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Abstract—In this paper, we carry out a performance analysis
from a probabilistic perspective to introduce the EDHVW meth-
ods’ expected performances and limitations. Then, we propose a
new general error diffusion based halftone visual watermarking
(EDHVW) method, Content aware Double-sided Embedding
Error Diffusion (CaDEED), via considering the expected water-
mark decoding performance with specific content of the cover
images and watermark, different noise tolerance abilities of
various cover image content and the different importance levels
of every pixel (when being perceived) in the secret pattern
(watermark). To demonstrate the effectiveness of CaDEED, we
propose CaDEED with expectation constraint (CaDEED-EC)
and CaDEED-NVF&IF (CaDEED-N&I). Specifically, we build
CaDEED-EC by only considering the expected performances of
specific cover images and watermark. By adopting the noise vis-
ibility function (NVF) and proposing the importance factor (IF)
to assign weights to every embedding location and watermark
pixel, respectively, we build the specific method CaDEED-N&I.
In the experiments, we select the optimal parameters for NVF
and IF via extensive experiments. In both the numerical and
visual comparisons, the experimental results demonstrate the
superiority of our proposed work.

Index Terms—Halftone image, watermarking, halftone visual
watermarking, optimization, noise tolerance ability.

I. INTRODUCTION

Printed material, such as newspapers, books, magazines etc.,
has been widely employed in the distribution of multimedia
content for multiple decades. Although distributing multimedia
content in digital versions has been very popular in recent
years, printed material is still playing an important role. Due to
the explosive usage of digital and printed multimedia content,
multimedia security issues have arisen quickly in recent years.
In general, to protect a multimedia content, not only should
the digital versions of the multimedia content be protected,
but also the printed versions. Since most of the techniques,
which protects the digital versions, cannot be directly applied
to the printed versions, halftone image watermarking has
been specially developed for protecting the printed versions
of multimedia content over the past two decades. Numerous
issues still exist and the proposed work is developed for
resolving some of the problems.
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The paper is organized as follows. Section introduces
watermarking and halftoning. Section presents a literature
review. Section [LQ briefs the reader about the motivations
and contributions of the paper. Section || recalls three highly
related methods. Section [[II| presents the performance analysis
to the error diffusion based halftone visual watermarking
(EDHVW) methods from a probabilistic perspective. Section
proposes the new method. Section[V]gives the experimental
results. Finally, the conclusion is drawn in Section

A. Introduction of Watermarking and Halftoning

First of all, watermarking and halftoning (and the halftone
image) will be introduced respectively.

In watermarking, a message called a watermark is embedded
into another message called the cover message to generate
another message called a stego message, which is similar to
the cover message. The watermark can typically be decoded by
processing the stego message. The message may be an image,
video, audio, speech or other media content. This paper is
focused on image watermarking. In most applications, image
watermarks are invisible in the stego images, though they can
be visible sometimes. Some watermarks are designed to be
fragile [T}4]l, such that they are easily broken when edited, as
is typically required for authentication. Others are designed
to be robust [5H8]l, such that they can not be easily removed
when edited, as is typically required in copyright protection.
Still more are designed for data hiding with no specific
fragileness or robustness requirements, as in steganography.
Further watermarks are designed to be private where the
original cover message is needed during watermark decoding,
while some are public as the original cover message is not
needed in watermark decoding.

Halftoning is a special image processing technique to print
greyscale images on printed material. Usually only two tones
are available in printed material: white from the color of
the paper and black from the ink. Halftoning uses just 1 bit
(black and white) to approximate the original 8-bit (greyscale)
image such that, when viewed from a certain distance, the
halftone image will resemble the original greyscale image.
Nowadays, there are several classes of halftoning methods:
ordered dithering [O]l, error diffusion [IO{IZ]], dot diffusion

[T3}{T6]] and direct binary search [T7HI9].

B. Previous Work

Most regular watermarking methods for greyscale images,
such as Least Significant Bit embedding [20], cannot be



effectively performed on halftone images, because of the 1-
bit nature of halftone images mentioned above. Therefore,
researchers pay various attentions to this special area, halftone
image watermarking.

In general, halftone image watermarking methods can be
classified into two classes. The Class 1 methods [2T}26]] embed
a secret binary bitstream into a single halftone image (with
both the cover and stego images being halftone images) and
the embedded bitstream can be extracted later by applying a
certain algorithm (with respective to the embedding algorithm)
to the stego image. The Class 2 methods embed a
secret pattern (watermark) into multiple halftone images (with
N stego halftone images obtained from N cover halftone
images, N > 1, N usually equals 2), such that when the stego
halftone images are overlaid or the not-exclusive-or operation
is performed, the secret pattern will be revealed. As mentioned
in [32]], halftone visual watermarking (HVW) is employed to
represent the Class 2 methods. Since HVW methods usually
perform embedding during the halftoning process, most of
the HVW methods are designed based on different halftoning
methods and thus they can be further classified into different
categories. Among the HVW methods, error diffusion based
HVW (EDHVW) methods drew most of the researchers’
attentions due to the fact that error diffusion, which generates
halftone images with good visual quality while remains simple
implementation procedures, are widely adopted during the past
forty years.

Among the EDHVW methods, in 2001, Fu and Au in [@]]
proposed the first method called DHSED (Data Hiding by
Stochastic Error Diffusion) to embed a secret pattern in two
halftone images generated using stochastic error diffusion.
In 2003, Fu and Au proposed another method called Data
Hiding by Conjugate Error Diffusion (DHCED) [34]l, which
imposes conjugate properties in the two stego halftone images
according to the watermark pattern and improves the previous
poor performance [33]] significantly. Pei and Guo in [33]
proposed to shift the quantization threshold, which provided a
similar performance compared to [34]. In 2006, Chang et al. in
[B6]l proposed to firstly adjust the dynamic range of the original
greyscale image and then employ pattern lookup and pixel
swapping to perform embedding. The contrast of the revealed
secret pattern was low and the visual quality of the stego
images was quite poor compared to the original images, though
the details of the embedded halftone image was preserved with
this method. In 2008, Yang et al. found that when applying
the gradient attacks to the stego images generated by DHCED
[34]l, some visual boundaries of the secret pattern appeared in
the edge map. Thus, they proposed in to extend traditional
visual cryptography. However, the visual quality of the second
generated stego image dropped obviously compared to their
first generated image. Also, the contrast of the revealed secret
pattern in was much lower than that in [34], which
makes it inconvenient for the users to distinguish the secret
pattern from the background. In 2011, Guo and Tsai [39)]
improves the method in [33]] by adaptively shifting the quan-
tization threshold. Unfortunately, their performance is highly
depending on the lookup table training results. Meanwhile,
we analyzed the advantages and weaknesses of the approach

in [34] and then proposed Data Hiding by Dual Conjugate
Error Diffusion (DHDCED) in [38]], which makes amendments
to both stego halftone images rather than only the second
halftone image. The experimental results in [3§] show that
DHDCED improved the performance significantly. Recently,
we proposed to tackle the HVW problems from a theoretical
approach in by proposing a general formulation for HVYW
problems. Then the general formulation is applied to two
specific EDHVW problems by proposing two general methods,
named Single-sided Embedding Error Diffusion (SEED) and
Double-sided Embedding Error Diffusion (DEED). If the L-2
Norm is selected in DEED, DEED(L-2) can achieve better
performances compared to previous methods. Still, DEED
possesses weaknesses. It actually assumes that the identical
amount of embedding distortions for different pixel locations
are equally perceived and every pixel in the secret pattern is
equally important.

