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Abstract—We propose to model the image differentials of
astrophysical source maps by Student’st-distribution and to
use them in the Bayesian source separation method as priors.
We introduce an efficient Markov Chain Monte Carlo (MCMC)
sampling scheme to unmix the astrophysical sources and describe
the derivation details. In this scheme, we use the Langevin
stochastic equation for transitions, which enables parallel draw-
ing of random samples from the posterior, and reduces the
computation time significantly (by two orders of magnitude).
In addition, Student’s t-distribution parameters are updated
throughout the iterations. The results on astrophysical source
separation are assessed with two performance criteria defined in
the pixel and the frequency domains.

Index Terms—Bayesian source separation, Multi-channel
denoising, Metropolis-Hastings, Langevin stochastic equation,
MCMC, Astrophysical images, Student’st-distribution.

I. I NTRODUCTION

T HE Bayesian framework, which enables the inclusion of
prior knowledge in problem formulation, has recently

been utilized to improve the performance of Blind Source Sep-
aration (BSS) techniques. In the context of image separation,
one obvious type of prior information is the spatial [1] or
spatio-chromatic [2] dependence among the source pixels.

While there are three conditions that ensure separability
of sources, namely, non-Gaussianity, non-whiteness and non-
stationarity [3], we choose to exploit spatial correlation(i.e.
spatial non-whiteness). The prior densities are constituted by
modeling the image differentials in different directions as
Multivariate Student’st-distributions [4]. Thet-distribution
has some convenient properties for our model: If the degree
of freedom parameter of the distribution goes to infinity, itap-
proaches a normal density; conversely, if the degree of freedom
parameter equals 1, the density becomes Cauchy. Therefore
the t-distribution is a flexible and tractable statistical model
for data ranging from broad-tailed to normally distributed.
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The first examples of use oft-distribution in inverse imaging
problems can be found in [5] and [6]. In [6], it is shown that
the t-distribution approximates the distribution of the wavelet
coefficients of an image more accurately. In recent papers,
it has been used for image restoration [7] and deconvolution
[8]. Notice that the degree of freedom parameter of thet-
distribution has the same role as the regularization parameter
of the Markov Random Field (MRF) models. The MRF prior
with Cauchy density, which was first proposed in [10] for
inverse imaging, was used in [1] for source separation. The
model used in [1] is an approximation to thet-distribution,
which is presented in Section V-A.

The t-distribution has already been used in Bayesian audio
source separation [9] to model the discrete cosine transform
coefficients of the audio signals. It was reported that the
t-distribution prior had improved the sound quality over
the finite mixture-of-Gaussians prior. In this study, to solve
the Bayesian BSS problem for images without incurring in
smoothing artifacts, we propose thet-distribution for modeling
the local pixel differences.

We use the joint posterior density of the complete vari-
able set to obtain a joint estimate of all the variables. In
this Bayesian approach, the BSS problem can be solved by
maximizing the joint posterior density of the sources, the
mixing matrix and the source prior model parameters [12],
[13]. A method for solving the joint posterior modal estimation
problem is the Iterated Conditional Mode (ICM) method,
which maximizes the conditional densities sequentially for
each variable [11]. If the mode of the conditional density
cannot be found analytically, any deterministic optimization
method can be used [13]. However, under any non-Gaussian
hypothesis, ICM does not guarantee a unique global solution.

Another algorithm suitable for learning the Gaussian MRF
is the Expectation-Maximization (EM) method. Using the
Mean Field Approximation (MFA), the expectation step of
the EM algorithm can be calculated analytically [14]. The
MFA under Gaussian model assumption causes smoothing the
edges in the image. The reason underlying these smoothing
effects is that the Gaussian approximation violates the edge
preserving property of the prior density, and the effect is
proportional to the amount of noise. The image model with
spatially varying variance parameter in variational Bayesian
approximation can help overcome the smoothing problem [7],
[8]. In [15], [14], deterministic optimization techniqueshave
been used for the MRF. In [1], a Gibbs sampling stochastic
optimization procedure is used. Since it is not possible to draw
samples in a simple way due to the MRF priors in Gibbs
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distribution form, a Metropolis embedded Gibbs sampling has
been adopted. In [1], it is reported that the Monte Carlo results
with less image smoothing, but the cost of avoiding smoothing
artifacts is a significant increase in the convergence time.

In this study, we propose a more efficient Monte Carlo
Markov Chain (MCMC) sampling method in lieu of random
walk Metropolis. To produce proposal samples in parallel,
we resort to the Langevin stochastic equation [16], [17],
[18], while the proposed samples are accepted or rejected by
the Metropolis scheme. In statistical physics, the Langevin
equation [16] is used to describe the Brownian motion of
particles in a potential field and has been used to obtain a
smart MC algorithm in [17]. Another parallel sampling algo-
rithm is the Hamilton Monte Carlo, which is the generalized
version of the Langevin sampler [18]. We conjecture that, with
the samples produced in parallel by the Langevin equation,
the convergence time of the algorithm will be significantly
reduced.

Parameter estimation in Bayesian edge preserving inverse
imaging problems with Gibbs distributions is a troublesome
process because of the partition function. Although there
are some methods [19], [20] that calculate the parameters
using Monte Carlo techniques, their computational burdens
are prohibitive. One can resort to the Pseudo Likelihood
(PL) approximation to make the partition function separable,
which is more convenient for parameter estimation with the
Maximum Likelihood (ML) method. In [21], two Bayesian
approaches have been used to estimate parameters, namely,
the Maximum-a-Posteriori (MAP) and evidence approaches.
An approach to estimate the regularization parameter from
the PL approximation has been recently proposed [22]. The
multivariatet-distribution is also a PL approximation to MRF
and has advantages over MRF in parameter calculations.

There are two types of parameters in edge preserving
inverse imaging. The first one is the adaptive edge preserving
parameter, which is also known as threshold parameter. We
interpret the threshold parameter as the scale parameter of
the t-distribution. The other parameter is the regularization
parameter, which adjusts the balance between the likelihood
and the prior. The regularization parameter corresponds tothe
degree of freedom (dof) parameter of thet-distribution. To
estimate the scale and dof parameters of ourt-distribution, we
use ML estimation via EM algorithm as in [30]. A similar
approach has been used in [7] and [8].

In a comparative study among image source separation algo-
rithms [1], we have found that the Bayesian formulation with
MRF prior and Gibbs sampling outperformed the heuristic and
the other Bayesian approaches. This work is based on [1], and
aims to achieve a much faster MCMC implementation without
compromising its good performance. With this goal in mind,
we have been testing our algorithms on a current problem of
modern astrophysics: the separation of radiation source maps
from multichannel images of the sky at microwave frequen-
cies. In particular, we have been applying our algorithm to
the separation of the Cosmic Microwave Background (CMB)
radiation from the galactic emission (synchrotron and thermal
dust emissions) using realistically simulated sky maps.

