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Abstract

Spectral efficiency for asynchronous code division mudtgtcess (CDMA) with random spreading is calculated
in the large system limit allowing for arbitrary chip wavefios and frequency-flat fading. Signal to interference and
noise ratios (SINRs) for suboptimal receivers, such asitieai minimum mean square error (MMSE) detectors, are
derived. The approach is general and optionally allows dégestatistics obtained by under-sampling the received
signal.

All performance measures are given as a function of the chieform and the delay distribution of the users in
the large system limit. It turns out that synchronizing gser a chip level impairs performance for all chip waveforms
with bandwidth greater than the Nyquist bandwidth, e.gsjtp roll-off factors. For example, with the pulse shapin
demanded in the UMTS standard, user synchronization redsmectral efficiency up to 12% at 10 dB normalized
signal-to-noise ratio. The benefits of asynchronism stem tihe finding that the excess bandwidth of chip waveforms
actually spans additional dimensions in signal spaceegiiers are de-synchronized on the chip-level.

The analysis of linear MMSE detectors shows that the lirgititerference effects can be decoupled both in the
user domain and in the frequency domain such that the conéepe effective interference spectral density arises.
This generalizes and refines Tse and Hanly’s concept oftaféciaterference.

In Part I, the analysis is extended to any linear detectat &ldmits a representation as multistage detector and
guidelines for the design of low complexity multistage a#bdes with universal weights are provided.

Index Terms Asynchronous code division multiple access (CDMA), ctelroapacity, effective interference,
excess bandwidth, minimum mean square error (MMSE) detectoltistage detector, multiuser detection, pulse
shaping, random matrix theory, random spreading sequesestral efficiency.
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|. INTRODUCTION

The fundamental limits of synchronous code-division nplétiaccess (CDMA) systems and the loss in-
curred by the imposition of suboptimal receiving structunave been thoroughly studied in different scenar-
ios and from different perspectives. On the one hand, sggmfiefforts have been devoted to characterize
the optimal spreading sequences and the correspondingitepél], [2], [3]. On the other hand, very in-
sightful analysisl[4],[[5],[[6],[[7],[[8] resulted from motimg the spreading sequences by random sequences
[9]. In fact, as both the number of useks and the spreading factdy tend to infinity with a fixed ratio,
CDMA systems with random spreading show self-averaginggmges. These enable the description of the
system in terms of few macroscopic system parameters asgtbuide a deep understanding of the system
behavior.

In the literature, the fundamental limits of CDMA systemsl &ime asymptotic analysis of linear multiuser
detectors under the assumption of random spreading sesgpienacverwhelmingly focused on synchronous
CDMA systems. While the assumption of user synchronizaitowed for accurate large-system analysis,
it is not realistic for the received signal on the uplink of@lalar CDMA system, in particular if users
move and cause varying delays. Therefore, it is of theaeicd practical interest to extend the analysis of
CDMA systems with random spreading to asynchronous uséris.hblds in particular, as we will see that
asynchronous users are beneficial from a viewpoint of sypeformance.

The analysis of asynchronous CDMA systems using a singternatched filter as receiver was first given
in [10]. A rich field of analysis of asynchronous CDMA systewith conventional detection at the receiver
is based on Gaussian approximation methods. An exhaustereiew of these approaches exceeds the
scope of this work, which is focused on the analysis of asyoratus CDMA systems witlptimal joint
decoding or linear multiuser detectioifhe interested reader is referred[tol[11]/[12] and refezsriberein
for asynchronous CDMA with single-user receivers.

The analysis and design of asynchronous CDMA systems wigafidetectors is predominantly restricted
to consider symbol-asynchronous but chip-synchronoussgi.e., the time delays of the signals are mul-
tiples of the chip interval. The effect of chip-asynchranis eventually analyzed independently|[13]. In
this stream are works that optimize the spreading sequénceaximize the sum capacity [14] and analyze
the performance of linear multiuser detectars [13]) [1&R][ [17]. In [13], [15], the linear MMSE detec-
tor for symbol-asynchronous but chip-synchronous sysisrsisown to attain the performance of the linear

MMSE detector for synchronous systems as the size of thenaigem window tends to infinity by empirical
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and analytical means, respectively. However, they venfynarically that the performance of linear MMSE
detectors is severely impaired by the use of short observatindows. Additionally, [[15] provides the
large-system SINR for a symbol whose chips are completelgived in an observation window of length
equal to the symbol intervdl,. In [16], [17], the analysis of linear multistage and MMSHEel#ors is ex-
tended to observation windows of arbitrary length. Furtinane, a multistage detector structure that does
not suffer from windowing effects and performs as well asrthdtistage detector for synchronous systems
is proposed.

In [13], [18], the effects of chip asynchronism are analyassuming bandlimited chip pulses. [n[18], the
chip waveform is assumed to be an ideal Nyquist sinc funciien a sinc function with bandwidth equal
to half of the chip rate. The received signal is filtered bywadass filter (or, equivalently, a filter matched
to the chip waveform) and subsequently sampled at the tifay dé the signal of the user of interest with
a frequency equal to the chip erEReference[[IS] proves that the SINR at the output of thealildMSE
detector converges in the mean-square sense to the SINRequaralent synchronous system. [n[[13] the
wider class of chip pulses which are inter-chip interfeeefree at the output of the chip matched filter is
considered. In the following we will refer to this class ofipulses as square root Nyquist chip pulses.

In [19], [20], the performance of the linear MMSE detectoithwcompletely asynchronous users and
chip waveforms limited to a chip interval is analyzed. Hoegthe observation window in [19] spanned
only a single symbol interval not yielding sufficient dister¢ime statistics; the resulting degradation in
performance was pointed out later in [13],[15].

As discussed above, previous approaches to the analysgrftronous CDMA with multiuser detection
were only concerned with, if and how asynchronism can begored from causing performance degrada-
tion. However, asynchronism is known to be beneficial for Gbs¢stems with demodulation by single-user
matched filters (e.g., [10]). One of the main contributiohghis paper is to show that benefits from asyn-
chronism are not inherent to single-user matched filtershmyt are a general property of CDMA systems.
We quantify those benefits in terms of spectral efficiency &iNRs in the large-system limit.

Compared to synchronous systems, the analysis of asyrmmsd@DMA raises two additional issues:
(i) the way statistics are formed, trading complexity agaiperformance, and (ii) the effects of excess
bandwidth, chip-pulse shaping and the users’ delay digiab.

The optimum multiuser detector in [21] is based on the sefficstatistics obtained as output samples of

The chip rate satisfies the condition of the sampling thedretinis case.
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a bank of filters matched to the symbol spreading wavefornadl osers. The decorrelating detectorlinl[22]
and the linear MMSE detector in [23] benefit from the same @efiit statistics. A method to determine
the eigenvalue moments of a correlation matrix in asynabumerCDMA systems using such statistics and
square root Nyquist chip pulse waveforms is proposed in [24]

An alternative approach to generate useful statistics;vim general are not sufficient, is borrowed from
synchronous systems. The received signals are processadilbgr matched to the chip waveform and
sampled at the chip rate. This approach is optimum for singe¥ communications and chip-synchronous
multi-user communications, but causes aliasing to theassgof de-synchronized users if the chip wave-
form has non-zero excess bandwidth. Discretization schamig chip matched filters and sampling at
the Nyquist rate are studied in [25]. There, the notion ofrapimate sufficient statistics was introduced.
Furthermore, conventional CDMA systems with chip wavefetimt approximate sinc pulses were shown
to outperform systems using rectangular pulse shaping.eMe@r, it was conjectured that sinc pulses are
optimal for CDMA systems with linear MMSE multiuser detexti

In systems with bandlimited waveforms, sampling at a ragéefathan the Nyquist rate leads to the same
performance as the optimal time-discretization propoeddi], [22], [23] if the condition of the sampling
theorem is satisfied [13]. In contrast to the bank of symbdicheed filters in[[21], this approach has the
advantage that the time delays of the users’ signals nedakriatown before sampling.

The impact of the shape and excess bandwidth of the chip putseived attention in [26], [27], [25].
In [26], [27] an algorithm for the design of chip-pulse wawehs for CDMA systems witltonventional
detectionhas been proposed. The design criterion consists of mimmthe bit error rate at the output of
asingle user matched filten asynchronous CDMA systems while enforcing certain a@amsts on the chip
waveforms.

This work is organized in seven additional sections. Saedfiogives a brief overview of the main re-
sults found in this work. Sections Il and IV introduce natatand the system model for asynchronous
CDMA, respectively. SectionlV focuses on the analysis adinMMSE detectors and introduces the main
mathematical tools for analysis of the fundamental limftagsynchronous CDMA. In Sectidn VI, the spec-
tral efficiency of optimal joint decoding is derived on thestsaof the results for the linear MMSE detector
exploiting the duality between mutual information and MMS&ectiorf VIl addresses the extension of the

presented results to more general settings. Some conefuaie drawn in Sectidn V]II.
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[I. MAIN RESULTS

Before going into the main results of this work, it is helpfmlget some intuition on asynchronous CDMA
systems. First of all, one might be interested in the questioich chip waveform gives the highest spectral
efficiency for otherwise arbitrary system parameters, fikése shape, pulse width in time and frequency,
system load, etc. There is a surprisingly easy answer tatlastion that does not require any sophisticated

mathematical tools:

Proposition 1 Without constraints on the system parameters, Nyquistmiges maximize spectral effi-
ciency .

Proof: The proof is by contradiction. First, it is well-known thaetspectral efficiency of a single user
channel is maximized by Nyquist sinc-pulses. Further, wankifrom [4] that the spectral efficiency of a
synchronous CDMA system with Nyquist sinc-pulses becomestical to the spectral efficiency of a single
user channel, as the load converges to infinity. Finallyntiiéiiuser system can never outperform the single

user system, since we could otherwise improve a single ys&ma by virtually splitting the single user into

many virtual users. Thus, the Nyquist sinc pulse is optimiso tor the multi-user system. [ |
Note that, from the previous proof, the Nyquist sinc pulsggsmum for an infinite system load. However,
we cannot judge whether the optimum is unique from the linthotight proposed in our proof. In fact, a

straightforward application of a more general result is flaper (shown in the AppendiX V) is the following:

Proposition 2 Asynchronous CDMA systems with any sinc-pulses, no mahtether they are constrained
to the Nyquist bandwidth or to a larger, or even to a smallemdimidt?H, and users whose empirical delays
are uniformly distributed within a symbol interval achietree same spectral efficiency as a single user

channel, if the load converges to infinity.

