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Abstract—We propose to model the image differentials of The first examples of use efdistribution in inverse imaging
astro;?]hysiqal EOUIFBCE maps by Student’st-_distributri]oré and to  problems can be found inl[5] and|[6]. In/[6], it is shown that
use them in the Bayesian source separation method as priors. _dictrib it ; CstrihE
We introduce an efficient Markov Chain Monte Carlo (MCMC) the if.dllstrltbutl(f)n ap_prOX|mates the dIStrLbllmoln of the ENa\teIe
sampling scheme to unmix the astrophysical sources and degie .Coe Icients ot an 'm‘?‘ge more aCCl_"ra ely. In recen papgrs,
the derivation details. In this scheme, we use the Langevin it has been used for image restoratioh [7] and deconvolution
stochastic equation for transitions, which enables para#ll draw- [8]. Notice that the degree of freedom parameter of the
ing of random samples from the posterior, and reduces the (distribution has the same role as the regularization paeme
computation time significantly (by two orders of magnitude) of the Markov Random Field (MRF) models. The MRF prior

In addition, Student’s ¢-distribution parameters are updated . ) . : i
throughout the iterations. The results on astrophysical sorce with Cauchy density, which was first proposed [nl[10] for

separation are assessed with two performance criteria defed in ~ INverse imaging, was used ihl[1] for source separation. The
the pixel and the frequency domains. model used in[[1] is an approximation to thedistribution,
Index Terms—Bayesian source separation, Multi-channel which is pre_sen'_[ed in Sectign VA. ) ) )
denoising, Metropolis-Hastings, Langevin stochastic edtion, The t-distribution has already been used in Bayesian audio
MCMC, Astrophysical images, Student's¢-distribution. source separation [[9] to model the discrete cosine tramsfor
coefficients of the audio signals. It was reported that the
t-distribution prior had improved the sound quality over
the finite mixture-of-Gaussians prior. In this study, toveol
T HE Bayesian framework, which enables the inclusion ghe Bayesian BSS problem for images without incurring in
prior knowledge in problem formulation, has recentlgmoothing artifacts, we propose theistribution for modeling
been utilized to improve the performance of Blind Source-Seghe [ocal pixel differences.
aration (BSS) techniques. In the context of image sepavatio we use the joint posterior density of the complete vari-
one obvious type of prior information is the spatial [1] ogple set to obtain a joint estimate of all the variables. In
spatio-chromatic [2] dependence among the source pixels.thjs Bayesian approach, the BSS problem can be solved by
While there are three conditions that ensure Separabilﬁyaximizing the joint posterior density of the sources, the
of sources, namely, non-Gaussianity, non-whiteness ané ngnixing matrix and the source prior model parametérs [12],
stationarity [3], we choose to exploit spatial correlati®®. [13]. A method for solving the joint posterior modal estiiat
spatial non-whiteness). The prior densities are constitiy problem is the Iterated Conditional Mode (ICM) method,
modeling the image differentials in different directions awhich maximizes the conditional densities sequentially fo
Multivariate Student’st-distributions [4] Thet-distribution each variable [11] If the mode of the conditional density
has some convenient properties for our model: If the degregnnot be found analytically, any deterministic optimiizat
of freedom parameter of the distribution goes to infinitgpt  method can be usef [13]. However, under any non-Gaussian
proaches a normal density; conversely, if the degree ofiee hypothesis, ICM does not guarantee a unique global solution
parameter equals 1, the density becomes Cauchy. Thereforgnother algorithm suitable for learning the Gaussian MRF
the ¢-distribution is a flexible and tractable statistical modek the Expectation-Maximization (EM) method. Using the
for data ranging from broad-tailed to normally distributedviean Field Approximation (MFA), the expectation step of
. . . the EM algorithm can be calculated analytically [[14]. The
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distribution form, a Metropolis embedded Gibbs sampling hdirst, we adopt the-distribution to build a prior model of the
been adopted. In[1], it is reported that the Monte Carloltesusource maps. More specifically, thtedistribution is used to
with less image smoothing, but the cost of avoiding smoagthimodel the differentials of the sources, as done by the fideo
artifacts is a significant increase in the convergence time. homogeneous MRF models. This is advantageous because the
In this study, we propose a more efficient Monte Carlfiexibility of the ¢-distribution allows each source differential
Markov Chain (MCMC) sampling method in lieu of randonmto assume a different model whether impulsive or Gaussian,
walk Metropolis. To produce proposal samples in paralledjmply by setting the dof parameter. The second contributio
we resort to the Langevin stochastic equationl [16].] [17 the introduction of the Langevin sampling scheme in lieu
[18], while the proposed samples are accepted or rejecteddfythe random walk Gibbs sampling. As opposed to pixel-
the Metropolis scheme. In statistical physics, the Langeviby-pixel sampling, Langevin sampling generates the sasnple
equation [[16] is used to describe the Brownian motion af parallel, thus leading to much faster convergence. learth
particles in a potential field and has been used to obtaim®re, the samples are drawn in an informed way, since their
smart MC algorithm in[[1l7]. Another parallel sampling algogeneration follows the gradient descent direction on amggne
rithm is the Hamilton Monte Carlo, which is the generalizedurface.
version of the Langevin samplér [18]. We conjecture thathwi  Section[1) is a brief introduction to astrophysical sources
the samples produced in parallel by the Langevin equatidn, SectionIll, the component separation problem in observa
the convergence time of the algorithm will be significantlyional astrophysics is stated. Sectiod IV lays out the Biayes
reduced. formulation of the problem. Sectidnl V presents the derbrati
Parameter estimation in Bayesian edge preserving investeps of the adaptive Langevin sampler algorithm along with
imaging problems with Gibbs distributions is a troublesomtae EM parameter estimation method. The simulation results
process because of the partition function. Although theege presented in SectiGnlVI and interpreted in Sedfion VII.
are some methods [19]._[20] that calculate the parameters
using Monte Carlo techniques, their computational burdens
are prohibitive. One can resort to the Pseudo Likelihood
(PL) approximation to make the partition function sepagabl Here, we only give a brief description of the astrophysical
which is more convenient for parameter estimation with th@diations considered, referring the interested readg@3p
Maximum Likelihood (ML) method. In[[21], two Bayesianfor details. We are interested in the frequency range 30 to
approaches have been used to estimate parameters, namé) GHz where the dominant diffuse radiations are the CMB,
the Maximum-a-Posteriori (MAP) and evidence approachdbe galactic synchrotron radiation and the thermal emissio
An approach to estimate the regularization parameter frdhem galactic dust. Studying this radiation would help us to
the PL approximation has been recently proposed [22]. Thaderstand the distribution and the features of inteesteliist
multivariatet-distribution is also a PL approximation to MRFin our galaxy.
and has advantages over MRF in parameter calculations.  The most interesting astrophysical source in the microwave
There are two types of parameters in edge preservirggion of the electromagnetic spectrum is the CMB, a relic
inverse imaging. The first one is the adaptive edge presgrviradiation originating from the time when the Universe was
parameter, which is also known as threshold parameter. \B@0.000 years old. The discovery of the CMB is one of the
interpret the threshold parameter as the scale parametefusfdamental milestones of modern cosmology and its study
the t-distribution. The other parameter is the regularizatiomlows us to determine fundamental parameters such as the
parameter, which adjusts the balance between the likalihoage of the universe, its matter and energy composition, its
and the prior. The regularization parameter correspontiseto geometry and many other relevant cosmological parameters.
degree of freedom (dof) parameter of thelistribution. To CMB should be a blackbody radiation at a temperature of
estimate the scale and dof parameters oftedistribution, we 2.726 K, thus its emission spectrum should be perfectly
use ML estimation via EM algorithm as in_[30]. A similarknown. The CMB emission dominates over the other sources
approach has been used [in [7] ahd [8]. at frequencies around 100 GHz. The CMB temperature is not
In a comparative study among image source separation algesfectly anisotropic. Standard cosmological models ipted
rithms [1], we have found that the Bayesian formulation witthat the CMB anisotropy is Gaussian distributed, although
MRF prior and Gibbs sampling outperformed the heuristic arsbme alternative models permit a certain degree of non-
the other Bayesian approaches. This work is basefllon [1], dadussianity. Current observations are compatible withhthe
aims to achieve a much faster MCMC implementation withopothesis of Gaussianity. Two all-sky surveys have been made
compromising its good performance. With this goal in mindyn CMB so far, by NASAs satellites COBE [32] and WMAP
we have been testing our algorithms on a current problem [88]. A European mission whose data will be highly accurate
modern astrophysics: the separation of radiation sourgesmand spatially resolved, Plandk [23], is about to providdirtst
from multichannel images of the sky at microwave frequeniull-sky coverage maps.
cies. In particular, we have been applying our algorithm to The CMB signal is mixed with other astrophysical sources
the separation of the Cosmic Microwave Background (CMB)f electromagnetic radiation. Relativistic electronsigeaccel-
radiation from the galactic emission (synchrotron andrttedr erated by magnetic fields in the Galaxy give rise to syncbrotr
dust emissions) using realistically simulated sky maps. emission, which dominates over the CMB in regions close
The original contributions of the paper hinge on two aspect® the Galactic plane especially at low frequencies Z00