The original contributions of the paper hinge on two aspects.

First, we adopt thet-distribution to build a prior model of the
source maps. More specifically, thet-distribution is used to
model the differentials of the sources, as done by the first-order
homogeneous MRF models. This is advantageous because the
flexibility of the t-distribution allows each source differential
to assume a different model whether impulsive or Gaussian,
simply by setting the dof parameter. The second contribution
is the introduction of the Langevin sampling scheme in lieu
of the random walk Gibbs sampling. As opposed to pixel-
by-pixel sampling, Langevin sampling generates the samples
in parallel, thus leading to much faster convergence. Further-
more, the samples are drawn in an informed way, since their
generation follows the gradient descent direction on an energy
surface.

Section II is a brief introduction to astrophysical sources.
In Section III, the component separation problem in observa-
tional astrophysics is stated. Section IV lays out the Bayesian
formulation of the problem. Section V presents the derivation
steps of the adaptive Langevin sampler algorithm along with
the EM parameter estimation method. The simulation results
are presented in Section VI and interpreted in Section VII.

II. A N INTRODUCTION TOASTROPHYSICALSOURCES

Here, we only give a brief description of the astrophysical
radiations considered, referring the interested reader to[23]
for details. We are interested in the frequency range 30 to
1000 GHz where the dominant diffuse radiations are the CMB,
the galactic synchrotron radiation and the thermal emission
from galactic dust. Studying this radiation would help us to
understand the distribution and the features of interstellar dust
in our galaxy.

The most interesting astrophysical source in the microwave
region of the electromagnetic spectrum is the CMB, a relic
radiation originating from the time when the Universe was
300.000 years old. The discovery of the CMB is one of the
fundamental milestones of modern cosmology and its study
allows us to determine fundamental parameters such as the
age of the universe, its matter and energy composition, its
geometry and many other relevant cosmological parameters.
CMB should be a blackbody radiation at a temperature of
2.726 K, thus its emission spectrum should be perfectly
known. The CMB emission dominates over the other sources
at frequencies around 100 GHz. The CMB temperature is not
perfectly anisotropic. Standard cosmological models predict
that the CMB anisotropy is Gaussian distributed, although
some alternative models permit a certain degree of non-
Gaussianity. Current observations are compatible with thehy-
pothesis of Gaussianity. Two all-sky surveys have been made
on CMB so far, by NASA’s satellites COBE [32] and WMAP
[33]. A European mission whose data will be highly accurate
and spatially resolved, Planck [23], is about to provide itsfirst
full-sky coverage maps.

The CMB signal is mixed with other astrophysical sources
of electromagnetic radiation. Relativistic electrons being accel-
erated by magnetic fields in the Galaxy give rise to synchrotron
emission, which dominates over the CMB in regions close
to the Galactic plane especially at low frequencies (< 200



KAYABOL et al.: ADAPTIVE LANGEVIN SAMPLER FOR SEPARATION OFT-DISTRIBUTION MODELLED ASTROPHYSICAL MAPS 3

−0.1 −0.05 0 0.05 0.1

0

50

100

150

200

250

300

350

400

450

500

 

 
Histogran
Cauchy
t−distribution
Gaussian

(a) CMB horizontal
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(b) CMB vertical
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(c) Synchrotron horizontal
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(d) Synchrotron vertical
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(e) Dust horizontal
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(f) Dust vertical

Fig. 1. Fitting plots of the image differential histograms (dots) of CMB,
synchrotron and dust components in horizontal and verticaldirections. The
fitted functions proportional to Gaussian (dot line), Cauchy (dash-dot line)
and t-distribution (dash line).

GHz). According to observations in other frequency bands,
the synchrotron emission spectrum follows a power law with
a negative exponent, whose value is presently known with
high uncertainty. Synchrotron is the dominant radiation inthe
low-frequency bands of our range of interest. Inter-stellar dust
grains are heated by nearby stars and re-emit thermal radiation
in the far infrared region of the electromagnetic spectrum.
Dust radiation is dominant in the high end of our range.
In particular, it is almost the only significant contribution to
the total diffuse radiation between 800 GHz and 1000 GHz.
Its emission spectrum should follow a greybody law, with
unknown spectral index and an additional degree of freedom
given by the thermodynamical temperature of the dust grains.
For a short review on CMB astronomy, see [24].

There are other astrophysical sources present at microwave
frequencies, such as free-free emission due to free electrons,
anomalous dust emission and radiation coming from extra-
galactic sources, but their relevance is smaller. In this work
we will focus on the main three astrophysical sources present
in CMB experiments: CMB, synchrotron and dust.

In order to justify our adoption of the Student’st-
distribution in a relevant case, we have selected a15◦ × 15◦

TABLE I
ROOT MEAN SQUARE ERROR(RMSE)OF FITTING OF THE IMAGE

DIFFERENTIAL HISTOGRAMS OFCMB, SYNCHROTRON AND DUST
COMPONENTS. THE LAST COLUMN SHOWS THE ESTIMATED DOF

PARAMETERS OF THEt-DISTRIBUTION.

Horizontal direction
Gaussian Cauchy t-distribution dof

CMB 15.11 30.84 15.47 25.71
Synchrotron 23.70 30.06 15.70 3.59

Dust 67.99 33.21 13.84 1.81
Vertical direction

Gaussian Cauchy t-distribution dof
CMB 15.75 29.70 15.83 15.75

Synchrotron 19.11 31.00 18.39 19.11
Dust 63.73 68.19 54.42 2.18

sky patch, located at0◦ galactic longitude and40◦ galactic
latitude, discretized into a512 × 512-pixel map. Within this
patch, we have introduced simulated CMB, synchrotron, and
dust radiation maps (as in [26]). We have computed the source
image differentials for horizontal and vertical directions, and
estimated their empirical distributions. We have fitted three
different functions to the empirical distributions of the image
differentials of the astrophysical sources with nonlinearleast
square method using the Curve Fitting Toolbox of MATLAB.
These functions are proportional to Gaussian, Cauchy andt-
distribution. Fig. 1 shows the fitting results for CMB, syn-
chrotron and dust images. Table I lists the residual Root Mean
Square Errors (RMSE) of the fits. The Gaussian gives the best
fit for CMB because the CMB is theoretically distributed as
a Gaussian [24]. Overall, thet-distribution appears to be a
good choice for modeling the image differential statisticsin
horizontal and vertical directions of all the components. The
estimated dof parameters oft-distributions show that indeed
the proposed model assumes from impulsive to Gaussian
characteristic underlying each component. If the component
is Gaussian as CMB, the dof parameter becomes bigger and
if it is impulsive, the dof parameter becomes very small.