The optimization of the system load neither gives the thezaky most interesting cases to consider

nor the practically most relevant. Let us, thus, look at \Wwhsbip waveforms achieve the highest spectral

2|t is worth noticing that any chip pulse with bandwidth srealihan the Nyquist bandwidth necessarily introduces-icitép interference.
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Fig. 1

DECOMPOSITION OF A SPREADING SEQUENCES OF LENGTN = 12 INTO M = 3 VIRTUAL SPREADING SEQUENCES

efficiency for a fixed load. Surprisingly, the result is nottdd bit more useful for practical applications:

Corollary 1 The chip waveform that maximizes the spectral efficiencg gpven finite load and given chip
rate has vanishing bandwidth. Furthermore, the maximunctsgleefficiency is the same as the one for the

single user channel.

Proof: The corollary follows directly from Propositidn 2. Note tiRropositio 2 holds for an arbitrary
chip rate and an arbitrary bandwidth of the chip waveform states that the single user bound is reached
at infinite load. Though, the corollary is stated for a givernté load, we are free to decompose each
physical user inta\/ virtual users and led/ increase to infinity such that the virtual load becomes itdini
Therefore, we take a user’s signal and divide it ilftodata streams that are time-multiplexed in such a
way as to result in the same physical transmit signal for tisat. An example of such a decomposition
is illustrated in Fig[lL. Applying this idea to each of th& physical users, we have creatgflK virtual
users. Furthermore, the chip interval has grown fronto MT, and the virtual users are asynchronous
with a discrete uniform distribution of delays within thetuial chip interval of length\/T... Consider now
a sinc pulse of bandwidth/(2M/T,) as chip waveform. If we take the limit/ — oo for the system of
virtual users, the delay distribution converges to theamifdistribution within the virtual chip interval and
the number of virtual users converges to infinity. Thus, Bsifoon[2 applies and the single user bound is
reached. Therefore, this choice of chip waveforms whoseéwalth vanishes is optimal. |

Optimizing chip waveforms to maximize spectral efficien@slproven to hardly aid the practical design
of CDMA systems, since the optima are achieved for systerarpaters, e.g., infinite load and/or vanish-

ing bandwidth, that are far from the limits of practical iraplentation. Furthermore, the choice of the
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chip waveform is influenced by many other factors than speefficiency like the difficulty to implement
steeply decaying frequency filters and the need to keep thie-joeaverage power ratio of the continuous-
time transmit signal moderate. Therefore, many comme@i2MA systems, e.g., the Universal Mobile
Telecommunication System (UMTS), use chip waveforms wibess bandwidth. The UMTS standard
uses root-raised cosine pulses with roll-off factor 0.22tiMated by the theoretical findings above and the
practical constraints on the design of chip waveforms, #st of this paper puts the focus on the perfor-
mance analysis of CDMA system with a given fixed chip wavefoAs it will be seen, this gives rise to a
rich collection of insights into CDMA systems with asynchonis users. The main results are summarized
in the following.

CDMA systems using chip pulse waveforms with bandwigtimot greater than half of the chip r&l}g,
lLe.,B < ﬁ, perform identically irrespective of whether the users grecbronized or not for a large class of
performance measures. Furthermore, our result genesahizeequivalence result for the ideal Nyquist sinc
waveform (with bandwidt@}—c) in [18] to any chip pulse satisfying the mentioned bandiictinstraint and
to any linear multistage detector and the optimal capaaityieving joint decoder. Note that the performance
is independent of the time delay distribution. Increashegliandwidth of the chip waveform abo#c, le.,
allowing for some excess bandwidth as it is customary imatlemented systems, the behaviors of CDMA
systems change substantially. They depend on the time digaybution and the equivalence between
synchronous and asynchronous systems is lost.

For any choice of chip waveform, we capture the performarfca karge CDMA system with linear
MMSE detection by a positive definite frequency-dependesrtititian matrixY (€2) whose size is the ratio
of sampling rate to chip rate (the sampling rate is a mulyblne chip rate). We require neither the absence
of inter-chip interference, nor that the samples providéa@ent statistics, nor a certain delay distribution.
Unlike for synchronous users, the multiuser efficiency [B&he large-system limit is not necessarily unique
for all users. The matriX((2) reduces to a scalar frequency dependent funcion in cases where
oversampling is not needed. Interestingly, the same haol@sdven in cases with excess bandwidth if the
delay distribution is uniform. The scalgfw) can be understood as a multiuser efficiency spectral density
with the multiuser efficiency being its integral over freqagw. We find that in large systems, the effects
of interference from different users and interference ti¢dint frequencies decouple. We, thus, generalize
Tse and Hanly’s [5] concept of effective interference todbrcept of effective interference spectral density

which decouples the effects of interference in both userfiatgiency domain.
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Excess bandwidth can be utilized if users are asynchrondire excess bandwidth is useless for syn-
chronized systems in terms of multiuser efficiency, i.d.sgquare root Nyquist pulses perform the same
regardless of their bandwidth, desynchronizing users awgs the performance of any system with non-

vanishing excess bandwidth.

[1I. N OTATION AND SOME USEFUL DEFINITIONS

Throughout this work, upper and lower boldface symbols aspectively used for matrices and vectors
spanning a single symbol interval. Matrices and vectorgril@ag signals spanning more than a symbol
interval are denoted by upper boldface calligraphic lstter

In the following, we utilizeunitary Fourier transforms both in the continuous time and in therdig time
domain. The unitary Fourier transform of a sigrél) in the continuous time domain is given Byw) =
\/% ff;o s(t)e~7«tdt. The unitary Fourier transform of a sequerice., c_1, ¢y, c1, . . .} in the discrete time

domain is given bye(Q)) = -1 o e We will refer to them shortly as Fourier transform.

Vor 2un=—c0
Throughout this workw and) denote the angular frequency and the angular frequencyaiaed to the

chip rate, respectively. A function 2 has support in the interval-r, |, or translations of it.

For further studies it is convenient to define the conceptlotbck-wise circulant matrices of ordéy:

Definition 1 Letr and NV be positive integers. Anblock-wise circulant matrix of ordeN is anrN x N

matrix of the form

By, B; -+ By
By 1 By -+ By
C = 1)
B, B, B,

. T
with B, = (Cl,i7 Coiy e -+ vc?”,i) :

In the matrixC, anr x N block row is obtained by a circular right shift of the prevéoblock. Since the

matrix C' is univocally defined by the unitary Fourier transforms &f sequences

s=1,...,r7, (2)
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there exists a bijectiof from the frequency dependent vectdf)) = [c;(92), c2(R2), ..., ()] to C. Thus,
§{e(Q)} = C. (3)

Furthermore, the superscripts and-“ denote the transpose and the conjugate transpose of thix matr
argument, respectivelyl,, is the identity matrix of sizex x n andC, Z, Z*,N, andR are the fields of
complex, integer, nonnegative integer, positive integied, real numbers, respectivety(-),

the trace, the Frobenius norm, and the spectral norm of thavaent, respectively, i.g|A|| = /tr(AAT),

.||, and|-| are

|A| = max x”AA"x. diag(-) : C" — C™*" transforms am-dimensional vector into a diagonal matrix of

xHx<1

sizen x n having as diagonal elements the components of the vectbeisame ordeiZ{-} andPr{-} are

the expectation and probability operators, respectivelys the Kronecker symbol anti \) is Dirac’s delta

Jj=1,...,n2
i=1,...,n1

Jj=1,...,n2
i=1,...,n1

function. X = () is then; x ny, matrix whos€(i, j)-element is the scalar;;. X = (X;)
is then; ¢, x nage block matrix whosé, j)-block is theg; x ¢; matrix X ;;. The notation - | is adopted for
the operator that yields the maximum integer not greater itissargument andmody denotes the modulus,
i.e.,xmody = = — EJ y. Furthermorey(x € A) denotes the indicator function of the variabieon the

setA andy(x € A) = 1if x € A and zero otherwise.

IV. SYSTEM MODEL

Let us consider an asynchronous CDMA system witlusers in the uplink channel. Each user and the
base station are equipped with a single antenna. The chi fading and impaired by additive white

Gaussian noise. Then, the signal received at the basemstaticomplex base-band notation, is given by

y(t) = agsi(t —7) +w(t)  t € (—00,+00). 4)

Here,a, is the received signal amplitude of ugemwhich takes into account the transmitted amplitude, the
effects of the flat fading, and the carrier phase offsgtis the time delay of usek; w(t) is a zero mean
white, complex Gaussian process with power spectral dengit and sy (¢) is the spread signal of usér

We have

set) = > blmle™(t), (5)

3 Flat fading is no restriction of generality here as long @sekcess delay is much smaller than the symbol intéfyalThis is, as the effect

of multi-path can be incorporated into the shape of the clapefiorm.
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whereb, [m] is them'" transmitted symbol of usérand

N—-1
() =" skmlnltp(t — mT, —nT.) (6)
n=0

(m

is its spreading waveform at timea. Here, s, ) is the spreading sequence vector of usen the m'"
symbol interval with elements, ,,,[n],n = 0,..., N — 1. Ty andT, = TW are the symbol and chip interval,
respectively.

The users’ symbol$,[m]| are independent and identically distributed (i.i.d.) ramdvariables with
E{|bx[m]|*} = 1 andE{b;[m]} = 0. The elements of the spreading sequem;@é[n] are assumed to
be i.i.d. random variables with{|s ., [n]|*} = & andE{sy[n]} = 0. This assumption properly models
the spreading sequences of some CDMA systems currentlyeinsush as the long spreading codes of the
FDD (Frequency Division Duplex) mode in the UMTS uplink chah

The chip waveformy(t) is limited to bandwidthB and energyE, = [ [y(t)|?dt. Because of the

constraint on the variance of the chips, i®{]s;. ..[k]|*} = +, the mean energy of the signature waveform

ot
satisfiest {ff;" B (t)|2dt} — E,. We assume

1) user 1 as reference user so that 0,

2) the users are ordered according to increasing time deatayr@spect to the reference user,

3) the time delay to be, at most, one chip interval so that [0, 7).

Assumptions 1 and 2 are without loss of generality [29]. Asgtion 3 is made for the sake of clarity and it
will be removed in Section VIl where the results are externdetie general case with € [0, 7).

