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1. Introduction 

Visual search is necessary for rapid scene analysis  
because information processing in the visual system is 
limited to one or a few regions at one time [3]. To select 
potential regions or objects of interest rapidly with a 
task-independent manner, the so-called "visual saliency", 
is important for reducing the complexity of scenes. From 
the perspective of engineering, modeling visual saliency 
usually facilitates subsequent higher visual processing, 
such as image re-targeting [10], image compression [12], 
object recognition [16], etc. 

Visual attention model is deeply studied in recent 
decades. Most of existing models are built on the 
biologically-inspired architecture based on the famous 
Feature Integration Theory (FIT) [19, 20].  For instance,  
Itti et al. proposed a famous saliency model which 
computes the saliency map with local contrast in multiple 
feature dimensions, such as color, orientation, etc. [15] [23]. 
However, FIT-based methods perhaps risk being immersed 
in local saliency (e.g., object boundaries), because they 
employ local contrast of features in limited regions and 
ignore the global information. Visual attention models 
usually provide location information of the potential 
objects, but miss some object-related information (e.g., 
object surfaces) that is necessary for further object 
detection and recognition.   

Distinguished from FIT, Guided Search Theory (GST) [3] 
[24] provides a mechanism to search the regions of interest 
(ROI) or objects with the guidance from scene layout or 
top-down sources. The recent version of GST claims that 
the visual system searches objects of interest along two 
parallel pathways, i.e., the non-selective pathway and the 
selective pathway [3]. This new visual search strategy 

allows observers to extract spatial layout (or gist) 
information rapidly from entire scene via non-selective 
pathway. Then, this context information of scene acts as 
top-down modulation to guide the salient object search 
along the selective pathway. This two-pathway-based 
search strategy provides a parallel processing of global and 
local information for rapid visual search. Referring to the 
GST, we assume that the non-selective pathway provides 
"where" information and prior of multiple objects for 
visual search, a counterpart to visual selective saliency, and 
we use certain simple and fast fixation prediction method to 
provide an initial estimate of where the objects present. At 
the same time, the bottom-up visual selective pathway 
extracts fine image features in multiple cue channels, 
which could be regarded as a counterpart to the "what" 
pathway in visual system for object recognition. When 
these bottom-up features meet "where" information of 
objects, the visual system achieves object detection and 
further for object recognition.  

In this paper, we propose a novel Context-Guided Visual 
Search (CGVS) model to implement the two-pathway- 
based visual search strategy [3], but with a task- 
independent manner. The global context-based spatial 
prior is represented by the distribution of dominant edges 
of scene via non-selective pathway. The layout 
representations from non-selective pathway are used as the 
initial guidance to evaluate the location and size of regions 
of interest and the relative importance of local cues. On the 
other hand, the local cues (including color, luminance, and 
texture, etc.) are extracted in parallel along selective 
pathway. Finally, we use Bayesian inference to integrate 
the global layout information and local cues, and to predict 
the saliency of each pixel. The salient structures are further 
enhanced via an iterative processing to re-initialize the 
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prior guidance as the final prediction.  
In the experiments, we apply our model to Salient 

Structure Detection task. At the beginning, we define the 
salient structure detection as detecting the accurate regions 
containing structures of interest in a natural scene. This 
means that such task aims at identifying the regions of 
interest (ROIs) in complex scenes, while detecting 
dominant objects in simple scenes. Fig. 1 shows two 
examples of salient structure detection in natural scenes. 
Fixation prediction methods (e.g., IT [15]) usually focus on 
high-contrast boundaries, and ignore object surfaces and 
shapes (Fig. 1b). In contrast, object detection models (e.g., 
HS [6]) may be inefficient for ROI detection in complex 
scenes without dominant objects (Fig. 1c). The proposed 
method can efficiently extract accurate salient structures 
for both complex and simple scenes (Fig. 1d). Extensively 
experimental evaluations on several benchmark datasets 
demonstrate that our model can handle both fixation 
prediction and salient object detection well without 
specific tuning. 