III. C OMPONENT SEPARATION PROBLEM IN

OBSERVATIONAL ASTROPHYSICS

Virtually any application in observational astrophysics has
to do with problems of component separation. Indeed, all
the astrophysical observations result from the superposition
of the radiation sources placed along the line of sight. While
very distant sources can be distinguished by the redshift
analysis, for nearby sources this is not possible. In fact,
physically distinct sources can sometimes be found within a
close range of each other. Furthermore, high sensitivity and
high resolution measurements can give rise to source mixing
problems even in the cases where the radiation under study
is dominant over interfering radiations. Apart from redshift
analysis, useful methods to distinguish between superimposed
physically different radiations include spectral analysis and
morphological analysis. In this paper, we only treat the former
approach, exploiting the differences in the emission spectra
shown by physically distinct radiation sources. This implies
that the separation must be done on the basis of measurements
made at different frequency bands.
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We assume that the observed images,yk, k ∈ {1, 2, . . . ,K},
are linear combinations ofL source images. Let thekth
observed image be denoted byyk,i, wherei ∈ {1, 2, . . . , N}
represents the lexicographically ordered pixel index. Theim-
age separation problem consists in findingL independent
sources fromK different observations. Ifsl and yk denote
N×1 vector representations of source and observation images,
respectively, then the observation model can be written as

yk =

L∑

l=1

ak,lsl + nk, k = 1, . . . ,K (1)

wherenk is an iid zero-mean noise vector withΣ = σ2
kIN

covariance matrix andIN is an identity matrix. Although the
noise is not necessarily homogeneous in the astrophysical
maps, in this study we assume that the noise variance is
homogeneous within each sky patch and is also known.

Since the observation noise is assumed to be independent
and identically distributed zero-mean Gaussian at each pixel,
the likelihood is expressed as

p(y1:K |s1:L,A) ∝
K∏

k=1

exp
{
−W (s1:L|yk,A, σ

2
k)
}
(2)

W (s1:L|yk,A, σ
2
k) =

||(yk −
∑L

l=1 ak,lsl)||2
2σ2

k

(3)

where the mixing matrixA contains all the mixing coefficients
ak,l introduced in (1).

For many purposes, a mixing model of the type (1) is
considered to fit reasonably well to an astrophysical obser-
vation. The details on how to get an equation similar to (1)
from the physics of the problem can be found in [25]. Here,
we only summarize the main assumptions made with this
purpose. First, we assume that the superposition of the signals
originating from different sources is linear and instantaneous.
In the astrophysical case, this assumption is clear, since the
physical quantities to be measured are superpositions of elec-
tromagnetic waves coming, for any bearing, exactly from the
same line of sight without any scattering or diffraction effect.
The second assumption in modeling astrophysical observations
is that each source has an emission spectrum that does not
vary with the bearing. This assumption implies that individual
radiations result from the product of a fixed spatial template
and an isotropic emission spectrum. Both assumptions need
closer attention. The precise emission spectrum generatedby
any physical phenomenon depends on many quantities that
may not all be distributed uniformly in the sky. Although in
many applications the isotropy assumption has been adopted
successfully, in many other cases the space-variability ofthe
radiation sources must be taken into account to allow a good
separation to be performed. Furthermore, if the effect of the
telescope is taken into account, then the instantaneous model
is no more valid since, for the finite aperture, the light captured
in a fixed direction in the telescope does not come from that
direction alone. In formulas, model (1) becomes

ỹk = hk ∗ yk = hk ∗
L∑

l=1

ak,lsl + nk (4)

where the asterisk means convolution, andhk is the telescope
radiation pattern in thek’th observation channel. Note that, if
hk is the same for all the channels, (4) can be written as

ỹk =

L∑

l=1

ak,lh ∗ sl + nk =

L∑

l=1

ak,ls̃l + nk (5)

and the problem is again instantaneous for the modified
sources̃sl, which are the physical sources smoothed by the
common radiation patternh. Unfortunately, especially in the
radio- to millimeter-wave ranges, the telescope aperture de-
pends strongly on frequency, and model (5) cannot be adopted
directly, unless the observed signals are preprocessed to reduce
their angular resolution to the worst available (see [26]).

Since no imaging system can achieve an infinite resolution,
we should use (4) as our generative model. However, to avoid
problems with the convolutive mixtures, we assume to have a
telescope with the same radiation pattern in all the channels,
so as to be able to use model (5). Note that this can always be
obtained by preprocessing, provided that all the beam patterns
are known. Hereafter, as it will not cause any ambiguity, we
drop the tilde accent from the symbols used to denote the data
and the source vectors.

IV. SOURCE SEPARATION DEFINED IN THE BAYESIAN

FRAMEWORK

A. Source Model

Neighbor pixels in our images have strong dependency. This
is demonstrated, for example, in Fig. 2(d) where the scatter-
plot shows the first order right neighbor pixels of the dust map
shown in Fig. 2(a). The dependency decreases in the high
intensity region. This region in the scatter-plot corresponds
to spatially localized structures with high image intensity of
the map in Fig. 2(a). The existence of a small number of
point-like structures in the maps indicates that the dependency
assumption is valid. In view of this, we can write an auto-
regressive source model using the first order neighbors of the
pixel:

sl = αl,dGdsl + tl,d (6)

where d ∈ {1, . . . , D} denotes one of the main directions
(left, right, up and down) andD = 4 is the cardinality of
the set of image differential directions. MatrixGd is a linear
one-pixel shift operator in directiond, αl,d is the regression
coefficient and the regression errortl,d is an iid t-distributed
zero-mean vector with dof parameterβl,d and scale parameters
δl,d, T (tl,d|0, δl,dIN , βl,d). We can justify the iid assumption
of tl,d by plotting (see Fig. 2(e)) the values intl,d versus
its first order neighbors,Gdtl,d. We can interprettl,d as a
decorrelated version ofsl. Fig. 2(b) showstl,d for d = 1. By
comparing Fig. 2(d) and (e), we can say thattl,d is spatially
more independent thansl.

If the imagesl were Gaussian distributed, then the regres-
sion error would also be Gaussian. However in real images,
the regression error is better modelled by some heavy-tailed
distribution. The t-distribution can conveniently model the
statistics of data whose distribution ranges from Cauchy to
Gaussian, and therefore it is a convenient model for the
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Fig. 2. (a): The synchrotron maps, (b): Right t1 = s−G1s and (c): Up
t3 = s−G3s difference maps of (a). (d): Scatter-plot of the first order right
neighbor pixels of (a),s and G1s. (e): Scatter-plot of the first order right
neighbor pixels of (b),t1 andG1t1. (f): Scatter-plot of the right difference
(b) versus up difference (c),t1 andt3. (g): Scatter-plot of the right difference
(b) versus left difference (c),t1 andt4.

statistics of the high spatial frequency contents of images,
such as regression errors [6]. The scale parameterδl,d can
be assumed as a space-varying parameter to model the highly
non-stationary sources, i.e. sparse sources, but homogenous
variance assumption has been observed to be adequate for
diffuse astrophysical source images for the image patch sizes
that we use in the simulations. We use a homogeneous variance
since, in our case, the increased complexity derived from
inhomogeneity is not justified by a significant improvement
in performance.

