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Quality Assessment of DIBR-Synthesized Views 

Based on Sparsity of Difference of Closings and 
Difference of Gaussians 

Dragana D. Sandic´-Stankovi´c , Dragan D. Kukolj, Senior Member, IEEE, and Patrick Le Callet , Fellow, IEEE 
Abstract—Images synthesized using depth-image-

basedrendering (DIBR) techniques may suffer from complex 
structural distortions. The goal of the primary visual cortex and 
other parts of brain is to reduce redundancies of input visual signal 
in order to discover the intrinsic image structure, and thus create 
sparse image representation. Human visual system (HVS) treats 
images on several scales and several levels of resolution when 
perceiving the visual scene. With an attempt to emulate the 
properties of HVS, we have designed the no-reference model for 
the quality assessment of DIBR-synthesized views. To extract a 
higher-order structure of high curvature which corresponds to 
distortion of shapes to which the HVS is highly sensitive, we define 
a morphological oriented Difference of Closings (DoC) operator 
and use it at multiple scales and resolutions. DoC operator 
nonlinearly removes redundancies and extracts fine grained 
details, texture of an image local structure and contrast to which 
HVS is highly sensitive. We introduce a new feature based on 
sparsity of DoC band. To extract perceptually important low-
order structural information (edges), we use the non-oriented 
Difference of Gaussians (DoG) operator at different scales and 
resolutions. Measure of sparsity is calculated for DoG bands to get 
scalar features. To model the relationship between the extracted 
features and subjective scores, the general regression neural 
network (GRNN) is used. Quality predictions by the proposed 
DoC-DoG-GRNN model show higher compatibility with 
perceptual quality scores in comparison to the tested state-of-the-
art metrics when evaluated on four benchmark datasets with 
synthesized views, IRCCyN/IVC image/video dataset, MCL-3D 
stereoscopic image dataset and IST image dataset. 

Index Terms—Difference of closings, DIBR synthesized view, 
granulometry, hat-transform, multi-resolution multi-scale image 
representation, quality prediction. 

I. INTRODUCTION 

 IEW synthesis using depth-image-based rendering 

(DIBR) algorithms is important for 3D immersive imaging 
technologies such as multi-view and free-viewpoint video 
ith application in various fields: medicine, education, remote 
surveillance and entertainment. 3D video applications need a 
large number of views at different viewpoints. At the 
viewpoints, where video sequences captured by cameras are 
missing, new video sequences are synthesized from captured 
video and from their associated depth maps using DIBR 
algorithms. DIBR techniques introduce new types of distortions 
that are non-uniformly spread over the image, mainly in the 
disoccluded areas [1]. The disoccluded areas appear as black 
holes in image regions that become visible from the position of 
synthesized view, while invisible from the reference view 
position. Although the holes are filled synthetically by 
inpainting or interpolation technique, a texture distortion may 
appear. Beside the rendering process, distortions in synthesized 

images appear due to the distortions of texture images and depth 
maps, which may occur during the process of acquisition, 
compression and transmission. Distortions in the depth map 
may cause pixel projection to a wrong position and induce 
object shifting. The depth compression and view synthesis 
processes cause obvious distortions at object’s edges. The 
distortions in texture cause intensity variations, while blurring 
and blocking distortions may appear all over the synthesized 
image. 

The image quality assessment (IQA) of the synthesized view 
is of great importance for the development of view synthesis 
algorithms and 3D imaging applications. Traditional IQA 
metrics designed for natural scene images are unable to capture 
the non-uniform distortions introduced by synthesis algorithms 
[1]. The IQA models designed to evaluate distortions of 
synthesized images due to the rendering process only may not 
be effective in the evaluation of the complex distortions due to 
combined sources when texture images and depth maps are also 
distorted. In multi-view video systems, reference views are not 
available for all viewpoints. Therefore, referenceless quality 
metrics are highly desirable. In this paper, we propose a no-
reference QA model which successfully evaluates distortions 
due to only a rendering process and complex distortions of 
synthesized images, which appeared due to the influence of the 
rendering process and the compromised quality of texture 
images and depth maps. 

The Human Visual System (HVS) uses structural information 
from the viewing field for cognitive understanding. The 
disruption structure leads to the reduction of subjective image 
quality. The receptive fields of simple cells in mammalian 
primary visual cortex can be characterized as being selective to 

structure at different spatial scales, spatially localized and 
oriented [2]. Visual perception treats images on several levels 
of resolution simultaneously and this fact must be important in 
the study of perception [3]. By integrating information across 
spatial scales and resolutions, the HVS builds image 
representation. Local curvature measurements maybe 
performed by end-stopped neurons in the visual cortex [4]. The 
visual cortex is trying to produce an efficient representation in 
terms of extracting the statistically independent structure in 
images [5]. The goal of the primary visual cortex and other parts 
of the brain is to reduce redundancies of input visual signals in 
order to discover the intrinsic image structure, and thus create 
sparse image representation. Sparse image representations that 
capture the salient structures in line with the human perception 
are reported to be a processing strategy of the nervous system 
[6]. Sparsity is meant to extract “higher orders of statistical 
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dependencies”, which cannot be simply described at the image 
pixel level [5]. We have taken into account the HVS 
characteristics in the design of the proposed IQA model. 

To process the image and extract features from various 
scales, multi-scale approaches could be suitable. When the 
operator for generating image copies from fine to coarse scale 
is convolution by the Gaussian kernel, a linear scale-space can 
be built where the scale parameter is standard deviation of the 
Gaussian distribution [7]. By calculating the difference between 
the low-pass image copies of neighbor scales, the Difference of 
Gaussians (DoG) scale space of band-pass detail images is 
created. After convolution with the Gaussian kernel, the image 
is uniformly blurred, its edges are blurred and thus their 
localization may be imprecise. To preserve edges, unblurred 
and with precise localization, nonlinear morphological filters 
can be successfully used. Morphological filters are suitable for 
the construction of scale spaces since they remove structure 
from an image. The size of the structuring element is a scale 
parameter. Opening and closing multi-scale morphological 
filters have been used to create the scale-space of one-
dimensional gray-scale signals [8]. Opening and closing are 
computationally simpler than the Gaussian filter [9]. Families 
of openings and closings, called granulometries, have been used 
in the morphological multi-scale approaches for shape-size 
distribution [10]. Using multi-scale opening and closing, some 
information is lost from one scale to the next: openings remove 
peaks of signals, while closings remove valleys. Peaks and 
valleys, which correspond to the critical points of a contour, are 
useful for visual perception. The residual of the closing 
compared to the original represents a bottom-hat transformation 
[11]. A sequence of hat transforms using structuring elements 
of increasing size has been used for the creation of the 
morphological curvature scale-space of 1D signals used for 
shape analysis [12]. Multi-scale hat transforms have been used 
for extraction of curvature extrema (as a representation for 
contour) through scales. 