The proposed system attempts to bridge the gap between 
two highly related tasks, i.e., the human fixation prediction 
[25] and salient object detection [26], with a simple and 
general framework. Almost all fixation prediction methods 
only detect sparse local regions, and cannot well handle the 
task of salient object detection. In contrast, the proposed 
method can efficiently transform the saliency map of 
fixation prediction methods to clear salient objects.  
    To summarize the above, contributions of the proposed 
work are as follows. (1) We define a new task called salient 
structure detection to unify various saliency-related tasks 
like fixation prediction, salient object detection, and 
detection of other structures of interest. (2) We propose a 
unified framework for object search based on the Guided 
Search Theory.  (3) The proposed system provides an 
efficient way for transforming saliency map to salient 
structures and multi-object search. (4) The comprehensive 
experiments on several benchmark dataset reveal the 
effectiveness of the proposed system for salient structure 
detection and object search using saliency map.  

2. Related Work 

In recent years, a large number of selective attention 
models are proposed to predict the human fixations in 

natural scenes[25]. Since the work of Itti et al. [15], lots of 
methods compute the saliency map using the local contrast 
in multiple scales and feature dimensions (e.g., color, 
orientation, etc.) with a bottom-up framework [25, 27]. In 
addition, other methods of saliency computation include 
Graph-based (GB) [11], Information Maximization (AIM) 
[17], Image Signature (SIG) [18], Adaptive Whitening 
Saliency (AWS) [22], and Local and Global Patch Rarities 
[28]. Frequency domain based models include Spectral 
Residual (SR) [29], Phase spectrum of Quaternion Fourier 
Transform (PQFT) [30, 31], and Hypercomplex Fourier 
Transform (HFT) [8]. 

On the other hand, machine learning techniques are 
usually introduced to improve the performance of fixation 
prediction. In these models, both bottom-up and top-down 
visual features are learnt to predict salient locations [1, 32]. 
In general, interesting objects (like humans, faces, cars, 
text, and animals, etc.) convey more information in a scene, 
and they usually attract more human gaze [33-36]. 
Task-related top-down information is also commonly used 
to facilitate specific object search [37-40]. Some models 
also learn optimal weights for channel combination in the 
bottom-up architecture [41], and nonparametric saliency 
models learn directly from human eye movement data [42]. 

Other models attempt to improve visual search in 
complex scenes by employing statistics features based on 
probabilistic formulation. Zhang et al. [21] proposed a 
Bayesian framework for saliency computation using 
natural statistic.  Torralba et al. [43, 44] used the global 
features to guide object search by summarizing the 
probability regions of presence of target objects in the 
scene. Itti et al. [45] proposed the Bayesian definition of 
surprise by measuring the difference between posterior and 
prior beliefs of the observer. More discussion about 
selective attention models can be found in a recent review 
paper [25]. These models are usually validated against eye 
movement data recorded from human observers [8].  

Saliency map from an attention model represents 
possible fixations but misses the object-related information 
(e.g. contours and surfaces of objects). In order to 
accurately extract the dominant objects from natural scenes, 
Liu et al. [46] formulated the salient object detection as a 
binary labeling problem. Achanta et al. [2] further claimed 
that salient object detection requires to label pixel-accurate 
object silhouette. Most of the existing methods have 
attempted to detect the most salient object based on local or 
global region contrast [6, 13, 14, 47]. For example, Cheng 
et al. [13] proposed a region-based method for salient 
object detection by measuring the global contrast between 
the target region and other regions. More methods include 
center-surround contrasts with Kullback-Leiblar [48], 
background prior [49, 50], etc. An overview of salient 
object detection methods can be found in a recent review 
[26]. Salient object detection also highly relates to another 
task called object proposal, which attempts to generate a 
set of all objects in the scene, regardless of the specific 
saliency of these objects [51-53].  

Fig. 1. Comparing with the tasks of fixation prediction (b) and
salient object detection (c), our salient structure detection (d)
aims to extracting interesting structures for both complex and
simple scenes. 
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A related model is proposed by Xie, et al. [5], which also 
employs Bayesian framework for saliency computation 
with the prior informantion evaluated using the convex hull 
of Harris points and Laplacian sparse subspace clustering 
algorithm. Unlike this method, our method obtains the 
spatial prior informantion in a much simpler way. 
Meawhile, the context-based information in our model is 
used to identify the sizes of potential objects and the 
importance of local cues. In addition, the proposed visual 
search model provides a unified and bilogically-plausable 
framework for both fixation prediction and salient object 
detection, called as "Salient Structure Detection" in this 
paper (see Fig. 1).  

