Phase1 of the course of transmission.

Now, note that role 1) can be accomplished by the use of only
delayed CSIT, since reconstruction of the interference symbols
at Transmitter1 requires only the channel states of Phase1.
However, this gives onlyTN2 equations. Since

T (M̃1 +M2 −N2) > TN2,

Transmitter 1 requires a strictly positive number of extra
equations. However, it cannot produce these extra equations

from its own symbols, because it causes further interference
at Receiver2. This is where the output feedback plays a key
role to provide Transmitter1 with extra equations in terms of
the information symbols of Transmitter2 (sent during Phase
1). By sending these equations, Transmitter1 can accomplish
its roles simultaneously, and the DoF pointsP0 andP1 can
be achieved.

Remark 5: It is worth mentioning that in the coding scheme
proposed for pointsP0, P1, and P2, always the stronger
receiver (withN1 antennas) is not only able to decode its own
message, but also it can decode all the information symbols
intended for the weaker receiver (withN2 antennas). From
this one can conclude that whenever DoFFB,d−CSIT is strictly
larger that DoFd−CSIT, the stronger receiver can decode both
messages.

B. Converse for MIMO IC

We focus on proving (5) and (6) under assumptions A1-A3.
As these bounds are symmetric, it suffices to prove (5). Before
proceeding, we take a digression and prove a result for a class
of cognitive interference channels with global feedback.

1) Capacity of a Class of Cognitive ICs with Global
Feedback: Consider the following cognitive IC, with two
independent messagesW1 and W2 intended to be decoded
at Receivers1 and 2 respectively. The channel outputs are
governed byp(y1, y2|x1, x2). The messageW2 is available at
Transmitter2 and both the messages(W1,W2) are available
at Transmitter1, i.e., Transmitter1 is cognitive. Furthermore,
the cognitive IC is physically degraded, i.e., for anyp(x1, x2),
the channel satisfies

p(y1, y2|x1, x2) = p(y1|x1, x2)p(y2|y1). (46)

From [23], the following region, denoted byRach is achiev-
able for a general cognitive IC without feedback:

R1 ≤ I(X1;Y1|U,X2) (47)

R2 ≤ I(U,X2;Y2), (48)
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over all probability distributionsp(x1, x2, u, y1, y2) that factor
as

p(u, x2)p(x1|u, x2)p(y1, y2|x1, x2). (49)

We now show that for a physically degraded cognitive IC that
satisfies (46), the capacity region with global feedback is given
by Rach. This would imply that the capacity region without
feedback is equal to the capacity region with global feedback
from both receivers to both transmitters.

We have the following sequence of bounds forR1, the rate
of messageW1:

nR1 = H(W1)

= H(W1|W2)

≤ I(W1;Y
n
1 , Y n

2 |W2) + nǫ1,n

=

n∑

i=1

I(W1;Y1i, Y2i|W2, Y
i−1
1 , Y i−1

2 ) + nǫ1,n

=
n∑

i=1

I(W1;Y1i, Y2i|W2, Y
i−1
1 , Y i−1

2 , X2i) + nǫ1,n

(50)

=
n∑

i=1

I(W1;Y1i|W2, Y
i−1
1 , Y i−1

2 , X2i)

+

n∑

i=1

I(W1;Y2i|Y1i,W2, Y
i−1
1 , Y i−1

2 , X2i) + nǫ1,n

=

n∑

i=1

I(W1;Y1i|W2, Y
i−1
1 , Y i−1

2 , X2i) + nǫ1,n (51)

=

n∑

i=1

I(W1, X1i;Y1i|W2, Y
i−1
1 , Y i−1

2 , X2i) + nǫ1,n

(52)

=

n∑

i=1

I(X1i;Y1i|W2, Y
i−1
1 , Y i−1

2 , X2i) + nǫ1,n (53)

=
n∑

i=1

I(X1i;Y1i|Ui, X2i) + nǫ1,n (54)

= nI(X1;Y1|U,X2) + nǫ1,n (55)

where,

• (50) follows from the fact thatX2i is a function of
(W2, Y

i−1
1 , Y i−1

2 );
• (51) follows from the physically degradedness assump-

tion in (46);
• (52) follows from the fact thatX1i is a function of

(W1,W2, Y
i−1
1 , Y i−1

2 );
• (53) follows from the memoryless property of the chan-

nel, i.e.,

(W1,W2, Y
i−1
1 , Y i−1

2 , ) → (X1i, X2i) → Y1i; (56)

• (54) follows by definingUi , (W2, Y
i−1
1 , Y i−1

2 ), for i =
1, . . . , n.