The multi-scale image representation at multiple resolutions 
using the DoG operator for extracting low-order structures has 
been used in the IQA model of 3D synthesized images [13]. In 
this paper, we introduce a novel QA model of DIBR-
synthesized views which uses multi-scale image decomposition 
at multiple resolutions using both the DoG operator to extract 
low-order structures, and a newly proposed Difference of 
Closings (DoC) operator to extract higher-order structures (fine 
grained details, texture) of high curvature, which corresponds 
to the distortion of shapes to which the HVS is highly sensitive. 
DoC operator nonlinearly removes redundancies and extracts 
local structure and contrast to which HVS is highly sensitive. 
The proposed image decomposition using DoC operator can be 
described using granulometry by closing or using a multi-scale 
bottom-hat transform at multiple resolutions. The family of 
morphological closings with an array of line-shaped vertically-
oriented structuring elements of increasing sizes is used to 
create a set of simplified signals by successively removing 
image structures (valleys) throughout scales. The size of a SE 

plays an important role in noise removal and geometrical detail 
preservation. We define the Difference of Closings (DoC) 
operator as the difference between morphologically smoothed 
images of neighboring scales. We believe that features 
extracted using both DoC and DoG operators at multiple scales 
and resolutions play complementary roles in characterizing 
view quality. The complex distortions of DIBR-synthesized 
images cause changes of both low and high-order structure at 
DoG and DoC bands, and their sparsities change. We measure 
sparsity of DoC and DoG bands through scales and resolutions 
using the Hoyer index [14] as a scalar feature. To model the 
relationship between the extracted features and subjective 
scores, a general regression neural network (GRNN) [15] is 
used. The trained network is then used to map extracted features 
to the quality score. The proposed DoC-DoG-GRNN model, 
tested on four datasets of 3D synthesized views, IRCCyN/IVC 
image dataset [1], MCL-3D stereoscopic image dataset [16], 
IST image dataset [69] and IRCCyN/IVC video dataset [17], 
shows high compatibility with perceptual quality scores, better 
than tested state-of-theart metrics. 

In the next Section, we review metrics designed for quality 
assessment of DIBR-synthesized views which use multi-scale 
or/and multi-resolution image representation. In Section 3, the 
proposed model is described in more details. The datasets, 
evaluation criteria, model’s parameters, overall performances 
and comparison to other metrics, as well as discussion and 
analysis, are presented in Section 4. The last Section concludes 
the paper. 

II. RELATED WORKS 

In this Section, we highlight some QA models designed for 
DIBR-synthesized images based on multi-resolution and/or 
multi-scale image representations in order to mimic the multi-
resolution and multi-scale character of HVS. More complete 
overview of quality models designed for QA of DIBR-
synthesized view is presented at [65]. 

A Laplacian type morphological pyramid with band-pass 
detail images with extracted edges has been used in the MP-
PSNR metric [18], as well as its reduced version [19]. The 
difference between the appropriate detail images of the 
reference and the synthesized image pyramid at different 
resolutions is measured using the mean squared error to 
emphasize areas around edges that are prone to synthesis 
artifacts. 

A Laplacian pyramid has been used for the extraction of 
luminance-based features to assess the naturalness of a 3D 
synthesized view in the newly proposed no-reference LVGC 
metric [20]. In order to capture local distortion, structure 
features extracted by second-order Gaussian derivatives and 
chromatic features are employed. 

Low-pass images of a Gaussian type pyramid have been used 
for edge extraction in the Edge Intensity Similarity metric, EIS 
[21]. The similarity of edge intensity between appropriate edge 
images of the reference and the synthesized image pyramid 
through resolutions has been calculated. The Gaussian pyramid 



 

 

of depth image has been used for the extraction of edge profiles 
in the no-reference QA metric proposed in [22]. Quality 
features have been extracted from the statistical distribution of 
edge regions. The first-order statistical features have been 
extracted in the gradient magnitude domain and the second-
order statistical features have been extracted in the Laplacian-
of-Gaussian domain. The extracted features have been used for 
building a random forest regression-based quality model. A 
multi-resolution low-pass image representation using Gaussian 
filters has been used in the reference-based LMS metric 
developed to evaluate the distortions in the whole synthesis 
process [23]. A low-level structural representation is calculated 
using the statistics of gradient intensity and orientation, while a 
mid-level structural representation is calculated using bag of 
words for contour description based on sparse coding. Gaussian 
filter has been applied for the generation of low-pass image 
copies at two scales for the extraction of features calculated 
from statistics of wavelet-based fusion of color and depth 
images in the QA model proposed to be applied before DIBR 
synthesis [58]. 

A multi-resolution image representation using downsampling 
has been used in the blind IQA model, designed using the 
philosophy that the DIBR-introduced geometry distortions 
damage the self-similarity characteristic of natural images and 
the damage degree tends to decrease as the resolution reduces 
[24]. In the following work, presenting a blind IQA model 
based on Multiscale Natural Scene Statistical analysis (MNSS) 
[25], it was found that the statistical regularity is destroyed in 
the DIBR-synthesized views. Estimating the deviation of 
degradations in main structures at different resolutions between 
a DIBR-synthesized image and the statistical model, the main 
structure damage can be quantified. 

A morphological wavelet transformation has been used in the 
MW-PSNR metric, as well as its reduced version [26], [27]. 
Mean squared error has been used to measure the difference 
between appropriate subbands of the synthesized and the 
reference image. The high-high wavelet subband has been used 
in the computationally extremely efficient No-Reference 
Morphological Wavelet with a Threshold metric guided by the 
fact that DIBR-synthesized images are characterized by 
increased high frequency content [28]. 

Haar wavelet transformation has been performed on image 
blocks and image degradation has been measured using 
histograms of horizontal detail subbands in the reference-based 
IQA metric [29]. Discrete Wavelet Transform using CDF 9/7 
filters has been used in the blind IQA model which quantifies 
geometric distortions, global sharpness, and image complexity 
[30]. 

A multi-scale image representation using the DoG operator 
at multiple resolutions has been used to extract a low-order 
structure, edges, and sparsity measure of DoG bands is 
calculated as a scalar feature in the general regression neural 
network-based DoG-GRNN model [13]. A multi-scale image 
DoG-representation has been used for extraction of two groups 
of features: the orientation selective statistics features and the 

texture naturalness features in the random forest regression 
based SET model designed to capture distortions in the whole 
view-synthesis process [31]. 

Multiscale representation has been used in the elastic metric 
and multi-scale trajectory based video quality metric which 
quantify the amount of temporal structure inconsistencies and 
unsmooth viewpoint transitions [66]. 

III. THE PROPOSED QA MODEL 

The proposed model is designed considering the properties of 
HVS: its high sensitivity to structure with a goal to reveal the 
intrinsic structure by reducing redundancies and creating sparse 
representation, but also its multi-resolution and multi-scale 
property when perceiving the visual scene. To extract a higher-
order structure (fine grained details, texture) of high curvature, 
which corresponds to the distortion of shapes to which the HVS 
is highly sensitive, and to nonlinearly remove redundancies, we 
propose the morphological oriented Difference of Closings 
(DoC) operator and use it to create the sparse overcomplete 
multi-resolution and multiscale image representation (MR-MS-
DoC) of non-negative integer valued DoC bands. We introduce 
the new feature based on sparsity of the DoC band. To extract a 
perceptually important low-order structure, edges, and to 
linearly reduce redundancies, we use non-oriented Difference 
of Gaussians (DoG) operator to create multi-resolution and 
multi-scale image representation (MR-MS-DoG). We believe 
that both low-order and high-order structure play 
complementary roles in characterizing the view quality. Since 
the DIBR-synthesized images are characterized by a structure-
related distortion, their representations are with changed low-
order and high-order structures and the sparsity of DoC bands 
and DoG bands are changed. The sparsity of DoC and DoG 
bands is measured using the Hoyer index as a scalar feature. 
The extracted features and subjective scores are used to train 
the general regression neural network (GRNN). The trained 
GRNN is then used to predict the quality score. The framework 
of the proposed model is shown on Fig. 1. Before explaining the 
proposed model in more details, we shortly review the basics of 
mathematical morphology used in model development. 