More recently, several authors attemped  to bridge the 
gap between the two tasks mentioned above. Goferman et 
al. [10] proposed a context-aware saliency algorithm to 
detect both prominent objects and the parts of the 
background that convey the context. However, their 
method still overemphasizes the boundary of object, i.e., 
high-contrast boundaries of objects often stand out instead 
of the surface of objects.  Li et al. [54] trained a random 
regreession forest to extract salient regions by employing a 
state-of-the-art image segmentation method. In comparison 
to [10], our method obtains more reasonable salient 
structures with high-accuracy object silhouette and object 
surfaces. In addition, compared with [54], the proposed 
model can handle well for salient structure detection in 
both simple and complex scenes without foregone 
computation such as image segmentation.  

A method based on Boolean Map was proposed for 
fixation prediction [7]. That method can also be used for 
salient object detection by adding a specific tuning and 
post-processing. In contrast, our method can achieve 
salient structure detection with the totally same system. In 
addition, the proposed framework is a bilogically- 
plausable architecture of visual search, which has potential 
superiority in explaining the information processing in 
visual search.  

3. Context-Guided Visual Search Model 

The flowchart of the proposed method is summarized in 
Fig. 2. Dominant edges contain main layout information of 
a natural scene by dividing the whole scene into several 
perceptional regions. In the proposed system, the possible 
locations of potential salient structures are evaluated with 
the distribution of dominant edges in the non-selective 
pathway. Meanwhile, the features like color, luminance, 
and texture are extracted from the given scene in the 
selective pathway. The context-based spatial prior 
information is fed into the Bayesian framework for feature 
integration and salient structure prediction. Finally, the 
output of Bayesian framework is used as new spatial prior 
to re-evaluate the salient structure detection with an 
iterative process.  
 
3.1 Context-based Spatial Prior 

In non-selective pathway, we compute the rough spatial 
weights of saliency based on the distribution of the 
dominant edges. In fact, edge information has been widely 
used for saliency computation. For example, Itti et al. [50] 
considered the edge as orientation features and other 
methods use edge density as the evaluation of saliency [55]. 
However, these methods cannot provide region 
information (e.g., object surfaces), while some isolated and 
high-contrast edges (e.g., the boundary of two large 
surfaces) may be incorrectly evaluated as high saliency.  

In this paper, we try to (roughly) reconstruct potential 
saliency regions based on the information of dominant 
edges.  In detail, we first extract the edge responses and the 
corresponding orientations using the edge detector 
proposed in [56], which is a biologically-inspired method 
and can efficiently detect both color and brightness defined 
boundaries from natural scenes. Fig. 3 shows an example 
of reconstructing potential saliency regions utilizing 
dominant edges. For each edge pixel, we compute the 
average edge response in the "left" and "right" half disk 

Fig. 2. The flowchart of the proposed system including the selective and non-selective pathways. 
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around it. The disk is defined by the orientation of each 

edge pixel, with a radius of rd . In this work, we 

experimentally set 3( , ) /rd W Hmin , where W and H 

indicate the width and height of the given image, 
respectively. Then, the all pixels within the half disk with 
higher edge response are voted 1, and the pixels in another 
half disk are voted 0. For each pixel, its saliency weight is 
represented by the number of votes when all edges pixels 
finish their votes. In the experiment, we just scan the 
dominant edges (i.e., the ridges, red pixels in Fig. 3(left)) to 
speed up the computation. Fig. 3 (right) shows the possible 
regions where salient structures present. 

We denote the rough spatial weights of saliency as eS . 
In addition, we also consider the center-bias weights [1, 57] 

(denoted by cS ) modeled by a Gaussian function with the 

standard deviation as 3( , ) /c W Hmin  . The values of  

eS  and  cS  are linearly normalized to the range of [0, 1]. 
Then, the final Context-based Spatial Prior (CBSP) is 
given by 

+w e cS S S  (1)

Here we take the form of summation of eS  and  cS , 
rather than the form of multiplication that is used in most 

previous work (e.g., [10]), because we use both eS  and  

cS  as spatial priors of equal importance. In addition, wS  is 

also linearly normalized to the range of [0,1] for being used 
later as prior probability. 