At the receiver front-end, the base band signal is passedghra filter with impulse respongét) and
corresponding transfer functia(w) normalized such thaff;o lg(t)]*dt = 1. We denote byp(t) the
response of the filter to the inputt), i.e., o(t) = g(t) * ¥ (¢) and by®(w) its Fourier transform. The filter
output is sampled at ratg with r € N. For further convenience, we also defifig = 72 (1) 2dt.

Throughout this work we assume that the filtered chip pulsesfeam ¢(¢) is much shorter than the sym-
bol waveform, i.e.¢(t) becomes negligible fot| > t, andt, < T,. This technical assumption is usually
verified in the systems with large spreading factor we arsiceming. It allows to neglect intersymbol inter-
ference. Thus, focusing on a given symbol interval, we cait thra symbol indexn and the discrete-time

signal at the front-end output is given by
" p
ylpl = Y abier (BT =) + wip (7)
k=1
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with sampling timep € {0,...,7N—1} and

ak(t) = ) suln]o (t —nT). (8)

n=0
Here,w[p] is discrete-time, complex-valued noise. In genetdh)] is not white, although the continuous
process was white. However,igtwhite, if g(¢) x g(—t) is Nyquist with respect to the sampling rate. In this
latter case, the noise variancesis = % This expression accounts for the normalization of the feord
filter.
In order to cope with the effects of oversampling, we consate extended signal space with virtual

spreading sequences of lengtN. The virtual spreading sequence of uses given by theNVr-dimensional

vector
[ 9)
Wheresk = (Sk[O] C Sk[N — 1])T,
¢—Tk ¢—Tc—7—k s ¢(—N+1)Tc—frk
Ek _ d)Tc—'rk ¢—Tk o ¢(—N+2)Tc—’7'k (10)
ONATr, PN-2)Terp ¢,

is a Nr x N block matrix taking into account the effects of delay andspushaping. Its blocks are the
vectorsp, = (4(z), ¢ (z+ L), ... ¢ (z + "T‘lTC))T. In that way, we have described ugés continuous-
time channel with continuous delays canonically by the réigstime channel matri®,. Note that®,
solely depends on the delay of ugetthe oversampling factor, the chip waveform, and the receive filter.
Structuring the matrix®;, in blocks of dimensions x 1, it is block-wise Toeplitz. As well knowri [30],
[31], block-Toeplitz and block-circulant matrices are mpjotically equivalent in terms of spectral distribu-
tion. This asymptotic equivalence is sufficient for us, siitthis work we focus on performance measures
of CDMA systems which depend only on the asymptotic eigemvalistribution. Similar asymptotically
tight approximations are used in the large system analyfstSDMA in frequency-selective fading [32],

[33], [34].

The equivalent block-circulant matrix is given by

o =§{[o(0m) 0 (@n L), 0 (0mn - )| (11)
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where
“+oc0

1 - T
o(Q2,7) 2 T Z o/ 7 (2] (TLC(Q + 27?1/)) (12)

V=—00

is the spectrum of the chip waveforait) delayed byr and sampled at rate/7,. Thus, we replace the
block-Toeplitz matrix®;, for our asymptotic analysis by the block-circulant mathix in the following and
use the virtual spreading sequences
v, = Pp8;. (13)
Let S be ther N x K matrix of virtual spreading, i.eS = (®;51, ®35s,... Pxsk), Athe K x K

diagonal matrix of received amplitude, = S A, andb and
y=Hb+ w (14)

the vectors of transmitted and received signals, respgtiddditionally, h;, denotes thé'" column of the

matrix H . Finally, we define the correlation matric&s= HH"”, R = H" H and the system loafl = %

V. LINEAR MMSE DETECTION

The linear MMSE detectad,, generates a soft decisi@m = dkHy of the transmitted symba}, based on
the observationy. It can be derived from the Wiener-Hopf theorem|[35] and \@giby

di, = B{yy"} "E{bjy} (15)

with the expectation taken over the transmitted symlbogsxd the noise. Specializing the Wiener-Hopf

equation to the system modEgL{14) yields

dp = (HH" +o*I)'h, (16)

= c- (H H{ +0*I)'hy (17)

for somec € R. Here,H;, is the matrix obtained fronHd suppressing columh,. The second step follows
from the matrix inversion lemma.
The performance of the linear MMSE detector is measured &itnal-to-interference-and-noise ratio
at its output[[28]
SINRy, = h)/ (H,H{ + o*I)" " h,, (18)

The SINR can be conveniently expressed in terms of the nseltiefficiencyy,. [28]

2
E
SINR,, = [ Fo b (19)
No
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The multiuser efficiency is a useful measure, since for lagggems it is identical for all users in special
cases([7] and it is related to the spectral efficiency [7]],[E57].

The SINR depends on the spreading sequences, the recewedspaf all users, the chip pulse shaping,
and the time delays of all users. To get deeper insight onrtal MMSE detector it is convenient to analyze
the performance for random spreading sequences in thedgstgem limits, i.e., a&’, N — oo with the ratio
% — [ kept fixed. The large-system analysis will identify the nuacopic parameters that characterize a
chip-asynchronous CDMA system and the influences of chipgpsihaping and delay distribution.

In this section we present the large system analysis of aliMMSE detector for chip-asynchronous
CDMA systems with random spreading. Provided that the naisbe output of the front end is white,
the analysis applies to CDMA systems using either optimusuboptimum statistics, any chip pulse wave-
forms, and any set of time delays|[in 7..) if their empirical distribution function converges to aelehinistic
limit.

In Appendix1l, we derive the following theorem on the larggstem performance of chip-asynchronous

CDMA:

Theorem 1 Let A € CX*X be a diagonal matrix withk™ diagonal element;, € C and7, a positive
real. Given a functiondb(w) : R — C, let ¢(£2,7) be as in [IR). Given a positive integer let &,
k =1,...,K, ber-block-wise circulant matrices of orde¥ defined in[(Ill). Lef = SA with S =
(@151, Pysy,..., Prsk| ands;, € CV*L,

Assume that the functidf®(w)| is upper bounded and has finite support. The receive filtardh shat the
sampled discrete-time noise process is white. The vegtage independent with i.i.d. circularly symmetric
Gaussian elements. Furthermore, the elemeptsf the matrixA are uniformly bounded for ani. The
sequence of the empirical joint distributiorﬁ#jﬁvT(/\,T) = %Eszl XA > lax]*)x( > 7) converges
almost surely, ag{ — oo, to a non-random distribution functiof 42 (X, 7).

Then, given the received powr, |?, the time delayr,, and the variance of the white noisé = ’“T—NO

the SINR of usek at the output of a linear MMSE detector for a CDMA system widmgfer matrix H

converges in probability a&’, N — oo with % — [ andr fixed to
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lim SINR, = |“’f| / AT (Q,7) V() Ay, (R, 7,)dDQ (20)

K=BN-sc0
whereY (Q2) is the unique positive definitex » matrix solution of the fixed point matrix equaﬂon

)\AM(Q T)A?T(Q T)dF a2 7N, 7)
e Afjr (7)Y (V) Ay, (Y, 7)dY

T HQ) = oI, +ﬁ/ —r<Q<7m,  (21)

and
o(Q,7)

Cb(Qv - %)
Ay (07) = . 22

o(Q, 7 — =)
The performance of the linear MMSE detector operating onneaessarily sufficient statistics is com-
pletely characterized by
1) anr x r matrix-valued transfer functioff (2) and
2) the frequency and delay dependent vediqr, (€2, 7)
The multiuser efficiency varies from user to user and dependkbe time delay of the user of interest only

throughA (€2, 7). We can define an SINR spectrum

SINR,,(Q) = |a"f| AL, T T () A, (27 (23)

in the normalized frequency domairr < 2 < 7, or, equivalently, a spectrum of the multiuser efficiency.
The system performance is in both cases obtained by integrater the spectral components.

The fixed point equation (21) clearly reveals how and why Bymicous users are the worst case for a given
chip waveform. We know froni [37] that to each large multiusgstem, there is an equivalent single user
system with enhanced noise, but otherwise identical pmidoce. In the present case with oversampling
factorr, the equivalent single user system is a frequency-seeMiMO (multiple-input multiple-output)
system withr transmit and- receive antenna and governed by the r channel transfer matrix

ﬁ/ AAW ()AL (Q,7)dF a2 7(N,7)

L+ 2 [T AN (7)Y (Q) Ay, (2, 7)dY (24)

“Here, the integration measure is meant to deddte 2 (A, 7) = flaj2,7 (A, T)dAdT in case such a representation exists.
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Note that this matrix is an integral of an outer product overdelay distribution. Thus, for constant delay,
I.e., chip-synchronization, the matrix has rank one. Natamithl dimensions in signal space can be spanned.
For distributed delays, the rank of the matrix can be as lagyéhe oversampling factetr. Driving the
equivalence even further, the equivalent MIMO system camnaresformed into an equivalent CDMA system
with spreading factor and spreading sequencas ,.(€2, 7). In this model, equal delays in the real CDMA
system correspond to users with identical signature segsen the equivalent CDMA system.

One cannot increase performance unboundedly by fastesawgling, as not all modes of the equivalent
r-dimensional MIMO system can be excited with a chip wavefofrimited excess bandwidth due to the
projection onto the spectral support of the chip waveforrf2ll). In order to utilize the excess bandwidth
of the system, we need two ingredients: 1) Time delays s@pgrthe users by making the signatures in
the equivalent system differ. 2) A receiver that transfothescontinuous-time receive signal into sufficient
discrete-time statistics, e.g., by oversampling. A lacldifferent delays leads to a system where only a
single eigenmode of the equivalent MIMO system is excitedlagk of oversampling leads to a system
where more eigenmodes are excited, but are not converiedistdrete time.

Additional intuitive insight into the behavior of the asymonus CDMA systems can be gained by focus-
ing on CDMA systems with uniformly distributed delay. Inghdase, Theorefd 1 can be formulated with a
single scalar fixed point equation by moving from the frequyei that is normalized to the chip rate to the

unnormalized frequency. This yields the following corollary:

Corollary 2 Let us adopt the same definitions as in Thedrém 1 and let thergg®ns of Theoref 1 be
satisfied. Additionally, assume that the random variablesd 7 in F} 42 r()\, 7) are statistically indepen-
dent and the random variable is uniformly distributed in0,7..). Furthermore, letd(w) vanish outside

the interval[—27 B; +27 B] with B <

7T Then, the multiuser efficiency of the linear MMSE deteaior f

CDMA converges in probability a&’, N — oo with % — [ andr fixed to
+27 B

lim 7 —-n-—-f; ]/ n(w)dw (25)

K=BN—c
—27B

where the multiuser efficiency spectral densifyw) is the unique solution to the fixed point equation

1 E¢ Nl / AdFjap(N) (26)

n(w) Ro +M7
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and is zero follw| > 27 B.