A. Morphological Filters 
Mathematical morphology is a powerful tool in image 

analysis mainly due to its nonlinearity and shape description 
properties. Morphological operations use a small pattern 
characterized by shape and size, called structuring element, to 
extract useful information. Morphological operators remove 

 

 Fig. 1. The framework of the proposed DoC-DoG-GRNN model. 
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details from the signal without blurring the remaining structure. 
For grayscale image function f (x, y) on Z2, the basic 
morphological operators, dilation f ⊕ SE(1) as expanding 
operation, and erosion f  SE (2) as shrinking operation, perform 
locally on the area defined by the structuring element SE using 
operators maximum and minimum [36]. 

  u, y − v)} (1) 

 ( f  SE)(  u, y + v)} (2) 

The morphological filter closing C (3) locally modifies 
geometric signal features iteratively applying dilations and 
erosions, smooths signal eliminating specific image detail 
smaller than the structuring element without the global 
geometric distortion of unsuppressed features [36]. 

 CSE : ( f • SE)(x, y) = (( f ⊕ SE)  SE)(x, y) (3) 

Visually, the closing filter smooths contours of image dark 
regions, tends to fuse narrow breaks, eliminates small holes and 
fills gaps in the contours. Closing is invariant to translations of 
the structuring element and spatial invariance holds. The 
closing is extensive, ( f • SE)(x, y) > f (x, y). 

The residual produced after the application of closing filter to 
the image function f (x, y) is Close-Top-Hat (CTH )(4), also 
called bottom-hat, or black-top-hat [11]. 

 CT H : ( f • SE)(x, y) − f (x, y) (4) 

The CTH is region extraction operator which extracts dark 
details, valleys of the signal. The hat transformation provides 
an excellent tool for extracting features smaller than a given size 
from an uneven background. 

B. Structuring Elements for Multi-Scale Morphology 
For the creation of the morphological multi-scale image 

representation, an array of structuring elements of increasing 
size, SE j, 1 ≤ j ≤ N is needed. The structuring element at scale 
j, SE j, is created using the dilation of the structuring element at 
the first scale SE1 with itself (5) [10]. The definition of scale 
corresponds to the spatial size of the structuring element. 

SE j = SE1 ⊕SE1 ... ⊕ SE1, 2 ≤ j ≤ N (5)  j

 times  

The shape of SE j is determined by the shape of the primary 
pattern SE1, and j controls the size. 

We have explored the simplest case using an array of linear 
structuring elements with increasing length. The structuring 

 

Fig. 2. The primary pattern SE1, line-shaped vertically oriented structuring 
element of length 2. 

 

Fig. 3. The multi-scale image decomposition using morphological filter closing 
(C) with an array of linear structuring elements of increasing size SE j, j = 1,..., 
N,; si,0 the input image at resolution level i; si,j the low-pass 
copy at scale j; di,j the detail image (DoC band) at scale j. 

element at the first scale is vertically oriented line pattern of 
length 2, Fig. 2. The structuring element length j corresponds to 
the scale j − 1. Line-shaped structuring elements used for the 
creation of multi-scale image representation allow the 
extraction of 1D line structures located in 2D image space. 

C. Image Representation Using Granulometry by Closing 
The granulometry is a useful tool for morphological 

multiscale image analysis and have been used for object size 
estimation, feature extraction for image segmentation and 
texture classification. A granulometry quantifies an amount of 
detail in an image at different scales. 

We present the morphological multi-scale multi-resolution 
image decomposition to extract higher-order structure (fine 
grained details, texture) of high curvature which corresponds to 
the distortion of shapes to which the HVS is highly sensitive. 
The image decomposition can be described using the 
granulometry by closing at multiple resolutions. The multi-
scale closings are useful smoothing filters because they 
preserve the shape and the location of vertical abrupt signal 
discontinuities (edges) [10]. At each resolution level i, i = 1,... 
M, a series of low-pass image copies, si,j , j = 1,..., N (6) with 
decreasing details is created from the initial image, si,0, by 
applying a morphological filter closing, using an array of linear 
structuring elements with increasing length SE j (5), as shown 
in Fig.3. 

 si,j = si,0 • SE j, j = 1,..., N (6) 

The morphological filter closing fills in the gulfs and the small 
holes of si,0 relative to SE j. The size of the structuring element 
plays an important role in noise removal and geometrical detail 
preservation. With the scale increase, the length of the 
structuring element increases, more and more details are filtered 
out and each filtered image si,j loose more and more structure. 
The monotonically increasing sequence of closings, {si,j }, j = 
1,..., N, constitutes a granulometry by closing. A granulometry 
by closing captures image structure darker than neighborhood. 
A fast algorithm has been proposed for efficient computation of 
linear granulometry [37]. 



 

 

 

Fig. 4. The DoC band at resolution level 3 at scale 4, d3,4, (bottom) of the image 
Balloon synthesized from the texture images and depth maps with JPEG 
distortion is created as the difference between smoothed images at scales 4 and 
scale 3 of resolution level 3, d3,4 = s3,4−s3,3: s3,3 (first row left), s3,4, (first row 
right). 

We define Difference of Closings (DoC) operator (7) as the 
difference between morphologically filtered images of adjacent 
scales. 

 DoC : di,j = si,j − si,j−1, j = 1,..., N (7) 

The sequence of details removed between nearby closing 
filters, {di,j}, j = 1,..., N, creates a multi-scale image 
representation at resolution level i. Since the closing is an 
extensive operator, si,0 < si,1 < ··· < si,N−1 < si,N , the detail images, 
di,j, contain only non-negative integer values. The DoC band at 
resolution level 3 and scale 4 created from the image Balloon 
synthesized from the texture images and depth maps with JPEG 
distortion is shown on Fig. 4. The details extracted in DoC 
bands correspond to perceptually important building blocks of 
higher-order structure. 

Morphological size distribution isolates features from noise 
at different scales. The difference of closings/openings at 
successive scale has been used in pattern spectrum as shape-size 
descriptor for multi-scale shape representation and description 
[10]. Morphological size distribution has been used for image 
noise reduction in the algorithm proposed for improved JPEG 
compression [38]. 

The multi-scale image transformation using DoC operator is 
reversible without information loss. The initial image at 
resolution level i, si,0, can be perfectly reconstructed from the 
detail images of all scales, di,j, j = 1,..., N (all DoC bands) and 
the low-pass approximation at the highest scale, si,N (8). 

N 

 si,0 = si,N − di,j (8) 
j=1 

To create the initial image for the next resolution level, si+1,0, 
the initial image from the current resolution level, si,0, is filtered 
using morphological filter closing with the structuring element 
SER and downsampled by a factor of two (σ↓) by rows and by 
columns (9). The initial image at the first resolution level, s1,0, 
is the image under test f . Initial images of all resolution levels, 
si,0, i = 1,..., M + 1, constitute the morphological pyramid of 
Gaussian type. 

s1,0 = f 

 si+1,0 = σ↓(si,0 • SER) i = 1,..., M (9) 

Since the morphological operators used in multiresolution 
decomposition schemes involve only integers and only max, 
min and addition in their computation the calculation of 
morphological multiresolution decompositions have low 
computational complexity. 