 
3.2 Feature Extraction 

In the selective pathway, low-level features including 
color, luminance and texture are parallel extracted. With r , 
g , and b  denoting the red, green, and blue components of 

the input color image, luminance channel is obtained as 

( ) / 3lumf r g b   , and two color-opponent channels 

are computed with rgf r g   and ( ) / 2byf b r g   , 

respectively. The luminance and two color-opponent 
channels are smoothed with a Gaussian filter with the scale 
same as that used in edge detector [56] to remove noises.  

In addition, a texture channel ( edf ) is represented by 

edge density which is computed by smoothing the edge 
response (same as that used in the non-selective pathway, 
Section 3.1) with an average filter of 11 11  pixels.  
 
3.3 Bayesian Inference with Context Guidance 

Following the visual search strategy, context-based 
information is used to guide the integration of local 
features to compose a salient structure. In this paper, we 
employ the tool of Bayesian inference to adaptively 
integrate the global layout and local feature information, 
simulating the interaction of top-down and bottom-up 
information processing flows in selective visual attention.  

With Bayesian inference, the possibility of a pixel 
belonging to a salient structure (posterior probability) can 
be computed as 

( ) ( | )
( | )

( ) ( | ) ( ) ( | )

p s p x s
p s x

p s p x s p b p x b



 (2)

where ( )p s  and ( ) 1 ( )p b p s   are respectively the prior 

probabilities of  a pixel belonging to a salient structure and 
the background. ( | )p x s  and ( | )p x b  are likelihood 

functions based on the observed salient structure and the 
background, respectively. In this work, we set CBSP 
extracted from the non-selective pathway (Equation (1)) as 

the initial prior probability, i.e., ( ) wp s S . Meanwhile, 

the likelihood functions will be evaluated adapting to each 
scene context, including the possible sizes of salient 
structures and the relative importance of each feature.  
 
Predict the size of potential structure. To obtain 
likelihood functions of observed objects and background, 
we first extract the possible regions containing structures 
from background. Simply, we binarize the map of prior 
probability ( ( )p s ) with an adaptive threshold to capture 

rough potential structures and their sizes.  

We use 
kTS and 

kTB  to denote the sets of structure and 

background pixels obtained by binarizing ( )p s  with 

certain threshold kT . The optimal threshold maxT  is found 

by searching a possible kT  which maximizes the difference 
of all features between structure and background pixel sets 
according to 

  0
max

2
max

k k
k

T T
i i

ii
T

T arg S B      (3)

where 
k

i
TS and 

k

i
TB denote respectively the average values 

of structure and background pixels in feature channel i , 

{ , , , }
lum rg by ed

i f f f f . The initial feature weight is 

0 0.25i  , which indicates the equal importance of each 

cue at the initial status. {10%,12%,14%, ..., 50%}kT   

indicates the percentage of pixels of the potential salient 
structures. This suggests a potential assumption that salient 
structures are usually smaller than half of the image. 

Fig. 3. Example of reconstructing potential saliency regions by
utilizing dominant edges. Left: the dominant edges are shown
in red lines. For each edge pixel, the averaged edge responses
in the "left" and "right" half disks around it are summarized to
decide which half is located in the salient region. Right: the 
possibility of locations where the salient structure presents. 
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Meanwhile, we ignore the regions with fine scales (<10%) 
to avoid fragments. This assumption is supported by a 
simple experiment on two popular salient object datasets: 
the mean sizes (percentage) of salient objects are 20.01% 
on ASD [2] and 28.51% on ECSSD datasets [6]. 

 
Evaluate the importance of each feature. After finding 
the potential salient and background pixel sets for each 

feature map based on the optimal threshold maxT , we 
re-evaluate the importance of each feature as 

max max

1
T T
i i

i S B      (4)

where ii   ,  { , , , }lum rg by edi f f f f .  Equation (4) 

indicates that a feature will have higher importance when 
the difference of averaged pixel values between structure 
and background is larger in this channel. 
 
Calculate the likelihood functions. We then compute the 
likelihood functions with the potential object and 
background pixel sets and the weight of each feature. We 
assume that the four feature channels are independent, and 
the likelihood functions can be obtained as  

max

{ , , , }

( | ) ( | )
rglum by ed

T
f f f f

i i
i

x s x Sp p


   

(5)

max

{ , , , }

( | ) ( | )
lum rg by ed

T

f f f f

i
i

ix b x Bp p



   (6)

where 
max

( | )T
i

ix Sp  and 
max

( | )Ti
i x Bp are 

respectively the distribution functions of each feature 

( { , , , }lum rg by edi f f f f ) in the salient structure and 

background sets. i  indicates the contribution of 
distribution function of the i-th feature. Finally, the 
posterior probability ( ( | )p s x ) is computed with Equation 

(2) as the saliency of each pixel.  
 