The regression errortl,d represents the directional image
differential in the directiond. The multivariate probability
density function of an image modelled by at-distribution can
be defined as

p(tl,d|αl,d, βl,d, δl,d) =
Γ((N + βl,d)/2)

Γ(βl,d/2)(πβl,dδl,d)N/2

×
[
1 +

φd(sl, αl,d)

βl,dδl,d

]−(N+βl,d)/2

(7)

whereφd(sl, αl,d) = ||tl,d||2 = ||sl − αl,dGdsl||2 andΓ(.) is
the Gamma function. We can write the density ofsl by using
the image differentials in different directions, assumingdirec-
tional independence, asp(sl|Θ) =

∏D
d=1 p(tl,d|αl,d, βl,d, δl,d)

where Θ = {α1:L,1:D, β1:L,1:D, δ1:L,1:D}. We can simply
justify this assumption by plotting the horizontal regression
error versus the vertical one as shown in Fig. 2(f). We can
observe in this figure that the scatter plot of the regression
errors in left and up directions is almost circular and this
justifies our assumption of independence. Fig. 2(g) shows the
scatter-plot of right difference versus left difference. In spite of

a weak dependence between right and left difference images,
we maintain the independency assumption to constitute the
products of the regression error probabilities model. A similar
approach to constitute a single prior by multiplying different
individual priors can be found in [27]. In this study, we use the
left/right and up/down differences jointly in the prior model
to balance their contributions. Otherwise, we could obtain
directionally biased results.

The t-distribution can be written in implicit form by using
a Gaussian and a Gamma density. Thet-distribution has a dof
parameterβ, which is itself governed by Gamma distribution
with parameterβ/2. Thet-distribution has the following form
[30]:

p(tl,d|αl,d, βl,d, δl,d) =

∫
p(tl,d|νl,d, δl,d)p(νl,d|βl,d)dνl,d

=

∫
N
(
tl,d|0,

δl,dIN
νl,d

)
G
(
νl,d|

βl,d
2
,
βl,d
2

)
dνl,d. (8)

The interpretation of this equation is that iftl,d|δl,d, νl,d is
distributed with a normal densityN (tl,d|0, δl,dIN/νl,d) and
the parameterνl,d has a Gamma prior asG(νl,d|βl,d/2, βl,d/2),
the distribution oftl,d|βl,d, δl,d becomes at-distribution such
that T (tl,d|0, δl,dIN , βl,d). The representation in (8) is a
particular case of the Gaussian Scale Mixture (GSM) densities.
The ML estimation of the parametersαl,d, βl,d andδl,d using
the EM method [30] is given in Section V-B.

B. Posteriors

The joint posterior density of all the unknowns in the BSS
problem can be written as:

p(s1:L,A,Θ|y1:K) ∝ p(y1:K |s1:L,A)p(s1:L,A,Θ) (9)

where p(y1:K |s1:L,A) is the likelihood andp(s1:L,A,Θ)
is the joint prior density of unknowns. The joint prior
can be factorized asp(s1:L|α1:L,1:D, β1:L,1:D, δ1:L,1:D) p(A)
p(β1:L,1:D) p(δ1:L,1:D) p(α1:L,1:D). Furthermore, since the
sources are assumed to be independent, the joint probability
density of the sources is also factorized asp(s1:L|Θ) =∏L

l=1 p(sl|Θ).
Mathematically, we can assume uniform priors forαl,d ∈

(−1, 1), δl,d ∈ (0,∞) and ak,l ∈ (0,∞), becauseak,l’s
are always positive. The practical usage of these priors is
explained in Section V-D. We use a conjugate Gamma prior for
βl,d ∼ G(1/2, 2× 10−3). We have determined the respective
parameters experimentally. The conditional posteriors ofall
model parameters are written as

p(ak,l|y1:K , s1:L,A−ak,l
,Θ) ∝ p(y1:K |s1:L,A)

p(αl,d|y1:K , s1:L,A,Θ−αl,d
) ∝ p(tl,d|Θ)

p(βl,d|y1:K , s1:L,A,Θ−βl,d
) ∝ p(tl,d|Θ)p(βl,d) (10)

p(δl,d|y1:K , s1:L,A,Θ−δl,d) ∝ p(tl,d|Θ)p(δl,d)

p(sl|y1:K , s(1:L)−l,A,Θ) ∝ p(y1:K |s1:L,A)p(sl|Θ)

where −variable expressions in the subscripts denote the
removal of that variable from the variable set. The parameters
α, β andδ have sizeL×D, A has sizeK×L and the sources
have sizeL×N . Overall there are(3D+K+N)L unknowns.
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For parametersαl,d, δl,d and βl,d, we exploit the EM
method. To estimate the source images, we use a version of
the posteriorp(sl|.) augmented by auxiliary variables and find
the estimation with a Langevin sampler. The details are given
in Section V.

V. ESTIMATION OF SOURCES ANDPARAMETERS

In this section, we give the details of the estimation of the
sources and the parameters.

A. Sources

We modify the posterior densities of the source images
p(sl|Θ) to obtain a more efficient MCMC sampler. In the
classical MCMC schemes, a random walk process is used
to produce the proposal samples. Although random walk is
simple, it affects adversely the convergence time. The random
walk process only uses the previous sample for producing a
new proposal. Instead of a random walk, we use the Langevin
stochastic equation, which exploits the gradient information
of the energy function to produce a new proposal. Since the
gradient directs the proposed samples towards the mode, the
final sample set comes mostly from around the mode of the
posterior [28], [29].

The Langevin equation can be obtained from the total
energy function. We first define everything in continuous time
to give the derivation steps of the Langevin equation, then we
transfer them into discrete time. To obtain the total energy
function, we introduce a velocity parametervl(t) = dsl(t)/dt
to define the kinetic energy such that

K(vl(t)|Ml) =
1

2
vT
l (t)Mlvl(t) (11)

where M is a diagonal matrix whose diagonal elements
correspond to mass parametersml,n for pixel index n =
1, . . . , N . Using the velocity parametervl, the modi-
fied version of the posterior density in (10) is writ-
ten asp(sl,vl|y1:K , s(1:L)−l,A,Θ,Ml) ∝ p(y1:K |s1:L,A)
p(sl|Θ)p(vl|Ml). More explicitly, it can be written as

p(sl,vl|y1:K , s(1:L)−l,A,Θ,M) ∝
exp{−(W (s1:L|A) + U(sl|Θ) +K(vl|M))} (12)

where the energy functionU(sl|Θ) of a source image can be
written in terms of image differentialstl,d as

U(sl|Θ) =

D∑

d=1

ρ(tl,d|Θ). (13)

where the functionρ(tl,d|Θ) is proportional to the negative
logarithm of thet-distribution in (7), that is,

ρ(tl,d|Θ) =
N + βl,d

2
log

[
1 +

φd(sl, αl,d)

βl,dδl,d

]
(14)

and the functionlog[1 + φd(sl, αl,d)/βl,dδl,d] is the regular-
ization function proposed in [10]. The terms(N + βl,d)/2
and βl,dδl,d correspond to the regularization and the thresh-
old parameters, respectively, used in edge preserving image
reconstruction.