II. ANINTRODUCTION TOASTROPHYSICALSOURCES
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TABLE |
ROOT MEAN SQUARE ERROR(RMSE)OF FITTING OF THE IMAGE
DIFFERENTIAL HISTOGRAMS OFCMB, SYNCHROTRON AND DUST
COMPONENTS THE LAST COLUMN SHOWS THE ESTIMATED DOF

f-«\ — Py PARAMETERS OF THEt-DISTRIBUTION.
AN PR
- ’,3{’ ?ﬁ - J"‘ S Horizontal direction
= 4 ks “ ra * Gaussian | Cauchy t-distribution | dof
7;” "\.; j "K‘_ Cl\éIB 15.11 30.84 15.47 25.71
0 e o Synchrotron 23.70 30.06 15.70 3.59
e E L ma e n\‘" Dust 67.99 33.21 13.84 1.81
Vertical direction
(a) CMB horizontal (b) CMB vertical Gaussian | Cauchy t-distribution | dof
CMB 15.75 29.70 15.83 15.75
Synchrotron 19.11 31.00 18.39 19.11
Dust 63.73 68.19 54.42 2.18

sky patch, located ai° galactic longitude and(0° galactic
latitude, discretized into 812 x 512-pixel map. Within this
patch, we have introduced simulated CMB, synchrotron, and
~" i dust radiation maps (as in [26]). We have computed the source
image differentials for horizontal and vertical directsprand
(c) Synchrotron horizontal (d) Synchrotron vertical estimated their empirical distributions. We have fittedethr
different functions to the empirical distributions of thedge
differentials of the astrophysical sources with nonlinkeast
square method using the Curve Fitting Toolbox of MATLAB.
o i These functions are proportional to Gaussian, Cauchytand
o i distribution. Fig.[1 shows the fitting results for CMB, syn-
chrotron and dust images. Talle | lists the residual RootrMea
Square Errors (RMSE) of the fits. The Gaussian gives the best
fit for CMB because the CMB is theoretically distributed as
a Gaussian[[24]. Overall, thedistribution appears to be a
(e) Dust horizontal () Dust vertical good choice for modeling the image differential statistics
Fo 1 Fiting ol e i differential hi () of CMEB horizontal and vertical directions of all the componentseT
i g plts of the mage diferenti) istogramiot) of U2, estimated dof parameters offstributions show that indeed
fitted functions proportional to Gaussian (dot line), Cau¢tash-dot line) the proposed model assumes from impulsive to Gaussian
and ¢-distribution (dash line). characteristic underlying each component. If the compbnen
is Gaussian as CMB, the dof parameter becomes bigger and

if it is impulsive, the dof parameter becomes very small.
GHz). According to observations in other frequency bands,