For Receiver2, we have the following sequence of bounds:

nR2 = H(W2)

≤ I(W2;Y
n
2 ) + nǫ2,n

=

n∑

i=1

I(W2;Y2i|Y
i−1
2 ) + nǫ2,n

≤
n∑

i=1

I(W2, Y
i−1
1 , Y i−1

2 ;Y2i) + nǫ2,n

=

n∑

i=1

I(W2, Y
i−1
1 , Y i−1

2 , X2i;Y2i) + nǫ2,n (57)

=
n∑

i=1

I(Ui, X2i;Y2i) + nǫ2,n (58)

= nI(U,X2;Y2) + nǫ2,n (59)

where
• (57) follows from the fact thatX2i is a function of

(W2, Y
i−1
1 , Y i−1

2 ); and
• (58) follows from the definition of Ui ,

(W2, Y
i−1
1 , Y i−1

2 ), for i = 1, . . . , n.
From (55) and (59), we have the bounds

R1 ≤ I(X1;Y1|U,X2) (60)

R2 ≤ I(U,X2;Y2), (61)

and it is straightforward to check that the distribution of the
variablesp(x1, x2, u, y1, y2) satisfies

p(u, x2)p(x1|u, x2)p(y1|x1, x2)p(y2|y1). (62)

Therefore, we have shown that global output feedback does
not increase the capacity region of the physically degraded
cognitive interference channel2. We note here that this result
can be regarded as cognitive interference channel counterpart
of the corresponding result for the physically degraded broad-
cast channel, for which is it known [24] that feedback does
not increase the capacity region.

2) Proof of (5): We now return to the(M1,M2, N1, N2)
MIMO IC. We will prove an outer bound with global feedback
and delayed CSIT. To this end, we provide the following
enhancement of the original MIMO IC (denote it as O-IC):

• Provide the messageW2 to Transmitter1.
• Provide the channel outputY2 to Receiver1.

Thus, we now have an enhanced MIMO IC, (denote it as E-IC)
summarized as follows:

• Transmitter1 has (W1,W2), with global feedback and
delayed CSIT.

• Transmitter2 hasW2, with global feedback and delayed
CSIT.

• Receiver1 has(Y n
1 , Y n

2 ,Hn).
• Receiver2 has(Y n

2 ,Hn).

Clearly, this enhanced MIMO IC (E-IC) falls into the class of
physically degraded cognitive ICs, for which we have shown
in the previous section (VI-B1) thatglobal feedback does not

2We note here that if for the cognitive IC, the physical degradedness order
is switched, i.e., whenY1 is a degraded version ofY2, then the capacity
regions with and without feedback are not known in general.
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increase the capacity region. Thus, we can remove the global
feedback and delayed CSIT assumption from the enhanced
MIMO IC without changing its capacity region.

We thus consider the following MIMO cognitive IC (denote
it as E-IC∗) in which there is no feedback and no CSIT:

• Transmitter1 has (W1,W2), with no feedback and no
CSIT.

• Transmitter2 hasW2, with no feedback and no CSIT.
• Receiver1 has(Y n

1 , Y n
2 ,Hn).

• Receiver2 has(Y n
2 ,Hn).

In particular, the following encoding functions are permissible
for E-IC∗:

X1(i) = f1i(W1,W2), X2(i) = f2i(W2). (63)

Let us denote

Mu = min(M1, N1 +N2), Ml = min(M1, N2),

M∗ = Mu −Ml. (64)

We next create an artificial channel output (of sizeM∗ × 1)
as follows:

Ỹ (i) = H̃(i)X1(i) + Z̃(i), (65)

where

• The channel matrix̃H(i) is of sizeM∗ ×M1.
• Each element of̃H(i) is distributed i.i.d. from the distri-

butionλ21.
• The realizations ofH̃(i) vary in an i.i.d. manner over

time.
• The elements of̃Z(i) are generated i.i.d. fromCN (0, 1),

and vary in an i.i.d. manner across time.