C. Motivations and Contributions

Although many EDHVW methods are developed in the past
years as introduced in Section [[-B| no general performance
analysis has been performed except the specific analysis to
DHSED and DHCED in [34]. Inspired by [34], we give a
general analysis to the typical EDHVW methods in this paper.
According to our analysis, the performance of EDHVW meth-
ods are limited by the cover image content. More embedding
distortions, which are less demanded intuitively, are likely
required when the EDHVW methods embed the secret patterns
into the bright/dark image regions to achieve a high correct
decoding rate.

Besides of the problem above, the assumption of DEED
also exists in most of the previous methods, while in reality,
identical distortions may be perceived quite differently due to
the different cover image content. Also, the watermark pixels,
which contains more structural information, tends to be more
important than others when considering the effect of human
perception in the HVW decoding procedure, i.e. the structural
information tends to be more sensitive to the human eyes
intuitively. If identical certain amount of watermark decoding
distortions is considered, distortions to the structural pixels
(especially for the pixels in the fine texture regions) may
significantly degrade the human perceived watermark infor-
mation, while the distortions at the flat regions usually affect
less when human perceives the decoded image. Under such
circumstances, we propose a new general EDHVW method
called Content aware Double-sided Embedding Error Diffu-
sion (CaDEED). The detailed contributions are as follows:

1: We theoretically analyze the expected performances
and limitations of the EDHVW methods from a
probabilistic perspective. The analysis indicates that
the performances of EDHVW methods are highly
related to the content of the cover images.

2: According to the analysis, we propose to formulate
the watermark decoding distortions, i.e. the differ-
ences between the extracted and reference water-
marks, with a linear combination of two models. One
is the traditional difference between the decoded and



original watermark. The other is our proposed model,
the difference between the decoded and expected
watermark calculated from the cover images’ content
and the original watermark.

3: With the new model of the watermark decoding
distortions, we propose a new general EDHVW
method called CaDEED by further assigning differ-
ent weights to the embedding distortions according to
the different cover image content and the differences
between the reference and revealed secret pattern.
With the problem formulation of CaDEED, we solve
the optimization problem to obtain a relaxed optimal
solution.

4: To better demonstrate CaDEED, we propose
two specific schemes, CaDEED with expectation
constraint (CaDEED-EC) and CaDEED-NVF&IF
(CaDEED-N&I). CaDEED-EC only considers the
expected performances with specific content of the
cover images and watermark. CaDEED-N&I adopts
the classical noise visibility function (NVF) @] to
calculate the weights for the embedding distortions.
We also propose a simple yet effective method to
calculate the weights for the watermark decoding
distortions, i.e. the importance factors (IF) for each
pixel in the secret pattern.

5: In the experiments, the parameters in CaDEED-
N&I are firstly selected via extensive experiments.
Then we propose a new measurement which con-
siders the watermark content and better quantifies
the differences between the proposed method and
previous methods. For better measuring the perfor-
mances of the EDHVW methods, we also modify the
traditional image distortion measure Peak Signal-to-
Noise Ratio (PSNR) via considering the cover image
content. By employing both the traditional and new
measurements, we demonstrate that our proposed
work outperforms both classical and latest EDHVW
methods obviously.

II. BACKGROUNDS

In this section, three previous important EDHVW methods,
DHCED, DHDCED and DEED, will be introduced respec-
tively.

Here some common notations, which will be employed
throughout this paper, is introduced. Let X; and X5 be the
original grey-scale images, which can be identical or different.
Let Y7 and Y5 be the generated stego halftone images, W be
the secret binary pattern to be embedded, W, be the collection
of locations of the white pixels in W, and W}, be the collection
of locations of the black pixels in W. Let ® represent the
binary AND operation, and let ® be the binary not-exclusive-
or (XNOR) operation.

The goal of DHCED, DHDCED and DEED is to generate
Y; and Y5 from X; and X5, such that, when Y7 and Y5 are
overlaid (performed XNOR operation between them) to reveal
Y1 ® Y5, it will resemble W.
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Fig. 2: DHCED system.

A. DHCED

In DHCED, Y is generated by performing regular error
diffusion on X, as shown in Fig. [T] and the regular error
diffusion process is described by Egs.

ur(i, ) = w1(6,§) + Y bk, 1) x ex(i =k, 5= 1), (1)

[0, (i) < 128
n(i ) = { 255,  wy(i,j) > 128 2)
e1(i, ) = ui(i, j) — y1(4, 5), 3)

where u; (4, j) is the sum of the current pixel value z1 (4, j) and
the past error (diffused from past pixels ) to be carried by the
current pixel, h(k,![) is the error diffusion kernel and e; (¢, j)
is the error generated when processing the current pixel. Note
that the to-be-diffused error e (i, 7), i.e. the quantization error,
is defined as the difference between w; (4, j) and y1 (4, j). Two
common error diffusion kernels are the Steinberg kernel
and Jarvis kernel [[TT]).

After obtaining Y7, the second halftone image Y> is gen-
erated by applying the DHCED system referencing to Xo,
Y1 and W, and the DHCED system is shown in Fig. [2] For
(i,7) € Wy, yo(i,7) will be ‘favored’ to be conjugate to
y1(4,7), and the ‘favor’ mechanism will be explained later.
For (i,7) € Wy, if X1 = Xs, then ya(i,7) = y1(4,5) will
be forced to be carried out. If X7 # X, then y5(4,j) will be
favored to be identical to y1 (3, j).

The ‘favor’ mechanism works as follows. The DHCED
system will perform a trial quantization on ws (7, j). Then if
120, ) # v1(5,5) & w(i, ), where y(i,§) & wli, j) is the
favored value of y» (1, j), the minimum distortion Au(i,j) to
toggle the current pixel is calculated. If the minimum distortion
is acceptable, i.e. Au(i,j) < T, then the toggling will be
performed. The threshold 7" controls the tradeoff between the
contrast of the revealed secret pattern and the visual quality
of the stego halftone image Y. As T increases, the contrast
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Fig. 3: DHDCED system.

of the revealed secret pattern increases and the visual quality
of the stego halftone image Y5 decreases.

B. DHDCED

Although DHCED gives good performance, it still possesses
weaknesses. A certain type of artifacts called boundary artifact
will appear in Ys, and are mainly located in the flat regions at
the bottom and right boundaries of the locations where (4, j) is
co-located in W;, when X; = X5. If the Sobel filter is applied
to Y5, the boundary artifacts will be more obvious on the edge
map obtained.

To reduce the boundary artifacts and improve the perfor-
mance of the watermarking technique, we proposed DHDCED
which perform amendments when generating both Y; and Y5.
The DHDCED system is shown in Fig.