Theoreni_1 is specialized to Corollary 2 in Appendix Il1.

Under the conditions of Corollabhy 2 the multiuser efficienéyhe linear MMSE detector in asynchronous
systems is the same for all users.

Rewriting (25) and[(26) in terms of SINRs, these equatiomsheainterpreted similarly to the correspond-
ing equations in[5] for synchronous systems when the cdrafegifective interference is generalized to the
concept of effective interference spectral density. Pet, \) = % |® (w)|* be the power spectral density of

the received signal for a user having received powerhen, the result in Corollafy 2 can be expressed as

. +2rB
SINRk:2— / sinry (w)dw (27)
7r

—27B

where the SINR spectral densitinr, (w) is given by

P(W7 |ak|2)

i = 28
) = T BB (I (P larP?), P, N, SINR,)} (28)
with the effective interference spectral density
2
H(P(w, lagP), P, \), SINRy) = — Ll )P, ) 29)

P(w, |ag|?) + P(w, \)SINRy,
Heuristically, this means that for large systems the SINEBpl density is deterministic and given by

P(W7 |ak‘2)

~ . 30
No+ = %, I(P(w, [ax]?), P(w, |a;), SINRy,) (30)

sinrg (w)

This result yields an interpretation of the effects of eatlthe interfering users on the SINR of user
similar to the case of synchronous systems in [5]. The impait at frequency can be decoupled into
a sum of the background noise and an interference term frain efthe users at the same frequency.
The cumulated interference spectral density at frequendgpends only on the received power density
of the user of interest at this frequency, the received p@pectral density of the interfering users at this
frequency, and the attained SINR of ugeln other words, in asynchronous systems we have a decguplin
of the effects of interferers like in synchronous systems am additional decoupling in frequency. The
termI(P(w, |ax)?), P(w, |aj|*), SINRy) is the effective interference spectral density of ysento usert at
frequencyw for a given SINR of usek.

Sinc waveforms have a particular theoretical interesthinfollowing we specialize Corollafy 2 to this

case.

SEPTEMBER19, 2018



SUBMITTED MANUSCRIPT TOIEEE TRANSACTIONS ONINFORMATION THEORY 17
Corollary 3 Let us adopt the definitions in Theoréim 1 and let the assunmgptibCorollary(2 be satisfied.

Given a positive realr, we assume that

c i (e}
< for |3 <5

c

P(w) = (31)

0 otherwise.

corresponding to a sinc waveform with bandwidth= 57- and unit energy. Then, the multiuser efficiency

of the linear MMSE detector converges in probabilityfasN — oo with % — fto

K:lﬂglr\fn—)oo Nk = Tsinc (32)

where the multiuser efficieney.,. is the unique positive solution to the fixed point equation

1 8 / MdFap()) 3

NO + )\nsmc

nsinc

We recall that the multiuser efficiency of a linear MMSE dé&bedor a synchronous CDMA system

AdFlap(A)
34
0 S @

satisfies[[5]

nsyn

This result holds for synchronous CDMA systems using ang phise waveform with bandwidtB > %
and satisfying the Nyquist criterion. Thus, it also appliessinc pulses whose bandwidth is an integer
multiple ofﬁ. Then, Corollary B shows the interesting effect that an aelsggnous CDMA system using a
sinc function with bandwidtiB = ;7 as chip pulse waveform performs as well as a synchronous CDMA
system with bandwidthz-, » € N, and system loag’ = g. This implies that only asynchronous CDMA
has the capability to trade the excess bandwidth of the chigepnvaveform against the spreading factor
while synchronous CDMA has not. In other words, asynchrer@DMA offers to trade degrees of freedom
in the frequency domain provided by the excess bandwidthethip pulse waveform against degrees of
freedom in the time domain provided by spreading.

This phenomenon is similar to the resource pooling in CDMAtsms with spatial diversity discovered
in [38]. There, the degrees of freedom in space provided Hyipleiantennas at the receiver could be traded
against degrees of freedom in time provided by the spreadiingrder to make resource pooling happen, it

is necessary that the steering vectors of the antenna groaysinto different directions. This condition is
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equivalent to requiring de-synchronization among usdrall lsers experience the same delay, this is like
having totally correlated antenna elements.

In Corollary(3, the bandwidth of the sinc waveform may beaitlarger or smaller than the Nyquist band-
width. For larger bandwidth, we get a resource pooling éfflec smaller bandwidth we create inter-chip
interference and what could be calladti-resource poolinginter-chip interference is no particular cause of
concern. In contrast, the effect of anti-resource poolswivirtually increase the load, i.e., squeezing the
same number of data into a smaller spectrum is equivalemjuieezing more users into the same spectrum.
Since spectral efficiency of optimum joint decoding is arréasing function of the load[4], anti-resource

pooling is beneficial for spectral efficiency, though its Iermpentation may cause some practical challenges.

In the following theorem, we extend anti-resource poolmgrbitrary delay distributions:

Theorem 2 Let A € CX*X pe a diagonal matrix withk™ diagonal element;, € C and7, a positive
real. Given a functiond(w) : R — C, let ¢(£2,7) be as in [IR). Given a positive integer let &,
k =1,...,K, ber-block-wise circulant matrices of orde¥ defined in[(Ill). Letd = SA with S =
(@181, Pysy,..., Prsk| ands;, € CV*L,

Assume that the functid®(w)| is upper bounded and has support contained in the inte[va%, TL]
The receive filter is such that the sampled discrete-timsenpiocess is white. The vectaisare indepen-
dent with i.i.d. circularly symmetric Gaussian elementartRermore, the elements. of the matrixA are
uniformly bounded for an). The sequence of the empirical distributidﬁgg()\) == Zsz1 YA < |agl?)
converges in law almost surely, & — oo, to a non-random distribution functiof 42 ().

Then, the multiuser efficiency of the linear MMSE detectoCIDMA with transfer matrixH converges

in probability asK, N — oo with % — [ andr fixed to

+7T/Tc
. 1
(Jm me=n=g 1 (w) dw (35)
—7/Te

where the multiuser efficiency spectral density) is the unique solution to the fixed point equation

1 E¢ LB / AdF 42 (A

- NO +)\n

@) (36)

for all w in the support ofb(w) and zero elsewhere.
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Theorem 2 is proven in Appendix]V.
No constraint is imposed on the set of time delays in Thedieihilds for any se{r, ... 7x} and
we conclude that linear MMSE detectors for synchronous agdaronous CDMA systems have the same

performance if the bandwidth of the chip pulse waveformsgas the constrainB < %

VI. SPECTRAL EFFICIENCY

There exists a close relation between the total capacityC@idA system and the multiuser efficiency of a
linear MMSE detector for the same systém [7],/[36],/[37]. Taonale behind this relation is a fundamental
connection between mutual information and minimum mearaseg error in Gaussian channéls|[39]. In the
following, we extend the results in Sectibh V to get insigitbithe spectral efficiency of an asynchronous
CDMA system.

The capacity of the CDMA channel was found[in|[40] for synetoos CDMA systems. The total capacity
per chip for large synchronous CDMA systems with square Ryojuist pulses and random spreading in the

presence of AWGN (additive white Gaussian noise€)) lis [4]

C™™(8,SNR) = Blog, <1 +SNR — iF(SNR, ﬁ)) + log, <1 + #SNR — if (SNR, 5)>

log, e
~IS\R F (SNR, 5) (37)
with
Fins) = (Vo var 1= i - var 1) @9)

With the normalizations adopted in the system model, we Rale = E,/N,.
The spectral efficiency of a synchronous CDMA system is etué@l®™ (3, SNR) for any Nyquist sinc
waveform. For other chip waveforms, we need to take into actthe excess bandwidth and calculate

spectral efficiency as
_ C
- 1T.B

whereC denotes the total capacity per chip aBddenotes the bandwidth of the chip pulse. Note that for

r (39)

Nyquist sinc pulse§.B = 1, while in generall. B can be either larger, e.g., for root-raised cosine pulses,
or smaller, i.e., for anti-resource pooling, than 1.
The expression of the total capacity per chip for asynchue@DMA systems constrained to a given chip

pulse waveform)(¢) of bandwidthB and a given receive filtej(¢) can be obtained by making use of the
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results in SectionV and the fundamental relation betweetnatinformation and MMSE in Gaussian chan-
nels provided in[[39]. Since such constrained total capalgpends on(¢) andg(t) only via the waveform
o(t), output of the filterg(¢) for the inputy(t), we shortly refer to it as the total capacity constrained & th
chip waveformg(t).

Corollary 4 Let us adopt the same definitions as in Theokém 2 and let themgons of Corollary P
or Theoreni R be satisfied. Additionally, let the receiverfdted sampling process be such that sufficient
discrete-time statistics are provided. Then,/asN — oo with % — [ the total capacity per chip con-

strained to the chip pulse wavefom(t) converges to the deterministic value

)\77 dF)ap
(asyn) 2 ‘A| 4
C (57 ,cb) ln2// 1+)\Wh dy (40)

wherer, is the multiuser efficiency at signal-to-noise ragigiven in [25) and(35), respectively.

The proof of this corollary is discussed in Appendix VI.