We collectively denote the channel state information of the
original MIMO IC and the channel of theM∗ × 1 artificial
channel output as follows:

Ω = {H11(i),H12(i),H21(i),H22(i), H̃(i)}ni=1. (66)

We have the following sequence of inequalities for Receiver
2:

nR2 = H(W2)

= H(W2|Ω)

≤ I(W2;Y
n
2 |Ω) + nǫ2,n

=

n∑

i=1

I(W2;Y2(i)|Y
i−1
2 ,Ω) + nǫ2,n

≤
n∑

i=1

I(W2, Y
i−1
2 ;Y2(i)|Ω) + nǫ2,n

≤
n∑

i=1

I(W2, Y
i−1
1 , Y i−1

2 , Ỹ i−1;Y2(i)|Ω) + nǫ2,n

=

n∑

i=1

h(Y2(i)|Ω)

−
n∑

i=1

h(Y2(i)|Ω,W2, Y
i−1
1 , Y i−1

2 , Ỹ i−1) + nǫ2,n

≤ nmin(N2,M1 +M2) log(P )

−
n∑

i=1

h(Y2(i)|Ω,W2, Y
i−1
1 , Y i−1

2 , Ỹ i−1) + nǫ2,n

= nmin(N2,M1 +M2) log(P )

−
n∑

i=1

h(Y2(i)|Ω,W2, X2(i), Y
i−1
1 , Y i−1

2 , Ỹ i−1) + nǫ2,n,

(67)

where in (67) we used the fact from (63) thatX2(i) is a
function ofW2.

We next have the following sequence of inequalities for
Receiver1:

nR1

= H(W1)

= H(W1|Ω,W2)

≤ I(W1;Y
n
1 , Y n

2 , Ỹ n|Ω,W2) + nǫ1,n

=

n∑

i=1

I(W1;Y1(i), Y2(i), Ỹ (i)|Ω,W2, Y
i−1
1 , Y i−1

2 , Ỹ i−1)

+ nǫ1,n

=
n∑

i=1

h(Y1(i), Y2(i), Ỹ (i)|Ω,W2, Y
i−1
1 , Y i−1

2 , Ỹ i−1)

−
n∑

i=1

h(Y1(i), Y2(i), Ỹ (i)|Ω,W1,W2, Y
i−1
1 , Y i−1

2 , Ỹ i−1)︸ ︷︷ ︸
≥o(log(P ))

+ nǫ1,n

≤
n∑

i=1

h(Y1(i), Y2(i), Ỹ (i)|Ω,W2, Y
i−1
1 , Y i−1

2 , Ỹ i−1) + nǫ1,n

(68)

=

n∑

i=1

h(Y2(i), Ỹ (i)|Ω,W2, X2(i), Y
i−1
1 , Y i−1

2 , Ỹ i−1)

+

n∑

i=1

h(Y1(i)|Ω,W2, X2(i), Y2(i), Ỹ (i), Y i−1
1 , Y i−1

2 , Ỹ i−1)︸ ︷︷ ︸
≤o(log(P ))

+ nǫ1,n

≤
n∑

i=1

h(Y2(i), Ỹ (i)|Ω,W2, X2(i), Y
i−1
1 , Y i−1

2 , Ỹ i−1)

+ n(o(log(P )) + ǫ1,n), (69)

where

• (68) follows from the fact that(Y1(i), Y2(i), Ỹ (i)) can be
obtained within noise distortion from(Ω,W1,W2); and

• (69) follows from the fact that Y1(i)
can be obtained within noise distortion
from (Ω,W2, X2(i), Y2(i), Ỹ (i)) via channel inversion.

The next key step is to relate the quantities in equations
(67) and (69). For simplicity, define a variable

Σ(i) ,
(
Ω,W2, X2(i), Y

i−1
1 , Y i−1

2 , Ỹ i−1
)
, (70)

which appears in the conditioning of both summations appear-
ing in (67) and (69). Using this definition, we can compactly
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re-write (67) and (69) as follows:

nR2 ≤ nmin(N2,M1 +M2) log(P )

−
n∑

i=1

h(Y2(i)|Σ(i)) + nǫ2,n (71)

nR1 ≤
n∑

i=1

h(Y2(i), Ỹ (i)|Σ(i)) + n(o(log(P )) + ǫ1,n).

(72)

Before proceeding, we set the following notation:

• Y2(i, q) denotes the output at theqth antenna at Receiver
2 at time i.

• Ỹ (i, r) denotes the output at therth antenna of the
artificial channel output at timei.

We next describe the consequence of the statistical equivalence
of the channel̃H(i) used to define the artificial channel output
in (65). In particular, consider the outputs of Receiver2 and
artificial channel output.