In DHDCED, Y; and Y, are generated simultaneously.
For (i,5) € Wy/W,,, DHDCED will firstly perform trial
quantization on wus(4,5) and ws(i,7). Then two minimum
distortions will be computed according to the strategies below.

Strategy 1:

Obtain Aus(i,j) when ys(i,j) is favored to be
conjugate/identical to y (4, 7).

Strategy 2:

Obtain Awuq(4,5) when y;(i,j) is favored to be
conjugate/identical to yo (4, 7).

After Auq(i,7) and Aws(i,5) have been calculated, the
strategy causing the smaller distortion is selected. Similar
to DHCED, T is also exploited during the calculations of
Auq(i,7) and Ausg(i,j) to control the distortion to be ac-
ceptable by the user. Note that when X; = X5, DHDCED
will force y1 (7, ) and y2(7, ) to be identical.

C. DEED

In [32], we proposed a general formulation for general
HVW problems as Eq. ] shows.

min Dy, + X\ * D, “4)

where Dj, stands for the distortion caused during the water-
mark embedding process, and D,, stands for the difference
between the decoded watermark and the original watermark,
A<0.

After Eq. ] was proposed, two specific EDHVW problems
were solved by applying this general formulation. The two
problems will both generate and embed a secret pattern
(watermark) W into two halftone images, Y; and Y5, such that
when the stego images are overlaid or an XNOR operation
is carried out between them, the secret pattern is revealed.
In these two problems, one only embeds the secret pattern
into one out of two cover images (solved by the general
method SEED), while the other embeds the secret pattern
into both cover images (solved by the general method DEED).
According to the results in [32]), DEED gives obviously better
results compared to SEED, thus only DEED will be briefly
introduced here due to limited space.

In DEED, to perform the necessary toggling to change the
output halftone value, a distortion Awy; is added to zq;
and a distortion Ausg; is added to x2; to change the pixel
values before quantization. By letting AU; and AU, be the
distortions to be added to X; and X» during the watermark
embedding process and ED(.) be the regular error diffusion
process, DEED can be formulated as Eq. [5] shows.

actin AU+ [[AU[[; + A [|[W

— (ED(X1 + AUy) o ED(X2 + AU2)) [P,
)

where ‘o’ stands for the decoding operation which can be
either the AND operation (®) or XNOR operation (®).

To our best knowledge, Eq. [5] can not be solved directly.
Even brute force will have problems since as the image
size goes up the possible solution set increases exponentially.
However, this optimization problem can be relaxed and then
solved accordingly. If we assume the regular error diffusion
processing order is from the first pixel x11(x2,1) to the last
pixel z1 n(z2 n), where N is the number of pixels in X;(X>),
and Y7 and Y, are generated simultaneously, Eq. [5] can be
reformed and relaxed to Egs. [6] and

J1 :Aulr,?,iguz,l {|Au1 1P + |Aug 1 |P
+ A led(z21 + Aug ) oed(x11 + Aug 1) — wi|P},
(6)
Jn :Aul,ril,iguz,n {|Auy [P + |Aug [P
+ A led(xapn + Aug ) 0 ed(x 5 + Aug ) — wy [P
+Jn-1}, (7N

where n € {2,3,..., N}, and J; and J,, are the minimum cost
obtained by the optimization process.

Then the relaxed optimization problem can be solved easily
by calculating the best Auy ; and Aug ; for the current pixels
71, and xo; and the final stego halftone images Y7 and Y5
can be generated by simply performing regular error diffusion
on X; + AU; and X, + AU, respectively. According to the
results in [32]], when the L-2 Norm is employed in DEED, its
performance is superior compared to previous methods. Thus,
DEED(L-2), as the latest EDHVW approach, will be compared
in the experiments in the latter section.



ITI. PERFORMANCE ANALYSIS OF EDHVW METHODS

Based on our past experience, error diffusion based HVW
(EDHVW) methods usually perform differently on different
cover images. The performance is limited when certain cover
images are employed, which is caused by the limited degree of
freedom of halftone images. If users still demand a relatively
high correct decoding rate, the embedding distortion will be
excessive. In this section, we will introduce the expected
performances and limitations of EDHVW methods from a
probability perspective by generalizing the analysis of DHSED
and DHCED in [34].

During the analysis, X; and Xy will always be the original
grey-scale images. Y; and Y, are the two stego halftone
images. In this section, the subscriptions O and N stand for
AND operation and XNOR operation respectively.

Although EDHVW methods will embed a secret pattern
into two or more halftone images, here the situation of two
stego halftone images will be considered and introduced, as
the analysis can be easily implied to the situations of more
than two stego halftone images.

Before analyzing EDHVW methods, we will discuss the
regular error diffusion first. In error diffusion, the halftoning
technique tends to preserve the local intensity of the original
grey-scale image. Consider a rectangular region R; around
(i,7) in X; has a constant intensity A and the co-located
region Ry around (4,j) in X5 has a constant intensity B,
where X; may or may not be identical to X5. Assume the
left half of the region is in the white region W,, of W.
Similarly, assume the right half of the region is in the black
region Wy, of W. If regular error diffusion is applied to X;
to generate Y7 gp, the probability distribution of the halftone
pixel y1. gp(i,7) is

A
1,20 (%,7) 55] 955 (3
255 — A
P 1, 7) = 0] = ———. 9
[y1,ep(4,7) = 0] 255 )]
The expectation of y1 gp(4,7) for (3,7) € Ry is
Ely1,ep(i,7)] =0 Ply1,ep(i,j) = 0]
+ 255 Ply1,gp(i,j) = 255]
255 — A A
—0. 220 " 4955,
0 255 +25 255
= A, (10

Therefore, the percentages of black and white pixels in
Y1 gp in Ry are A/255-100% and (255 — A)/255 - 100%
respectively and the pixels are distributed evenly in R;.

Assume that when a EDHVW method embeds the secret
pattern, the distortion during the embedding process is reason-
ably small, then the average intensity in R; and Ry could still
be approximately A and B respectively. Then the probability
distributions of the stego halftone pixels y1(i,7) and ya(7, j)
are

.. A
Ply.(i,j) = 255] = 255’

255 — A
255

(1)

Plyi(i,j) = 0] ~ (12)

B
P[yQ(Zm]) = 255] ~ ﬁv
256 - B
255
The expectations of y;(i,7) for (i,5) € Ry, ya(i,j) for
(i,7) € Ry are

Ely1(i,5)] = 0+ Ply1(i, ) = 0] + 255 - Ply1(i, j) = 255]

255 — A A
27 2 955,
255 255 255

13)

Plys(i,j) = 0] ~ (14)

~0-

= A, 5)

Elya(i,5)] = 0+ Plya(i, ) = 0] + 255 - Ply(i, j) = 255]
2% - B B

255 . ——
oes 55

~0-
255

= B. (16)

The percentages of black and white pixels in Ry in Y3
are approximately A/255-100% and (255 — A)/255 - 100%.
The percentages of black and white pixels in Ry in Y5 are
approximately B /255 - 100% and (255 — B)/255 - 100%.

Let Y4 be the overlay/AND operation decoded image. Then
yal(i,j) is 255 if and only if y1 (4, j) = y2(i,j) = 255. Let Yo
be the XNOR operation decoded image. If 1 (4, j) = y=2(1, j),
yo (3, j) will be 0. Otherwise yo (4, 5) = 255.