Let us consider again the case of sinc chip waveforms as defing1) and uniform distribution of the
time delays. Letv denote the bandwidth of the sinc pulse relative to the Nydpaadwidth. As noticed in
Sectiorl VY, the multiuser efficieney;,. of an asynchronous system with such sinc waveforms giveB3) (
and loads equals the multiuser efficienay,,, of a synchronous system with Nyquist sinc pulses given by
(34) and loadt’ = g. Since the load enters capacity per chig (40) only via theiosét efficiency except for
the linear pre-factor to the integral, we immediately find tbllowing equation relating the two capacities
per chip

B

CEm)(3 SNR ) = a C (_’ SNR) _ (41)
(0%

It is apparent from[(41) that synchronous and asynchrongatemms have the same capacity for 1.
In order to compare different systems (with possibly dédfeérspreading gains and data rates), spectral

efficiency has to be given as a function%{gf, the level of energy per bit per noise level equalto [4] [7]

E, ASNR
Ny CW(B,SNR )’

In Figure[2, we compare the spectral efficiency of asynchusr@DMA with the spectral efficiency of

(42)

synchronous CDMA. TheF spectral efficiencies are plottexdres the bandwidth normalized to the Nyquist

bandwidth with% = 10dB and unit loadd = 1. Recall from earlier discussions that for synchronous
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root-raised cosine chip pulse, rolI—off:O.Z%/rEo::LOdB

‘system‘ Ioa(Bz‘l, EbIszlo d? asynchronous system
uniform time delays

synchronous system

spectral efficiency (bits/s/Hz)
spectral efficiency (bits/s/Hz)

synchronous system =~ === - - T T T ——
Nyquist chip pulses I
| i i

0.6 0.7 0.8 0.9 1
i i

o 1 2 s 6 7 8 9 10 o1 2 s 4 5 s 9 10

3 4 6
normalized bandwidth (chip bandwidth chip rate) system load 8
Fig. 2 Fig. 3
SPECTRAL EFFICIENCY OF RANDOMCDMA WITH UNIT LOAD SPECTRAL EFFICIENCY OF RANDOMCDMA VERSUS THE LOADS3
VERSUS THE NORMALIZED BANDWIDTHa AND ff—z = 10 DB. FOR THE ROOFRAISED COSINE CHIP PULSE USED IN THEJMTS

STANDARD AND £+ = 10 DB.

systems all Nyquist chip waveforms perform identically.tBere is no need to specify a particular Nyquist
pulse except for the Nyquist pulse having the same bandwhditthe sinc pulse in the asynchronous case.
We see further that the smaller the normalized bandwid&htgher the spectral efficiency is. This is, as
anti-resource pooling improves spectral efficiency by extind a higher load.

In Figure[3 the spectral efficiency is plotted against thel [6avith f,—g = 10dB for the chip waveform
used in the UMTS standard. When the lgathcreases the gap in spectral efficiency between synchsonou

and asynchronous systems increases.

VIlI. EXTENSION TO GENERAL ASYNCHRONOUSCDMA SYSTEMS

In this section we extend the previous results to any digion of the time delays for CDMA systems.
Without loss of generality we can assume that the time detays [0, 75) [28]. In this case, intersymbol
interference is not negligible and an infinite observationdew is necessary to obtain sufficient statistics.
Equation[(1#4) for the chip asynchronous but symbol quaséisgponous system model is extended to a gen-

eral asynchronous system by
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K +00
vl =Y o Y bulmle™ (BT m) + wip) (43)
k=1 m=—oo
with p € Z and
N—-1
™ =N spmluldlt — @+mN)T,) . (44)
u=0

By assuming the same approximation adin (14), the virtuaasping sequence of uskiin the symbol
intervalm has nonzero elements only in the time intervendm+1. Let 7, denote the delay of the sigral
in terms of the chip intervals ang the delay within a chip, i.e7, = {;—kJ andT7, = m,modT,, respectively.
The virtual spreading sequence of usas obtained by computing,. as in [11) forr = 73, to account for
the delay within a chip and then by shifting the virtual splieg vector down byF, r-dimensional blocks to
account for the delay multiple of the chip interval. Moregsely, the virtual spreading in the-th symbol

interval is given by th&r N-dimensional vector

0-,

~ (m) _ G g(m 45
§(e(T) | Sk kS, (45)
On_7,

with

c(7) = [@(Q,ﬁ),cp (Q,ﬁ _ Z) o <Q,?k _ ﬂ)} |

”
0-, and0y_-, column vectors with zero entries and dimensiaf andr(N — 7;), respectively. The

2r N x K virtual spreading matrix for the symbols transmitted atetimtervalm is then

=™

S = [:I;lsgm), ‘/iQSém), . ‘5]{8&7:’)} .

For further study, we introduce the upper and lower part eftiatrixS'" | S*im) andgém) of sizerN x rK

such that

~(m S
S()

m)

(
(m)

S

. §Elm)A. Then, the baseband discrete-time asynchronous

and the matricesﬁim) = S*im)A and ﬁ;m
system in matrix notation is given by

Y=HB+W (46)
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wherey = [...,ym=D" ym" 4" T andB = [ pm=D" pm" pm+D" T are the infinite-
length vectors of received and transmitted symbols res@dgt VY is an infinite-length white Gaussian

noise vector; an@ is a bi-diagonal block matrix with infinite block rows and bkocolumns

—(m-1)  —=(m)
0 H, H, 0
H= ~(m) —(m+1) (47)
0 H, H, 0

Finally, we define the correlation matricds= HH"”, R = HH.

The following theorem shows that a linear MMSE detector faZ@MA system with transfer matrix
‘H and time delays, 7, ... 7x has the same limiting performance as a linear MMSE detedioctip
asynchronous but symbol quasi-synchronous CDMA systeitnadinced in Sectioh IV with time delays

T1,Ta, ... Tk. The same equivalence holds for capacity and spectral efbigie

Theorem 3 Given{r, 7, ... 7k} a set of delays in0, 7;) let us consider the set of delays|in7.) de-
fined as{7,: 7w =7 mod T,, k=1,... K}. Given a positive integer, let ®,, k = 1,... K, be the
r-blockwise circulant matrix of ordeN defined in[(Ill) withr = 7;. Let A, ®(w), S, and H be defined
as in Theorerfill. Furthermor@®,,, k = 1... K are2rN x N matrices such tha®, = [0 &/ 0% . ]"

with 7, = {;—kJ ., 07, andOy_», zero matrices of dimensions;; x N andr (N — 7;) x N, respectively.

~(m ~ ~ ~ —~(m ~(m)T —~—(m)T ~ .
Lets"™ = (q>ls§m>,q>23§m> . ..@KS(K’”)> ,H( - [H( ) ,Hi ) |7 = S A and# the infinite block row

u

and block column matrix of the same form adin (47). Let theesassumptions as in Theoréim 1 hold.
Then, asymptotically, a&’, N — oo with % — [ the CDMA systems transfer matricgéé and H are

equivalent in terms of multiuser efficiency for linear MMS#eattors and in terms of spectral efficiency.

This theorem is shown in Appendix VII.

Interestingly, the system performance depends on the tatag st only through the offsets, — L;—kJ T..
Therefore, any shift of the signal multiple ©f does not affect the performance of the system.

The analysis presented in this contribution has been cestrito frequency flat fading for the sake of
clarity. The extension to multipath fading channels isigttHorward when the impulse response of the

channel is much shorter than the symbol interval. In faa, c¢hip pulse waveform at the output of the
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matched filterp(¢) can include the effects of the frequency selective chamimplise response(t) along
with the effects of the transmitted chip pulse wavefaf(n), and the filter at the front-eng¢), i.e., ¢(t) =
() * a(t) * g(t). Then, the analysis of a system with frequency selectiventpdeduces to the proposed

analysis.

VIIl. CONCLUSIONS

This work provides a general framework for the analysis ghakronous CDMA systems with random
spreading using sufficient or suboptimum statistics andchiiy pulse waveform. Furthermore, it includes
several optimum or suboptimum receiver structures of pralcand theoretical interest. Therefore, it pro-
vides insight into both the fundamental limits of asyncloesn CDMA systems and the performance loss of
implementations where suboptimum receiver structurdsystimum statistics, and/or non-ideal chip pulses
are utilized.

For the receiver structures investigated in Part I, thegoerdnce of a CDMA system is independent of

the time delay distribution if the bandwidth of the chip puisaveform is not greater than half of the chip

rate, i.e.,.B < 2} This also implies that synchronous and asynchronous CDMstesys have the same
performance and generalizes the equivalence result infft8Jlyquist sinc B = ﬁ) pulses and linear

MMSE detectors to any chip pulse waveform. The behavior oM@Dsystem changes substantially as
the bandwidth gets larger. In this case, the system perfucens significantly affected by the distribution
of the time delays and the performance of linear detectong cepend on the specific time delay of the
signal of interest. If the receiver is fed by sufficient statis and the time delay distribution is uniform the
performance of optimum or suboptimum receivers is indepenhdf the time delays. In the following, we

summarize the most interesting aspects pointed out by the system analysis, for each class of receivers.

A. Optimum Receiver

The spectral efficiency constrained to a given chip pulseefoawn characterizes the performance of a
CDMA channel with optimum receiver. The spectral efficiemcgxpressed in terms of the multiuser effi-
ciency spectral density(w). When the chip-modulation is based on sinc pulses whose hdtidis o times
the Nyquist bandwidth, the spectral efficiency of asyncbhtsnCDMA systems is identical to the spectral

efficiency of synchronous systems with logld= g and Nyquist sinc pulses. Spectral efficiency is a strictly
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decreasing function of the relative pulse bandwidthnd fora. — 0, the spectral efficiency of a single user
AWGN channel is reached.

Fora > 1 an asynchronous CDMA system with modulation based on a smztibn can compensate to
some extent for the loss in spectral efficiency of synchref@DMA systems with equal bandwidth. For
8 — oo it attains the maximum spectral efficiency for any finite baittth B = -2

a
2Tc "

B. Linear MMSE Detector

The output SINR of a linear MMSE detector can be obtained filoensolution to a system of fixed point
equations in the general case. In the two cases (i) chip pulgh bandwidthB < ﬁ and (ii) chip pulses
with bandwidthB > % sufficient statistics and uniform time delay distributithe fixed point system
of equation reduces to a single equation. In those casegetfiemance of a linear MMSE detector in
asynchronous CDMA systems is characterized by a unique dlmultiuser efficiency. Furthermore, the
measure of multiuser efficiency can be refined by the condeggiaxtrum of the multiuser efficiency that is
also unique for all the users. Additionally, for these CDMytemSs the limiting interference effects can be
decoupled into user domain and frequency domain, as themygtows large, such that we can define an
effective interference spectral density similarly to tffeetive interference i [5] for synchronous systems.

In the special case that the modulation is based on sincifurscvith bandwidthB = 57—, a linear
MMSE detector in asynchronous CDMA channels performs idally to a synchronous CDMA system
with square root Nyquist chip pulses [5] and lg#d= g. This effect is similar to the resource pooling effect
for synchronous CDMA systems with spatial diversity[in|[28ljd shows the possibility to trade degrees of
freedom in the frequency domain against degrees of freeddheitime domain.

