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Matthias Mühlich and Til Aach

in: IEEE Transactions Image Processing. See also BIBTEX entry below.

BIBTEX:
@article{MuehlichAach2009TIP,

author = {Matthias M\"{u}hlich and Til Aach},
title = {Analysis of Multiple Orientations},
journal = {IEEE Transactions Image Processing},
publisher = {IEEE},
volume = {18},
number = {7},
pages = {1424--1437},
year = {2009}

}

© 2009 IEEE. Personal use of this material is permitted. However, permission to reprint/republish
this material for advertising or promotional purposes or for creating new collective works for
resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in
other works must be obtained from the IEEE.

document created on: June 30, 2009
created from file: MultiOriTip2009CoverPage.tex
cover page automatically created with CoverPage.sty
(available at your favourite CTAN mirror)



IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 18, NO. 7, JULY 2009 1

Analysis of Multiple Orientations
Matthias Mühlich and Til Aach, Senior Member, IEEE

Abstract— Estimation of local orientations in multivariate sig-
nals is an important problem in image processing and computer
vision. This general problem formulation also covers optical
flow estimation, which can be regarded as orientation estimation
in space-time-volumes. Modelling a signal using only a single
orientation, however, is often too restrictive, since occlusions and
transparencies occur frequently, thus necessitating the modelling
and analysis of multiple orientations.

We therefore develop a unifying mathematical model for
multiple orientations: Beyond describing an arbitrary number
of orientations in scalar- and vector-valued image data such
as color image sequences, it allows the unified treatment of
additively and occludingly superimposed oriented structures as
well as of combinations of these. Based on this model, we describe
estimation schemes for an arbitrary number of additively or
occludingly superimposed orientations in images. We confirm the
performance of our framework on both synthetic and real image
data.

I. INTRODUCTION

Local orientations are an important low level feature for
analyzing multivariate data. Local orientations are closely
linked to gradient directions [1], [2], [3], [4], [5], [6], [7].
The relevance of orientations therefore rests on what has been
coined the local simplicity hypothesis [8], [9], [6, Chapter 6],
which states that in many local regions, the variation of the
gradient directions is generally much lower than the variation
of the multivariate signal itself. Locally linear slopes, for
instance, result in a constant gradient field. More important,
however, is that gradient directions are invariant to signal
changes occurring strictly in the gradient directions. This
hypothesis is illustrated in Fig. 1: Its left-hand side shows a
local region with a line superimposed onto a background signal
which changes parabolically orthogonal to the line. While the
signal thus changes everywhere except on the line’s ridge, all
gradients in this region are parallel or anti-parallel. In other
words, the bivariate signal is locally univariate.

Analysis of gradients led to the concept of local orientations
which can be used to decribe image features like edges or
lines. However, this concept is limited to linear structures.
For instance, corners or crossings – which are especially suited
for applications like motion estimation [10] or tracking [11]
– are in fact characterized by sharp local gradient variations
at the most interesting point, namely the corner or crossing,
as also shown in Fig. 1. In such regions, the local simplicity
hypothesis as stated above does not hold anymore.

Figure 2 shows some idealized low level image features
which go beyond single local orientation. These junctions are
often denoted by a letter: L- and Y-junctions represent object
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Fig. 1. Image regions of size 99 × 99 pixels, showing a line (left) and a
junction (right). The overlayed arrows represent the directions of the locally
computed gradients. On the left-hand side, the line runs across a background
which varies orthogonal to the line; all gradients are therefore (anti-)parallel.
The T -junction (right) results in sharply changing gradient directions.

Fig. 2. Corners, junctions, and crossings are prominent low-level image
features which can be described as composition from two oriented signals.
These features are also known as L-, T-, and X-junctions. The size of the
regions shown is 19× 19 pixels.

corners, T-junctions occur at occluding object boundaries, and
X-junctions at object crossings [12], [13], [14], [15].

The framework of double orientation estimation [16], [17]
allows a unified treatment of such features. However, mod-
elling a signal as superposition of two oriented signals is still
too restrictive for many real signals. As an example, every
bifurcation of a line structure, for instance of a blood vessel or
of a plant root, generates a “Y-junction” and implies that three
independent orientations have to be modelled. Figure 3 shows
a variety of both gray level and color (“RGB”) examples.