the synchrotron emission spectrum follows a power law with
a negative exponent, whose value is presently known with
high uncertainty. Synchrotron is the dominant radiatiomhia
low-frequency bands of our range of interest. Inter-stellast  virtually any application in observational astrophysiash
grains are heated by nearby stars and re-emit thermali@diato do with problems of component separation. Indeed, all
in the far infrared region of the electromagnetic spectrurthe astrophysical observations result from the supeiposit
Dust radiation is dominant in the high end of our rangef the radiation sources placed along the line of sight. @hil
In particular, it is almost the only significant contributi®o very distant sources can be distinguished by the redshift
the total diffuse radiation between 800 GHz and 1000 GHznalysis, for nearby sources this is not possible. In fact,
Its emission spectrum should follow a greybody law, withysically distinct sources can sometimes be found within a
unknown spectral index and an additional degree of freed@ibse range of each other. Furthermore, high sensitivity an
given by the thermodynamical temperature of the dust graimfigh resolution measurements can give rise to source mixing
For a short review on CMB astronomy, séel[24]. problems even in the cases where the radiation under study
There are other astrophysical sources present at microwayelominant over interfering radiations. Apart from redshi
frequencies, such as free-free emission due to free efe;traanalysis, useful methods to distinguish between supesegho
anomalous dust emission and radiation coming from extrghysically different radiations include spectral anadysind
galactic sources, but their relevance is smaller. In thiskwomorphological analysis. In this paper, we only treat therfer
we will focus on the main three astrophysical sources pteseipproach, exploiting the differences in the emission spect
in CMB experiments: CMB, synchrotron and dust. shown by physically distinct radiation sources. This irapli
In order to justify our adoption of the Students that the separation must be done on the basis of measurements
distribution in a relevant case, we have selectekb@ax 15° made at different frequency bands.
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IIl. COMPONENT SEPARATION PROBLEM IN
OBSERVATIONAL ASTROPHYSICS
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We assume that the observed imaggesk € {1,2,..., K}, where the asterisk means convolution, dndis the telescope
are linear combinations of. source images. Let thé&th radiation pattern in thé’th observation channel. Note that, if
observed image be denoted by;, where: € {1,2,..., N} hy is the same for all the channelB] (4) can be written as
represents the lexicographically ordered pixel index. rhe 5 5
age separation problem consists in findiigindependent o= aphxs +np = aps +ny (5)
sources fromK different observations. I, andy; denote Z ’ Z '

N x 1 vector representations of source and observation images . I o
. . . and the problem is again instantaneous for the modified
respectively, then the observation model can be written as

sourcess;, which are the physical sources smoothed by the

=1 =1

L common radiation patterh. Unfortunately, especially in the
Yk = Zak.,lsl + ng, k=1,....,K (1) radio- to millimeter-wave ranges, the telescope apertere d
=1 pends strongly on frequency, and modeél (5) cannot be adopted

wheren,, is an iid zero-mean noise vector with = 21y directly, unless the observed signals are preprocessedtce
covariance matrix andly is an identity matrix. Although the their angular resolution to the worst available (se€ [26]).
noise is not necessarily homogeneous in the astrophysicaPiNCe no imaging system can gchleve an infinite feSO|Ut|0U,
maps, in this study we assume that the noise varianceWg should useL{4) as our generative model. However, to avoid
homogeneous within each sky patch and is also known. problems with the convolutive mixtures, we assume to have a
Since the observation noise is assumed to be independ&#tscope with the same radiation pattern in all the channel

and identically distributed zero-mean Gaussian at eachl,pix3© @S to be able to use model (5). Note that this can always be
the likelihood is expressed as obtained by preprocessing, provided that all the beam noatte

are known. Hereafter, as it will not cause any ambiguity, we

K .
drop the tilde accent from the symbols used to denote the data
p(yuxlsur, A) o H exp {~W(st.Llyr, A, 00)¥2)  and the source vectors.
k=1
_yL 2
W(s1.olyn, A, 02) = [k = 2012y arsi)] (3)  IV. SOURCE SEPARATION DEFINED IN THE BAYESIAN

2
20}, FRAMEWORK

where the mixing matriXA contains all the mixing coefficients A. Source Model
ag, introduced in[(1L).

For many purposes, a mixing model of the typé (1) i%
considered to fit reasonably well to an astrophysical obs i

vation. The details on how to get an equation similar[fo ( own in Fig.2(a). The dependency decreases in the high

from the physics of the problem can be foundlin][25] Her'ntensity region. This region in the scatter-plot corresim

we only summarize the main assumptlons. .made W'th. tl'pg spatially localized structures with high image intepsf
purpose. First, we assume that the superposition of thalsugqhe map in Fig[R(a). The existence of a small number of

:)rl?rgnatm({:] frohm (_j|ff|erent sott;]r_ces IS Ilnef_\r ar_1d |Tstaetq:|;s. goint—like structures in the maps indicates that the depeoyl
n the astrophysical case, this assumption Is clear, sinee ssumption is valid. In view of this, we can write an auto-

physical qgantmes to be. measured are s_uperposmon$of eIregressive source model using the first order neighborseof th
tromagnetic waves coming, for any bearing, exactly from t el:

same line of sight without any scattering or diffractioneetf
The second assumption in modeling astrophysical obsensti
is that each source has an emission spectrum that doeswieéred € {1,...,D} denotes one of the main directions
vary with the bearing. This assumption implies that indixtl (left, right, up and down) and) = 4 is the cardinality of
radiations result from the product of a fixed spatial tenglathe set of image differential directions. Matr&, is a linear
and an isotropic emission spectrum. Both assumptions nesre-pixel shift operator in directiod, a; 4 is the regression
closer attention. The precise emission spectrum genebtedcoefficient and the regression ermgr, is an iid ¢t-distributed
any physical phenomenon depends on many quantities thato-mean vector with dof paramet#r, and scale parameters
may not all be distributed uniformly in the sky. Although ing; ;, 7 (t; 4|0, &; 41N, B1.4). We can justify the iid assumption
many applications the isotropy assumption has been adoptéct; ; by plotting (see Fig[]2(e)) the values in, versus
successfully, in many other cases the space-variabilithef its first order neighborsG.t; .. We can interpret; , as a
radiation sources must be taken into account to allow a goddcorrelated version af.. Fig.[2(b) shows; 4 for d = 1. By
separation to be performed. Furthermore, if the effect ef titomparing Fig[2(d) and (e), we can say thay is spatially
telescope is taken into account, then the instantaneougimasore independent thas).

Neighbor pixels in our images have strong dependency. This
demonstrated, for example, in FIg. 2(d) where the scatter
ot shows the first order right neighbor pixels of the duspma

s; = a1,4Gas; +tq (6)

is no more valid since, for the finite aperture, the light capd If the images; were Gaussian distributed, then the regres-

in a fixed direction in the telescope does not come from thsibn error would also be Gaussian. However in real images,

direction alone. In formulas, modéll (1) becomes the regression error is better modelled by some heavydtaile
I distribution. The¢-distribution can conveniently model the

V5 = hy, %y = hy * Zak.,zSz + 1y (4) statistics of data whose distribution ranges from Cauchy to

=1 Gaussian, and therefore it is a convenient model for the
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a weak dependence between right and left difference images,
we maintain the independency assumption to constitute the
products of the regression error probabilities model. Ailsim
approach to constitute a single prior by multiplying diéfat
individual priors can be found in [27]. In this study, we ube t
left/right and up/down differences jointly in the prior nedd
to balance their contributions. Otherwise, we could obtain
directionally biased results.