D. Image Representation Using Multi-Scale Hat- Transform 
The close-top-hat (CTH) transform can be used to build the 

basic element of image semantic structure, and it is closely 
related to the perceptual quality of images. The hat transform 
can effectively capture image local structure and contrast to 
which the HVS is highly sensitive. The CTH operator enhances 
variations of pixel intensity in a neighborhood determined by 
the structuring element while preserving edges non-blurred. 
The hat transforms give important information about the 
fineness of variations of the gray level, with no need for image 
decomposition into harmonic frequencies. The hat transform 
has been used for extraction curvature, as one of the most 
powerful approaches for the representation and interpretation of 
objects in an image [12]. There is psychophysical, physiological 
and mathematical support in favor of using curvature as a 
representation for contours. 

We can also describe MR-MS-DoC image decomposition 
using multi-scale hat transform at multiple resolutions. To 
create multi-scale close-top-hat transform at resolution level 
i,{cthi,j }, j = 1,..., N, (10) we also use the granulometry by 
closing, {si,j}, j = 1,..., N given in (6). 

 cth i,j = si,j − si,0 j = 1,..., N, (10) 

where the initial images at different resolutions, si,0, i = 1,..., 

M+1, are created as defined in (9). Since the closing is an 

extensive operator, the CTH transform creates detail image that 

contains pixels of non-negative integer values. 

We can also define the Difference of Closings (DoC) 
operator as the difference between close-top-hat transforms of 
nearby scales (11), as shown in Fig. 5. 



 

 

DoC : di,j = cthi,j − cthi,j−1 j = 2,..., N 

 di,1 = cthi,1 (11) 

where di,j is the detail image (DoC band) at resolution level i 

and scale j. The sequences of details, {di,j}, at scales j = 1,..., N, 

and resolution levels i = 1,..., M create multiresolution multi-

scale DoC-based image representation. 

E. Image Representation Using DoG Operator 
Edges are important for visual perception playing a major 

role in the recognition of image content. The Difference of 
Gaussians (DoG) operator has been proposed as fast 
approximation of LoG operator used for edge extraction [39]. 
The DoG operator has been used in the DoG-GRNN model 
designed for the QA of the DIBR-synthesized images to 

 

Fig. 5. The Difference of Closings (DoC) operator can be defined as the 
difference of close-top-hats of nearby scales, di,j = cthi,j −cthi,j−1: cthi,j close-

top-hat at resolution level i and scale j, di,j the detail image (DoC band) at 
resolution level i and scale j, si,0 the input image at resolution level i. 

extract low-order structure (edges) at multiple scales and 
resolutions [13]. 

In this work, DoG-based image representation of low-order 
structure (edges) is used, together with the DoC-based image 
representation of higher-order structure (fine details, texture) to 
improve the IQA model’s performances. At each resolution 
level i, i = 1,... P, an array of Gaussian smoothed images, gi,j, j 
= 1,..., Q is generated by convolution of the input image gi,0 with 
the Gaussian function G(x, y,σj) using an array of standard 
deviations of the Gaussian distribution σj, j = 1,..., Q as scale 
parameters (12). 

 gi,j(x, y) = i,0(x, y) ∗ G(x, y,σj), j = 1,..., Q 

2+y2 

 G(x, y,σj) ej (12) 
j 

The Difference of Gaussians (DoG) operator is defined as the 
difference of two nearby Gaussian smoothed images (13). 

 DoG : ei,j = gi,j−1 − gi,j (13) 

The DoG band ei,j , is a band-pass filtered image which contains 
all frequencies between the cut-off frequencies of the two 
Gaussians which correspond to edge lines. Edges of different 
fineness are detected at different scales as well as the noise due 
to synthesis distortion. The DoG bands at resolution levels 1 
and 5, at scale 2, created from the image Balloon synthesized 
from the texture images and depth maps with JPEG distortion 
are shown on Fig. 6. DoG bands of higher resolution contain 
enhanced edges while DoG bands of lower resolution remind 
saliency maps. 

The initial image for the next resolution level, gi+1,0 is 
generated from the last Gaussian smoothed image of the current 
resolution level gi,Q by downsampling it with a factor of two by 
rows and by columns (14). 

g1,0 = f 

 gi+1,0 = σ↓(gi,Q), i = 1,..., P − 1 (14) 

The multi-resolution multi-scale DoG-based image 
representation consists of detail images ei,j at resolution levels i, 
i = 1,... P, and scales j, j = 1,..., Q. 

F. Measure of Sparsity 
Sparsity of signal representation has been important concept 

in signal analysis, compression, sampling used in diverse 

 

Fig. 6. The DoG band at scale 2 of resolution level 1, e1,2 (in the middle) and 
at scale 2 of resolution level 5, e5,2 (right), created from the image Balloon 
synthesized from JPEG distorted content (left). 

areas such as image processing, medical imaging and face 
recognition. The Hoyer index, calculated as normalized 
relationship between l1 and l2 norms, has been proposed as a 
measure of sparseness of the image representation obtained 
using non-negative matrix factorization [14]. The Hoyer index 
quantifies how much energy is packed into only a few 
components. It takes value 0 when all coefficients are equal and 
it is 1 when only a single coefficient is non-zero. The It satisfies 
five heuristic criteria (out of six) used for comparing sparseness 
measures [40]. Hoyer index has been used in the IQA models 
of DIBR-synthesized images based on morphological pyramid, 
morphological wavelets [41] and DoG-based image 
representation [13]. We use the Hoyer index to measure sparsity 
of DoC and DoG bands in the proposed model. The Hoyer 
indices of DoC and DoG bands from the interval [0, 1] are 
concatenated and form the neural network input vector to 
GRNN. 



 

 

G. Feature Pooling 
In the field of IQA, machine learning techniques are widely 

used to model the human perception achieving excellent 
performance as they build functional relationship between the 
image features and subjective quality scores. A Generative 
Adversarial Network has been used in the no-reference quality 
metric of free-viewpoint images which uses masks to mimic 
dis-occluded regions [67]. A General Regression Neural 
Network (GRNN) as a powerful regression tool based on 
statistical principles shows good results even with smaller 
learning datasets and is particularly advantageous with sparse 
data in real-time environment [15]. GRNN has been used to 
model the relationship between perceptually relevant features 
and subjective scores in IQA model which handle multiple 
distortion [81]. It has been used in the IQA models of DIBR-
synthesized images [41], [13]. GRNN has been compared to 
support vector regression algorithm (SVR) in the models 
proposed for IQA of synthesized images based on 
morphological pyramid decomposition and morphological 
wavelet [80]. It has been shown that SVR-based model shows 
lower performances than GRNN-based model. We have used 
GRNN to model the relationship between the extracted features 
and subjective scores. The learned model is then used to predict 
the image/video quality. The only parameter is the spread, that 
represents the width of radial basis function of GRNN. The 
GRNN has been implemented using Matlab function newgrnn. 