Enhance the salient structure by iterating. We further 
enhance the salient structures iteratively by re-initializing 
the prior function with ( ) ( | )p s p s x  and the feature 

weights as  0
i i  . In the experiment, we re-initialize 

the prior function with the smoothed version of ( | )p s x  

(median filtering with size of 21×21) to remove some 
small fragments. Finally, we denote the ( )CGVS t , 

, , ...,0 1 nt t t t  as our context-guided visual search model 

with various iterations ( t ), and the 0( )CGVS t is the first 

output without iteration. 
 

4. Transform Saliency Map to Salient Structure 

In addition, our system is expected to bridge the gap 
between the tasks of fixation prediction and salient 
structure detection. In details, with the saliency map 
computed by the fixation prediction methods, important 

information usually distribute around saliency regions. We 
employ the commonly used center prior to weaken the 
effect of saliency regions close to the image border. Then, 
we fit the global distribution of saliency map with a 
2-Dimension Gaussian function. The fitted result is used as 

initial CBSP (Equivalent to wS  in Equation (1)) in 

non-selective pathway. Then, our system can transform the 
saliency map to salient structures with Equation (2)~(6).  

Figure 4 show the steps of salient structure 
transformation. We first compute the saliency map with 
certain fixation prediction method (e.g., IT [15] with center 
prior shown in Fig. 4b). The fitted Gaussian function is 
shown in Fig. 4c. Then the salient structure (Fig. 4d) is 
obtained by the proposed system with the Gaussian-fitted 
saliency map as the initial CBSP. 

5. Experiments 

   In general, existing fixation prediction methods work to 
extract sparse salient locations, but fail to capture the fine 
structure of objects. In contrast, salient object detection 
methods usually detect dominant objects and are not 
suitable for the analysis of complex scenes without an 
obviously salient object. The proposed system aims to 
detect potential interesting structures including both the 
ROIs for complex scenes and the salient objects for simple 
scenes. Because there is no perfect benchmark dataset for 
salient structure detection, so the performance is evaluated 
on both fixation prediction datasets and salient object 
datasets in this experiment. The method obtaining higher 
scores on both of these two tasks can be considered as 
being more suitable for salient structure detection. 

In this section, we will first show the basic properties of 
our system in scene analysis. Then the proposed method 
will be evaluated on both fixation prediction datasets [1, 8] 
and salient object detection datasets [2, 6]. We will also 
exploit the effect of parameters on detection performance 
and demonstrate that fixations prediction methods can be 
significantly improved for the task of salient object 
detection. 

Fig. 4. The steps of transforming saliency map to salient 
structure with the proposed system. 
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5.1. Basic Property of the Proposed Model   
To begin with, we evaluate the basic properties of the 
proposed model. The most important feature is that our 
model can automatically select the sizes of potential salient 
structures and estimate the relative importance of each 
local feature.  

Figure 5 shows three examples including objects with 
different scales. With Equation (3), our system can 
automatically search the spatial sizes of potential objects in 
the given scene and roughly evaluate and identify the 
pixels of salient regions and background (Fig. 5c) by 
thresholding the CBSP (Fig. 5b) with certain threshold 
value.  Then, the importance of each feature is computed 
with Equation (4), and the observed likelihood functions of 
salient regions and background are evaluated with 
Equation (5~6). Finally, the possibility of a pixel belonging 
to the salient structures (Fig. 5d) is obtained with Bayesian 
inference (Equation (2)). Fig. 5e lists the weights of all 
features.  From Fig. 5, we can clearly see that our system 
obtains reasonable evaluation about the size of salient 

structure and the importance of features according to the 
input scene. This is important for searching task-free 
interesting structures from complex scenes. 

