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Abstract— No reference image quality assessment(NR-IQA)
on true High Dynamic Range (HDR) images is an unexplored
and interesting research topic that has become relevant with the
current boom in HDR technology. We first conduct a study on
the performance of existing algorithms for NR-IQA, originally
developed for Low Dynamic Range images(LDR), on HDR data.
Using the results of our investigation, we then propose a new
convolutional architecture for NR-IQA achieving state of the
art performance in terms of correlation to human judgment
on quality. The proposed model disentangles perceptual effects
exhibited by the distorted image from the noise present in
the image and is capable of extracting perceptually relevant
features without the necessity of handcrafting the features. Our
architecture predicts the amount and location of the visual
errors present in the distorted images without the reference
image and performs comparably to the state of the art Full
Reference Image Quality assessment(FR-IQA) algorithms.

I. INTRODUCTION

The next wave of consumer imaging technology is in
the field of high dynamic range imaging. A high dynamic
range(HDR) image refers to an image that can capture a
much larger range of luminance compared to a low dynamic
range image. This translates to more vibrant colors, more
detailed images and a better quality of experience of the
end user of the content. HDR imaging technology is slowly
becoming mainstream in the market and is reaching larger
sections of people because of investments in the technology
by camera and television manufacturers.

A problem of great academic and industrial interest is
that of assessing the visual impact of the commonly seen
image distortions in HDR images ( also known as image
quality assessment or IQA). These arise mainly because of
compression of the images by various compression schemes.
Since the target audience for the HDR multimedia content a
human being, the easiest way for IQA is through a subjective
tests. However, these are often tedious and time-consuming.
Even with massive crowdsourcing projects via systems like
mturk, HDR IQA is hard because of expenses involved in
acquiring systems capable of displaying the HDR content.
Hence there is a need for high performance automated
systems that are capable of IQA.

IQA can be mainly categorized into Full-Reference (FR),
where the quality of the content is evaluated assuming that
an undistorted content is available, and No-Reference (NR)
where the quality of the content is evaluated considering that
the undistorted content is not available.

While there is a rich amount of literature in the field of NR
method of IQA of low dynamic range images (LDR) and for
tone mapped images, not much exploration has been done
in the area of NR-IQA for true HDR images (Luminances

up to 4000 Cd/m2) with luminance range greater than the
conventional LDR display range (up to 300 Cd/m2). In this
publication we do a preliminary analysis of the performance
of the existing LDR IQA algorithms exploring the problem
of whether these algorithms can be used for HDR cases with
minimal modifications.

We then use the analysis to propose a better model for
HDR-NRIQA that is capable of predicting the image quality
and localizing the location and amount of spatial error in
an image. We use a convolutional neural network based
architecture that computes perceptual features to derive the
quality of an image.

The contributions of this paper are as follows: 1. A
thorough study of NR quality prediction on HDR content.
2. Proposing methods to adapt NR-IQA for LDR on to
HDR data. 3. Proposing an improved method for blind visual
quality prediction in HDR images capable of producing
results comparable to full reference image quality assess-
ment algorithms 4. Providing an convolutional neural net
architecture for separation of perceptual effects and noise
in a distorted image.

For clarity of presentation, we divide the publication into
two sections: A) Study of existing methods for NRIQA
and analysis of performance on HDR data (section II) B)
Proposed Method (Conceptual introduction in Section III,
Implementation and results in Section IV and V).

II. PERFORMANCE OF LDR NO REFERENCE METRICS ON
HDR DATA

In this section, we present the performance comparison
study for LDR-NRIQA on HDR data and analysis of results.

There is no published work on NRIQA for true HDR
images. There is, however, a lot of work on NRIQA for
LDR images. Recent research has started looking into HDR
images that has been tonemapped to LDR range by Tone
Mapping Operators (TMO). The methods have not been
adapted specifically for NRIQA on true HDR images. The
methods developed for LDR images compare the statistical
properties of an image and compare it with those of a natural
image. The algorithms rely on the fact that image distortions
alter the statistical properties exhibited by undistorted im-
ages.

Hence, the problem solved in this domain of research
is that of modeling the change in statistics. The metrics
model statistics of images by creating a feature image by
using some processing method, and then fitting an arbitrary
distribution on it. Followed by this, the parameters of this
distribution is used as the feature vector of the distorted
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Fig. 1: Comparison of distortions in image estimated by various schemes. Red represents high value and blue represents a
low value. Proposed method performs the estimation without the need for a reference image.

image (for example, DCT of the image would be utilized
as a feature image and a Gaussian distribution would be fit
on the same, the features would be the mean and variance of
the Gaussian). The features are then used as inputs to some
learning system, which is used to generate some score.