IV. EXPERIMENTAL RESULTS 

In this section, used datasets and evaluation criteria are 
shortly described. We’ve described the choise of model’s 
parameters and show the performances of the proposed model 
calculated using datasets. We’ve also presented the parameter 
set of the proposed model for the prediction of images 
synthesized from compressed content with improved 
computational efficiency. The proposed DoC-DoG-GRNN 
model is compared to other IQA models and their performances 
are analyzed. 

A. Datasets and Evaluation Criteria 
The proposed metric is evaluated using publicly available 

datasets of DIBR-synthesized images and videos, namely the 
IRCCyN/IVC DIBR image dataset [1], [43], the MCL-3D 
stereoscopic image dataset [16], [44] and the IRCCyN/IVC 
DIBR video dataset [17], [45]. 

IRCCyN/IVC image/video dataset contains 12 reference 
frames/videos from three multi-view video plus depth 
sequences and 84 frames/videos synthesized using seven 
DIBR-synthesis algorithms. The frames are synthesized by a 
single-view synthesis (a frame at the “virtual viewpoint” is 
synthesized using captured texture frame and its associated 
depth frame from single viewpoint). The images/videos of these 
two datasets are synthesized from undistorted data, so the focus 
is on rendering artifacts. Video sequences BookArrival is of 15 
frames/s rate while Lovebird and Newspaper are of 30 frames/s 
rate. The frames resolution is 1024 × 768 pixels. Mean Opinion 

Scores (MOS) are provided for both the synthesized and for the 
reference frames/videos. The Difference Mean Opinion Scores 
(DMOS) is calculated by measuring the difference between the 
reference and the synthesized image MOS. 

The MCL-3D dataset contains 684 synthesized stereoscopic 
image pairs synthesized from nine image-plus-depth sources 
and associated mean opinion score (MOS) values. One third of 
images are of resolution 1024 × 728 and two thirds are of 
resolution 1920 × 1080. The majority of images (648 stereo 
images) are synthesized using both left and right views distorted 
by one of six distortion types: Gaussian blur, additive white 
noise, down-sampling blur, JPEG and JPEG-2000 compression 
and transmission error. Distortions have been symmetrically 
applied to left and right viewpoints to either the texture images 
or the depth maps or both texture and depth maps at four 
distortion levels before stereoscopic image rendering using the 
View Synthesis Reference Software [74]. The minority of 
images (36 stereo images) have been synthesized from 
undistorted texture and depth maps of single view using four 
DIBR synthesis algorithms. They contain only the distortions 
caused by imperfect rendering. 

In order to evaluate performances of the proposed model and 
other metrics, three evaluation criteria were used: Root Mean 
Squared Error (RMSE) to compute the prediction error, Pearson 
Linear Correlation Coefficient (PLCC) to compute prediction 
accuracy and Spearman Rank-order Correlation Coefficient 
(SROCC) for prediction monotonicity. The performances of the 
proposed model and all tested metrics are calculated using the 
Differential Mean Opinion Score (DMOS) for the 
IRCCyN/IVC image/video dataset and using the Mean Opinion 
Score (MOS) for the MCL-3D dataset. A novel methodology 
for performance evaluation which takes into account statistical 
significance of subjective scores, with the ability to analyse the 
data statistically after merging results from multiple datasets, 
can be used when the standard deviation of subjective scores is 
provided [68]. 

B. Performance Calculation Using Train-Test Process 
In the evaluation of the proposed model, the k-fold cross 

validation strategy is used to split the dataset with D images to 
k disjoint test subsets of similar size, each with D/k images (for 
k = 5 it is 20% images of the dataset), and to select the train 
subsets with D-D/k images (for k = 5 it is 80% images of the 
dataset) such that there is not overlap between the test and the 
train subsets. GRNN has been trained by mapping the features 
calculated from the train subset to the subjective scores. Then, 
the trained model has been used to predict the quality of the 
images from the test subset. The k-fold cross validation 
procedure is performed 1000 times to avoid over-fitting. We’ve 
analyzed the 5 ways for the performance calculation marked as 
Case1, Case1A, Case 2, Case 2A and Case 2B. 

Case 1: At each iteration of the k-fold cross validation 
strategy, GRNN is used to predict the scores of the test subset. 
Then, the performances of the test subset predicted scores are 



 

 

calculated. The median value of the performances through 
cross-validation iterations and through 1000 repetitions is 
calculated as the final model’s performances. 

Case 1A: The only difference to Case 1 is that the test subset 
predicted scores are additionally nonlinearly mapped to the 
predicted DMOSp using a five-parameter function (15) before 
performance calculation. 

DMOSp = a · score4 + b · score3 + c · score2 

 +d · score + e (15) 

The parameters a,b,c,d,e are obtained through regression to 
minimize the difference between DMOS and DMOSp. 

Case 2: At each iteration of the k-fold cross-validation 
strategy, GRNN is used to predict the scores of the test subset. 
Then, we concatenate the predicted scores from k iterations of 
single cross-validation process to get the array of the whole 
dataset predicted scores. We calculate the median of the whole 
dataset predicted scores through 1000 repetitions. Finally, we 
calculate the performances on the median of the whole dataset 
predicted scores as the final model’s performances. 

Case 2A: The only difference to Case 2 is that median of the 
whole dataset predicted scores are additionally nonlinearly 
mapped using a function (15) before performance calculation. 

Case 2B: The only difference to Case 2 is that the test subset 
predicted scores are additionally nonlinearly mapped using a 
function (15) before concatenation to the whole dataset scores. 

C. Model’s Parameters and Performances 
In this section, parameters selection is described. Parameters 

of the DoC-DoG-GRNN model are the number of resolution 
levels and the number of scales of DoC-based and DoG-based 
decompositions and the spread that represents the width of 
radial basis function of GRNN. For more efficient calculation, 
we’ve first explored the parameters of DoC-based 
decomposition using the DoC-GRNN model. Then, using the 
selected parameters of DoC-based decomposition, we’ve 
explored the parameters of DoG-based decomposition using 
DoC-DoG-GRNN model. The selected parameters allow the 
highest model’s performances. We have selected parameter set 
1 using IRCCyN/IVC image dataset. Then, using the selected 
parameters, we’ve calculated the performances of the proposed 
model for three datasets. 

We’ve explored performances of the DoC-GRNN model 
using different number of resolution levels (1-7), scales (1-7) 
and different values of spread parameter (0.001-0.05). The best 
performances are achieved when 5 resolution levels and 5 scales 
are used. Performances are further improved when the DoC 
bands from the first scale, di,1, and the second scale, di,2, are 
omitted, and three DoC bands at scales 3-5, di,3 − di,5(7), i = 
1,...,5, of each resolution level are used. To create initial images 
for multi-scale image decomposition at different resolutions, 
morphological close filter with lineshaped vertically oriented 
structuring element of length 2, SER = SE1, is used. The sparsity 

of 15 DoC bands is calculated using the Hoyer index as a scalar 
feature. The lowpass image copy of the lowest resolution level, 
s6,0, is also used for the feature extraction and the total number 
of features of DoC-GRNN model is 16. In order to improve 
model’s performances, we’ve also used image representation 
generated using the DoG operator to extract low-order structure 
at multiple scales and resolutions. For the generation of DoG 
bands at scales j, j = 1,..., Q, Gaussian function using an array 
of standard deviations, σj, is applied. Standard deviations at 
different scales, σj, are calculated such that σj = k j−1, where 
constant multiplicative factor k is determined by the number of 
low-pass images at one resolution level, Q: k = 21/Q. The 
selected size of the Gaussian kernel window is integer(6 ∗ σj). 
We have explored the performances of the DoC-DoG-GRNN 
model using DoC-based decomposition with 5 resolution levels 
and scales 3-5 at each level and DoG-based decomposition with 
different number of resolution levels (1-7) and scales (1-7), with 
different values of spread parameter (0.001-0.05). Although 
high performances of the combined DoC-DoG-GRNN model, 
with PLCC higher than 0.88, is achieved using different number 
of resolution levels and scales of DoG-based decomposition, 
we’ve selected P = 5 resolution levels and Q = 6 scales to 
achieve the highest value of SROCC. From DoG bands, ei,1−ei,6, 
i = 1,...,5, 30 scalar features are calculated using Hoyer index as 
a measure of sparsity. 