In the left half of Ry and Ro, which are in W, y1(4,7)
and ys (4, j) are favored to be identical to each other such that
y1(Z,7) and ya(4, ) tend to be black and white at the same
time. To investigate the behavior of y4(%,j) and yo(i,7), we
consider four different cases separately: (1)255 > A > 127,
955 > B > 127; (2)255 > A > 127, 127 > B > 0; (3)127 >
A>0,256>B>127, 127> A >0,127> B > 0.

From cases (1)-(4) we can conclude that Eq. (I7)-(20) can
effectively describe the probability distribution for cases (1)-
(4), while Eq. and describe the expectations of Y
and Yy where (i, ) € W,.

Plya(i, j) = 255] = Ply1(i,j) = 255 Nya(i, j) = 255
~ min(Ply. (i, j) = 255], Ply2(i, j) = 255])

Plyai,j) = 0] ~ 22— 7;51-;(14,3) (18)
Plyo(i, j) = 255] = P[(y1(i, j) © y2(i, j)) = 255

~ 255 —2|514;—B| (19)

Plyo(iyj) =0 ~ 222 (20)

Then

min(A, B) 255 — min(A, B)
~Q. 2 oEE .
0 255 255 255
= 255 — min(A, B),

2L



Elyo(i,j)] = 0 Plyo(i, j) = 0] + 255 - Plyo(i, j) = 255]

|A — B| 255 — |A — Bj
~0- 25— ——
255 + 255
=255 — |A — B|. 22)

In the right half of R; and Rs, which are in Wy, y1 (4, 7)
and y»(i,7) are favored to be conjugate to each other such
that 1 (4, 7) and y2(7, j) tend not to be black at the same time.
To investigate the behavior of y(4,5) and yo(i,7), we also
consider four different cases: (1)255 > A > 127, 255 > B >
127; (2)(255 > A > 127,127 > B > 0 or 127 > A > 0,
255 > B > 127) and A+ B < 255; (3)(255 > A > 127,
127 > B > 0or 127 > A > 0, 255 > B > 127) and
A+ B > 255; (4)127 > A > 0, 127 > B > 0. After we
divide the problem into cases (1)-(4), we can combine the
four cases as two cases: (1)A + B > 255, 2)A + B < 255.

For case(1), there are more white pixels than black pixels
in both R; and Rs. The percentage of black pixels in the
right half of Ry of Y7 is about (255 — A)/255 - 100%. The
percentage of black pixels in the right half of Ry of Y5 is about
(255 — B)/255 - 100%. Consider the situation that the black
pixels in the right half of R; and the black pixels in the right
half of Ry are at different locations since 1 (¢, j) and y2(4, j)
tend not to be black at the same time when (7, j) € W},. Then

255-A  255-B
255 255
2.255 - A— B
= 2
255 ’ (23)
. A+ B—255
Plya(i,j) = 255] & —— =, (24)
. o 2.255 - A— B
Plyo(i,7) = 0] = Plya(i,j) = 0] = —
(25)
. o A+ B—255
Plyol(i, j) = 255] = Plya(i, j) = 255] » ————.
(26)

Then

Elya(i,5)] = 0- Plya(i,j) = 0] + 255 - Plya(i,j) = 255

2-25b—A—-B A+ B —255
0 255 295 255
= A+ B — 255, Q7

Elyo(i,j)] = 0- Plyo(i, ) = 0] + 255 - Plyo(i, j) = 255

N 2-255—A—B+255 A+ B —255
- 255 255
= A+ B — 255. (28)

Consequently, the contrasts C's between the left and right
halves of R in Y4 and Yy can be expressed as

E[yA(Z’])‘(Z’]) € Ww] — E[yA(Z>])|(Z7]) € Wb]

Elya(i, j)I(i,7) € W
255 —min(A,B) — (A+ B — 255)
B 255 — min(A, B) ’

CSA =

(29)

E[yO(Z7.7)|(7’7.7) € Ww] *E[yo(l,])l(l,]) € Wb]
E[?/O(L.])'(L]) € Ww]

255 —|A— B| - (A+ B —255)

B 255 — |A — B| ‘

CSO =

(30)

For case(2), there are more black pixels than white pixels
in Ry and Rs. Consider the situation that the black pixels in
the right half of R; and the black pixels in the right half of
Ry are at different locations, except 25255’5‘4 -100% + 2525’533 .
100% — 1 - 100% percent of pixel pairs which can only both

be black. Then

P[yA(Z’]) = O} = P[yl(laj) = OU:U?(i’j) = 0} ~ 17 (31)

Plya(i,j) = 255] = Ply1(i, j) = 255 Nya(i, j) = 255] = 0,

(32)
Plyo(i,j) = 0] = P[(y1(i,7) © y2(i,5)) = 0]
~1-100% — (% - 100%
% -100% — 1 - 100%)
Plyo(i, ) =265 ~ 22T D) )

255

Then
~0-14+255-0
=0, 35)

Elyo(i,5)] = 0- Plyo(i, j) = 0] + 255 - Plyo(i, j) = 255]

A+ B 255 — (A + B)
0 255 255 255
=255 (A+ B). (36)

Consequently, the contrasts C's between the left and right
halves of R in Y4 and Yy can be expressed as

E[yA(Zvj)KZ’j) € Ww] — E[yAOvJ)l(ZvJ) € Wb]
Elya(i, 7)I(i,5) € Wa]
255 —min(A,B) -0
255 — min(A, B)
) 37

CSA =

=1

Elyo (i, j)I(i,4) € W] — Elyo(i, j)|(i, j) € W]
E[y0(27j)|(l7j) € Ww]
255 — |A — B| — (255 — (A + B))

B 255 — |A — B ’ (38)

CSO =

To summarize, for (i,5) € W, the expected values of
yA(zm]) and yO(%]) are

Elyo(i,j)|(i,j) € Wu] =255 —[A—B[.  (40)



For (i, j) € Wy, the expected values of y 4 (¢, j) and yo (4, §)
are
A+ B <255
A+ B > 255
(4D

(42)

Ny 0,
Bl ewid ={ G, 5

Elyo(i, j)|(i, ) € Wy] = [(A+ B) — 255|.

The contrasts between the left halves and the right halves
of R, which are generated by AND operation and XNOR
operation, are

cen L A+ B <255 i

SAN 1 ARB2E A4 B > 255 43)
255 — |A — B| — |(A+ B) — 255]

Cso ~ . 44

5o 255 — |A— B “4)

Eqgs. (39)-(@4) present the expected values and contrast for
the AND operation and XNOR operation decoded images in
an ideal situation.

The above equations give the expected performances and
limitations of EDHVW methods, where the expected perfor-
mances are highly depending on the content of the cover
images and watermark. In practice, the specific decoding
results may exceed the theoretical limits if certain embedding
distortions are allowed.