Most of the algorithms follow the process established by
BIQI [13], which is a two step process where, from a set of
features, an SVM predicts the type of distortion and another
set of SVR’s; one for each kind of distortion, predicts the
score for each kind of distortion. The final quality scores are
computed by

score =

m∑

i=1

pi.qi (1)

where pi represents the probability of each distortion ob-
tained from the SVM and qi represents the quality score
given by each of the SVR’s.

The feature image extracted varies with the method
used. One of the first works in the field, BIQI [13], used
Daubechies 9/7 wavelet as feature image. BRISQUE [12]
computes a mean subtracted contrast normalized (MSCN)
image as feature by using MSCN(i, j) =

I(i,j)−µI,N,i,j

σI,N,i,j+1 ,
where µI,i,j and σI,i,j represents the mean and variance
computed over a local Gaussian window window of size
N around the point i, j. DIIVINE [14] used a divisive
normalized steerable pyramid decomposition coefficients to
create the feature image.

SSEQ [9] generates features using a different method. It

uses entropy as features. Here, a scale space decomposition
is carried out to generate three scales of images, and then
entropy is calculated for image blocks in the spatial and DCT
domain. This is then pooled by percentile pooling and the
mean and variance of the spatial and frequency components
are used as a feature vector for the two-step process.

An alternative approach that has the current state of the art
results in LDR NRIQA is the Convolutional Neural Network
(CNN) based approach used by Kang et al. , kCNN [4]. The
publication uses a convolutional neural network with four
layers on image patches of size 32X32. The first layer is a
convolutional layer with 50 filters(kernels), then a pooling
layer that reduces the dimensionality of the data and two
fully connected layers, which is two sets of neurons with
every neuron connected to every other neuron. The network
is trained with the MOS scores. The method has an additional
advantage that it can produce an ’error map’ showing the
visible errors on the distorted image.

From the literature, we understand that the degree of dis-
tortion is computed by some ’distance function’ (generated
by learning component in most cases) that measures how
different the statistics of an image are from natural statistics.
The natural statistics are not modeled explicitly but captured
in the internal representation of the SVM or the CNN’s used
in the algorithms. Because of this, most of the proposed
algorithms need an explicit training stage that adapts to the
data before use. The training helps the learning component
to understand what is a ’natural’ feature and how the noise



changes it.

A. HDR and LDR statistics

The statistics of HDR images are quite different from
that of LDR images. The fact was mathematically proved
in the work done by Pouli et al. [17]. Hence the existing
NRIQA cannot be directly used for HDR quality assessment.
However, we hypothesize that the statistical differences be-
tween the two image types, however, will not impact the
performance of NRIQA. We arrive at this hypothesis because
of the learning system associated with NRIQA (SVM, CNN,
etc.) for the prediction of the quality scores. Since the quality
is predicted by the ’difference’ of the image statistics of the
image and a set of statistics internally stored by the SVM,
the model can adapt to different statistics of the base images,
as long as the noise statistics show a consistent pattern.
Hence retraining NRIQA algorithms on HDR data will be
the baseline for our comparisons.

B. Perceptual factors affecting HDR data

As explained in the section above, the existing algorithms
for NRIQA rely on image features to know what the natural
statistic is and on a classifier to know how different the
parameters of the input image is from that natural statistic.
However, statistical differences from a ’natural’ image might
not be enough for a perceptual quality model for an HDR
image. The reason for this stems from the fact that perceptual
characteristics of HDR images are very different from that
of LDR. This was extensively studied in Aydin et. al. [1].
The results indicate that given two images with the same
type of distortion and with the same magnitude, a brighter
display( 1000 cd/m2) causes a larger perceived distortion.

Hence, the study indicates a violation of Weber’s law in
HDR luminance ranges and suggests that a direct statistical
comparison of the errors without considering these changes
in sensitivity with luminance might not give the accurate
model for a perceptual phenomenon.The authors of [1]
proposed PU encoding as a solution to this problem to project
the luminance on to a more perceptually uniform space where
Weber’s law is valid. This is a pre-processing step where
HDR luminance values are converted to another range of
intensity values.

We hypothesize that LDR-NRIQA algorithms can be eas-
ily adapted to HDR data by a PU encoding. The processing
should theoretically simulate the various luminance adapta-
tion effects seen in HDR scenarios and compensate for the
effect. Once this aspect of the problem is solved, solving
NRIQA reduces to that of computing the statistical effect of
noise. Statistical modeling is already taken care of by the
current LDR-NRIQA models.