The energy functionW (s1:L|A) was defined in (3). The
total energy function is proportional to the negative logarithm
of the posterior. In summary, the three terms correspond,
respectively, to the fit to data and to the inertial and the
kinetic energy terms. We can define the Lagrangian function:
L(sl(t),vl(t)) = K(vl) − W (s1:L) − U(sl) and write the
Lagrange-Euler equation for the Lagrangian as follows

d

dt

(
∂L(sl(t),vl(t))

∂vl

)
=
∂L(sl(t),vl(t))

∂sl
, (15)

Ml
dvl

dt
= − ∂

∂sl
E(sl). (16)

where E(s1:L) = W (s1:L) + U(sl). If we discretize the
dynamics in (16) and velocityvl(t) using the Leapfrog method
[18], we obtain the following three-step iteration

v
k+ 1

2

l = vk
l −

1

2
τlM

− 1
2

l g(sk1:L) (17)

sk+1
l = skl + τlv

k+ 1
2

l (18)

vk+1
l = v

k+ 1
2

l − 1

2
τlM

− 1
2

l g(sk1:L) (19)

whereg(sk1:L) = [∇sl
E(s1:L)]s1:L=s

k
1:L

, ∇sl
is the gradient

with respect tosl andτl is the discrete time step. If we define
a diagonal matrixD

1
2

l = τlM
− 1

2

l , so that, for thenth pixel,
the diffusion coefficient isDl(n, n) = τ2l /ml,n. Matrix D

is referred to here as the diffusion matrix, and is derived in
Section V-A1. Instead of this step scheme, we use the one-
step Langevin difference equation. To obtain the single step
Langevin update equation forsl, we substitute (17) into (18).

sk+1
l = skl −

1

2
Dlg(s

k
1:L) +D

1
2

l M
1
2

l v
k
l (20)

This form is also used in [28], [29]. The samples are
produced by using this first order equation, and then they are
tested in the Metropolis-Hastings scheme.

If we assume the transitions in (20) as a Wiener process
and take into account the fact that the velocity vectorvl is
independent of the source vectorsl, [18], then its probabil-
ity density function can be set as a multivariate Gaussian
as pvl

(vl) = (|Ml|/2π)
1
2 exp

{
− 1

2v
T
l (t)Mlvl(t)

}
. We can

produce a random sample from this probability such that
vl = M

− 1
2

l wl wherewl is a zero-mean Gaussian vector with
identity covariance matrixN (wl|0, I). If we substitute this
random sample into (20), we obtain the associated Langevin
equation

sk+1
l = skl −

1

2
Dlg(s

k
1:L) +D

1
2

l wl (21)

Since the random variables for the image pixel intensities
are produced in parallel by using (21), the procedure is faster
than the random walk process adopted in [1]. The random
walk process produces local random increments independently
from the neighbor pixels and the observations. In the Langevin
sampler, the samples are generated in an interrelated manner
and in terms of the descent of an energy function that reflects
the goodness of the model fit. Once the candidate sample
image is produced by (21), the accept-reject rule is applied
independently to each pixel. In the case of random walk,
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TABLE II
METROPOLIS-HASTINGS ALGORITHM FOR A SOURCE IMAGE. u: UNIFORM

POSITIVE RANDOM NUMBER IN THE UNIT INTERVAL; z: GENERATED
SAMPLE VECTOR TO BE TRIED; ϕ(zn, skl,n) : ACCEPTANCE RATIO OF THE

GENERATED SAMPLE.

1) wl ∼ N (wl|0, I)
2) H(sk

l
)←− [diag {H(sl)}sl←−sk

l

]−1

3) Dl ←− 2[H(sk
l
)]−1

4) g(sk1:L)←− [∇sl
E(s1:L)]s1:L=s

k
1:L

5) producez←− sk
l
− 1

2
Dlg(s

k
1:L) +D

1
2

l
wl from (21).

6) for all pixel n = 1, . . . , N

a) calculateϕ(zn, skl,n)

b) if ϕ(zn, skl,n) ≥ 1 then sk+1
l,n

= zn
else produceu ∼ U(0, 1).

if u < ϕ(zn, skl,n) then sk+1
l,n

= zn,

elsesk+1
l,n

= sk
l,n

c) n+ 1←− next pixel.

we would produce the candidate sample pixel and apply the
accept-reject rule. The sampling of the whole image would
be completed by scanning all the pixels in a sequential order
as in Gibbs sampling. Since each pixel has to wait the
update of the previous pixel, this procedure is very slow. In
random walk, candidate pixels can be produced in parallel
but, producing a candidate sample for the whole image using
random walk is not a reasonable method because hitting the
right combination for such a huge amount of data (i.e.≈ 105)
is almost impossible. By Langevin sampler, the likelihood of
approximately hitting the right combination at any one stepis
much higher.

After their production, the samples are tested via
Metropolis-Hastings [34] scheme pixel-by-pixel. The accep-
tance probability of any proposed sample is defined as
min{ϕ(sk+1

l,n , skl,n), 1}, where

ϕ(sk+1
l,n , skl,n) ∝ e−∆E(sk+1

l,n
) q(s

k
l,n|sk+1

l,n )

q(sk+1
l,n |skl,n)

(22)

where ∆E(sk+1
l,n ) = E(sk+1

l,n , sk(1:L)−l,n) − E(sk1:L,n) and
E(sk1:L,n) = W (sk1:L,n) + U(skl,n). For any single pixel,
U(sl,n) can be derived from (13) and (14) as

U(sl,n) =

D∑

d=1

1 + βl,d
2

log

[
1 +

φd(sl,n, αl,d)

βl,dδl,d

]
(23)

The proposal densityq(sk+1
l,n |skl,n) is obtained, from (21), as

N
(
sk+1
l,n |skl,n +

τ2l
2ml,n

g(sk1:L,n),
τ2l
ml,n

)
(24)

One cycle of the Metropolis-Hastings algorithm embedded
in the main algorithm, for each source image, is given in Table
II.