IV. CONTENT AWARE DOUBLE-SIDED EMBEDDING ERROR
DIFFUSION

According to the analysis in Section the performances
of the EDHVW methods are affected by the specific content of
the cover images and the secret pattern. To achieve a relatively
high correct decoding rate, more embedding distortions, which
are less desired, are demanded for the dark/bright cover
image regions compared to others. Unfortunately, to our best
knowledge, the existing methods, such as DEED in [32]],
DHDCED in and DHCED in [34], never consider this
issue. Besides, the majority of the EDHVW methods including
the latest method DEED have not considered the effect of
human perception when formulating the embedding distortions
and the differences between the reference and decoded secret
pattern, though it formulate and solve the specific EDHVW
problem decently. Therefore, we improve the problem formu-
lation of DEED and propose a new general method, Content
aware Double-sided Embedding Error Diffusion (CaDEED)
by considering the content of the cover images and the
secret pattern. Note that the definition of D,, in Eq. {4| is
amended here from the differences between the original and
decoded watermark to the differences between the reference
and decoded watermark, for more generalization.

The existing EDHVW methods only measure the difference
between the original and decoded secret pattern. They never
consider the performance limitations caused by the content
of the cover images and the secret pattern. To achieve a
high watermark correct decoding rate, they tend to induce
more embedding distortions to the dark/bright image regions,
which may further increase the risk of artifact appearances
(the traces of the embedded secret pattern) and result in more
image quality degradations to the stego images. To better

formulate the differences between the reference and decoded
secret pattern, by considering the expected performances of
specific content of the cover images and the secret pattern, we
propose to define D,, in a more general approach as Eq. [43]
shows.

Dy =|la* W —(Y10Y2)[P + 3% |EP — (Y1 0Y2)[”|4,
(45)

where EP = F[(Y1 o Y2)] stands for the expected decoded
secret pattern calculated via Eqs. 3942 EP, Yy, Y2 and
W stand for the vector form of EP, Y7, Y5, W and each
of them contains N elements, and « and (3 are the assigned
weights for controlling the tradeoff between the two calculated
similarities. When [/« increases, the proposed model favors
the decoded secret pattern to be more similar to the expected
decoded secret pattern and vice versa.

Different content of the cover images and the secret pattern
not only gives different performances, but also affects the
human perceived results. Previously, DHCED, DHDCED and
DEED all treat the distortions caused during the embedding
process as equally important for every pixel in the stego
images. In fact, according to the human visual system (HVS),
different image gives different perceived content if identical
distortions are added. In this paper, since we are embedding
the secret pattern by amending both Y7 and Y5, we define the
weighted distortions caused during the embedding process Dy,
as Eq. [46] shows.

Dh = DY1 + .Dy2 = ||M1 * |X1 — (Xl -+ AU1)|p||1
+ ||M2 * |X2 — (Xz + AU2)|pH1
= [[My. * [AU[P[[1 + |[M2.  [AUz["[1,
(46)

where M, M, X, X5, AU, and AU, stand for the vector
form of My, M5, X1, X2, AU; and AU, and each of them
contains N elements. Note that AM/; and M, are masks which
assign weights to different distortions at different locations,
i.e. different distortion tolerance ability according to different
image content. M7 and M> can be calculated via any specific
method.

For the secret pattern, researchers used to treat every pixel
equally. From our observation, different pixels in the secret
pattern tend to have different levels of importance. The pixels,
which contain more structural information, tend to be more
important than other pixels, because human eyes are more
sensitive to the structural information. Besides, if those pixels
can not be correctly decoded, users can only perceive partial
or even undistinguishable decoded secret pattern. In the worst
case, the secret pattern can hardly be recognized correctly.
Therefore, in CaDEED, the weighted differences between the
reference and decoded secret pattern are defined as Eq.
shows.

Dw :H‘I’ * (O[* ‘W— (Yl OY2)|p

+ A *|EP — (Y1 0Y2)[")[1, (47)

where W stand for the vector form of ¥ and contains N
elements. Note that U assigns weight to different pixels in the



secret pattern and it can also be calculated via any specific
method.

The two stego halftone images Y; and Y5 can be generated
by Egs. and [49] by letting ED(.) be the regular error
diffusion which is described in Fig. [T}

Y, = ED(X; + AU,) (48)

Y, = ED(X5 + AU,) (49)

By substituting Eq. 46] 7] 48] and 9] into Eq. i} CaDEED
can be described as Eq. [50] shows.

min
AU,;,AU,
+ A% ||O. o (ax|W —=(Y10Y2)P

+ 8% |EP — (Y10Y2)")|h

[[My. % [AU[P|[1 + [[Mz. * [AU2["|[1

(50)

The solution to Eq. 50| is essentially the global optimum
solution of CaDEED’s problem. However, to our best knowl-
edge, there is no closed-form solution to Eq. [50| due to the
unique property of halftone images and the error diffusion
process. Since the size of the possible solutions set increases
exponentially as the image size increases, brute force also can-
not be applied. Fortunately, by applying a similar optimization
method as in []3_7[], we can manage to find a relaxed optimal
solution to Eq. [50] as follows.

In error diffusion process, there exists a feedback loop.
Then, latter generated halftone pixels are depending on former
pixels. Thus the distortions to be added to the latter pixels
are also depending on previous distortions as shown in Eq.
[51] which is obtained by rewriting Eq. [50] using the elements
instead of vectors and considering the dependencies among
the elements.

min
Auy1,Auy 2., Auy N, Aug 1,Auz 2,...,Aus,

+ |mag * [Aug ofP| + [ma 3 * [Aug 3]P| + ...

Pl [ma2 * [Aug P
+ |ma.3 * |Aug 3|P| + ... + [ma N * |Aug n|P|

+ Ak (Johy * (a* |ed(x21 + Aug 1) o ed(z1,1 + Augg)
—w1|P + B |ed(x2,1 + Aug 1) o ed(x1,1 + Aug 1) —ep1|P|)
+ [the * (a * led(z2,2 + Aug2) 0 ed(z1 2 + Auy 2) — wa|?

+ B x |ed(za,2 + Aug 2) o ed(z1,2 + Aug 2) — epa|?)]

+ |ihg * (a * led(z2,3 + Aug ) o ed(x1,3 + Auyg) — ws|?

+ B * |ed(z2,3 + Aug 3) o ed(z1,3 + Aur ) — eps|?)| + ...

{Ima1 * |Aug 1 [P
N

+ [ma N * |[Auy N[P| 4 [ma1 * [Aug

+ [N * (a* led(za, N + Aug N) o ed(z1,§ + Aur N) — wn|?

+ B x |ed(zo, N + Aug n) o ed(z1,n + Aur n) — epn|P)])},
(51)

where Vi € {2,3,..,N}, Auj; depends on
{Aul,l, ey Auu,l}, Vi € {2, 3, ..., N}, AU/Q’Z‘ depends
on {Augq,...,Aug;_1} and ed(.) stands for carrying out
regular error diffusion, as described in Egs. |I|-|§L on the
current pixel and diffusing its quantization error to the latter
pixels.