 An additional experiment was executed in order to 
model the process of object searching in multiple object 
scenes. Fig. 6 shows the object searching procedure 
beginning with an initial saliency map. Based on the 
previous work of Itti et al. [15], the mechanisms of 
"winner-take-all" and "inhibition-of-return" were 
employed to search salient locations. The bottom row of 
Fig. 6 shows the classical shift of focus of attention 
modeled by the method of Itti et al. [15]. Comparing to 
Itti's model, our system further extracts full structures (the 
top row) from each attended location (the middle row).  
The objects were found one by one with time course. In 
addition, our method provides the importance of each 
feature for each object, which is indicated by the histogram 
shown in Fig. 6 (the middle row).  We believe these 
features are also useful for further object recognition.  

Fig. 5. Several examples illustrating that our system automatically selects the size of potential salient structure and estimates the
importance of each local feature. The object mask in (c) is obtained by thresholding the CBSP in (b) with the currently optimal 
threshold (i.e., the percentage number shown in (c)). 

Fig. 6. The procedure of object searching in a multiple object scene. 
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On the other hand, our model further re-evaluates 
salient structure with new prior and feature weights for 
improving the confidence of salient structures. Fig. 7 
shows several examples which illustrate that our system 
can always correctly identify the salient object, although 
the initial CBSP (Fig. 7b) is inaccurate. For example, in the 
bear image (Fig. 7, the top row), the most salient location is 
on the head of bear and most parts of the bear's body are 
missed in the initial CBSP. However, after two steps of 
iteration, our model detects the full bear and suppresses 
background textures significantly. 
 
5.2. Fixation Prediction 
Fixation prediction methods are usually benchmarked on 
some available fixation datasets [1, 8]. Although our model 
detects the salient structures instead of the sparse fixations, 
it is believed that most human fixations should be present 
on the interest regions or salient structures in the complex 
scene. Therefore, we also evaluated the performance of our 
system with the benchmark of fixation prediction for 
complex scenes with ROC curve [1]. We evaluated the 
results of the proposed model on two  large datasets 
collected by Judd, et al. [1] and Li, et al.[8] , which contain 
1003 images and 235 images, respectively. In addition, we 
compared our method to several existing fixation 
prediction methods. 

From Fig. 8,  some existing methods usually provide 
stronger responses to regions with higher local contrasts, 
such as edges or boundaries of objects (e.g., CA[10], 
SUN[21]), while ignoring the surfaces of salient structures. 
Others models obtain highly blurred saliency map, which 
cannot provide fine shapes or structures of objects. In 
contrast, our CGVS method is efficient for various 
situations of scenes. For simple scenes with predominant 
objects, CGVS responds well to full objects (Fig. 8, the 
first to third rows).  In addition, our method is also efficient 
when scenes contain multiple objects (two objects in Fig. 8, 
the fourth row) and large objects (Fig. 8, the fifth to sixth 

rows). In short, our CGVS saliency contributes to saliency 
computation in both simple and complex scenes. 

We further quantitatively evaluated the performance of 
the proposed method for the task of fixation prediction. Fig. 
9 (left) shows the ROC curves of CGVS with various 
iteration steps on two datasets. In general, CGVS(t0) 
achieves the best performance for fixation prediction. This 
is because that iteration processing makes our system focus 
on the most few salient objects in scenes, and against 
precision of fixation prediction.  Fig. 9 (right) shows that 
our method outperforms (at least catches up) all considered 
bottom-up (low-level) methods. Note that the method 
proposed by Judd et al. [1] achieves better performance 
mainly because that a training process and several 
high-level features, such as face detection, person detection, 
etc are introduced into their model. 

It is worth to note that the measure of ROC Curve is 
somewhat biased when evaluating the performance of 
fixation prediction. Just as that indicated by Goferman, et 
al.[10], incorporating a center prior to the final saliency 
estimation can remarkably improve quantitative evaluation, 
but makes the saliency map look less convincing visually. 
Fig. 10 shows several examples indicating that CA with 
center prior obtains high performance in ROC curve (Fig. 
10, the last column), but misses lots of object information 
when visualizing the saliency maps (Fig. 10, third column). 
On the other hand, CA without center prior provides better 
results with qualitative evaluation (Fig. 10, the second 
column), but lower score on ROC curve. 