Though this work focused on performance measures for CDMAila results hold for asynchronous
MIMO systems due to the mathematical analogy between CDMRAMIMO systems when described as a
discrete-time vector channel. This means, that MIMO systeiith excess bandwidth and desynchronized

modulators for different antenna elements benefit in a amnilanner than CDMA systems with desynchro-

nized users.
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APPENDIX |

USEFUL MATHEMATICAL TOOLS
Let ®(w) be the unitary Fourier transform of a pulse wavefas(n) with bandwidthB < 57-. Then, in
the normalized frequency interv@ll € [—, 7] the unitary Fourier transforni (I12) of the sequence obtained
by samplingp(t) at time instant- and ratez- is given by

$(Q,7) = TieTQ Y g (Q +2m) for |Q <n (48)

c T.
S€EZ(Q)

whereZ () is the set of all integers in the interval

[min (—sign(Q) L’"—glj ,sign(€2) ng) , max (—sign(Q) VT_lJ ,sign(2) L%J)} )
The matrix

Q7)) = Ay, (Q,7)A,, (1), (49)

with A, (€2, 7) defined in[(2R), can be decomposed in the sum of two matrices

Q(Q7)=Q(Q) + Q1) (50)
where the(k, ¢)-elements of the matrica@(2) andQ(<2, 7) are given by
1 Q+2ms\|° bt iguons
(QUV)ke =75 > |® ( T W)' e O for |0 <, (51)
¢ seZ(0) ¢
and
— 1 QO+ 27u Q4278\ _jorr (s—u) —j(E=L(O—2ms)— =L (-2 u))
Q= O q»( )q»( ) L
Tc s,uej(ﬂ) L. L.

for |Q <m, (52)

respectively.

Useful properties of the matric€3(2) andQ(<2, 7) are stated in the following lemmas.

Lemma 1 Let B be anr x r matrix of the form

bo blej% e e br_lej (T;l)Q
boe it by belt L bl
B =B(Q) = , (53)
bre "9 by jei2 bo
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i.e., givenby = by(2), b1 = b1(2),...b.—1 = b.—1(Q2), eventually functions d, (B), ., the element/, k)

(k=0

of the matrixB satisfieSB),; = e~ 7 b(r+r—tmodr- LELQ (2, T) be ther x r matrix with elementk, ¢)

defined in[(5R). Then,

tr(BQ(Q, 7)) = 0.

Proof: Letg, () = 7 ® (%?”) P (‘“2’“) Then,

S T

tr(BQ(Q + j2mu, 7)) = Z Z(@(Q, T)he(B)ek

_ Z qusej%rTlc(s—u) (B),, B0 =i B (—s(k—1)Fu(t-1)

_ Z qusej%r(Tlc—%)(s—u) Dotk tymodr© oI 2 (u=s)k o 2 u(k—0)

with

- —j 2 (u—s 27 0 (k—
mh = Z b(T’-l-k—Z)modre I5 )kej rulk=0) (54)

kl=1
k>0

and

- —j 2 (u—s u
2 = Z b(r—i—k—@)modre I )key (k= Z) (55)

k=1
k<t

Substitutingy = £ — ¢ in (84) andv = r + k — ¢ in (§5) we obtain

k=1 v=0

and

= 5 by (el 5
k=1 v=k
respectively. Fos,t € Z(Q) ands # ¢, |s —t| € [1,...,r — 1]. Therefore YI_ e~ =)k — 0 and
m +n, = 0 for all Q. Then, alsar(BQ(f, 7)) = 0 and this concludes the proof of Lemfa 1. [
It follows immediately from Lemma&ll thatQ(2, ) = 0 since the identity matrid is of the form [53B)

withby =1andb, =0fori=1,...r — 1.
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Lemma 2 Let B = B(2) be a matrix defined as in Lemrnia 1 and@®{?) be ther x r matrix with element

(k, ¢) defined in[(BIL). Then, the matiX(Q2) = Q(Q2) B(1?) is of the form[(GB).

Proof: The elementk, ¢) of the matrixC' = C(92), (C),, is given by

T

(C)ex = Z(B>£,t<Q(Q))t,k

t=1

0 k(L k) (56)

— o

with

(Q+27rs

C

= 3 o () e

and

n(l, k, s) Z (rt—modre 27T, (57)

In order to prove Lemmia 2 it is sufficient to prove that

k(0 k) = k((¢ 4+ 1)modr, (k + 1)modr). (58)
In fact, in this cas€;x = "+ %K+ k- Hmodr With K(rix_pmoar = £((, k). The property[(58) is implied by
a similar property om(¢, k, s)
n(l, k,s) = n((¢+ 1)modr, (k + 1)modr, s). (59)

Itis straightforward to verify thaf (39) is satisfied sinagtbfactorsh(, ;—¢ymod- ande™ 27(5%) are periodical

in their argumentg andk, respectively, with periodt and% and/ are simultaneously increased by a unit.

This concludes the proof of Lemrha 2. [

The following lemma provides the eigenvalue decomposibicihe matrixQ(£2).

Lemma 3 Let Q(2) be anr x r matrix with elementk, ¢) defined in[(5ll). Then, the mat@((2) can be
decomposed as follows

Q(Q) =U QDU (Q) (60)

where

U(Q) = <e (Q — sign(Q)2r V - 1D e(). e (4 sian(@)2m EJ)) | (61)
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e () is an r-dimensional column vector defined by

1 - sr—1 T
e(Q):WO,e_J%,...e_] r Q) s

and D(9) is the diagonal matrix whos€" diagonal element is given by

r 1 ) r—1 2
(D(Q))ss = Tz o (i (Q — sign(Q)27 ({ 5 J — s+ 1))) (62)
Proof: Decomposition[(60) can be immediately derived by noting tha
T 1 2 I
Q) = Z i P (iQ + 27rs) e(Q)+ 2ms)e” (L + 2ms).
s€EZ(Q)
This expression can be rewritten &sl(60) and Lerinma 3 is proven [ |

The following lemma shows that the matiix€2) and any other matrix with the same basis of eigenvectors

is of the form [53).

Lemma 4 LetC(Q) = U(Q)M QU (Q) with U (Q) unitary matrix defined il (81) and/ (Q?) diagonal
matrix with elementsz,;,(Q2). Then,C() is of the form[(5B).

Proof: The/™ row of the matrixU (Q2) is given by

’U,Z(Q) _ L (e_j é;l (Q_sign(Q)27r|_7‘;1J) - e_jljf‘l<ﬂ+sign(ﬂ)27r\_gj)>

7 ..

andc(£2), the element/, k) of the matrixC satisfies

1 - | =— i r— .
car($) = — > e T (9-sien(@)2r |75t [ 42n(i-1))
i=1

= ggke_j ([:k) @ (63)

r—1

with by, = Y7, Mo 27 5 (sisn@L5H-i41) it s straightforward to verify thaty, = Do 1)modr (k4 1)mods-

=1 r

This concludes the proof of Lemrha 4. [
The following lemmas state results from random matrix thelmveloped along the lines of the REFORM

method proposed by Girko in[41] and [42].

Lemma 5 [41], [43] Let 2 = (&;)/=)""v2 be anNq; x Kg, matrix of complex random elements

structured inN K blocks of size; x ¢, E;j, i.e.,

(11
I

— \j=1,.K
(Bij)izi v
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andK = SN with 3 > 0. LetP = (Py;)ij—1.. p, = [EE+aI] ' andG = (Gi))ij—1..p, = [EFE+ad] ™,
whereP;; andG;; are complex blocks of sizg x ¢; andg, x ¢., respectively.

Additionally, assume

H-1 Ei,k=1,...,N,s=1,..., K, the random blocks of the matr& are independent.

H-2  All the elements of the matr& are zero mean, i.eE{E} = 0.

H-3  supjeymax;—i. v 31, BlISi]° + supge y max;_y_x S E|I83])° < +oo,

.....

H-4 Lindeberg condition¥7 > 0

A (Z:H{%?f ZE (1=l x{I1Eqll > 7}) + Phanins ZE (=St =51 e T})>
(64)
Then, fora € C\R~

lim  E|Py(a) ~ Tp(@)| =0 pl=1....p,

K=BN—co
and

hm E|Gpé( ) - a_lRpf(a” = 0 p7€ - 1a e ap?

K=BN—c

i.e., the blocks of the matricé€3 and G converge in the first mean to the corresponding blocks of titeices

and

respectively. The matrix blocks'! (o) of sizeg; x ¢, andC,(fk)(oz) of sizegs x ¢, are equal to

C)(a _aI+ZE 20 (X)1BE) i n=1,.. N (65)
Cc?(a) I+ZE Y),ER)y_ 5 k=1,..., K, (66)

respectively.
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Lemma 6 [41], [43] Let us assume that the definitions of Lermima 5 hold tie conditions of Lemnia 5 are
satisfied.

Then, they, x ¢, matricesC') (o), n = 1,..., N and theg, x ¢, matricesC'\? (o), k = 1, ..., K, defined

in (65) and [66), respectively, convergeds= SN — oo to the limit matrices

lim CU=yl) n=1,...,N
K=BN—+oc0

: @ _g® _
K:Bljlvrr—l)-i—oockk_lpkk k=1,....K

where® () k=1 ... Nand®'” k=1 .. K satisfy the canonical system of equations

—1
_ aI+ZE{_W [\p@} :nHj}, n=1,....N, (67)
~1
v = I+ZE{E§}Q [\pg;)] Ejk}7 k=1,... K. (68)
j=1

The following Lemma states the existence and uniquenesseddlution of the system of canonical equa-

tions in the class of definite positive Hermitian matrices.

Lemma 7 [41] Let us adopt the definitions of Lemmh 5 and let us assumetiie conditions of Lemma
are satisfied. Let us consider the system of canonical emsaf6l) and[(68). Then, the solution of
the canonical system of equatiohs](67) and (68) exists aisduiique in the class of nonnegative definite

analytic matrices foRRe(a) > 0.

The following lemma due to Girko provides convergence ofdtyenvalue distribution of the matr2="

with Z defined in LemmAl5 to a deterministic distribution functionl éhe corresponding Stieltjes transform.

Lemma 8 [41] Let us adopt the definitions in Lemra 5 and let the assionpiof Lemmals hold. Further-
more, letu,, y(x, Z=") denote the normalized spectral function of the sqyaré x ¢; N matrix argument,

i.e., the empirical eigenvalue distribution of the ma@@E” . Then, for almost alk: with probability one,

i {p1g, (2, BEY) — Fy(2)] = 0
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whereF,, y(z) is the distribution function whose Stieltjes transformdsial to

/o+oo($ +a) T dFy N (@) = (N) e[ ] (69)

with & = diag(¥,,)n=1..y NONNegative definite analytic matrix fée(«) > 0 and ¥,,,, satisfying the

canonical system of equatiois167) ahd| (68).