If we assume the regular error diffusion processing order is
from 1 to IV, the joint optimization problem in Eq. [51] can be

reformed into ordered separate optimization problems in Eq.
52

min
Aul,N,Aug)N

min
Aug 1,Auz 1

+ "ITLLQ * |AU172‘p| —+ \m173 * |A’UJ173|p| —+ ...

min  {...
Aulwg,Augyz

{lma * [Au [P
+ |Imi N * |Aur N |P| 4 Mo * |Aug 1 |P] 4 [mag * |Aug 2|P|
+ |ma.3 * |Aug 3|P| + ... + |ma N * |Aug n|P|

+ A ([t * (o |ed(z21 + Aug 1) oed(x1 1 + Aug 1)
—wi|P + B |ed(x2,1 + Aug 1) o ed(x1,1 + Aui 1) — ep1|?)]
+ |2 * (a* led(x2,2 + Aug ) 0 ed(z1,2 + Aug 2) — wal?

+ B * |ed(22,2 + Aug2) o ed(x1,2 + Auy o) — epa|P)]

+ |13 * (o x |ed(za,3 + Aug 3) o ed(z1,3 + Auy z) — wsl?

+ B |ed(xo,3 + Aug 3) 0 ed(x1,3 + Aug 3) — eps|?)| + ...

+ [N * (a* led(xo, N + Aug n) 0 ed(z1 N + Aug,n) — wn|P
+ B x|ed(za, N + Aug n) o ed(z1,n + Aur N) — epn|P)])
N (52)

For convenience, S; in Eq. [53]is employed to represent the
cost calculated when processing the i-th pixels of X; and Xs.

Si =|ma i * [Aug 4P| + [ma * |Aug;|P|
+ Ak [ * (a* led(za,; + Aug ;) o ed(x1; + Aug ;)
—w; [P + B |ed(x2,; + Aug ;) o ed(z1,; + Augy)
—epi|P)|, Vi € {1,2,3,..., N}, (53)

where Vi € {2,3,...,N},S; depends on {S1,...,S;_1} since
Vi € {2,3,..., N}, Au; depends on {Auy, ..., Au;_1}.
Then Eq. [52] can be reformed to Eq. [54] with Eq. 53}

i S i
Aullyrll,lgug‘l { 1 Aulgl,lgugyg {52 T
+ min Sn_2+ min Sn_
Aui N_2,Auz N_2 { N2 Aui N—1,Auz N_1 { N
+  min {Sn}}}.- 1} (54)

Aur,N,Auz, N

Currently, these separate problems’ optimization order in
Eq. f4]is from N to 1, which is inconsistent with the error
diffusion processing order. To our best knowledge, due to the
existing dependencies among all the variables, Eq. [54] can only
be solved if the optimization order is relaxed to be consistent
with the error diffusion processing order.

Since Awuy n and Aug y depend on all previous variable
distortions, Eq. [54] can be relaxed to Eq. [53] by relaxing the
optimization order between the variable pairs (Auq n, Aug n)
and (Auy N, Auz N).

min

u1,2,
+ min Sn_2+
Auy,N_2,Auz N_2 { A

{Sn}}3}

min
Auy 1,Auz 1

{51 + {SQ + ...
A u2 2
min
w1, N—1,Auz N_1

{Sn-1}

+ min (595)

Auy N,Auz N



Then similar relaxations can be performed on the remain-
ing joint optimization problem. If we continue to carry out
relaxations, Eq. (56) can be finally obtained.

A?L1I,I1171£u2,1 {Sl} + Aulr,?ylguzz {52} toe
+ min Sn_2} + min Sn_

Auy N—2,Auz N_2 { N 2} Aui N—1,Auz N1 { N 1}
+ min {Sn} (56)

AulyN,Aug,N

Then Eq. [56] can be reformed to Eq. based on the
processing order of regular error diffusion (from 1 to N).

i i i S S
A’LLLI:jl,lg’ug)N AUIITI;’IEUZQ {Aulg{lilugJ { 1} + 2} +
+ Sy} (57)

Then Eq. [58] and [59 can be derived from Egs. [57] and
and the variables can be easily solved from (z11, ®21) to

(x1,n, T2 N) ONCe a pair.

Cy =

min
Aul)l,Augyl

+ Ak |y x (ax |ed(xa1 + Augp) o ed(z1,1 + Aug )
—w1|P + B |ed(x21 + Aug 1) 0 ed(x1,1 + Aug 1)
—ep1|?)l}, (58)

{Iman * [Aug 1P| + [mag * [Aug 1 [P

Cn =

min
Au17n,Au2,n
+ A |y, x (o led(z2,n + Augy) 0 ed(x1 5 + Aug )
—wp|P + B |ed(x2,, + Aug ) 0 ed(x1,, + Aui p)

- epn‘p” + CTL—1}7 (59)

{man * [Augn [P + [mo.n * [Aug o |7

where n € {2,3,..., N} and C and C,, are the minimum cost
obtained during the optimization process.

With AU; and AU, solved according to Eq. [58 and [59] Y3
and Y5 can be obtained by Eq. 48] and [A9] respectively.

In practice, CaDEED will calculate the optimal Awug;
and Awug; for the current pixels z;,; and x5, first. Then
CaDEED will perform regular error diffusion on x ; + Au; ;
and z2,; + Aug; separately. When calculating the optimal
Awuq; and Awug ;, the possible solutions set can be reduced
to a much smaller set with only four possible solutions: (a)
Auy; = Aug; = 05 (b) Auy; = 0, Aug; # 0; (¢) Aug; =0,
Auq; # 0; (d) Aug; # 0 and Aug; # 0. Since the cost in
option (d) is indeed larger or equal to the other three options,
the final possible solution set contains three possible solutions.
The CaDEED algorithm is shown in Algorithm [I}

In CaDEED, different parameters, M;, M> and ¥ give
different specific EDHVW method. Note thatif « = 1, § = 0,
M; = My =1 and ¥ = 1, CaDEED is essentially equivalent
to DEED. Besides, if a AU; = 0 constraint is added to
the formulation, CaDEED becomes a single-sided embedding
algorithm. For example, if « = 1, 8 =0, My = My =1,
¥ = 1 and a AU; = 0 constraint is added to CaDEED,
CaDEED is equivalent to SEED.

To demonstrate the effectiveness of CaDEED, CaDEED
generates CaDEED with expectation constraint (CaDEED-
EC), by selecting a« = 8 =1, M; = My =1 and ¥ = 1.
Besides of CaDEED-EC, CaDEED-NVF&IF (CaDEED-N&I)

Algorithm 1 CaDEED
Input: X,, X5, W, p, A, o, 3, o, the error diffusion kernel,
the specific methods to calculate My, Ms, ¥
QOutput: Y;, Y
1: Obtain EP, Ml, MQ, .
2: for i =1to N do

3: Obtain [Auy; Aug,;] = argmin S; > refer to (53)
Aug i,Auz

4 Y1, = ed(x1,; + Augy)
5: Y2, = ed(xa; + Aug ;)
6: end for
7: return Y1, Yo

is also proposed with « = 8 = 1. In this scheme, the Noise
Visibility Function (NVF) is selected to calculate M7 and
Ms>, and a simple yet effective method, which calculates dif-
ferent importance factors (IF) for different pixels, is proposed.
According to DEED(L-2)’s experience [32]}, p is set to be 2.