The GRNN input vector of the combined DoC-DoG-GRNN 
model is created by concatenation of 16 features calculated 
from DoC-based decomposition and 30 features calculated 
from DoG bands. The SROCC of the combined DoC-
DoGGRNN model, DoC-GRNN and DoG-GRNN models with 
fluctuation of the GRNN spread parameter for three datasets, 
IRCCyN/IVC image/video and MCL-3D dataset, are shown on 
Fig. 7. High performances of DoC-GRNN model are achieved 
mostly thanks to the capacity of morphological series to capture 
higher order properties of spatial random processes. The 
combined model, DoC-DoG-GRNN, shows better 
performances than the DoC-GRNN and DoG-GRNN models, 
for all datasets. From the results we conclude that both low-
order structure and high-order structure extracted 



 

 

 

Fig. 7. SROCC of the combined DoG-DoC-GRNN model, DoC-GRNN and 
DoG-GRNN models for IVC datasets (up) and MCL-3D dataset (down). 

TABLE I 
PERFORMANCES OF THE PROPOSED DoC-DoG-GRNN MODEL 
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at multiple scales and resolutions should be considered for 
improved results in quality assessment of DIBR-synthesized 
views. We’ve selected the spread parameter 0.014 as the value 
for the best performances of IVC image dataset. 

Performances of the proposed DoC-DoG-GRNN model for 
three datasets, IRCCyN/IVC image/video and MCL-3D dataset, 

calculated on five ways, Case 1, Case 1A, Case 2, Case 2A and 
Case 2B are shown in Table I. The best performances for all 
datasets are achieved in Case 2B. 

D. The Sensitivity on the Cross-Validation Partition Ratio 
We’ve tested the performances of the proposed QA model 

using three partition ratio, k = 10, 5, 4 of the k-fold 
TABLE II 

MODEL’S PERFORMANCES FOR DIFFERENT DATA PARTITION RATIOS 
 

     
     
     
     

 
     

     
     
     

 
     

     
     
     

cross-validation strategy, and the results calculated according to 
the Case 1 procedure are shown in Table II. With decrease of 
the training data partition size, the prediction performances 
decrease, although the partition ratio, k, has small influence on 
performance. For all tested partitions, SROCC is higher than 
91% for MCL-3D dataset and higher than 82% for 
IRCCyN/IVC image/video dataset. Performances shown in all 
other tables are calculated using k = 5. 

E. Comparison of the Proposed Model to Other IQA Models 
To validate the effectiveness of the proposed model, it is 

compared to the models designed to evaluate the quality of 
DIBR-synthesized images and to the models designed to 
evaluate the quality of natural images. In the evaluation of the 
training-free models, their scores are nonlinearly mapped to the 
predicted scores using a cubic logistic function [46]. In the 
calculation of video sequence score using training-free metrics, 
median time pooling of frame’s scores is applied, using all 
frames. Performances of the proposed and other tested models 
evaluated on IRCCyN/IVC image/video dataset and MCL-3D 
stereo image dataset are presented in Table III. Table IV 
contains performances of the metrics designed for QA of DIBR-
synthesized images with rendering distortions only, taken from 
the papers where they were proposed. 

The first group of metrics used for comparison designed to 
evaluate quality of DIBR-synthesized images, which use 
machine learning-based techniques, contains no-reference 



 

 

models, LVGC [20], SET [31], CSC-NRM [42] and 
referencebased models, Q [33], Q [32], ST-IQM [34] and LMS 
[23]. The proposed DoC-DoG-GRNN model is a no-reference 
machine learning-based technique. In the evaluation of the 
DoC-DoG-GRNN model, cross-validation process described in 
III B is applied and the performances are calculated as it is 
described in Case 2B. In the calculation of video sequence 
score, we’ve used non-linear time pooling of frame’s features. 
The best performances of the proposed DoC-DoGGRNN model 
are achieved when median time pooling is used for DoC-based 
features and max time pooling is used for DoG-based features. 
We’ve calculated the features of all frames. The performances 
of the random-forest-based metrics designed to evaluate quality 
of DIBR-synthesized images with distortions due to whole 
synthesis process, LVGC using 310 features and SET using 51 
features, are taken from [20] and [31]. The Convolutional 
Sparse Coding-based No-Reference Model, CSC-NRM (shown 
in Table IV), uses convolutional sparse coding to learn from 
local regions and computes a sparse representation of an image 
[42]. 

The performances of the reference-based models designed to 
evaluate the quality of DIBR-synthesized images using 
machine learning techniques, Q [33], Q [32], ST-SIQM [34] 
and LMS [23] are taken from the papers where they were 
introduced. Q [33] quantifies the impact of structure-related 
distortion on perceived quality of synthesized images using the 
low-level contour descriptor, the mid-level contour category 
descriptor and the task-oriented non-natural structure 
descriptor. Q [32] estimates the degree of texture and geometric 
distortions using coarse-scale and fine-scale features using the 
fact that the HVS first produces a coarse perception of the 
global image, and then focuses on specific local areas for a fine 
perception of image quality. Sketch Token-based Synthesized 
Image Quality Model, ST-SIQM [34], measures how classes of 
contours change after synthesis from higher semantic level 
using a mid-level contour descriptor. 

The metrics from the first group can reliably predict the 
quality of DIBR-synthesized images from IRCCyN/IVC image 
dataset. The proposed model DoC-DoG-GRNN outperforms all 
other methods from all groups, achieving high performances, 
PLCC = 0.93, SROCC = 0.889, in the evaluation of 
IRCCyN/IVC image dataset. The metrics DoC-DoG-GRNN, 
LVGC, SET, Q [32] and LMS [23] can also reliably evaluate 
the MCL-3D dataset. DoC-DoG-GRNN, LVGC and SET 
models achieve high performances in the evaluation of MCL-
3D dataset. The proposed DoC-DoG-GRNN model is 
comparable to the best state of the art LVGC model in the 
evaluation of MCL-3D datasets. The proposed DoC-DoG-
GRNN model can also evaluate the IRCCyN/IVC video dataset 
with high performances, PLCC = 0.9130, SROCC = 0.9035, 
outperforming all other methods from all groups. 