Lemma9 [44] Let x = (1,9, ...,2xy) be anN-dimensional column vector of complex i.i.d. elements

with zero mean and unit variance aiddbe anN x N complex matrix. Then, for any> 2
Elz"Cz — ttCJ < K, ((E|g;1|4trccﬂ)g n <E|x1|2ptr(ccH)%)) (70)

with K, positive constant independent./sf

APPENDIX |

PROOF OFTHEOREM[

Let us consider the-block-wise circulant matrices of ordéf, ®,, &k = 1, ... K defined in Theorerml1,
and let us denote witi#'% the unitary Fourier transform matrix of dimensioNsx N with (¢, m) element
given by

]_ J2m p_ m—
(FN)em = \/_New(é D(m—1) (71)

We can extend the well known results on the diagonalizatfaziroulant matricel%[@] to decompose the

r-block-wise circulant matrice®,, £k =1,... K as
b, =(Fy®I,)A, (1) Fn (72)

whereA . (7;.) isanrN x N block diagonal matrix witi™ block given by

(Apr(Th))ee = By (27T 6—717 Tk) (73)

and(F'y ® I,.) is a unitary matrix.

The matrixS can then be rewritten as

S=(Fn&I)( A (11)81, 8¢, (12)82, ..., Dy, (T )SK),

5A circulant matrixC' = §(f(x)) of orderN can be decomposed &= Fy DF X, with D = diag(f(0), f(22),..., f(2r &),
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with s, = Fﬁsk. Assuming the elements of the spreading sequepced. Gaussian distributed,, is also

a vector with i.i.d. Gaussian distributed elements havirggame distribution as the elementspf Since
the eigenvalues of any matriX are invariant with respect to left multiplication by a umytamatrix U and
right multiplication byU? | i.e., the eigenvalues of the matiX coincides with the eigenvalues of the matrix
UXU" | then the singular values of the matricgsand S = (Ap(T1)81, Apr(12)82, ..., Ay (TK)SK)
coincide. The same properties holds for the matriEeand H = SA. Itis straightforward to verify that
alsoSINR,, is invariant with respect to such a transform. In fact,

SINRy, = hil (H HY + o*1) " b,

-1
|ak| S (Hka —|—O‘2I> gk

with H,, and H ;, obtained from the matricell andH , respectively, by suppressing th& column. There-
fore, in the following we focus on the analysis of the systeitinwansfer matrixt .

The matrixH is a matrix structured in blocks of dimensions 1. The block(n, k) ﬁnvk, n=1...N

PARERER

andk = 1,... K, is given by
P e = k| (A () Jn

wheres,, ; is a Gaussian random variable with zero mean and variBf(®, ,|>} = +. Additionally, the
variabless,, ;, are i.i.d.. Therefore, conditions H-1 and H-2 for the apgdbidity of Lemmab and Lemmid 6

are satisfied. Condition H-3 of Lemma&a 5 is satisfied. In fact,

K N
o 7 2 7 2
¢ =sup ng}%;whnku b e > Bl }]

K 2
a ~
< nr:ngXN;| ) (g G+ o —ZH Ag(m) mn]

Since the functio®(w) is bounded in absolute value with finite support 8?2, 7)| is upper bounded for
any(2 andr. Then, there exists a constafi;ax > 0 that satisfies| (A, (7)) > < Cuax for anyk and

n. Additionally, the elementg:,,| are uniformly bounded for any, i.e.,Jayax > 0 such thata,|* < af;ax

for all k. Then,
K
¢ < sup aaxCuax (— + 1) < +oo0. (74)
K=BN N
In order to verify the Lindeberg condition H-4 we focus on Lineit
K
1=t Y 1E(||hnk|| x (I1Bll > 0))
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for anyé > 0. Let us observe thatn, k

E (Il 2Bkl > 6)) =l (A g () hun /{ S PP ()

|§Lk‘2>#
" lagl21A g ()12

a 4 A r\Tk ) )nn : re s
_ !l <g,2( k))unl| / [ *dF ()
{|%nk|>0}

whereF'(s,;) is the cumulative distribution function &f,;.. By using the fact thai,,;, is a complex Gaussian

variable with variance{|s,|?} = + and forth momenE({|s,;|*} = = and the bounds ofu,|*> and
[(Ag.(Tk))nnll, it holds
~ ~ 203 Ax O
2 MAXM~MMAX
max B (|2l > 6)) < “MAMAX, (75)
Then,n = 0 since
2a3ax Chiax . =1
< p < TMAX ZMAX — =0.
O_T}_ 02 Kzlﬁljl\fn—)oo; N2 0
Similarly, it can be shown that
N ~ ~
lim  max 3B (Pl > 6)) =0

K=BN— k=1,....K
n=1

and the Lindeberg condition H-4 is satisfied.
From Lemmabl ,(a),p, ¢ = 1,..., N, the blocks of the matri¥/ (o) = (ﬁkﬁkH+aI)‘l converge in
the first mean te x » matricesV ,, = (Cﬁ))—ldpg, p,t=1...N, andCﬁ) defined similarly as in Lemma
B. Additionally, from Lemmal the matric@'é? can be obtained as solution of the canonical system of

equations[(@7) and (68) asymptotically&s= SN — oo. Equations[(6]7) can be rewritten as

K
1 —1 —1
=aol, + E [T,gi)]_1|ak|2A¢,r (27rnN ,Tk) Agr (27rnT, Tk) n=1,...N (76)

with Ay, (z,7) defined in [2R) and taking into account thak,, (7x))nn = Ay, (27255, 7) in (Z8).
Equations[(6B) specialize to
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By substituting[(7I7) in[(76) and considering the canonigatam of equations a& = SN — oo we obtain

AA T (977—) AHT (QvT)fAQ, ()\77-)d Ad T
YW(Q) = oI, + ﬁ/ y ’ T = 5 ‘ |_f ;
S 1 + o fX Ad),r (Q/7 T) [T (Q/)] Ad),r (Q/7 T) dQ2

with Q € [0, 2], or sinceA,, (2, 7) is periodical inQ2 with period27, {2 can equivalently varies in the
interval ¥ = |-, w|. Here,S denotes the support of the distribution functiby= (A, 7). By defining
Y(Q) =[xV (Q)]~" we obtain[2L). It follows from Lemmid 6

i ch) —y-1 (2 ﬁ).
11m 7TN

K=BN—+cco "™

The convergence in the first mean and thus in probabilityldiR, = ﬁkHU(az)ka to the quantityp =

‘“”2 [ AT (7)Y () A, (2, 7,)d2is proven ify;, = E ‘fzkHU(az)ﬁk - g‘ vanishes asymptotically, i.e.,

lim 7 =0. (78)

KN—)oo
r—B

The rest of the proof is focused on showihgl(78). Let us oleserv

~H N ~H ~ ~H ~
m <E ‘hk U(o?)hy, — by, V| + Elh, Vhy, — o (79)

-----

defined in Lemmal6.
By applying the submultiplicative inequality for spectradrms and the triangular inequality to the first

term of [79) we obtain

~H — 1 (—1 ~
E|hk (U(O‘ ) hk| Z S kAHT ( ZT ) (U(O‘2) — V)MA¢7T (27TT, Tk) Sok

~ ._1 .
< ZE )it = Ve )E[S5 S| AL ( WZT,T;@) Ay, (27‘(‘7’7%)
i—1 2
= ZE|(U(U2))“ . V”‘ HA¢,T (2’;‘(‘\[}\[ 7Tk) H

1A, (2%, 7) |17
S Z ! ( NN ! ) mzax E|(U(O’2))“ — V“'|.
(2
5Given two matricesA and B with consistent dimensions the following inequalitieschol

|AB| < |A||B]| Submultiplicative inequality of spectral norms;

|A+ B| < |A|+|B| Triangular inequality of spectral norms.
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Thanks to Lemma&l5 and the fact thah, . (252, 7,) || < Kuax foralli =1,... N andr,

i B[R (U(0) = V)| =0,
f_w

~H ~ i
In order to prove the convergence to zero)pf= E|h, V h; — o| we consider
73 < Elhy Vi - o

~H ~ ~H ~
= E((h), Vh)? — 20h,, Vhy, + 0%)

1—1 j—1 ~ -
=K (|ak|4;AH,T (27‘(7,7’]@) V“'Aqu < ,Tk> < k) ijAqu <27T N ,Tk> |5ik|2|5jk|2
1—1
—2Q|ak|QZA}{T (27TT,T;€) Viilgr ( ) Sikl” + 0 ) (80)
2|ak|4 H i—1 H Z—l |ak| H Z— H 1 — 1
=3 Z AL (2r o ) VAL, (27— ZA (2 ) Vasg, ( 2r

2
#J

j—1 i—1
x Al (27r ~ Tk) VAl (2w ) ZAHT (27r k) Vi, (%T,Tk) +0%.  (81)

From [80) to[(81l) we make use of the assumption hds a complex Gaussian variable circularly invariant
with variance N~!. Let us observe that the spectral norm6f{(2) and V';, for any i, are bounded by
T (Q)| < 0? and|V ;| < % Then, the first term if(81) vanishes As— oo. By appealing Lemmal 6, for
anyi, V; — Y (2r4) asK, N — oo with £ — . Then, the second and third terms[inl(81) converge to

0* and—2¢?%, respectively. We can conclude that

KIJ{IIE 7 =0

i_>B

andrn, — 0 asK, N — oo as® — f3. Therefore, [(7B) and thus the convergence in the first me&iiNit .
is proven. The Markov inequality implies that; > 0
T 1 . ~H o\ T
lim Pr{\hk U(c“)hy —po| >} < - lim Elh,U(c°)h— 0| =0
g K,N—oo

K,N—oo
Ep Kp

and the convergence in probability stated in Thedrem 1 iggro

This concludes the proof of Theorém 1.
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APPENDIX III

PROOF OFCOROLLARY

In order to prove Corollaryl2 we rewrite the linHINR,, in (20) as

lim SINR, — (%] /ﬂ tr (T(Q)Q(Q, 7)) dQ (82)

K,N—oc0 2T

s

and the fixed point equation (21) as

_ 5 too T AQ(Q T)f‘A|2 (A, 7)dAdT B
T HQ) = oI, —i—ﬁ/ / T2 (Y()Q, ) A T<Q<n7 (83)

with Q(2, 7) defined in[(4D). The matrig (2, 7) can be decomposed as[in(50). Thanks to the assumptions

on ®(2) in Corollary[2, the conditions 0@ () and Q(2, 7) in Lemmall and LemmEl 2 are satisfied.
First we show thafl' (), the unique solution of (83) in the class of nonnegative difianalytic functions
in Re(0?) > 0, is anr x r matrix with eigenbasi€/(Q2) defined in [E1L). Let us assume tHa(2) =
U(Q)T(Q)UH(Q) with elements off‘(Q) nonnegative for all2 € [—m,7]. By appealing to LemmEl 4
Y (2) is of form (53). Then, by applying Lemnia 1 it resutis(Y (2)Q(2, 7)) = 0 forall @ € [—7,7].