The Noise Visibility Function in CaDEED-N&I is
described in Eqs. [60] and [61]

.. . 1
my(i,j) = vi(i,J) = ma (60)
Rx, \"

1

_ 61
T+ 607, () OV

m2(23]) = U?(ivj) =
where Rx, and Rxy are the local neighborhoods centered at
x1(i,j) and (i, j) respectively. 0%, (i,7) and 0%, (i, j) are
the local variances for Rx; and Rz respectively. 61, 65 are
calculated as Eq. (62) and (63) show.

D
0 = o, (62)
O-Rwl,'mam
D
b= 5, (63)
ORz2 max
where 0%, and 0%, ~ are the maximum local vari-

ances in X; and X respectively. D = 75 is an experimentally
determined parameter.

NVF generates a masking image where the smaller a
masking value is, the more noise the original pixel can tolerate
compared to other pixels. An example is shown in Fig. ] As
we can observe, the texture regions can tolerate more noise
compared to the smooth regions.

To calculate ¥ in CaDEED-N&I, we propose a simple but
effective method to calculate a Importance Factor (IF) ~ for
each pixel in the secret pattern as W. The calculation of - is

shown in Eq. (64).

. . 0%
w(%]) :’Y(Zvj) =1+ 271”7

Rwp,ax

(64)

where Rw is the local neighborhood centered at w(i,j),
0%w(i,J) is the local variance for Rw and 0%, . is the
maximum local variances in W.



Fig. 4: Lena’s NVF masking image. To highlight the pixels
which can tolerate more noise, here darker pixels represent
the original pixels that possess weak noise tolerance ability,
while brighter pixels represent the original pixels that possess
high noise tolerance ability.

V. EXPERIMENTAL RESULTS
A. Experimental Setups

During the experiments, the 512 x 512 test images in Fig.
[3 are employed. Fig. shows the 512 x 512 secret pattern
to be embedded. For convenience, Steinberg kernel |@]] and
o = ©® = XNOR will be employed in this paper. Note that
in real implementations, CaDEED-N&I will force (i, 7) and
y2(i,j) to be identical for (i,j) € W, when X; = Xo.

B. Validation Test

Figs. give the validations of CaDEED-EC and CaDEED-
N&I. ‘Baboon’ in Fig. [5(a)] is employed as the original grey-
scale image and X; = X». In Fig. [6] Fig. [6(a)] and Fig. [6(b)]
are the generated Y7 and Y5 respectively. The AND operation
decoded image generated from Y; and Y5 is in Fig. and
the XNOR operation decoded image is in Fig. Similarly,
in Fig. [7] Fig. and Fig. are Y7 and Y3 respectively.
The AND operation decoded image is in Fig. The XNOR
operation decoded image is in Fig.

As we can observe from Figs. both CaDEED-EC and
CaDEED-N&I perform well.

C. Parameter Selection

After the validation tests, the local region sizes for the
calculation of NVF and IF will be discussed and suggested.
The measurement employed in the parameter selection is the
Sum of Squared Error (SSE) and the correct decoding rate
(CDR).

In CaDEED (DHCED, DHDCED, DEED(L-2) also), the
generation process of Y7 and Y5 can also be treated equiv-
alently to adding specific noises, which are bounded by the
thresholds, to the original images and carrying out the regular
error diffusion process on the noisy images. Therefore, we
can calculate SSE as Eq. [65] between the original images
and the equivalent noisy images to measure the embedding
distortion. Compared to previous modified PSNR, which firstly
let the halftone images pass through a low pass filter and then

calculate the PSNR between the low-passed halftone images
and the original images, this SSE measurement doesn’t possess
the low-pass filter selection problem and its result will not
be affected by the imperfection of the halftoning process,
where some embedding distortions may actually improve the
measured quality of the stego halftone image.

SSE =) (Aui(i,f) + ) _(Au3(i, )

Traditionally, the correct decoding rate (CDR) is ultilized
to measure the differences between the reference and decoded
secret pattern. The CDR is defined as in Eq. (66), where we
let D be the decoded image in this paper.

2 w(i, g) ©d(i, 5)]
CDR = IW x IH

(65)

(66)

where /W and IH are the image width and height respec-
tively.

First, the local region size of NVF calculation SR, is
explored. Here, IF is disabled. 3 x 3, 5 x 5 and 7 x 7 local
region sizes are tested and compared. According to the results,
SR, = 3 is recommended since it gives the best performance
and it possesses the lowest computational complexity. The
average results are introduced in Fig.

Then, the local region size of IF SR, is explored. In this
test, the local region size of NVF is set to be 3 x 3. Three
different sizes 3 x 3, 5 x 5 and 7 x 7 are tested and compared.
According to the experiments, though the performances of
the three tested local region sizes are similar, SR,, = 3 is
recommended because it possesses the lowest computational
complexity. The average results are displayed in Fig. [9]

D. Comparison Test

With CaDEED-N&I’s parameters determined, CaDEED-EC
and CaDEED-N&I are compared to the classical and latest
previous EDHVW methods, DHCED [34], DHDCED [3§]] and
DEED(L-2) [32].

Similar to @, the traditional measurements Peak Signal-
to-Noise Ratio (PSNR) and CDR are employed to measure the
performances of the EDHVW methods. Figs. [T0] and [T1] gives
the results of DHCED, DHDCED, DEED(L-2), CaDEED-EC
and CaDEED-N&I. Figs. [[0(a)| and [[1(a)| presents the average
results, while Figs. [TO(B)HT0(c)| and [TT(B{T1(c)] introduces the
results for specific test images, ‘Barbara’ and ‘Cameraman’.
Note that for fair comparison, when we plot these figures,
the PSNRs results of DHDCED, DEED(L-2) and CaDEED
are the average PSNRs of the two stego images. As we
can observe, CaDEED-EC performs obviously better than
the previous methods with an approximately 1dB gain when
CB-CDR = 0.6 (in Fig. [I0(a)), 0.84 (in Fig. [[I(a)). Since
CaDEED-N&I allows larger distortions for the image regions
which contain complex content and PSNR penalizes large
distortions more, it is not surprising that its results are not
impressive with the traditional measurements.

To better illustrate the superiority of CaDEED-N&I, since
complex regions in a image can tolerate more noise than the




¥ Loog!

(8 (h)
Fig. 5: Test images: (a)‘Baboon’; (b)‘Barbara’; (c)‘Boat’; (d)‘Bridge’; (e)‘Cameraman’; (f)‘Couple’; (g)‘Crowd’; (h)‘Dollar’;

o4 Pe
b4

0
(m)

(1)‘Elaine’; (j)‘Lena’; (k)‘Pepper’; (1)‘Tank’; (m)Secret pattern to be embedded.

(a) (b)

©) (d)

Fig. 6: (a)CaDEED-EC Y;. X; = X5 = ‘Barbara’, Steinberg kernel. (b)CaDEED-EC Y>. X; = X5 = ‘Barbara’, Steinberg
kernel. (¢)CaDEED-EC AND operation decoded image. X1 = Xo = ‘Barbara’, Steinberg kernel. (d)CaDEED-EC XNOR
operation decoded image. X; = X5 = ‘Barbara’, Steinberg kernel.