 

 

The second group of metrics contains training-free metrics 
designed to evaluate DIBR-synthesized images with rendering 
distortions, namely blind metrics: Q [30], MNSS [25], Q [60], 
OMIQA [47], APT [48], NIQSV [49], NIQSV+ [50] and 
reference-based metrics Q [59], LoGS [35], PSNR’ [64], EIS 
[21], EM-IQA [61], MP-PSNR [19], CT-IQA [62], MW-PSNR 
[26], BF-M [63]. The performances of MNSS are taken from 
[25]. The joint blind quality assessment and enhancement 
algorithm for 3D synthesized images Q [60] use a global 
predictor, Kernel Ridge Regression, to identify the surface of 
the regions with geometric distortions with low prediction error 
and integrates the Natural Image Quality Evaluator to judge the 
structural distortions. Efficient OMIQA [47] capture the 
geometric and structural distortions by identifying and 
removing geometrically distorted pixels, outliers, using non-
linear median filtering. Autoregression Plus Threshold (APT) 
model [48] captures the geometry distortion by calculating the 

error between the DIBR-synthesized image and its auto-
regression-based local prediction, and uses the threshold to 
highlight the most important regions. The five parameter 
nonlinear logistic function has been applied to APT scores 
before performances calculation as in [48]. NIQSV [49] and 
NIQSV+ [50] calculate the error between the DIBR-synthesized 
image and its morphologically filtered approximation and use 
morphological gradient to highlight the most important edge 
regions. NIQSV+ additionally detects black holes and 
stretching distortion. NIQSV+ is calculated with the following 
parameters: color weight K1 = 0.5, black hole weight k_z = 200 
and C = 1. 

Reference-based Q [59] captures holes and strip distortions 
to characterize the local quality of DIBR-synthesized image by 
analyzing local similarity and estimates the global sharpness 
using the Just Noticed Difference. LoGS [35] quantifies local 

TABLE III 
PERFORMANCES OF THE PROPOSED DoC-DoG-GRNN MODEL AND OTHER METRICS 

     

  
         

 

          

          

          

 
          

          

 
          

          

          

          

          

 

          

          

          

          

          

 

          

          

          

          

          

          

          

          

          
 



 

 

geometric distortions in disoccluded regions and global 
sharpness has been quantified using a reblurring-based strategy. 
The simple weighted PSNR, PSNR’ [64], compensates the 
object shift and uses a disparity map as a mask to weight the 
final distortion. The performances of multi-scale edge intensity 
similarity metric, EIS, are taken from [21]. 

TABLE IV 
PERFORMANCES OF METRICS DESIGNED FOR 

DIBR-SYNTHESIZED IMAGES 

 
 

    

     
      

 

  

 

   

  

 

   

 
  

 

   

  

 

   

 

  

 

   

  

 

   

  

 

   

  

 

   
Elastic metric, EM-IQA [61], quantifies the deformations of 
curves in the local distortion regions. Reduced version of MP-
PSNR [19] is calculated using only detail images from 
resolution levels 4 and 5 generated using structuring element of 
size 5 × 5 and the low-pass copy of the lowest resolution. A 
context tree based metric CT-IQA [62] measures how the 
structure change due to synthesized artifacts by measuring the 
dissimilarity in encoding cost between the original and 
synthesized image. Reduced version of MW-PSNR [26] uses 
only 11 wavelet sub-bands from resolution levels 4-7. Before 
wavelet decomposition, larger images of MCL3D dataset of 
size 1088 × 1920 are resized to 1024 × 1920. A bilateral filtering 
based model BF-M [63] use a contour, a shape and a texture 

based estimators to quantify the amount of structural and 
textural change in synthesized image. 

The training-free metrics of the second group can 
successfully predict quality of images from IRCCyN/IVC 
image dataset although there is a need for the performance 
improvement. Blind metrics Q [30], Q [60], MNSS and 
reference-based metrics, Q [59], LoGS and PSNR’ show higher 
performances when evaluating IRCCyN/IVC image dataset. 
Blind models OMIQA, APT and NIQSV+ show low 
performances when they evaluate MCL-3D dataset. Reference-
based metrics, Q [59], LoGS, MP-PSNR and MW-PSNR, can 
be used for the evaluation of MCL-3D dataset but with limited 
performances. Metrics from this group show lower 
performances in prediction of the video quality. Among 
training-free metrics, OMIQA [47] achieves the best 
performances in the evaluation of IRCCyN/IVC video dataset. 

The third group of metrics contains reference-based metrics 
designed for the evaluation of natural images. We’ve tested 
classic PSNR, structure-based metrics, SSIM, MS-SSIM [51], 
IW-SSIM [52], GSM [53], GMSD [54], PSIM [55], saliency-
based metric VSI [56] and sparseness-based SSRM model [57]. 
MS-SSIM [51] combines similarity measures calculated at 
different resolutions of low-pass pyramids. Information content 
Weighting SSIM measure, IW-SSIM [52], combines weighting 
maps of information content extracted from a Laplacian 
pyramid and multi-scale structural simularity measure. 

The Gradient Structure Metric (GSM) [53] uses gradient 
similarity to measure the change in contrast and structure. The 
Gradient Magnitude Similarity Deviation (GMSD) model [54] 
predicts image quality using gradient magnitude similarity 
(GMS) between the reference and the distorted images 
combined with the pooling using standard deviation of GMS 
map. The Perceptual SIMilarity (PSIM) model [55] uses the 
gradient magnitude maps at two scales, at a small scale to 
measure the variations in macrostructure in order to emulate the 
human’s basic perception, and at a large scale to reflect the 
variations in microstructure and to emulate the human’s 
detailed perception. Visual Saliency-based Index (VSI) [56] use 
visual saliency map (it can reflect how “salient” a local region 
is to the HVS) as a feature map to characterize the quality of 
local image regions and as a weighting function at the score-
pooling stage. Sparseness Significance Ranking Measure model 
(SSRM) [57] is based on the sparsity hypothesis that the visual 
quality assessment should be compatible with sparse coding, 
which is one of the main strategies of redundancy reduction 
implemented in our brain. 

 
 
 
 
 
 
 
 



 

 

 
TABLE V 

CROSS-VALIDATION OF THE PROPOSED MODEL 

     

 
 

  

   

 

  

   

 

  

   

 

  

   

    
The metrics of the third group can be successfully used to 

assess the quality of images from MCL-3D dataset. Among 
these models, SSRM shows the best performances in the 
evaluation of MCL-3D dataset. The metrics of this group show 
low performances when they are used to predict the quality of 
images/videos from the IRCCyN/IVC image/video dataset. 

F. Generalization Ability 
We’ve explored the generalization ability of the proposed 

DoC-DoG-GRNN model using the IRCCyN/IVC dataset for 
training and subsets of IVY dataset [75] for testing. IVY dataset 
contains 84 stereo images synthesized from undistorted content 
of 7 sources using 4 DIBR synthesis algorithms [76]–[79] by 
view extrapolation using only one reference view. IVY dataset 
has been created to study the effects of binocular asymmetry 
caused by mismatch between left and right image on quality of 
synthesized stereo images. 

Four subsets of IVY dataset are created considering four 
DIBR synthesis algorithm. The best performances are achieved 
in evaluation of subset 1, which contains images synthesized 
using VSRS algorithm [76], as shown in Table V. The lowest 
performances are achieved in evaluation of subset 4, which 
contains images synthesized using algorithm [79]. Algorithm 
[79] achieves consistency between the virtual views without 
distortion of depth values and allows generation of high quality 
image. The proposed model fails in the evaluation of 
synthesized images of high quality (without shapes and edges 
distortion). The performances of the proposed model evaluated 
on IVY dataset, when it is used for both training and testing 
calculated as case1A, are also shown in the Table V. 