Therefore,

/7r tr (Y (Q)Q(, 7)) dQ2 :/ tr (Y (Q)Q(Q)) dY
_ /7r tr (T(Q) (Q’)) dQ’ >0
with D(Q2) defined as in Lemmia 3. Let us notice tifgﬁ“ Q(Q, 7)dFr(r) = 0 for all Q. Thanks to this

property, the assumption of independence of the randorabas)\ andr, and to the uniform distribution

of 7, (83) can be rewritten as

-1 ) +0o0 AE ap(N)
T (Q) =0, —r< Q<. 84
@)=l +5 (/o 42 7 o (T@)D@)) dQ/) = (&4

Since:f(Q) and D are diagonal matrices, the matrix equatibnl (83) reducessisgem ofL. scalar equa-
tions. Furthermore, all the quantities that appears initite hand side of the system of equations| (84) are
nonnegative under the assumption tﬁ”dﬂ) is a nonnegative definite matrix arid{84) admits a nonnegativ
definite solution foRe(c?) > 0. The existence of a nonnegative definite solution of the systeequations

(84) implies also a solution of the fixed point matrix equat{83) given byY (Q) = U(Q)T(Q)UH(Q).
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Let 7,(Q2) be thes™ diagonal element oI (Q2) and let us recall that the™ diagonal element oD(Q)) is

2

givenin [62). Then[(84) reduces to
1) = 0?4+ 5 o (2 sign@ 2T (|72 -
v, () =0"+p ; (I)<Tc mgn(Q)Tc ({ 5 J 3+1))

></+w AdF 4p(N)
2
O L gt [T @) [0 (2 - Esian(@) (|75 - 0+ 1)) | ae

—r<Q<mands=1,...r. (85)

By changing the variablg =  — sign(Q)27 (| 51| — s + 1) and defining the function(y) in the interval

(—rm,rm) as follows

A

Gy —2m (5 —s+1) (5 —stoss

v(y) =

r=1] _ +1,
= s=1,....,r (86)
r—1
2

U(y+2r (5] —s+1)) s—l- | <k <s—5-[F]
the system of equationis (85) can be rewritten as
2 +00
/’ MFapl) Wl < e (87)
2 v | (£)] at

.
oY) = o+ B

|+ (5)

A similar approach applied t6 (82) yields

2

. B lap|?r ~~ [T . r—1
Kl]%[rgoo SINRy, = T2 8521 B ¢ | Q — 2msign () 5|~ +1 v(2)dQ
B |ak|2,r. /*7rr 0 2
== | d ) v(§2)d€. (88)

Let us recall that the variance of the discrete white noisé is % Additionally, let us define the function

g _ N ) Q
"\T.) " T.E,| \T.
By substituting[(IB) in[(87) and (88), using definitidnl(8ahdw = TQ we obtain the fixed point equation
(28) and the limit[(2b), respectively. This concludes thegbiof Corollary2.

2

v(9). (89)

APPENDIX IV

PROOF OFTHEOREM[2

The proof of Theorerfl2 follows along the line of the proof ofebhem1. In this cas&\, ,.(Q,7) =

PR
T e (ﬂ) e(Q2) and the matribx@Q (€2, 7) is independent of. Specifically,

Te Te
Q

2
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Then, applying the same approach as in Theddem 1 Lemhma 5 anohéé yield
Q
(1)

e(Q)e! () /0 +°°

2 e ()Y (0%, Q)e(Q)dQ

agl?r

im SN =t |

with

2
~—1

Q

T (0%Q) = 021, + f— |& [ ==
Tc2 Tc A [T
I

+oo U(Q)D' (DU (QNF 42(\
202“5/ (WD QU (Q)AdFa (A
O 42T e (%)

with U (2) defined in [(61l) andD’(2) diagonal matrix with all zero elements except te5* | + 1)th

AdEjap(A)
2 (2) ‘2 e ()T (02, )e(Q)de

(90)

el ()Y (02, )e()dY

2
element, corresponding to the eigenveat(2) and equal toz; | (%)) . Then, it is apparent that the

solution of the fixed point matrix equation (90) is a matrixiwihe basis of eigenvectot$((2), and [90)
reduces to the equation corresponding to(thie* | + 1)th elementy(Q) of Y(Q) = U ()Y (QU (Q)

O\ | AAE 42 (A
US_I(Q) = g2 —i—ﬁ% P <T> / Al ( )2 .
‘ ; 20 )7 |0 ()] v@)ao

The other components of the diagonal maffixQ?) are simply given by 1(Q) = ¢, s = 1,...,r and

(91)

s # (|55] + 1) . The identitye™ ()Y (Q)e(2) = v(€) yields

2 ™
lim SINR, = ] T/ o (%)

K=BN—s00 27T?
The convergencé (92) in probability or in the first mean capriogen as in Theorefd 1. By substitutifg](19)

2

v(Q)dQ. (92)

in @1) and [(9R), using definition_(89), and = T%, we obtain the fixed point equation (36) and the limit

(35), respectively.
This concludes the proof of Theorém 2.

APPENDIXV

PROOF OFPROPOSITIONZ

Propositiod 2 follows immediately from Corolldry 3. In fafitom (33) it is apparent that the multiuser ef-
ficiency of a system with load and sinc pulses having roll-off equaldas equal to the multiuser efficiency
of a system with Ioacg and sinc pulses having zero roll-off. Thanks to the fundaaleelations between

multiuser efficiency and capacity [39] we obtain](41). Sitioe spectral efficiency is obtained as the ratio
CE"9(3 SNR «

(%

)}SNR:N(;l

, itis apparent from{41) that it is constant/as— oo for any finite bandwidtha.
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APPENDIX VI

PROOF OFCOROLLARY [

Let MMSE,, 1, (p) be the achievable MMSE by an estimator of the synithoh| transmitted by usek
in the m-th symbol interval when the transmitted sigiah (14) is Gaussian and the signal to noise ratio
is p = o~2. Furthermore, |eSINR,,,,(p) be the SINR at the output of the same MMSE estimator for the

transmitted symbdl, [m]. Then,

1
14 SINRy, m(p)

Additionally, let I(b; y, p) be the mutual information in nats between the inpwatnd the outpuy. From

MMSEp, m)(p) = (93)

Theorem 2 in[[39] the following relation holds

d ~
d—pf(b;y,p) = E{||Hb - Hb|*} (94)

beingg the conditional mean estimate. We recall here that for Ganssgnals conditional mean estimate

and MMSE estimate coincide (see e.g.,/[35]) and
E{|[Hb— Hb|*} = tr (¢*H"(HH" + )" H)

- SINRy, (g ()
Z (1 + SINRy g (7)) (95)

For K, N, m — oo with % — 3, SINRy, [m] (,o) converges with probability one to deterministic values.

More specifically, SINR 1 (p) = Jax | E¢m

No

, beingn, the multiuser efficiency corresponding-{o=

Te

2 as in Corollary2 or Theorefd 2.

Then, the total capacity per chip constrained to a given phlpe waveform is given by

BoTe o \TS s
cles (3 Ey o) = B / "No /+ Agnze dF g12()) ds 6)
"Ny’ In?2 L+ Ane
No /+OO )\mdF|A|2 ) (97)
ln 2 1+ Aty

This concludes the proof of Corollaly 4.

APPENDIX VII

PROOF OFTHEOREM[3

In this sectiorD}! denotes arV x M matrix of zeros. Shortly) y ande denoteN-dimensional vectors

of zeros and ones, respectively. Additionally, we introgltiee notationF!) = Fy ® I, with F already
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defined in[(71).

A basic property of the Fourier eigenbasis functions isestat the following.

Property 1 Let E;, denote anl x L matrix of ones and bﬁ”’(u), withu < (L — 1)Nr,the LNr x LN

matrix with structure

or oy o
Fi () = ur Py glLhN

ur r L—-1)N—u
O(L—I)N—u Oé\[[/—l)N—u OEL—lgN—u

Then,
1 (1) £ )
ﬁ(EL@FN )fL (U)Ig(U,T,N) (98)
where€ (u, r, N) is a matrix with structure
R.n
= ur (L—1)Nr—ur
g<u’ " N) OLN?” O(L—I)Nr—ur
Ron

andR", isanrN x N block diagonal matrix with-th block (R Yy )y = eI % Ve, .

Let us consider the virtual spreading sequence of ki$er symbolm in the time interval—M T, M T],
with M > m integer:
m)T 4 m
](i‘ ) = ak[O{M-i—m)Nr? (I)ksl(g )7O{M—m—1)Nr]'

Propertyl and decompositidn {72) yield

1 r m T ~\
s o @ F = eanrr @ (RIG A (7))
1 (r)\(m)
=—(F ® F 99
2M+1( a1 @ Fy )by, (99)

with E,im) = ak[0{ys ) nr (F%)RT}CVAW(?,C)TS}C)T,O?M_m) ~.]7. Let us observe that the position of the
nonzero elements does not depends anymore 8mce the random entries of the vecégrare rotationally
invariant, the rotation matri®R 7%, can be absorbed in the random vedpmithout change of the statistics

and the vectoﬁk can be rewritten as

bk = Qg [O(M+m)N7”7 h’](gm)a O(M—m)Nr]T
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whereh\™ = FU A, (%) is the virtual spreading for the:-th transmitted symbol of user delayed by
7 € [0,7.). From the previous considerations it follows that the randoairix 77 = HH" is unitarily
equivalent to an infinite block diagonal matrix with blocks™ = H™ H™*# of dimensionrN x rN
being H ™ the matrix withk-th column equal tdz,(j”), i.e., the transfer matrix of a symbol synchronous but
chip asynchronous system with time defgy, . . ., 7x }. Then, asymptotically foK, N — +oo the eigen-
value distribution of the matri€"™ equals the eigenvalue distribution of the matfix The equivalence
of the systems in terms of SINR at the output of a linear MMSEeder and in terms of capacity follows
also from the fact that the SINR is invariant to any unitagnsform of the system transfer matrix as already
observed in the proof of Theordr 1.

This concludes the proof of Theorém 3.
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