C. Tone mapping operators

Practically, PU encoding is implemented as a look-up table
where one range of HDR luma values is converted into
another range of values. The same operation is done by Tone
Mapping Operators (TMO) as well; the difference between
tone mapping and PU is just that tone mapping operators

convert HDR luminance to LDR luminance range. It does not
guarantee that the values after the operation are perceptually
uniform.

We select a few highly cited methods to do tone mapping
for our comparison. One of the first publications used the
principles established in photography to change the local
contrasts of the image. This was achieved in Reinhard et
al. 2002[19], where a local luminance and contrast map
was used to adjust the contrast of the image. The process
was later simplified to produce a global scheme rather than
local adjustment of contrast in Reinhard et al 2005[18].
Another popular scheme for tone-mapping is Drago et al
[3]. The method was perceptually tuned and used a form of
logarithmic compression of the intensity values. Mantiuk et
al [10] proposed the use of an optimization over an error
metric to produce an optimal tone mapping system. The
system minimized the visible contrast distortions over the
specified display type.

D. Dataset

For a comprehensive dataset of true HDR image, we
selected 5 separate data sets. The authors of the respective
publications performed subjective evaluations using a SIM2
HDR47ES display with a maximum luminance of 4000
Cd/m2. [15], consisting of JPEG compressed HDR images,
[16] consisting of JPEG2000 compressed HDR images,
[7] with JPEGXT compression and [21] containing images
distorted by JPEG, JPEG2000 and JPEGXT compression
schemes. The statistics of the data-sets are described in table
I[[TODO: Wait for complete publication of Emin et al]] .

Dataset
Number

Number
of Reference

Images

Number
of Distorted

Images

Distortion
type

#1 [15] 27 140 JPEG
#2 [16] 29 210 JPEG 2000
#3 [7] 24 240 JPEG-XT

#4 [21] 15 50
JPEG

JPEG2000
JPEGXT

#5 [?] 15 50

TABLE I: Database statistics

E. Method

We test the performance of the existing NRIQA trained
on LDR images on HDR dataset and after retraining the
algorithms on HDR data by methods recommended in the
respective publications. The features were extracted by the
implementation provided by the authors. For training the
SVM, methods suggested by the authors were used (SVR
with RBF kernel). A grid search was conducted before the
training to tune the hyper parameters of the SVM for optimal
results.As per the original, we used 1000 iterations of training
and testing, where 80% of images are used for training and
20% for testing, median scores of test cases reported.

The study of the effect of various preprocessing methods
on performance was done using the same metrics by applying
different pre-processing steps to HDR images. The results



were obtained after retraining the algorithms on the respec-
tive processed HDR data. The pre-processing operators we
choose are PU encoding and tone mapping using the schemes
Reinhard 02 and 05 ([19], [18]), Drago [3] and Mantiuk [10].

F. Results

Comparison of performance was based on Spearman rank
order correlation coefficient (SRCC), Kendall rank-order
correlation coefficient (KRCC) and Pearson linear correlation
coefficient (PLCC) and root mean square error (RMSE).
A good NR-IQA is characterized by a higher value for
SRCC, KRCC and PLCC and a lower value for RMSE. The
performance of the LDR algorithms after simple retraining
are given in Table II. The results of our study, ie performance
in terms od SRCC, KLCC, and PLCC are shown in Tables
II, III and IV.

Results from Table II, III and IV show a good performance
after retraining the learning component of conventional NR-
IQA. The method is adapting and capturing the statistics
of the noise types even in HDR conditions. The relative
differences in performance is similar to the ones observed in
the case of LDR metrics. The state of the art performances
are obtained for DIIVINE [14] and kCNN [5]. Practically,
kCNN is more useful because it produces an error map
in addition to the quality score. The error map shows an
approximate error that is seen by the user on the noisy image.

From the performance after pre-processing the HDR val-
ues (Table II, III and IV), we observe a performance im-
provement in LDR-NRIQA algorithms if the data is pre-
processed and the dynamic range of the data is reduced to
LDR levels. As hypothesized in Section II.B, PU encoding
seems to improve the performance for most of the cases.
The maximum performance was obtained by the use of PU-
encoded data with the kCNN. However, there are exceptions
to this for example BRISQUE performs best with TMO by
Mantiuk et al [10], BIQI best with TMO by Drago. The best
performance is obtained in case of using PU in conjunction
with kangCNN [4].

Our experiments above leads us to conclude the following
A)LDR NRIQA methods by itself does not capture per-
ceptually relevant features in HDR scenario. B) Adding a
perceptual component that modulates the statistical noise
measure (processing of images by PU encoding) improves
performance in all cases C) PU does not seem to be opti-
mal as there are cases where Tone mapping seem to have
improved the results.