G. QA of Images Synthesized From Distorted Content 
In Section IV C, we’ve selected model’s parameters 

(parameter set 1) using IRCCyN/IVC image dataset which 
contains images synthesized from undistorted content. It has 

been shown that the proposed model using parameter set 1 
shows high performances when predicting the quality of images 
of MCL-3D dataset, mainly synthesized from distorted content. 
For MCL-3D dataset, slightly better performances are achieved 
when the proposed model uses parameter set 2: DoC-based 
decomposition at 5 resolution levels with scales 2-7 at each 

resolution level, di,2-di,7, i = 1,...5, DoG-based decomposition at 
5 resolution levels with scales 3-6 at each resolution 

TABLE VI 
PERFORMANCES OF DoC-DoG-GRNN MODEL USING PARAMETER SET 2 

FOR MCL-3D SUBSETS BY MVD SOURCES 

      

      

      

      

      

      

      

      

      

      
TABLE VII 

MODEL’S PERFORMANCES FOR MCL-3D SUBSETS WITH 
DIFFERENT DISTORTION TYPES 

     

     

     

     

     

     

     
level, ei,3-ei,6 

i = 1,...,5, and spread 0.09. The number of features 

using parameter set 2 is 5∗6 + 1 + 5∗4 = 51. 

We’ve analyzed performances of the proposed DoC-
DoGGRNN model using parameter set 2 by nine MVD sources 
with images of smaller size, 1024 × 768, Baloon, Kendo, 
Love_bird1, and with images of larger size, 1920 × 1088, Shark, 
GT_fly, MicroWorld, Dancer, PoznanStreet, Poznan_hall2, 
each subset with 76 stereo images. The performances slightly 
vary by sources as shown in Table VI. The parameter set 2 can 
be used for prediction of images of both sizes, 1024 × 768 and 
1920 × 1088. 

We analyze performances of the proposed DoC-DoGGRNN 
model using parameter set 2 by individual distortion types 



 

 

applied to texture images or/and depth maps. We’ve used six 
subsets of the MCL-3D dataset, each with 108 images, 
synthesized from the content distorted by one of six distortion 
types: JPEG, JPEG-2000 compression, Gaussian blur, additive 
white noise, down-sampling blur and transmission error applied 
at four distortion levels. The proposed model achieves the best 
performance in evaluation of the images synthesized from the 
blurred content and compressed content, as shown in Table VII. 

To further study model’s performances in the evaluation of 
images synthesized from compressed content, we’ve used IST 
dataset [69] which contains images extracted from video 
sequences synthesized from texture/depth view pairs encoded 
with 3DV-ATM v10.0 [70], which is the 3D-AVC [71] 
reference software for MVD coding. IST dataset contains 180 
images from 10 MVD sequences synthesized using both left 

 

Fig. 8. SROCC of the proposed DoG-DoC-GRNN model, DoC-GRNN, DoG-
GRNN models for IST image dataset. 

TABLE VIII 
PERFORMANCES OF THE PROPOSED DoC-DoG-GRNN MODEL USING 

PARAMETER SET 3 FOR IST DATASET AND PARTS 
OF THE MCL-3D DATASET 

 
 

   

    

    

    

    

    

 
 

   

    

    
and right views compressed with different value of quantization 
parameter. The images have been synthesized by two synthesis 
algorithms, the VSRS-1D-Fast [72] and the VSIM [73]. 
Although the synthesized images contain both rendering and 
compression artifacts, the focus is on the distortion introduced 
by compressed texture and depth maps. To achieve 
computationally more efficient prediction of images 
synthesized from compressed content, we’ve selected 

parameter set 3: 4 resolution levels and 3 scales for DoC-based 
decomposition, di,1 − di,3, i = 1,...,4, 4 resolution levels with 
single scale for DoG-based decomposition, ei,1, i = 1,...,4, and 
spread parameter 0.022. Sparsity is calculated from 12 DoC 
bands, low-pass copy s5,0 and 4 DoG bands. The GRNN input 
vector of the DoC-DoG-GRNN model is created by 
concatenation of 13 features calculated from DoC-based 
decomposition and 4 features calculated from DoG bands. The 
number of operation for calculation of 17 features of DoC-DoG-
GRNN model using parameter set 3 is 10 times lower than for 
calculation of 46 features when parameter set 1 is used in 
unoptimized case. The SROCC of the composed DoC-DoG-
GRNN model, DoC-GRNN and DoG-GRNN models with 
fluctuation of the GRNN spread parameter using DMOS as 
subjective scores for IST dataset, is shown on Fig. 8. 

The performances of the DoC-DoG-GRNN model calculated 
using parameter set 3 evaluated on IST dataset and on two 
subsets of MCL-3D dataset, each with 108 stereo images 
synthesized from the content compressed by JPEG and JPEG 
2000, calculated as case1, are shown in the Table VIII. 

TABLE IX 
PERFORMANCES OF THE PROPOSED MODEL AND OTHER METRICS 

FOR IST DATASET 

 
 

    

     

 
    

    

    

    

 
    

    

 

    

    

    
The model achieves high performances using parameter set 3 in 
the evaluation of images synthesized from compressed content 
with higher computational efficiency. Performances of the 
proposed model and other tested metrics evaluated on IST 
dataset are presented in Table IX. The performances of the 
proposed model are better than other tested metrics. 

V. CONCLUSION 

Considering the fact that image structures are crucial for 
visual quality perception and that the primary visual cortex and 
other parts of the brain reduce redundancies of input visual 
signals in order to discover the intrinsic image structure, thus 
creating sparse image representation, we propose the 



 

 

referenceless model to evaluate the perceptual quality of DIBR-
synthesized views. We define an oriented morphological 
Difference of Closings (DoC) operator and use it to nonlinearly 
remove redundancies and extract the higher-order structure 
(fine-grained image details-texture) of high curvature, which 
correspond to distortion of shapes. Using the DoC operator, 
perceptually important details in image local structure and 
contrast to which the HVS is highly sensitive are extracted at 
multiple scales and resolutions. We introduce a new feature 
based on sparsity of DoC band. To linearly remove 
redundancies and to extract the low-order structure (edges), the 
non-oriented Difference of Gaussians (DoG) operator is 
employed. Both operators, DoC and DoG, are applied at 
multiple scales and resolutions to mimic a hierarchical, multi-
resolution and multi-scale character of HVS. Such two types of 
structural features play a complementary role in the visual 
quality assessment and they are sensitive to complex distortions 
of DIBR-synthesized views. Measures of sparsity of DoC and 
DoG bands are calculated as scalar features. Extracted features 
are mapped to the final score in a perceptually meaningful way 
by a trained general regression neural network. Performances of 
the proposed DoC-DoG-GRNN model that are calculated on 
four datasets of DIBR-synthesized views, IRCCyN/IVC 
image/video dataset, MCL-3D dataset and IST dataset 
demonstrate a high compatibility with perceptual quality scores, 
better than the tested state-ofthe-art models. The code for 
feature extraction is available at 
https://sites.google.com/site/draganasandicstankovic/code/ 
doc-dog. 
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