Actually, most of existing methods promote higher 
saliency values in the center of the image plane, such as 
GBVS [11], Judd [1], etc. The proposed method also 
combines the commonly used center prior when computing 
CBSP. With similar observation with [10], CBSP achieves 
good performance on ROC curve with the very blurred 
saliency region (Fig. 10, the forth column) regardless of the 
structure information of objects. However, our final CGVS 
is usually capable of detecting full objects and surfaces 

Fig. 7. Enhancing the salient structure in an iterative way. (a) Original image, (b) Context-based spatial prior (CBSP), (c)-(e) Results of 
our method at different iteration stages. 
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(Fig. 10, the fifth column), and holding high performance 
on ROC at the same time (Fig. 10, the last column). 
Comparing to CA with or without center prior, CGVS 
achieves qualitatively better results when visualizing the 
saliency maps, although CA with center prior achieves 
higher performance on ROC curve. The reason is that 
CBSP is just a rough estimate of potential saliency regions, 

and the saliency of each pixel is reassigned with Bayesian 
Inference during the next step of iteration. Therefore, 
center prior implemented in CBSP will not cause the loss of 
saliency structure near the border of images. 

In addition, there are several other metrics for saliency 
evaluation, and some of them (e.g., shuffled AUC [21]) are 
expected to tackle the influence of center prior [58]. 

Fig. 9. Quantitative evaluation on two fixation prediction datasets (a) Judd [1] and (b) ImgSal [8]. Left: ROC curves for our method 
with various iteration steps. It is clear that CGVS(t0) achieves the best performance for fixation prediction. Right: ROC curves for our 
method comparing to other algorithms, indicating that our model outperforms the most methods and is comparable to GB[11]. The 
model of Judd et al. provides the best performance mainly because it uses learning and high-level object detection. Considered
methods include IT[15], GB [11], AIM[17], SUN[21], AWS[22], SIG[18], CA[10], HFT[8], Judd[1].  

Fig. 8. Comparing the fixation prediction results. (a) original images, (b) saliency structure produced using the proposed method 
(CGVS) without the iterative processing, saliency maps produced using multiple methods: (c) Judd et al. (Judd) [1], (d) Boolean map
(BMS) [7], (e) Context-aware (CA) [10], (f) Graph-Based (GB)[11], (g) Itti et al. (IT) [15], and (h) Image Signature (SIG)[18]. Note 
that the red points overlapped on the CGVS maps indicate the human fixations (ground truth). It is clear that our CGVS generates
uniformly highlighted salient structure that covers almost all human fixations. 
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However, all these metrics (including ROC) for evaluating 
fixation prediction are computed against the human 
fixations which are extremely sparse. The salient structures 
like some object surfaces extracted by our method may be 
inaccurately considered as false alarm when computing 
metrics, though we believe that extracting object 
information is a main merit of our method. 
 
5.3. Salient Object Detection 
For simple scenes with dominant objects, a lot of 
algorithms have been successfully developed for salient 
object detection. Unlike fixation prediction, salient object 
detection methods are commonly benchmarked by binary 
pixel-accurate object masks [2]. 

In this experiment, we first use the standard F-measure 
(P-R curve and F-score) for performance evaluation on 

two popular datasets: ASD [2] and ECSSD [6]. However, 
Along the systemic analysis of Margolin et al. [59], 
F-measure does not always provide a reliable evaluation 
for salient object detection. Therefore, we also employ the 
amended F-measure (called Weighted F-score) proposed in 
[59] as a more preferable measure. In addition, another 
measure of  Mean Absolute Error (MAE) [60] [14, 49] is 
also introduced for complementary performance 
evaluation.  

Fig. 11 lists the performance of our methods with both 
the standard P-R curves and the weighted F-scores on ASD 
and ECSSD datasets. Different from fixation prediction in 
Section 5.2, the iterating process can further enhance the 
regions of objects and improve the performance since the 
benchmark used in this experiment has few salient objects. 
Generally, our CGVS system can obtain a stable 

Fig. 11. Quantitative evaluation on two salient object datasets (a) ASD [2] and (b) ECSSD [6].Left: P-R curves for our method with 
various iteration steps. Right: weighted F-score for our method with various iteration steps. CGVS(t2) achieves the stable performance 
for salient object detection.  

Fig. 10. Examples showing the gap between qualitative and quantitative evaluation. Quantitatively, CA provides large improvement
when introducing center prior, but the visual assessment drops a lot. Similarly, although quantitative evaluation of our method is a little 
worse than that of CA with center prior, our CGVS obtains the excellent assessment when visualizing the saliency map, which 
highlights almost all the pixels of the dominant objects.  