III. PROPOSED METHOD

Designing a perceptual model that captures a large amount
of interdependent image features interacting with each other
is a challenging task. However, we have an understanding of
the basic mechanism involved in the process. At its core, the
problem can be represented as a set of two systems working
with each-other. One detects the stimulus and another one
that masks a certain part of this detected stimulus. Both
these systems can be modeled without the need for rigidly

handcrafting of their behaviors by the use of a convolutional
neural network by constraining the network output functions.

To model the above idea, we implement a convolutional
network architecture that acts on image blocks of HDR
linear luminance values. We consider a block size of 32x32
pixels corresponding to the pixels in one visual degree under
standard HDR test conditions. It consists of two systems
acting on the data. The first part works on estimation of
noise contribution δ(i, j) of the patch for a given image
block centered at i, j. The second system computes the
combined masking effect of the block; we refer to this as
error resistance of block T (i, j). These two terms are then
mixed using a mixing function to produce the quality (we use
Difference in Mean Opinion scores or DMOS) of the image
block.

The proposed architecture is shown in Fig 2.

Fig. 2: Proposed strategy for IQA

The noise δ(i, j) represents the amount of unwanted
statistics present in the image patch. For an image patch
centered at (i, j) , we define the noise of the block as,

δ(i, j) = mean(
∣∣YR(i, j)− YD(i, j)

∣∣) (2)

Where YR and YD represents the reference and distorted
linear HDR luminance values of image block centered at the
point (i, j).

This is a problem that has already been tackled as part
of the conventional LDR NRIQA techniques. And can be
solved by a conventional CNN as it was demonstrated in
[4]. Here, we use our own CNN to achieve this.

Next, for each patch centered at (i, j), we compute a error
resistance T (i, j). This represents how resistant the block is
to error. A high value for T implies that a subject is less
likely to see the noise δ(i, j) of the patch, hence the quality
of the patch will be less affected by δ(i, j). A low value



Processing Linear PU TMO - Drago TMO - Mantiuk TMO - Reinhard 02 TMO - Reinhard 05
BRISQUE 0.7942 0.8560 0.8272 0.8525 0.8306 0.6993

SSEQ 0.7891 0.8534 0.7999 0.8093 0.7962 0.6424
BIQI 0.8043 0.8012 0.8590 0.8368 0.8468 0.6709

DIVIINE 0.8815 0.8941 0.8507 0.8835 0.8586 0.7761
kCNN 0.8560 0.8980 0.8761 0.8947 0.8671 0.8052

TABLE II: SRCC performance of NRIQA with various preprocessing on HDR data

Processing Linear PU TMO - Drago TMO - Mantiuk TMO - Reinhard 02 TMO - Reinhard 05
BRISQUE 0.6111 0.6787 0.6420 0.6670 0.6311 0.5179

SSEQ 0.6183 0.6864 0.6160 0.6203 0.6115 0.4645
BIQI 0.6208 0.6206 0.6778 0.6566 0.6605 0.4999

DIVIINE 0.7227 0.7277 0.6782 0.7100 0.6792 0.5874
kCNN 0.6678 0.7176 0.6881 0.7177 0.6702 0.6180

TABLE III: KLCC performance of NRIQA with various pre-processing on HDR data

Processing Linear PU TMO - Drago TMO - Mantiuk TMO - Reinhard 02 TMO - Reinhard 05
BRISQUE 0.7825 0.8391 0.8190 0.8432 0.7995 0.7048

SSEQ 0.7772 0.8432 0.7970 0.7934 0.7961 0.6489
BIQI 0.7909 0.7863 0.8504 0.8263 0.8391 0.6774

DIVIINE 0.8833 0.8869 0.8473 0.8774 0.8512 0.7727
kCNN 0.8441 0.8735 0.8479 0.8626 0.8466 0.7807

TABLE IV: PLCC performance of NRIQA with various pre-processing on HDR data

implies that the image patch will be perceptually degraded
by noise.

Error resistance T (i, j), represents the combined the per-
ceptual effects like luminance adaption and spatial masking
exhibited by the block. It can be considered as similar to the
pixel wise error detection thresholds in conventional IQA
systems like [2] and [11]. These were determined by math-
ematical modeling of the response of the HVS to the region
surrounding (i, j). Traditionally called as contrast sensitivity
model, they consider various visual features like contrast
frequency etc into account and use a custom function to mix
all these factors together. The functions in turn were derived
from various psycovisual experiments. The experiments are
often based on HVS response data to sinusoidal gratings.
It cannot be assumed that these methods can generalize to a
real world image with millions of frequencies and luminance
and contrast levels.