The t-distribution can be written in implicit form by using
a Gaussian and a Gamma density. THistribution has a dof
parameter3, which is itself governed by Gamma distribution

(@) (b) ©

% oo1002 with parameteg3/2. Thet-distribution has the following form
) i B [30]:
e p(tialou,a, Bra, 01,a) = /p(tl,d|l/l,d,5z,d)p(1/l,d|ﬂl,d)d1/l,d
i 0,qaln Bra Bia
= | N (tz,d|07’— G\ val—=,—= | dvia. (8)
%01 0 om / V4 2 2
" The interpretation of this equation is thattf 4|0, 4, v.q4 iS

distributed with a normal density/(t; 4|0, 8;,4In/v1,4) and
the parameter; ; has a Gamma prior &Xv; q4|51.4/2, B1.4/2),
Fig. 2. (a): The synchrotron mag (b): Rightt; = s — G1s and (c): Up . C Siatril i
t3 = s — G3s difference maps of (a). (d): Scatter-plot of the first ordght the distribution 0ft;,4|51,4, 61,« becomes & dI_Strlbl_,Itlon Su_Ch
neighbor pixels of (a)s and G1s. (e): Scatter-plot of the first order right that 7 (t; 4|0, d;.4In, 31,4). The representation in(](8) is a
?;)ighbor pixelj, f?f (b)t1 (%r;d Gldtl- (2‘):) Sscatter-pkl)t Offthhe ri_gfrl]t Céi_fffference particular case of the Gaussian Scale Mixture (GSM) dessiti
Vversus up dirrerence 1 andts. g): catter-p ot of t erig t difference . : H
(b) versus left difference (ck, and ts. The ML estimation of thg pargmeterm?,d, B1,4 andd; 4 using
the EM method([30] is given in Sectiodn VB.

statistics of the high spatial frequency contents of imageB. Posteriors

such as regression errois [6]. The scale param&igrcan g joint posterior density of all the unknowns in the BSS
be assumed as a space-varying parameter to model the h'qmyblem can be written as:

non-stationary sources, i.e. sparse sources, but homogeno

variance assumption has been observed to be adequate fop(si.z, A, Oly1.x) < p(y1:x|s1.z, A)p(si.c,A,0)  (9)
diffuse astro_physmgl source images for the image patcéss,%vhere p(yixlsii, A) is the likelihood andp(si.., A, ©)
that we use in the simulations. We use a homogeneous varialice, . . . - .

. . . . . IS the joint prior density of unknowns. The joint prior
since, in our case, the increased complexity derived from

inhomogeneity is not justified by a significant improvemen ?g be fa)ctozgzed aﬁ()SI:ﬁLéal;L’l;[))’BléiJLrlclr;gr’ril(:)?él:[')s)in](?:(eAzhe
in performance. p\P1:L1:p) P\O1:.L,1:D) P\&¥1:L,1:D)- ’

. L . sources are assumed to be independent, the joint prolabilit
The regression errot; ¢ represents the directional imag P ] proly

e ; . . i
differential in the directiond. The multivariate probability density of the sources is also factorized @s:..0) =

L
density function of an image modelled byt-@listribution can i p(sl|@)j _ _
be defined as Mathematically, we can assume uniform priors taor; <

(—1,1), 61,4 € (0,00) and ax,; € (0,00), becauseas s

(bralond, Bra ia) = L((N + f1.4)/2) are always positive. The practical usage of these priors is
PAtLdIN,d> Ptdy Od T(Bra/2)(mBr.ad1,a)N/? explained in Section V-D. We use a conjugate Gamma prior for

Salst, ana) ~(N+81.a)/2  Bra ~ G(1/2,2 x 1073). We have determined the respective
X {1 ﬁi’é} (7) parameters experimentally. The conditional posteriorsalbf
1,d01,d

model parameters are written as
Whereqbd(sl,al,d) = ||tl,d||2 = ||Sl — Oé[,deSl||2 andF(.) is

the Gamma function. We can write the densityspby using Plarilyriac, st Azay, ©) o pyrlsir, A)

the image differentials in different directions, assumdétigec- pladlyi:x,siL, A, O-a.) p(t1,4|©)

tional independence, ags;|©) = [T, p(ti.alard, Bra,01a)  P(Bralyiik,s1o, A,©_p,,) o p(tral®)p(Bra)  (10)
where ® = {al;L,l;D, BI:L,I:D7 51:L,1:D}- We can Slmply p((sl.,d|y1:K7 S1.L, A’ 67&@) o p(tl,d|®)p(5l,d)

justify this assumption by plotting the horizontal regieas
error versus the vertical one as shown in FEf. 2(f). We can
observe in this figure that the scatter plot of the regressiermere —variable expressions in the subscripts denote the
errors in left and up directions is almost circular and thiemoval of that variable from the variable set. The pararsete
justifies our assumption of independence. Eig. 2(g) shows th, 3 andd have sizel. x D, A has sizeK x L and the sources
scatter-plot of right difference versus left differenaespite of have sizel, x N. Overall there ar¢3D + K + N) L unknowns.

p(silyr:x,81:0)-1,A,0) o< p(y1.klsi.L, A)p(si|O)
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For parametersy; 4, 6;4 and f; 4, we exploit the EM The energy functiori? (s;.1,|A) was defined in[{3). The
method. To estimate the source images, we use a versiortatél energy function is proportional to the negative |dtian
the posteriop(s;|.) augmented by auxiliary variables and findf the posterior. In summary, the three terms correspond,
the estimation with a Langevin sampler. The details arergiveespectively, to the fit to data and to the inertial and the

in Section V. kinetic energy terms. We can define the Lagrangian function:
L(si(t),vi(t)) = K(v;) — W(s1..) — U(s;) and write the
V. ESTIMATION OF SOURCES ANDPARAMETERS Lagrange-Euler equation for the Lagrangian as follows
In this section, we give the details of the estimation of the d (OL(su(t), vi(t)\ _ OL(si(t), vi(t)) (15)
sources and the parameters. dt ovy B Os; ’
dVl 0
M, — = ——E(s)). 16
A. Sources L s, (s1) (16)