(@ (b)

(c) (@

Fig. 7: (a)CaDEED-N&I Y;. X1 = X = ‘Barbara’, Steinberg kernel. (b)CaDEED-N&I Y. X1 = X9 = ‘Barbara’, Steinberg
kernel. (¢)CaDEED-N&I AND operation decoded image. X1 = X5 = ‘Barbara’, Steinberg kernel. (d)CaDEED-N&I XNOR
operation decoded image. X; = X5 = ‘Barbara’, Steinberg kernel.

flat regions, we modify the PSNR measurement in [32]] to noise
tolerant PSNR (NT-PSNR), which is defined in Eq. (67).

2552
NT-PSNR = 10 + log10( 5=z ey ) € (102
IWk*IHk
(67)

Also, the traditional CDR will process every pixel in the
secret pattern with equal weights. However, the edge/texture
pixels in the secret pattern tend to play a bigger role in main-
taining its structure. Therefore, by assigning more weights to
those edge/texture pixels, here we propose our new measure-

ment for assessing the decoded secret pattern, which is called
the content based correct decoding rate (CB-CDR).

> (i, g) X |w(i, j) © d(i, 5)|)
>, 4)

Similar to Figs. [T0]and [T} Figs. [I2(a)|and [I3(a)| presents the
average NT-PSNR results, while Figs. [T2(b)12(c)] and [T3(b)}
introduces the results for specific test images, ‘Barbara’
and ‘Cameraman’. Note that for fair comparison, when we plot
these figures, the NT-PSNRs results of DHDCED, DEED(L-
2) and CaDEED are the average NT-PSNRs of the two stego

CB-CDR = (68)
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Fig. 13: (a) Average NT-PSNRs of the XNOR operation decoded results. Steinberg kernel. (b) NT-PSNRs of the XNOR
operation decoded results. X; = X5 = ‘Barbara’, Steinberg kernel. (¢) NT-PSNRs of the XNOR operation decoded results.

X1 = Xy = ‘Cameraman’, Steinberg kernel.

images. As we can observe, CaDEED-EC and CaDEED-N&I
both perform obviously better than the previous methods.
For CB-CDR 0.6 (in Fig. [12(a)), CaDEED-EC gives
an approximately 1.2dB gain while CaDEED-N&I presents
an approximately 2.8dB gain compared to DEED(L-2). For
CB — CDR = 0.84 (in Fig. [[3(a)), CaDEED-EC presents
an approximately 2.3dB gain and CaDEED-N&I gives an
approximately 4dB gain compared to DEED(L-2).

After the numerical comparisons, some visual comparisons
will be carried out. Figs. [T4{I3] presents the revealed se-
cret patterns of DHCED, DHDCED, DEED(L-2), CaDEED-
EC and CaDEED-N&I, respectively, with the cover images
X1 = X3 = ‘Barbara’. With approximately equivalent NT-
PSNRs, Fig. [T4] gives the AND operation decoded results,
while Fig. [T5]reveals the XNOR operation decoded results. As
we can observe, CaDEED-EC and CaDEED-N&I give better
contrasts of the revealed secret pattern. Note that CaDEED-
N&I preserves better fine structures of the watermark. For
example, in the lower right region of each decoded image
where the lady’s left leg co-located, CaDEED-N&I presents
the most clear revealed flower pattern among all the results.

E. Discussion of Robustness

In real distribution and transmission process, halftone im-
ages mainly suffer from cropping, human-marking attacks and
print-and-scan distortions. For cropping or human-marking
attacks, part of the decoded secret pattern which has been

cropped or human-marked will be lost and others can still be
preserved, as the experiment shows in [34].

For the print-and-scan distortions, different watermark de-
coding approach suffers differently. If the users employ the
overlaying(AND) operation for decoding, HVW methods will
usually be affected by the print distortions only, because no
scanning is involved during the decoding process. On the other
hand, if the users choose to decode the watermark with the
XNOR operation, HVW methods will suffer both the print and
scan distortions.

Figs. [T gives a real example, where the stego halftone
images Y7 and Y3 are from Figs. [7(a)] and [7(b)] respectively.
For Fig. [T6(a)] Y1 and Y> are printed with a resolution of
96 dot-per-inch(DPI), where the printer model HP LaserJet
4250 is employed, on the transparencies for the convenience
of demonstration. Note that we place a white paper below
as the background to better show the overlaid result. As
we can observe, the overlaid result, i.e. the AND operation
decoded result possesses decent decoded watermark result and
we can clearly distinguish the majority of the secret pattern.
For Fig. [T6(b)] Y1 and Y; are printed on regular A4 papers
with the resolution of 96 DPI and the printer model HP
LaserJet 4250. After printing, HP ScanJet G2410 is employed
for scanning Y7 and Y, with a resolution of 1200 pixel-per-
inch(PPI). Before the XNOR decoding operation is performed,
a series of preprocessing steps [32]] including rotation, resizing
and 1-bit quantization are performed with the help of Adobe
Photoshop CS2, to reverse the print-and-scan distortions. As
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Fig. 14: AND operation decoded images, X1 = X5 = ‘Barbara’, Steinberg kernel. (a)DHCED; (b)DHDCED; (c)DEED(L-2);
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Fig. 15: XNOR operation decoded image, X1 = X5 = ‘Barbara’, Steinberg kernel. (a)DHCED; (b)DHDCED; (¢c)DEED(L-2);

(d)CaDEED-EC; (e)CaDEED-N&I.
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Fig. 16: A real example for CaDEED-N&I. Y; and Y, are from Figs. and [7(b)| respectively. (a) AND operation decoded
image (which only suffered from print distortions). (b) XNOR operation decoded image (which suffered from print and scan

distortions).

Fig. [I6(b)] shows, the decoded result reveals most of the
secret pattern, though some noise like regions exist. We also
measure Fig. [I6(b) with CDR and CBCDR. It turns out
that Fig. [T6(b)] achieves excellent decoding performances with
CDR = 82.69% and CBCDR = 82.09%.

VI. CONCLUSION

In this paper, we firstly analyzed the expected perfor-
mances and limitations of the EDHVW methods. Based on
the analysis, we proposed a new general EDHVW method,
Content aware Double-sided Embedding Error Diffusion, via
considering the expected performances which is affected by
the content of the cover images and watermark (secret pattern),
the different noise tolerance abilities of different cover image

content and the different importance levels of different pixels
(when being perceived) in the secret pattern. To demonstrate
the effectiveness of the proposed CaDEED, CaDEED-EC
and CaDEED-N&I are proposed. CaDEED-EC considered the
expected performances only. CaDEED-N&I exploited more
by adopting the noise visibility function [A0] and proposing
the importance factor (IF) for different watermark pixels. In
the experiments, the validation tests for CaDEED-EC and
CaDEED-N&I were performed first. Then, after selecting
the optimal local region sizes for CaDEED-N&I, extensive
comparison tests were carried out. The performances of the
proposed methods and the previous methods were not only
measured by the traditional PSNR and CDR measurement, but
also measured by our proposed measurement, CB-CDR and



NT-PSNR, to further illustrate the significance of the proposed
method. Both the numerical and visual comparisons indicated
that our proposed work outperforms the classical and latest
EDHVW methods.
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