We tackle this issue by the use of a convolutional network
based architecture to derive the error resistance of the block.
The method would compute the features required to do
this task from the real world image data provided to it
by numerical optimization. This provides the guarantee that
the threshold work on real world images; hence instead of
manually determining the functions that determine how the
error resistance is computed, we assign a neural network to
select from a potentially large number of ’functions’(that are
represented as neural network weights) and provide the best
one suited for the observed the data.

We combine the two values with a mixing function, repre-
sented as f(δ, T ). This is an important part of the formulation
since it determines the behavior of P-net. The final result
is being optimized by the training process to match quality
score, hence depending on this function the output of P-net
would change. For example, if we choose a simple product

as the mixing function (ie DMOS = T ∗δ ) and the network
converges successfully, P-net would theoretically produce an
overall scaling factor that changes according to how sensitive
the region is to errors. Similarly, if a division is used and
the other issues discussed are met, a factor similar to error
detection thresholds would be produced by P-net.

While it can be argued that this also can be left to another
convolutional neural network to decide, such a formulation
would involve more weights and difficulties in optimization
and could result in the optimization not converging to a good
solution. Additionally, this function would be a ’black box’
with no intuitive interpretations.

An intuitive way to simiplify the training and guarantee
convergence and interpretability would be to use a function
that already exhibit sigmoid like behaviour and then optimize
the network. This would also make the model more intuitive
and easier to analyze in the context of our the existing
knowledge on perceptual systems. For two cases product and
division as mixing function described above, the network
would have to learn the sigmoid like behavior exhibited by
the human visual system when detecting changes in stimuli.
Practically, this translates to more complex features being
learned in the weights and a more difficult optimization. Note
that choosing a function that is too complex can also lead to
the same optimisation problems because of unstable points
along the function or low values for gradients leading to
slow/zero learning etc. We donot go into the mathematics of
this as it is beyond the scope of this work.

We tackle this problem by using the nature of the statistics
that we see in pyscovisual experiments; we expect a function
of the two proposed variables representing DMOS of the
image patch to be monotonically increasing with δ and
decreasing with T . We choose a hyperbolic tan function
since the function models the perceptual characteristics we



want and is the activation function conventionally used in
neural networks([8]); hence there are no issues with the
convergence.

DMOS(i, j) = tanh(
K ∗ δ(i, j)
T (i, j)

) (3)

As seen from the plot of equation 3 in figure 3, the function
would represent a wide range of values and rate of increase,
depending on the value of δ(i, j), T (i, j) and k. This models
the expected trends in DMOS for different values of error
and error resistance.

For example, for the error resistance T (i, j) that is large,
the output of the function would remain small even if there
is a large noise δ(i, j); case T = 200 in fig 3. This can be
further modulated by varying the variable k. This scenario
would be seen in cases of high masking because of luminance
or complex patterns. Conversely, if the error resistance is low,
the predicted DMOS would shoot up very quickly even for
the smallest of noise. Practically, this would be seen in areas
that are smooth with very low masking effects.

Fig. 3: Behavior of the mixing function. (A) Varying T with
k fixed at 1. (B) Varying k with T fixed at 20.

The behavior of the function is very similar to that of a
conventional sigmoid function based error detection model
dependent on an error value and a error resistance mechanism
in publications like [22] and [11].

A conventional approach of deriving the degree of dis-
tortion or error probability that would require a weighted
pooling scheme like minkovski pooling or saliency weighted
pooling. We average the patch scores across the whole
image. In our case a simple averaging would produce a good
result because the patch scores themselves represent the local
DMOS scores.

IV. DESIGN

The proposed network architecture for the Error estimation
(E Net) has 5 layers. E Net is required to do a blind noise
estimation. Hence we choose a typical CNN architecture
consisting of 5 layers. The layers are convolutional with 64
filters of dimension 7X7, 128 filters of 5X5, 256 filter of
3X3 and 512 1X1 filters. Spatial pooling of 2X2 was used
after each filtering stage. The final layer consisted one node
corresponding to the output. Spatial dropout layers [20] were
added to prevent over-fitting of the data.