1) Diffusion Matrix: In this section, we give a method
to find an optimum diffusion matrixD. The method must
ensure that the produced samplesk+1

l comes from the
joint conditional distributionp(sl,vl|y1:K , s(1:L)−l,A,Θ,M)
introduced in (12). If we write the Taylor expansion of
E(skl ) with the infinitesimal ∆sl and take the expec-
tation of both sides with respect to the joint density

p(sl,vl|y1:K , s(1:L)−l,A,Θ,M), we obtain the following
equation

〈E(sl +∆sl)〉 = 〈E(sl) +∇E(sl)
T∆sl +

1

2
∆sTl H(sl)∆sl〉

(25)
whereH(sl) is the Hessian matrix ofE(sl) with respect tosl.
From this equation, the optimum infinitesimal∆sl is found as
∆sl = −[〈H(sl)〉]−1〈∇E(sl)〉.

If we also take the expectation of both sides of (20), we
obtain

〈sk+1
l 〉 = 〈skl 〉 −

1

2
Dlg(s

k
1:L) (26)

and comparing〈sk+1
l 〉 = 〈skl 〉 + ∆sl with (26), we write

Dlg(s
k
1:L) = −2[〈H(sl)〉]−1〈∇E(sl)〉. Rather than the ex-

pectation of the inverse of Hessian matrix, we use its diagonal
calculated by the value ofsl at the discrete timek as

Dlg(s
k
1:L) = −2[H(skl )]

−1g(sk1:L) (27)

whereH(skl ) = [diag {H(sl)}sl=s
k
l

]−1 anddiag{.} operator
extract the main diagonal of the Hessian matrix. From (27),
we can find the diffusion parameter as [35]:

Dl = 2[H(skl )]
−1. (28)

This approximation is justified ifH(sl) is strongly diago-
nally dominant.

B. Parameters oft-distribution

We can write the joint posterior of the parametersαl,d, βl,d
and δl,d such thatp(αl,d, βl,d, δl,d|tl,d,Θ−{αl,d,βl,d,δl,d}) =
p(tl,d|Θ)p(βl,d)p(δl,d). Using the likelihoodp(tl,d|Θ) in (8)
and the priors of the parameters, we can find the MAP esti-
mates of the parameters of thet-distribution by EM method.
Instead of maximizing thelog {p(tl,d|Θ)p(βl,d)p(δl,d)}, we
maximize the following function

∫
log

{
p(tl,d|Θ)p(βl,d)p(δl,d)

p(νl,d|tkl,d,Θk)

}
p(νl,d|tkl,d,Θk)dνl,d (29)

= 〈log{p(tl,d|Θ)p(βl,d)p(δl,d)}〉νl,d|tkl,d,Θk

−
〈
log p(νl,d|tkl,d,Θk)

〉
νl,d|tkl,d,Θ

k

where p(νl,d|tkl,d,Θk) is the posterior density of the hid-
den variableνl,d conditioned on parameters estimated in the
previous stepk and 〈.〉νl,d|tkl,d,Θk represents the expectation

with respect toνl,d|tkl,d,Θk. For simplicity, hereafter we use
only 〈.〉 to represent this expectation. The parameterνl,d is a
hidden (or latent) variable that changes the scale of the Gaus-
sian densityN (tl,d|0, δkl,dIN/νl,d) and has a Gamma prior
G(νl,d|βk

l,d/2, β
k
l,d/2). By exploitingνl,d, we can define thet-

distribution as a scale mixture of Gaussians as in (8). The sec-
ond term on the righthand side of (29),−〈log p(νl,d|tkl,d,Θk)〉,
corresponds to the entropy of the posterior density ofνl,d, and
is independent of the unknowns, and the function

Q(Θ;Θk) = 〈log {p(tl,d|Θ)p(βl,d)p(δl,d)}〉 . (30)
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The aim is to find the maximum ofQ(Θ;Θk) with respect
to Θ;

Θk+1 = argmax
Θ

Q(Θ;Θk) (31)

In the E (expectation) step of the EM algorithm, we must
calculate the expectation〈.〉νl,d|tkl,d,Θk . For this purpose, we
find the posterior density ofνl,d

p(νl,d|tkl,d,Θk) = p(tkl,d|Θk, νl,d)p(νl,d)

= N (tkl,d|0, δkl,dIN/νl,d)G(νl,d|βk
l,d/2, β

k
l,d/2)

= G
(
νl,d|N/2, φd(skl , αk

l,d)/δ
k
l,d

)
G
(
νl,d|βk

l,d/2, β
k
l,d/2

)

= G
(
νl,d|N+βk

l,d

2 ,
βk
l,d

2

(
1 +

φd(s
k
l ,α

k
l,d)

βk
l,d

δk
l,d

))
.

(32)
The expectation ofνl,d is

〈νl,d〉 =
N + βk

l,d

βk
l,d

(
1 +

φd(s
k
l , α

k
l,d)

βk
l,dδ

k
l,d

)−1

(33)

In the M (maximization) step, (30) is maximized with
respect toΘ. To maximize this function, we alternate among
the variablesαl,d, βl,d and δl,d. After taking the logarithms
and expectations in (30), the cost functions forαl,d, βl,d and
δl,d are written as follows

Q(αl,d; Θ
k) = −〈νl,d〉

φd(sl, αl,d)

2δl,d
(34)

Q(δl,d; Θ
k) = −N

2
log δl,d −

(
〈νl,d〉

φd(sl, αl,d)

2δl,d

)
(35)

Q(βl,d; Θ
k) = − log Γ(

βl,d

2 ) +
(

N+βl,d

2 − 1
)
〈log νl,d〉

+
βl,d−1

2 log βl,d − N+βl,d

2 log 2

− 〈νl,d〉β
k
l,d

2

(
1 +

φd(sl,αl,d)

βk
l,d

δk
l,d

)
− 0.002βl,d

(36)
The solutions to (34) and (35) can be easily found as

αl,d =
sTl G

T
d sl

sTl G
T
dGdsl

(37)

δl,d = 〈νl,d〉
φd(sl, αl,d)

N
(38)

The maximization of (36) does not have a simple solution.
It can be solved by setting its first derivative to zero:

−ψ1(
βl,d

2 ) + log βl,d + 〈log νl,d〉 − 〈νl,d〉
+

βl,d−1
βl,d

− 0.002 = 0
(39)

whereψ1(.) is the first derivative oflog Γ(.) and it is called
digamma function.

C. Parameters of the Mixing Matrix

We assume that the prior ofA is uniform between 0
and ∞. The conditional density ofak,l is expressed as
p(ak,l|y1:K ,Θ

t
−ak,l

) ∝ p(y1:K |Θt). From (2), it can be seen
that the conditional density ofak,l becomes Gaussian. The
parameterak,l is estimated in each iteration as

ak,l =
1

sTl sl
sTl (yk −

L∑

i=1,i6=l

ak,isi)u(ak,l) (40)

whereu(ak,l) is the unit step function.