We now claim the following statistically equivalent property
(SEP):

(SEP): h(Y2(i, q)|Σ(i)) = h(Ỹ (i, r)|Σ(i)) (73)

for any q ∈ {1, . . . , N2} and anyr ∈ {1, . . . ,M∗}. Note that
the key is thatΣ(i) is within the conditioning which allows us
to use the statistical equivalence. In particular,Σ(i) comprises
(W2,Ω) andX2(i) is a function ofW2. Therefore, conditioned
on Σ(i), the contribution ofH22(i)X2(i) can be subtracted
from Y2(i) givenΣ(i). In particular, we have,

h(Y2(i)|Σ(i)) = h (H21(i)X1(i) + Z2(i)|Σ(i)) (74)

h(Ỹ (i)|Σ(i)) = h
(
H̃(i)X1(i) + Z̃(i)|Σ(i)

)
. (75)

Furthermore, all elements ofH21(i) and H̃(i) are generated
i.i.d. from thesame distributionλ21. This in turn implies that
givenΣ(i), Y2(i, q) andỸ (i, r) are identically distributed, and
thus (73) follows.

Now, consider the term appearing in the summation in (71):

h(Y2(i)|Σ(i))

=

N2∑

q=1

h(Y2(i, q)|Σ(i), Y2(i, 1), . . . , Y2(i, q − 1))

=

Ml∑

q=1

h(Y2(i, q)|Σ(i), Y2(i, 1), . . . , Y2(i, q − 1))

+

N2∑

q=Ml+1

h(Y2(i, q)|Σ(i), Y2(i, 1), . . . , Y2(i, q − 1))︸ ︷︷ ︸
≥o(log(P ))

≥
Ml∑

q=1

h(Y2(i, q)|Σ(i), Y2(i, 1), . . . , Y2(i, q − 1))

=

Ml∑

q=1

h(Y2(i,min(M1, N2))|Σ(i), Y2(i, 1), . . . , Y2(i, q − 1))

(76)

≥
Ml∑

q=1

h(Y2(i,Ml)|Σ(i), Y2(i, 1), . . . , Y2(i,Ml − 1))

= Ml · h(Y2(i,Ml)|Σ(i), Y2(i, 1), . . . , Y2(i,Ml − 1)) (77)

, Ml · ζ(i), (78)

where in (76) we made use of the statistically equivalent
property (SEP), and in (78), we have defined

ζ(i) , h(Y2(i,Ml))|Σ(i), Y2(i, 1), . . . , Y2(i,Ml − 1)), (79)

and note thatMl = min(M1, N2).

We next consider the term appearing in the summation in
(72):

h(Y2(i), Ỹ (i)|Σ(i))

= h(Y2(i)|Σ(i)) + h(Ỹ (i)|Σ(i), Y2(i))

≤ h(Y2(i)|Σ(i))

+ h(Ỹ (i)|Σ(i), Y2(i, 1), . . . , Y2(i,min(M1, N2)))

= h(Y2(i)|Σ(i))

+ h(Ỹ (i, 1), .., Ỹ (i,Mu −Ml)|Σ(i), Y2(i, 1), .., Y2(i,Ml)))

= h(Y2(i)|Σ(i))

+

Mu−Ml∑

r=1

h(Ỹ (i, r)|Σ(i), Y2(i, 1), . . . , Y2(i,Ml)))

≤ h(Y2(i)|Σ(i))

+

Mu−Ml∑

r=1

h(Ỹ (i, r)|Σ(i), Y2(i, 1), . . . , Y2(i,Ml − 1)))

= h(Y2(i)|Σ(i))

+

Mu−Ml∑

r=1

h(Y2(i,Ml))|Σ(i), Y2(i, 1), . . . , Y2(i,Ml − 1)))

(80)

= h(Y2(i)|Σ(i)) + (Mu −Ml)ζ(i)

= h(Y2(i)|Σ(i)) + (min(M1, N1 +N2)−min(M1, N2))ζ(i),
(81)

where (80) follows from the SEP property.

From (78) and (81), we eliminateζ(i), to obtain

h(Y2(i), Ỹ (i)|Σ(i)) ≤
min(M1, N1 +N2)

min(M1, N2)
h(Y2(i)|Σ(i)).

(82)

From (71), (72), and (82), we obtain

nR2 ≤ nmin(N2,M1 +M2) log(P )−
n∑

i=1

h(Y2(i)|Σ(i))

+ nǫ2,n (83)

nR1 ≤
min(M1, N1 +N2)

min(M1, N2)

n∑

i=1

h(Y2(i)|Σ(i))

+ n(2o(log(P ))) + ǫ1,n), (84)
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which imply that

R1 +
min(M1, N1 +N2)

min(M1, N2)
R2

≤
min(N2,M1 +M2)min(M1, N1 +N2)

min(M1, N2)
log(P )

+ (2o(log(P )) + ǫn). (85)

Dividing by log(P ) and taking the limitsn → ∞ and then
P → ∞, we have the proof for

d1
min(M1, N1 +N2)

+
d2

min(M1, N2)
≤

min(N2,M1 +M2)

min(M1, N2)
.

(86)
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