P Net is required to estimate the error resistance values of
the block. Here, we define a custom CNN layer that we call

as the Augmented input layer with additional information.
In addition to the original luminance values of the patch,
we compute the variance and MSCN images. The variance
image is computed by replacing every pixel (i, j) with
variance computed over a local Gaussian window window
of size N around the point i, j. For MSCN image, we
use the equation proposed in [12], MSCN(yN (i, j)) =
yN (i,j)−µyN (i,j)

σyN (i,j)+0.01 . µyN (i,j) is computed by replacing every
pixel (i, j) with the mean computed over a local Gaussian
window window of size N around the point i, j; We use
a smaller value for the stabilizing constant to prevent the
stabilizing constant from influencing the MSCN values.
Since a neural network training requires that the input value
be in a similar range, we scale the input, variance map and
the MSCN map with a trainable weight whose values are
determined as part of the overall optimization process. Hence
the output of the augmented layer will be [< W1∗yN (i, j) >
,< W2 ∗ σyN (i,j) >,< W3 ∗MSCN(yN (i, j) >)].

The following layers consist convolutional layers consist-
ing of 64 filters of dimension 3X3 and 128 filters of 3x3.
Followed by this 2 densely connected layers with 100 nodes
each. The final layer has one node corresponding to the
output.

The network structure is shown in figure 4 and 5.

Fig. 4: Network structure for Error estimation.

Fig. 5: Network structure for error resistance value.

The results of the two networks pass through another
custom mixing layer whose behavior can be modeled by
equation 3. Here the parameter k is tuned as part of the
training process. We use Adam optimizer with parameter
values for learning rate=0.001, β1=0.9, β2=0.999, ε=1e-08,
decay=0.0 for training the CNN (as per recommendations in
the original publication [6]).

A. Training

The biggest drawback on a CNN based system is the large
amount of training data required to compute the weights of
the neural network.



E-Net estimates noise; the training data for this task can
be easily obtained. For each patch of the image, the target
value would be the mean error in that patch. This in turn
is the difference between the distorted and reference images
(Equation 2).

For training P-Net, the ideal training data would be a
number that combines all the perceptual effects of the human
visual system acting on the image patch. We donot have this
data, however, we can obtain value for the final patch quality
after the mixing function. We use this for training.

In training P-net, we make a strong assumption that the
patch quality is equal to the global image quality score. Even
though this assumption is incorrect most of the time, it was
shown in [5] that, with a starting assumption that the global
quality of the distorted image is the same as that of the
local quality, the training process of the CNN isolates the
local quality. The publication by Kang et al. [5] found that
the CNN detected spatial patterns of noise in the feature
image provided. Under the assumption we make, multiple
quality scores might be associated with the same pattern
of noise, however, when trained over millions of patches
with a cost function that imposes sparcity constraint (the
paper used L1 distance between the predicted quality and
the actual quality), the correct local quality is the only value
that minimizes the total error. In other words, the lowest
cost of the CNN cost function was obtained when the CNN
generated the true local errors of the image, regardless of the
labels it started out with.

Thus define our two stage training process; In stage
1, E-net is trained with image patches as input and the
corresponding mean error of the image patch as target, hence
E-Net learns the patterns in the data corresponding to noise.

Then, in stage 2, all the training weights of E-net is frozen
by dropping the learning rate of this section to zero. The
whole network is then trained with image patch as input and
global image quality score as target. The process is illustrated
in 6.

Fig. 6: Two stage training Process.

This process forces the P-net to extract a set of features
from the image patch and derive a single error resistance
value from it. When this value is combined with the output
of E-net using the mixing function produces the required
quality score of the image patch.

Feature Processing SRCC KLCC PLCC RMSE
brisque Lin 0.7942 0.6111 0.7825 1.1021
brisque PU 0.8560 0.6787 0.8391 0.9784
brisque TMO - Drago 0.8272 0.6420 0.8190 1.9397
brisque TMO - Mantiuk 0.8525 0.6670 0.8432 1.2279
brisque TMO - Reinhard 02 0.8306 0.6311 0.7995 1.1801
brisque TMO - Reinhard 05 0.6993 0.5179 0.7048 2.0697

sseq Lin 0.7891 0.6183 0.7772 1.2401
sseq PU 0.8534 0.6864 0.8432 1.8855
sseq TMO - Drago 0.7999 0.6160 0.7970 1.2111
sseq TMO - Mantiuk 0.8093 0.6203 0.7934 1.0453
sseq TMO - Reinhard 02 0.7962 0.6115 0.7961 1.1505
sseq TMO - Reinhard 05 0.6424 0.4645 0.6489 1.4053
biqi Lin 0.8043 0.6208 0.7909 1.2681
biqi PU 0.8012 0.6206 0.7863 1.1565
biqi TMO - Drago 0.8590 0.6778 0.8504 0.8700
biqi TMO - Mantiuk 0.8368 0.6566 0.8263 1.0884
biqi TMO - Reinhard 02 0.8468 0.6605 0.8391 1.1248
biqi TMO - Reinhard 05 0.6709 0.4999 0.6774 1.5594