TABLE III
ONE CYCLE OFADAPTIVE LANGEVIN SAMPLER FOR SOURCE

SEPARATION. THE SYMBOL←− DENOTES ANALYTICAL UPDATE, THE
SYMBOL←−0 DENOTES UPDATE BY FINDING THE ZERO ROOT AND THE

SYMBOL∼ DENOTES UPDATE BY RANDOM SAMPLING.

Find the initial mixing matrix (i.e. FDCCA [31]).
Find the initial source images using the LS solution.
Initialize the parametersα0

l,d
, β0

l,d
andδ0

l,d
for all source images,l = 1 : L

for all directions,d = 1 : D

〈νl,d〉 ←−
N+βk

l,d

βk
l,d

(
1 +

φd(s
k
l
,αk

l,d
)

βk
l,d

δk
l,d

)−1

αl,d ←−
s
T
l
G

T
d
sl

s
T
l
G

T
d
Gdsl

δl,d ←− 〈νl,d〉
φd(sl,αl,d)

N

βl,d ←−0 [−ψ1(
βl,d

2
) + log βl,d + 〈log νl,d〉 − 〈νl,d〉

+
βl,d−1

βl,d
− 0.002 = 0]

for all pixels,n = 1 : N

Using Metropolis-Hastings method in Table II

sk+1
l,n
∼

{
p(sl,n|y1:K ,Θ

t
−sl,n

)

}

for all elements of the mixing matrix,(k, l) = (1, 1) : (K,L)

ak,l ←−
1

sT
l
sl
sT
l
(yk −

∑L

i=1,i6=l
ak,isi)u(ak,l)

D. Adaptive Langevin Sampler Algorithm

The proposed Adaptive Langevin Sampler algorithm is
given in Table III. The symbol←− denotes analytical update,
the symbol←−0 denotes update by finding the zero root and
the symbol∼ denotes the update by random sampling. The
sampling of the sources is done by the Metropolis-Hastings
scheme given in Table II. To deal practically with uniformly
distributed positive variables, we assume that they lie in the
range[0.0001, 1000].

1) Initialization: We start the algorithm with the mixing
matrix obtained by the FDCCA (Fourier Domain Correlated
Component Analysis) [31] method. The initial values of as-
trophysical maps are obtained by Least Square (LS) solution
with the initial mixing matrix. The initial values ofαl,d can
be calculated directly from image differentials. We initialized
theβ0

l,d = 0 and found the initial value ofδl,d by equaling the
expectation (33) to a constant. In this study, we take the initial
value of this posterior expectation1.5. So the initial value of
δ0l,d = 1.5φd(s

0
l , α

0
l,d)/N

2) Stopping Criterion: We observe the normalized abso-
lute difference between sequential values ofsl to decide
the convergence of the Markov Chain to an equilibrium.
If |skl − sk−1

l |/|sk−1
l | ≤ 10−2, we assume the chain has

converged to the equilibrium forsl and denote this point
Tl = k. Since we haveL parallel chains forL sources, the
ending point of the burn-in period of the whole Monte Carlo
chain isTs = maxl Tl. We ignore the samples beforeTs. We
keep the iteration going untilTe that is the ending point of the
post burn-in period simulation. In the experiments, we have
used 100 iterations after burn-in period, soTe = Ts + 100.

VI. SIMULATION RESULTS

To test our procedure, we assume nine observation channels
with center frequencies in the range 30–857 GHz, where the
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Fig. 3. The separated astrophysical images from noisy observations with the
LS, ALS-t and GS-MRF methods. The location of the patch is0◦ longitude
and40◦ latitude, out off galactic plane, and has a size64× 64 pixels.

dominant diffuse radiations are the CMB, the galactic syn-
chrotron radiation and the thermal emission from galactic dust.
Except for CMB, these radiations have unknown emission
spectra (that is, the coefficientsak,l in (1) are not all known).
Both observation models in (1) and (5) are suitable for our
algorithm. In the experiments, we assume the model in (1), that
is of instantaneous mixtures and isotropic sky, to be valid.We
plan to attack the problems of space variability and channel-
dependent convolutional effects in the future.

In the sequel, we present astrophysical image separation re-
sults on a comparative basis. The proposed method is denoted
as ALS-t (Adaptive Langevin Sampler-t-distribution) and is
compared to four other methods, namely: 1) GS-MRF, which
is the MRF model coupled with Gibbs sampling [1]; 2) LS,
which forms our initial estimates on the basis of the values of
ak,l obtained by FDCCA [31]; 3) Iterated Conditional Modes
(ICM), which maximizes the conditional pdfs sequentially for
each variable [11]; 4) ALM-MRF, which is the solution of the
MRF model via Langevin and Metropolis-Hastings schemes
[22].

The leftmost column of Fig. 3 shows the ground-truth
simulated astrophysical source maps. The remaining columns
show the source maps separated by LS, ALS-t and GS-MRF,
respectively. The sky patch used for this experiment is centered
at 0◦ longitude and40◦ latitude in galactic coordinates and
has a size of7.3× 7.3 square degrees in the celestial sphere,
discretized in a64× 64 pixel map.

The Peak Signal-to-Interference Ratio (PSIR) is used as a
numerical performance indicator. The PSIR can be calculated
if the ground-truth is known, which is the case in our work
since all sky components are simulated. For this patch, the
algorithm converges after 155 iterations and uses a total of
255 iterations to reach the solution (see Fig. 4). We compare
the results with the ones of LS, ICM, GS-MRF and ALM-
MRF.

Table IV lists the PSIR values and the process times. The
simulations are run on a Core2 CPU 1.86 GHz PC. The process
time of ALS-t is much shorter than that of the GS-MRF. The
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Fig. 4. The PSIRs of the sources in the pixel domain as a function of iteration
number. The vertical line signifies the starting pointTs.

TABLE IV
THE PSIR (DB) VALUES OF THE SEPARATED COMPONENTS AND THE

PROCESS TIME OF THE ALGORITHMS IN MINUTES.

CMB Synchrotron Dust time
LS 30.69 15.03 37.37 1.32e-4

ICM 26.27 17.64 35.30 0.31
GS-MRF, [1] 27.81 22.33 38.93 226.72

ALM-MRF, [22] 27.91 20.88 36.41 2.86
ALS-t 33.45 26.21 40.51 1.65

execution time of ALS-t is two orders of magnitude smaller
than that of GS-MRF. The PSIR values of ALS-t are also
over those of LS, ALM-MRF, GS-MRF and ICM, especially
for synchrotron, and furthermore, the smoothing degradation
of ICM on the synchrotron component is not observed in the
proposed method , Fig. 3.
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Fig. 5. The separated astrophysical images from noisy observations with the
LS and ALS-t methods. The location of the patch is20◦ longitude and0◦

latitude, galactic plane, and has a size128 × 128 pixels.

TABLE V
THE PSIRIMPROVEMENTS(DB) WITH RESPECT TO INITIALLS

SOLUTION.