We modify the posterior densities of the source imag%1ere E(siz) = Wi(si.) + U(s). If we discretize the

p(s:/©) to obtain a more efficient MCMC sampler. In thed){ﬁlnamics in[(I6) and velocity; (¢) using the Leapfrog method
classical MCMC schemes, a random walk process is USA®] we obtain the following three-step iteration

to produce the proposal samples. Although random walk is

simple, it affects adversely the convergence time. The(rar_1d V;H% = vh- szM;%g(S’f;L) (17)
walk process only uses the previous sample for producing a 2 )
new proposal. Instead of a random walk, we use the Langevin sf“ = sf+ TlV;H_E (18)
stochastic equation, which exploits the gradient infoiomat 11 _1

X X k+1 k+3 — ZrM, 2 ( k ) (19)
of the energy function to produce a new proposal. Since the Vi =V o TV "B(S1L

gradient directs the proposed samples towards the mode, tzje oy . .
final sample set comes mostly from around the mode of tihe ereg(sy,,) = [VSZE_(SLL)]S%:L:ST:L' _VSZ is the gradler_lt
. with respect tas; andr; is the discrete time step. If we define
posterior [28], [[29]. . R 1 ]
- . . 2 — 2

The Langevin equation can be obtained from the tot@ diagonal matrixD; = 7M, *, so that2, for thenth pixel,
energy function. We first define everything in continuousetimthe diffusion coefficient isD;(n,n) = 77 /mu . Matrix D
to give the derivation steps of the Langevin equation, then W referred to here as the d_lffusmn matrix, and is derived in
transfer them into discrete time. To obtain the total energgeCtioNL\V=Al. Instead of this step scheme, we use the one-
function, we introduce a velocity parametex(t) = ds; (t)/dt step Langevin difference equation. To obtain the single ste

to define the kinetic energy such that Langevin update equation faf, we substitute[(17) intd(18).
1 1 11
Kvi(HM) = 57 (M (?) (11) st =8 - ;Dig(siy) + DF M7 V] (20)
where M is a diagonal matrix whose diagonal elements This form is also used in[[28],[29]. The samples are
correspond to mass parameters,, for pixel indexn = produced by using this first order equation, and then they are
1,...,N. Using the velocity parameten;, the modi- tested in the Metropolis-Hastings scheme.

fied version of the posterior density if {10) is writ- If we assume the transitions i {20) as a Wiener process
ten asp(si, vi|yix,su.0)-1n A, 0, M) x p(yi.xlsi,A) and take into account the fact that the velocity veotpris

p(s1/©)p(v:|M,). More explicitly, it can be written as independent of the source vectsr, [18], then its probabil-
ity density function can be set as a multivariate Gaussian
p(si, vilyrx,sa.n)-1, A, ©,M) as pv,(vi) = (IMy|/2m)% exp {—3v] (t)Mv,(t)}. We can

exp{—(W(s1.L|A) + U(s;|®) + K(v;|M))} (12) produce a random sample from this probability such that
v; = M, ?w; wherew;, is a zero-mean Gaussian vector with
identity covariance matrix\'(w;|0,I). If we substitute this
random sample intd (20), we obtain the associated Langevin

where the energy functioti (s;|©) of a source image can be
written in terms of image differentiall 4 as

o D o 3 equation

U(s = t . 1 1 1

100 = 2 plual®) . s =sf - SDiglsh) +Dfw (1)

where the functiorp(t; 4|©) is proportional to the negative Since the random variables for the image pixel intensities

logarithm of thet-distribution in [7), that is, are produced in parallel by usinig_{21), the procedure isfast

N+ B da(st, au.a) than the random walk process adopted[ih [1]. The random
p(t1.4]0) = ———= log [1 + 57’5] (14) walk process produces local random increments indepelydent
1,d01,d

from the neighbor pixels and the observations. In the Laimgev
and the functiorlogl + ¢4(s;, cu,q)/Bi.401,q4] IS the regular- sampler, the samples are generated in an interrelated manne
ization function proposed in_[10]. The term{&v + 5;4)/2 and in terms of the descent of an energy function that reflects
and ;46,4 correspond to the regularization and the threstihe goodness of the model fit. Once the candidate sample
old parameters, respectively, used in edge preservingamagiage is produced by (21), the accept-reject rule is applied
reconstruction. independently to each pixel. In the case of random walk,
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TABLE Il . E
METROPOLISHASTINGS ALGORITHM FOR A SOURCE IMAGE u: UNIFORM  P(SI; V_l|Y1:K7 s:n)-1, A, 0, M), we obtain the following
POSITIVE RANDOM NUMBER IN THE UNIT INTERVAL; z: GENERATED equation

SAMPLE VECTOR TO BE TRIED gp(zn, an) . ACCEPTANCE RATIO OF THE
GENERATED SAMPLE

(E(s) + As)) = (E(st) + VE(s)T Asy + %Asfﬂ(sl)Asl>

1) w; ~ N(wi|0,) (25)
2) H(sf) «— [diag {H(si)},, . r]7" whereH(s;) is the Hessian matrix of(s;) with respect tcs;.
3) Dy «— 2[H(s})] From this equation, the optimum infinitesimak; is found as
4 8efe) — VB, o As; = ~[(H(s)] " (VE(s:)).
5) producez «— sF — 1Dg(sk ;) +D? w; from (ZJ). If we also take the expectation of both sides [of] (20), we
6) for all pixeln =1, .. l;]\f) obtain )
a) calculatep(zn, sy, B+1\ _ o ky & k
b) if @(zn,sf,) > 1 thensé‘;l - (s7"7) =(si) 2D19(S1:L) (26)
else produce: ~ U(0, 1). . k1 & . .
it u < (zn, 55 ) thensh ! = 2, and cgmparmg(sl ) = (s) + As; with (28), we write
elseshtl — gk ’ Dyg(sk ;) = —2[(H(s)))]"*(VE(s;)). Rather than the ex-

I,n I,n

) m+1+«— next pixel. pectation of the inverse of Hessian matrix, we use its diagon

calculated by the value of; at the discrete timé as

E N oM k\—1, <k
we would produce the candidate sample pixel and apply the Dug(st.n) = —2[H(s/)]" g(s1.) (27)
accept-reject rule. The sampling of the whole image Wou{ghereﬁ(sf) = [diag {H(Sl)}sl:sk]il and diag{.} operator

be completed by scanning all the pixels in a sequential ordgfiract the main diagonal of the Hessian matrix. Frém (27),

as in Gibbs sampling. Since each pixel has to wait thge can find the diffusion parameter as][35]:
update of the previous pixel, this procedure is very slow. In

random walk, candidate pixels can be produced in parallel D; = 2[H(s})] L. (28)
but, producing a candidate sample for the whole image using_ | L ) .
random walk is not a reasonable method because hitting thel NiS @pproximation is justified iH(s;) is strongly diago-
right combination for such a huge amount of data @weL0?) nally dominant.
is almost impossible. By Langevin sampler, the likelihodd o
apprr?xrimﬁtely hitting the right combination at any one S&p g parameters of-distribution
much higher. . - .