diviine Lin 0.8815 0.7227 0.8833 0.9455
diviine PU 0.8941 0.7277 0.8869 1.0823
diviine TMO - Drago 0.8507 0.6782 0.8473 1.4253
diviine TMO - Mantiuk 0.8835 0.7100 0.8774 1.1238
diviine TMO - Reinhard 02 0.8586 0.6792 0.8512 1.4639
diviine TMO - Reinhard 05 0.7761 0.5874 0.7727 1.3315
kCNN Lin 0.8560 0.6678 0.8441 1.3892
kCNN PU 0.8980 0.7176 0.8735 1.1982
kCNN TMO - Drago 0.8761 0.6881 0.8479 1.6288
kCNN TMO - Mantiuk 0.8947 0.7177 0.8626 1.5331
kCNN TMO - Reinhard 02 0.8671 0.6702 0.8466 1.6554
kCNN TMO - Reinhard 05 0.8052 0.6180 0.7807 1.8663

Proposed Lin 0.9164 0.7481 0.9090 1.077

TABLE V: Overall Performance comparison

V. RESULTS

The algorithm was implemented on a moderately powerful
computer with a Intel core i7 processor, 16GB RAM and an
Nvidia GTX660 graphics processor. The language used was
python with theano and open CV as supporting libraries.

A. Performance Evaluation

For measure of performance, we use the same metrics
as before ie, Pearson correlation coefficient (PLCC), Spear-
man rank-order correlation coefficient (SROCC), Kendall
correlation coefficient (KLCC) and Root mean squared error
(RMSE). A larger value for SCRR, PLCC and KRCC and a
lower value of RMSE is expected to be attributed to a better
performing metric.

The testing process also remains the same as before ie
1000 iterations of training and testing, where 80% of images
are used for training and 20% for testing, median scores
of test cases reported. The performance of all the chosen
algorithms and the proposed algorithm on the combined data
set is shown in Table V. It is clear from the test cases that
the performance of the proposed system is better than the
other algorithms even after compensation with PU encoding.

B. Real world test

One of the common complaints against an NRIQA system
is that the performances donot generalize with a different
content. To test for this, we train the algorithms using
datasets #1,#2 and #3 and test it on #4 and 5. This represents
a real world scenario where, there is a completely different
content with different image size as that of the training data.



In addition to this, this method of testing also allows us
to perform a head to head real world test against the perfor-
mance of full reference image quality assessment algorithms.
From a machine learning point of view, this is acceptable,
since we have sufficient number of examples of each type of
distortion in datasets #1,#2 and #3 and a combination of all
of the distortions in dataset #4 and 5. The test set contains
DMOS scores uniformly distribute in the range [20,80].

Since the CNN are initialized with a random set of
weights, the results of training can vary. We report the
median score after 3 train test cycles. Our results for real
world test is given in VI.

The results here are very interesting. The most notable fact
is that the BRISQUE,BIQI,SSEQ and DIIVIINE seem to be
unable to adapt to the different image sizes in the dataset if
it is not trained. This can be explained by the fact that the
features are computed over a joint histogram from the entire
image.

The CNN based method performs well and shows good
adaptability to a different test case. This can be attributed to
the fact that an image patch is used to train the CNN and
hence the overall image size becomes less of a factor. The
features that make a difference here would be the patterns
in quantification artifacts within each on the image patch.

Our method is generalizing very well to a difference in
image content achieving performance very close to full ref-
erence algorithms, though there is still room for improvement
here. A scatter plot of the scores produced by the proposed
method to actual DMOS is shown in 7

Fig. 7: Scatter plot between objective scores by proposed
method and actual DMOS

C. Error Resistance

The perceptual component of the architecture we proposed
is the error resistance produced by P Net. We expect this
value to change depending on the image data given; large
value of luminance and high frequency would generally have
a larger masking effect leading to low noise visibility and
hence we expect the error resistance to be high. Conversely,

Feature Processing SRCC KLCC PLCC
brisque Lin 0.7194 0.537 0.7094
brisque PU 0.4890 0.3643 0.5363
sseq Lin 0.7203 0.5240 0.7043
sseq PU 0.6331 0.4416 0.6109
biqi Lin 0.3801 0.2577 0.3603
biqi PU 0.2158 0.1462 0.2026
diviine Lin 0.4362 0.3025 0.3938
diviine PU 0.5208 0.3623 0.5007
kCNN Lin 0.6732 0.4869 0.5133
kCNN PU 0.7369 0.5390 0.7244
HDR-VDP-2.2 Full Reference 0.9247 0.520 0.9407
HDR-VQM Full Reference 0.9196 0.530 0.9333
PU-MSSIM Full Reference 0.8969 0.570 0.9038
Proposed Lin 0.8779 0.6935 0.8907

TABLE VI: Real world performance

low and medium brightness with slow variations would be
attributed to lower masking value hence, would attribute to
less masking, higher noise visibility and less error resistance.