CMB Synchrotron Dust
(0◦, 40◦) 3.01 10.01 4.08
(20◦, 0◦) 1.80 4.54 1.78
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TABLE VI
THE PSIRspec (DB) VALUES OF THE SEPARATED COMPONENTS, IN THE

ANNULAR FREQUENCY DOMAIN.

0◦,40◦ 20◦,0◦

CMB Synch. Dust CMB Synch. Dust
LS 30.33 2.65 37.76 31.59 45.69 39.35

ALS-t 35.87 26.23 40.69 34.53 46.98 38.93

We have also run the algorithm for128×128 pixels patches
centered at(0◦, 40◦) and(20◦, 0◦). Fig. 5 shows the results for
the patch(20◦, 0◦). In that patch, the relative intensity of CMB
is the weakest one. The PSIR values of the estimates of LS and
ALS-t are written under the maps and the PSIR improvements
are listed for that patch and for the patch(0◦, 40◦) in Table
V. The total time of the ALS-t algorithm for the128 × 128
size patches is about5.31 minutes.

We also use an alternative performance criterion, defined
in the spherical harmonic (frequency),ℓ, domain, since the
angular power spectrum is relevant to astrophysics. If we
decompose a CMB map on spherical harmonics, the com-
plex coefficients,cℓm (ℓ = 0, 1, 2, . . ., m ∈ [−ℓ, ℓ]), define
the angular power spectrum,C(ℓ), as the averageC(ℓ) =

1
2ℓ+1

∑ℓ
m=−ℓ cℓmc

∗
ℓm.

In Fig. 6, we plot the standard power spectrum,C(ℓ),
defined asC(ℓ) = (ℓ + 1)ℓC(ℓ)/2π of the original and the
reconstructed sources in the two patches considered. In order
to compare different methods, we also introduce the Peak
Signal-to-Interference Ratio in theℓ-domain defined as

PSIRspec = 20 log




√√
N/2 + 1×max(C(ℓ))

||C(ℓ)− Ĉ(ℓ)||


 (41)

whereĈ(ℓ) is the estimated power spectrum.
In the off-galactic patch considered in Fig. 6, the intensity

of synchrotron is very low and the LS solution for synchrotron
is contaminated too much by noise. The estimated CMB and
the dust spectrums by ALS-t follow the ground-truth spectrum
better than the LS one, especially in the high frequency
regions. For the patch(20◦, 0◦), synchrotron and dust are
estimated adequately by LS, but the LS estimate of CMB is
improved by ALS-t. The related PSIRspec values are presented
in Table VI.

We have observed that the estimated regression parameter
αl,d is quite isotropic for all the maps. For the CMB map in the
(0◦, 40◦) patch, its value is about0.88 for all d. In the same
patch, the values of the parameterαl,d for synchrotron and
dust are0.99. These results show us that the CMB radiation
is spatially less correlated than the other radiation sources. We
assume the parameterβl,d is isotropic and estimate a single
value for each direction. The EM estimation ofβl,d depends
too much on its prior and initial value. We have allowed
the parameterδl,d to be anisotropic, but at the end of the
estimation steps we have found that it is almost isotropic for
all radiation maps.

VII. C ONCLUSION AND FUTURE WORK

We have developed a Bayesian source separation algorithm
for astrophysical images where the MCMC samples are gener-
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(a) CMB, patch(0◦, 40◦)
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(b) CMB, patch(20◦, 0◦)
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(c) Synchrotron, patch(0◦, 40◦)
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(d) Synchrotron, patch(20◦, 0◦)
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(e) Dust, patch(0◦, 40◦)
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Fig. 6. Ground-truth and estimated angular power spectrumsfor patches
(0◦, 40◦) and (20, 0). The ground-truth spectrum (solid line), spectrum of
LS solution (dot line) and spectrum of ALS-t solution (solidline marked with
+).

ated through the Langevin stochastic equation. The proposed
algorithm provides two orders of magnitude computational
economy vis-à-vis the Gibbs sampling approach. In addition,
it generates better source separation as compared to all its
competitors, i.e., LS, ICM, ALM-MRF and GS-MRF methods
measured in terms of PSIR in the pixel domain and PSIRspec

in the annular frequency domain. The algorithm can recon-
struct the high frequency regions of the power spectrums with
higher fidelity. A byproduct of this approach is the capability
to estimate the parameters of thet-distribution image priors.
Although the proposed ALS-t method takes longer than either
ICM or LS methods, its superior performance by far outweighs
this disadvantage, and furthermore the algorithm lends itself
to parallel processing. To improve the algorithm performance,
non-stationary image priors, more efficient discretization time
step and diffusion matrix can be investigated in the future.
Another point to obtain a beneficial algorithm might be the
usage of more than one MH-steps, because the EM algorithm
which estimates parameters converges faster than the Monte
Carlo sampling scheme.

Our new goal is the application of the proposed algorithm
to whole-sky maps. To avoid the difficulties inherent in this
problem, we plan to use the ”nested numbering” structure
provided by the HEALPix [37] package. In this format, we can
reach the indexes of the eight neighbors of each pixel on the
sphere. To calculate the pixel differences, we will implement
a gradient calculation method on the sphere by taking the
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non-homogeneous spatial distances between the pixels on the
sphere into consideration.

Other issues to be addressed are the channel-dependent
blurring effects of the antennas and the non-stationary nature
of noise. We have to reformulate the source separation problem
without these simplifying assumptions on the observations.
Finally, a pixel-based estimation error is being analyzed with
the goal of defining a stopping criterion for the algorithm.
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Jośe Luis Sanzreceived the Ph.D. degree in theoret-
ical physics from Universidad Autonoma de Madrid,
Spain, in 1976. He was a M.E.C. Postdoctoral
Fellow at the Queen Mary College, London, U.K.,
during 1978. He is currently at the Instituto de Fı́sica
de Cantabria, Santander, Spain, as UC Professor on
Astronomy since 1987.

His research interests are in the areas of Cosmic
Microwave Background astronomy (anisotropies,
non-Gaussianity), extragalactic point sources and
clusters of galaxies (blind/non-blind detection, es-

timation, statistics) as well as the development of techniques in signal
processing (wavelet design, linear/non-linear filters, time-frequency, sparse
representations) and application of such tools to astronomical data.

PLACE
PHOTO
HERE

Bülent Sankur has received his B.S. degree in
Electrical Engineering at Robert College, Istanbul,
and completed his graduate studies at Rensselaer
Polytechnic Institute, New York, USA. His research
interests are in the areas of Digital Signal Processing,
Image and Video Compression, Biometry, Cogni-
tion and Multimedia Systems. He has established
a Signal and Image Processing laboratory and has
been publishing 150 journal and conference articles
in these areas.

Since then he has been at Boğaziçi (Bosporus)
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