After their production, the samples are tested via We can write the joint posterior of the parameters;, 51,4
Metropolis-Hastings[[34] scheme pixel-by-pixel. The gce a1d da such thatp(aia, fi.a; 0talta, O (i 4.610.610)) =
tance probability of any proposed sample is defined &&t1.d|©)P(51.a)p(dia). Using the likelihoodp(t:,q|O) in (8)

min{ga(sfj;l, sk ),1}, where and the priors of the parameter;, we can find the MAP esti-
' ’ mates of the parameters of thalistribution by EM method.
b+l & 7AE(Sk+1)q(8f_n|Sé€j;1) Instead of maximizing théog {p(t;.4|0)p(B1.4)p(d1.4)}, We
ol 8, xe bn )0 (22) ‘i : :
Ln 2 °Ln a(sF1|sk Y maximize the following function
l,n ln

kt1 k1
where AE(s 1Y) = E(sih ' sbipy 1) — E(S_]f:L,n) and /1Og p(tl,d|9)P(fl,d)pk(5z,d) palth . 0% )dvg (29)
E(s{.p,) = W(s{,,) + U(s,). For any single pixel, p(vialty 4, OF)

U(s;,n) can be derived fron[{13) anf{14) as = (log{p(t1.a|®)p(BLa)p(Ora)}),, 1k, 0
D ko ok ’
— (1 t ;0
U(Sl,n) _ Z 1+ ﬁl,d 10g |:1 + (bd(sl,na Oél,d)] (23) < ng(Vl,dl l,d> )>Vl,d‘tid7®k
= 2 B1,a1,4

The proposal density(s; " |sf ) is obtained, from{21), as where p(v; 4|t} ,, ©F) is the posterior density of the hid-
9 5 den variabley; ; conditioned on parameters estimated in the
N (Sﬁiwsﬁn " 277 g(slf:L,n)7 7 ) (24) previous stepk and <'>uz,d\t§“d,®k represents the expectation
Miyn Myn with respect toy 4|t} ,;, OF. For simplicity, hereafter we use
One cycle of the Metropolis-Hastings algorithm embeddeghly () to represent this expectation. The parameteris a
in the main algorithm, for each source image, is given in &abhjgden (or latent) variable that changes the scale of thesGau
[ - _ _ . . sian density\ (t;,4]0,6F In/vi,4) and has a Gamma prior
1) lefusmn.Matrlx:.In t_hls sect!on, we give a methOdg(Vl,dlﬁlkd/Q,5lkd/2)- B)} exploiting .4, we can define the
to find an optimum diffusion mat”XDi The method must gistribution as a scale mixture of Gaussians aglin (8). The se
ensure that the produced samp¢™ comes from the ond term on the righthand side 6F{29){log p(v1,4/tF ;, ©%)),

joint conditional distributiorp(s;, vi[y 1., S1:1) -1, A: ©, M) corresponds to the entropy of the posterior density; af and
introduced in [(IR). If we write the Taylor expansion ofg independent of the unknowns, and the function
E(sF) with the infinitesimal As; and take the expec-

tation of both sides with respect to the joint density Q(O;0%) = (log {p(t1.4|9)p(Bra)p(d1.4)}).  (30)
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TABLE Il

The aim is to find the maximum ap(©; ©*) with respect ONE CYCLE OFADAPTIVE LANGEVIN SAMPLER FOR SOURCE
to O; SEPARATION. THE SYMBOL <— DENOTES ANALYTICAL UPDATE, THE
OF*1 — arg max Q(O; ©F) (31)  SYMBOL <—o DENOTES UPDATE BY FINDING THE ZERO ROOT AND THE
) ' SYMBOL ~ DENOTES UPDATE BY RANDOM SAMPLING

In the E (expectation) step of the EM algorithm, we MuUst 4 ine initial mixing matrix (i.e. FDCCAAL]).
calculate the eXpectatIoh}l,ldecd_’@k. For this purpose, we Find the initial source images using the LS solution.

find the posterior density af, ; Initialize the parameters; ;, 57, and 4y,
’ for all source imaged,=1: L
p(Vl,d|tﬁd7 @k) = p(tﬁd|@k7 vi,a)P(V1,4) for all directions,d =1: D

(Vi,a) +—

Bk sk

= N(t7 410,67 In /v1,0)G (Vi,alBf 4/ 25 B 4/ 2)
= G (n.alN/2, Gulst ol )/654) G (vialBa/2, Ba/2) B
Sl dsl

_ g (Vl d|N+,81k,d Blk,d (1 + ¢d(sfaa;€,d))> Ald s;fG;";Gdsl
- ’ 2 ’ 2 .

BE ok Pa(si, o d)
1,d%,d 0,a «— (V,a) ——F—=

—1
Nepty () ¢>d<s§“,a§id>>

Th ati P (32) Bi,a <0 [—wl(’%’“‘) +log B1,a + (log vi,a) — (v1,a)
€ expectauon oy 4 IS n ,Bl[;,,;;l ~0.002 = 0]
N+ ﬂlkd fbd(Sf, O‘fd) o for all pixels,n=1: N
(Vi,a) = aF — (1 G oF : (33) Using Metropolis-Hastings method in Taljé Il
Ld 1,d%%,d

R ] o ] sﬁtlN{p(sl,nb’l:}(v@iSZ)n)
In the M (maximization) step,[(30) is maximized with, . ..t mixing matrixgk, 1) = (1,1) : (K, L)

respect to©. To maximize this function, we alternate among ST (v, - " ax 155 u(an 1)
the variablesn; 4, ;.4 and d; 4. After taking the logarithms LT ST S R T Lim i ISR
and expectations i (80), the cost functions der;, 5,4 and