To test this, we generate a simple modulated sinusoidal
grating of dimension 800x800, with luminance value scaled
to have maximum value of 4000, shown in fig 8. We then
generate alternate versions of this with different luminance
scale factors, obtaining a range of maximum luminance
ranges.

Fig. 8: Image for testing error resistance.

We give this image as input to the P-net (as patches of
size 32x32) and examine the output images. The results are
shown in fig 9.

The trends observed here are as expected, consider any
one error resistance map of one luminance range (say Error
resistance corresponding to image with luminance range
[0,4000] ie row 2, image 4). The value of the error resistance
value increases along x axis with frequency to a point and
then decreases, indicating a trend in sensitivity to noise. This
can be explained by observing the images themselves. We
can perceive the high frequency variations in pixels of the
original image till one point. Hence any noise embedded
here would be masked because of spatial masking by the
perceived frequencies. This is indicated by the higher values
of the error resistance value. After this point, our ability to
perceive changes in frequency falls and the region in original
image appears smooth (rightmost side of row 1 image 4),
any noise added to this point would become visible again;
as indicated by the low error resistances of the corresponding



Fig. 9: Input image (top row) and error resistance(bottom row) for different luminance ranges obtained by linearly scaling
right top image with starting range [0,4000].

error resistance image.
Another observation here is that the error resistances value

is in accordance with the studies done in [1] explained in
Section II.B. When the overall intensity is less, the error
resistances seem to be higher (more red pixels in second row
as we move towards the left), indicating a lower sensitivity to
noise. As luminaces get larger, the error resistances decrease
and it becomes easier to see noise, indicated by the bluer
pixels in second row towards the right.

D. Error maps

One of the advantages of a CNN based NRIQA scheme is
that it gives an error map corresponding to image distortions
in addition to the quality score of the image. However,
a direct comparison of error maps produced by different
schemes would not be informative since different schemes
compute final quality differently and will have a different
scaling of the error values. PU-SSIM and HDR VDP uses
minkovski summation, where as we use a mean value for
final quality. However a relative comparison would be helpful
to know which areas of the image shows error. The results
we report here are on dataset #4 and #5 after the real world
test.

A comparison of the error maps produced by HDRVDP,
PU-SSIM and Proposed method is shown in fig 1. In the
figure, for HDRVDP, the probability of error detection is
shown; for PU-SSIM, an inverted SSIM map is shown to
show areas with error as high values. Output of proposed
algorithm is shown in fourth column. We normalize all the
values so that the maximum value is one so as to get a good
relative comparison. The images are color coded such that

red represents high value, green intermediate values and blue
represents a low value.

We choose a range of MOS values to show that the
algorithms works in all conditions. It is clear that the values
produced agree with the highest performing full reference
metric in terms of the location of and the relative intensity
of the visual errors.

E. Failure cases

We found that the algorithm does not produce the correct
results in all the cases. One such example is shown in fig
10.

Here we show the error maps for proposed method, HDR-
VDP and PU-SSIM and the corresponding error estimation
and error resistance images produced using our method.
Interpreting the error resistance map is hard since the mixing
function has the tunable parameter k that scale down the
effect of the error resistance. This can be seen for the case
of MOS score 45 in the first row of Fig 10. Minute changes
in error resistances produces significant changes in the Error
visibility map.

For a MOS value of 74, it is seen that the error maps
produced by out method does not correspond to the ones
produced by HDRVDP and PUSSIM. This is especially true
in the sky region where both full reference algorithm claim
that there is minimal distortion, however, our method predicts
a higher error. Hence the method seems to have an internal
bias that produce error values that tend to be always high in
smooth regions.



Fig. 10: Comparison of error maps for different MOS values of a chosen image.

VI. CONCLUSION

We conducted an analysis of LDR-NRIQA for HDR data
and discovered that PU encoding is the best way to in-
corporate quality assessment algorithms developed for LDR
out of the box on to HDR data. We then propose a HDR-
NRIQA scheme. The scheme uses a convolutional neural
network based architecture to generate values corresponding
to perceptual effects and true error present in the image
and combines it in tunable mixing function. The algorithm
predicts the visual distortions in the image because of low
level distortion such as compression artifacts. It was found
that the the algorithm scores correlate well to human scores
and it outperforms state-of-the-art NR IQA methods and is
very competitive when compared to HDR FRIQA methods.
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