10 

performance with only two times of iteration (i.e., 
CGVS(t2)).  

Fig. 12 shows P-R Curve, F-score, Weighted F-score, 
and MAE for various state-of-the-art salient object methods 
on the two datasets. From the standard P-R curve and 
F-score, our CGVS(t2) outperforms most of the considered 
algorithms except HS [6]. However, our method achieves 
high F-score across a large range of thresholds (Fig. 12, the 
second row) on both datasets.  This result indicates that the 
proposed model is capable of obtaining high confidence of 
salient objects.  In addition, our method significantly 
outperforms all considered algorithms on the other 
measures of weighted F-score and MAE. Totally, our 

system achieves competitive performance comparing to the 
state-of-the-art methods of salient object detection in 
simple scenes. 

Several example results of salient object detection are 
shown in Fig. 13. 
 
5.4  Robustness to Parameters 
In the proposed system, the observed object mask and cue 
weights are important for the evaluation of likelihood function 
in Section 3.3.  Fortunately, our system is capable of 
automatically predicting the size of potential structure and the 
relative importance of each feature according to CBSP 
(Equation (1)). Therefore, the other two parameters in the 
computation of CBSP were tested to analyze their effect in 

Fig. 12. Statistical comparison of different saliency detection methods with four metrics on two datasets. (a) P-R Curve, (b) F-score, 
(c) Weighted F-score, and (d) Mean Absolute Error (MAE). The methods considered include AC[4], LC[9], FT[2], HC[13], RC[13], 
SF[14], HS[6], Bayes[5]. 
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this experiment. We tested the robustness of our method to 

the parameters of rd  and c  in the range of 

 1/ 2,1 / 3,1 / 4,1 / 5,1 / 6 ( , )W Hmin  used in Section 3.1. 

Fig. 14 shows the F-scores and weighted F-score on the 
whole salient dataset (ASD) when varying these 
parameters. It can be seen that our system is very robust to 
these parameters. The same conclusion can be drawn with 
fixation prediction experiments on Judd dataset (not shown 
here for space limitation). 
 
5.5. Salient Structure Detection Using Saliency Map 
Fixation prediction methods usually obtain poor 
performance when facing the task of salient object 
detection.  This is understandable because almost all 
fixation prediction methods ignore the object surface and 
shape information. In this study, we try to bridge the gap 
between the tasks of fixation prediction and salient object 
detection by transforming saliency map to salient structure. 
Fig. 15 shows that the performances of several fixation 
prediction methods are significantly improved for salient 
object detection on both metrics of P-R Curve and 
weighted F-score.  

6. Discussion and Conclusion 

In this paper, we proposed a context-guided visual search 
(CGVS) system based on the guided search theory. 
Different from the classical FIT theory [19] and the popular 
model proposed by Itti et al. [15], our method searches 
salient structures with Bayesian inference guided by 
context information, such as the location and size of salient 
structure, importance of feature, etc. This property endows 
our system the capability of adapting to various scenes. As 
a result, our method achieves a competitive performance on 

the both tasks of fixation prediction and salient object 
detection comparing to the state-of-the-art methods.  

It is worth to note that the proposed model can be 
regarded as a unified and general framework for guided 
search. For example, this system is easy to be extended by 

Fig. 13. Visual comparison of salient object detection. (a) original images, (b) human-marked ground truth, results of salient object 
detection with various methods: (c) the proposed method with two steps of iteration, (d) Bayesian saliency (Bayes) [5], (e) Boolean 
map (BMS)[7], (f) Hierarchical saliency (HS) [6], (g) Saliency filters (SF)[14], (h) histogram-based contrast (HC) [13], (i) 
region-based contrast (RC) [13], and (j) Frequency-tuned (FT)[2].  

Fig. 14. Robustness to parameters on salient object dataset 

(ASD). Top: Testing our CGVS(t2) with various rd  and 

( , ) / 3.=c W Hmin  Bottom: Testing our CGVS(t2) with

various c and  ( , ) / 3.=r W Hd min  
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introducing high-level object-related global features in the 
non-selective pathway for a specific object search task. 
Meanwhile, adding more local features (e.g., depth, motion, 
etc.) in the selective pathway could also extend our system 
for more applications such as video processing. 
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