01,4 are written as follows

D. Adaptive Langevin Sampler Algorithm

Q(ay,q;0%) = %W,d)%ﬁl’d) (34)

N )
Q(01,4;0%) = — - 10g 81,4 — <Vz,d>M
2 201,

The proposed Adaptive Langevin Sampler algorithm is
given in TabldTll. The symbot— denotes analytical update,

) (35) the symbok— denotes update by finding the zero root and
the symbol~ denotes the update by random sampling. The

Q(BLa; OF) = —logf(%) + (N+Tﬁld _ 1) (log 1.4) sampling of the sources is done by the Metropolis-Hastings

LB N+B4 scheme given in Tablelll. To deal practically with uniformly
2

log f1.a = log2 distributed positive variables, we assume that they lichi t

B (1 + W5 —0.0028,4 range[0.0001,1000].
bt (36) 1) Initialization: We start the algorithm with the mixing

The solutions to[{34) and (B5) can be easily found as matrix obtained by the FDCCA (Fourier Domain Correlated
Component Analysis) [31] method. The initial values of as-

TKT
- AL trophysical maps are obtained by Least Square (LS) solution
Ql.d TGT @7) ™% . .
s; Gy Gasi with the initial mixing matrix. The initial values ofy; 4 can
ba(si, rq) be calculated directly from image differentials. We iriiad
Or.a = (V1.4) N (38) theﬁgd = 0 and found the initial value of; 4 by equaling the
The maximization of[(36) does not have a simple solutiofXPectationl(33) to a constant. In this study, we take thélni
It can be solved by setting its first derivative to zero: value of this posterior expectatidn5. So the initial value of
Bi.a 1 1 5?,d = 1-5¢d(5107 alo,d)/N
(5% Jrﬁlodg—lﬂl’dJr {logv,a) = (1.4) (39)  2) Stopping Criterion: We observe the normalized abso-
+752 —0.002 =0 lute difference between sequential values spfto decide
where ) (.) is the first derivative ologT'(.) and it is called e convergence Olf the Markov Chain to an equilibrium.
digamma function. If |sf —s;7"/|s;”"| < 1072, we assume the chain has
converged to the equilibrium fos; and denote this point
C. Parameters of the Mixing Matrix T, = k. Since we have. parallel chains for sources, the

We assume that the prior oA is uniform between O ending point of the burn-in period of the whole Monte Carlo
and co. The conditional density ofa;,; is expressed as Chain isTs = max; 7;. We ignore the samples befofg. We
p(ani ]y, O )  ply1x|©F). From [2), it can be seen keep the iteration going untf, that is the ending point of the
that the conditional densiiy of,, becomes Gaussian. ThePOSt burn-in period simulation. In the experiments, we have

parameter, ; is estimated in each iteration as used 100 iterations after burn-in period, Bo= T, + 100.
L
1
an = ﬁslT(Yk - Z anisi)u(a,) (40) VI. SIMULATION RESULTS
1>l i=1,i£l

To test our procedure, we assume nine observation channels
whereu(ag,;) is the unit step function. with center frequencies in the range 30-857 GHz, where the
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Fig. 4. The PSIRs of the sources in the pixel domain as a fumaf iteration
number. The vertical line signifies the starting pdint

Fig. 3. The separated astrophysical images from noisy eaens with the
LS, ALS-t and GS-MRF methods. The location of the patc9slongitude
and 40° latitude, out off galactic plane, and has a sfizex 64 pixels.

TABLE IV
THE PSIR (ODB) VALUES OF THE SEPARATED COMPONENTS AND THE
PROCESS TIME OF THE ALGORITHMS IN MINUTES

CMB Synchrotron| Dust time
dominant diffuse radiations are the CMB, the galactic syn- Iéf/l gg-g? i?-gi g;% 1-()32?'4
chrotron radiation and the the_rrr_1a| emission from galacm'uqd_ GS-MRF,[1] || 27.81 22.33 3803 | 226.72
Except for CMB, these radiations have unknown emission | ALM-MRF, [22] || 27.91 20.88 36.41 | 2.86
spectra (that is, the coefficienis ; in (@) are not all known). ALS-t 33.45 26.21 4051 | 165

Both observation models i](1) and] (5) are suitable for our
algorithm. In the experiments, we assume the mod¢lin (&}, th
is of instantaneous mixtures and isotropic sky, to be valid. execution time of ALS-t is two orders of magnitude smaller
plan to attack the problems of space variability and channétan that of GS-MRF. The PSIR values of ALS-t are also
dependent convolutional effects in the future. over those of LS, ALM-MRF, GS-MRF and ICM, especially

In the sequel, we present astrophysical image separationfR{ synchrotron, and furthermore, the s_moothing degra_dati
sults on a comparative basis. The proposed method is dendt&4CM on the synchrotron component is not observed in the
as ALS-t (Adaptive Langevin Samplesdistribution) and is Proposed method , Figl 3.
compared to four other methods, namely: 1) GS-MRF, which
is the MRF model coupled with Gibbs samplirig [1]; 2) LS
which forms our initial estimates on the basis of the values
ax,; obtained by FDCCA[[31]; 3) Iterated Conditional Mode:
(ICM), which maximizes the conditional pdfs sequentialty f
each variable [11]; 4) ALM-MRF, which is the solution of the
MRF model via Langevin and Metropolis-Hastings schemt
[22].

The leftmost column of Fig[13 shows the ground-trut
simulated astrophysical source maps. The remaining caun
show the source maps separated by LS, ALS-t and GS-MF
respectively. The sky patch used for this experiment isezenit
at 0° longitude and40° latitude in galactic coordinates and
has a size of.3 x 7.3 square degrees in the celestial spher
discretized in &4 x 64 pixel map.

The Peak Signal-to-Interference Ratio (PSIR) is used as a
numerical performance indicator. The PSIR can be Calomlatﬁg. 5. The separated astrophysical images from noisy vatsens with the
if the ground-truth is known, which is the case in our works and ALS-t methods. The location of the patch2i® longitude ando°®
since all sky components are simulated. For this patch, tij#iude, galactic plane, and has a siz&8 x 128 pixels.
algorithm converges after 155 iterations and uses a total of
255 iterations to reach the solution (see [Elg. 4). We compare

Original LS (Initial)

BT I

Synchrotron

40.08 dB

44.62 dB

Dust

20
15
10
5

96.83 dB

95.05 dB

TABLE V
the results with the ones of LS, ICM, GS-MRF and ALM- THE PSIRIMPROVEMENTS(DB) WITH RESPECT TO INITIALLS
MRF. SOLUTION.
Table[1M lists the PSIR values and the process times. The CMB | Synchrotron| Dust
simulations are run on a Core2 CPU 1.86 GHz PC. The process (0°,40°) || 3.01 10.01 4.08
time of ALS-t is much shorter than that of the GS-MRF. The (20°,0%) || 1.80 4.54 178
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TABLE VI
THE PSIRspec (DB) VALUES OF THE SEPARATED COMPONENTSIN THE o
ANNULAR FREQUENCY DOMAIN.

cmB CcMB

—— Ground-truth ——Ground-truth
LS Ls
——ALS-t ——ALS-t

0°,40° 20°,0°
CMB Synch. | Dust CMB Synch. | Dust
LS 30.33 265 | 37.76 || 31.59 | 45.69 | 39.35
ALS-t || 35.87 | 26.23 | 40.69 || 34.53 | 46.98 | 38.93

(+1)iCr2n
(+)iCr2m

We have also run the algorithm fa28 x 128 pixels patches () CMB, patch(07, 40°%) (b) CMB, pateh(20°, 0°)
centered at0°,40°) and(20°, 0°). Fig.[3 shows the results for . A — s
the patch(20°, 0°). In that patch, the relative intensity of CMB . s
is the weakest one. The PSIR values of the estimates of LS a .. 5]

ALS-t are written under the maps and the PSIR improvemen .

are listed for that patch and for the pat(?,40°) in Table
[Vl The total time of the ALS-t algorithm for th&28 x 128
size patches is aboBt31 minutes. D B
We also use an alternative performance criterion, definedc) Synchrotron, patclfo°, 40°) (d) Synchrotron, patcl§20°,0°)
in the spherical harmonic (frequency), domain, since the
angular power spectrum is relevant to astrophysics. If v
decompose a CMB map on spherical harmonics, the co
plex coefficients,cy,, (¢ = 0,1,2,..., m € [—£,{]), define
the angular power spectrund;(¢), as the averag€'(¢) =
TL an:,g Cémczm' o il
In Fig. [, we plot the standard power spectru@i(), = e
defined asC(¢) = (¢ + 1)¢(C(¢)/2r of the original and the
reconstructed sources in the two patches considered. br ord
to compare different methods, we also introduce the Peml§. 6. Ground-truth and estimated angular power spectrionpatches

Signal-to-lnterference Ratio in thedomain defined as (0°,40°) and (20, 0). The ground-truth spectrum (solid line), spectrum of
LS solution (dot line) and spectrum of ALS-t solution (sdlite marked with

VVN/2+ 1 x max(T(0)) )
PSIRgpe. = 201log (41)

Dust o Dust

(+1)ici2m
(+D)ICr21

(e) Dust, patch(0°,40°) (f) Dust, patch(20°, 0°)

=

[ORE0]] | N
N ated through the Langevin stochastic equation. The prapose

whereC(¢) is the estimated power spectrum. algorithm provides two orders of magnitude computational

In the off-galactic patch considered in Fig. 6, the intgnsiteconomy vis-a-vis the Gibbs sampling approach. In addlitio
of synchrotron is very low and the LS solution for synchratroit generates better source separation as compared to all its
is contaminated too much by noise. The estimated CMB andmpetitors, i.e., LS, ICM, ALM-MRF and GS-MRF methods
the dust spectrums by ALS-t follow the ground-truth speatrumeasured in terms of PSIR in the pixel domain and RRIR
better than the LS one, especially in the high frequenay the annular frequency domain. The algorithm can recon-
regions. For the patcki20°,0°), synchrotron and dust arestruct the high frequency regions of the power spectrumis wit
estimated adequately by LS, but the LS estimate of CMB legher fidelity. A byproduct of this approach is the capapili
improved by ALS-t. The related PS|R. values are presentedto estimate the parameters of thelistribution image priors.
in Table[V1. Although the proposed ALS-t method takes longer than either

We have observed that the estimated regression paramé&BM or LS methods, its superior performance by far outweighs
oy 4 1S quite isotropic for all the maps. For the CMB map in théhis disadvantage, and furthermore the algorithm lenasfits
(0°,40°) patch, its value is abouit.88 for all d. In the same to parallel processing. To improve the algorithm perforoen
patch, the values of the parameter, for synchrotron and non-stationary image priors, more efficient discretizatione
dust are0.99. These results show us that the CMB radiatiostep and diffusion matrix can be investigated in the future.
is spatially less correlated than the other radiation ssird/e Another point to obtain a beneficial algorithm might be the
assume the parametgy 4 is isotropic and estimate a singleusage of more than one MH-steps, because the EM algorithm
value for each direction. The EM estimation @f, depends which estimates parameters converges faster than the Monte
too much on its prior and initial value. We have allowedarlo sampling scheme.
the parametep; 4 to be anisotropic, but at the end of the Our new goal is the application of the proposed algorithm
estimation steps we have found that it is almost isotropic feo whole-sky maps. To avoid the difficulties inherent in this

all radiation maps. problem, we plan to use the "nested numbering” structure
provided by the HEALPIx[[37] package. In this format, we can
VII. CONCLUSION AND FUTURE WORK reach the indexes of the eight neighbors of each pixel on the

We have developed a Bayesian source separation algoritipmere. To calculate the pixel differences, we will impleme
for astrophysical images where the MCMC samples are genargradient calculation method on the sphere by taking the
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non-homogeneous spatial distances between the pixelseon[ta] X. Descombes, R.D. Morris, J. Zerubia, and M. Berthdgstimation of

sphere into consideration.

Markov random field prior parameters using Markov chain Mo@arlo
aximum likelihood,” IEEE Trans. Image Process.vol. 8, no. 7, pp.

Other issues to be addressed are the channel-dependerg]&l_963 July 1999,
blurring effects of the antennas and the non-stationamyreat[21] R. Molina, A. K. Katsaggelos and J. Mateos, “Bayesiad eggulariza-

of noise. We have to reformulate the source separation@mobl
without these simplifying assumptions on the observatior[§2]

Finally, a pixel-based estimation error is being analyzéith w
the goal of defining a stopping criterion for the algorithm.
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