Multiple orientations appear in X-ray projection imaging
[18], or locally as corners and junctions. Multiple superim-
posed orientations also occur ubiquituously in Radon space
(“sinograms” in Computer Tomography [19, Fig. 3.8]), where
sine curves of different objects cross. Additionally, multiple
orientations allow to describe and model multioriented textures
and fabrics in a more explicit manner in comparison to the
more implicit features provided by, e.g., local filtering, [20],
[21], [22], [23], eigenfilters [24] or co-occurrence matrices
[25], [26]. In this paper, we show how limitations of the
single orientation concept can be overcome by a unifying
framework of multiple signal orientations. We first review
single orientation estimation. We then develop models and
formulate constraint equations for two types of multiple su-
perimposed orientations, viz. additive and occluding superpo-
sitions. Subsequently, we reformulate the constraints in tensor
form, and introduce the properties of the tensors involved. We
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Fig. 3. Parts of images (128 × 128 pixels unless otherwise indicated)
with multi-oriented neighborhoods highlighted by a square (25× 25 pixels).
From left to right and top to bottom: carpet pattern, part of a toy spider,
wooden gable of a doll house (117 × 130 pixels, RGB), bladder wall of a
male patient as seen through a rigid cystoscope (RGB, 150 × 150 pixels,
orientations in ROI only weakly pronounced), endoscopic image from inside
the colon, X-ray angiography of the coronary vessel tree, plant roots in a
nutrient solution. Bottom right: Picture of a crocodile (320 × 240 pixels,
RGB, multi-orientations in ROI generated by dark-gray pencil and by green
crayon) drawn by a five-year old child.

extend the tensor formulation to cover also multispectral, i.e.,
vector-valued data, thus providing for a unified treatment of
occluding and additive orientations in scalar and vector-valued
data. Based on factorization algorithms [27], we then describe
solutions to estimate additive and occluding orientations in
images, as well as combinations of these. We conclude by
providing results for synthetic images as well as for a variety
of real images from various applications such as medicine,
biology, and inspection.

A. Single Orientations: The structure tensor

Let x ∈ RN be a vector in N -dimensional space. We denote
x by x = [x1, x2, . . . , xN ]T or, when N = 2, by x = [x, y]T .
A multivariate signal s(x), s : RN → R, is called locally
oriented in a region Ω if it is constant along parallel lines, i.e.

s(x + λu) = s(x) for all λ ∈ R and x,x + λu ∈ Ω (1)

with the unit vector u denoting the orientation.
Equation (1) states that a given signal is locally constant

with respect to u if its directional derivative ∂s
∂u = 〈g,u〉,

i.e., the scalar product between signal gradient g and u, is
zero for all gradients computed in the neighborhood Ω. The
gradients span a subspace in which the signal is not oriented.
Consequently, the orthogonal complement of this subspace is
the sought orientation. This orientation is uniquely determined
if we can find N − 1 linearly independent gradients. More
precisely, it is an orientation axis which is only determined up
to the sign; in images, it is an angle which can be mapped to
the range [0, π). In practice, because of non-ideal compliance
of s(x) with the orientation model as well as because of noise,
the gradients in Ω will span the entire N -dimensional space.
Minimizing the squared residual error

∑
Ω |〈g,u〉|2 of (1) over

Ω can then be understood as yielding the orientation subspace
in a least-squares sense.

The introduction given so far is one of several approaches
leading to the so-called structure tensor approach for orienta-
tion estimation found in the pioneering work of Förstner [28],
Bigün et. al. [1], Di Zenzo [4], Kass and Witkin [5], and others.
For bivariate image data (N = 2; generalization to arbitrary
N is straightforward), we first compute the discrete derivatives
of the signal with respect to x and y using convolution with
filters fx and fy by sx = fx∗s and sy = fy∗s. With the image
gradient g = ∇s = (sx, sy)T , we now define the (standard)
structure tensor S(1) : RN → RN×N as local integration over
the outer product of the gradient:

S(1) = f ′ ∗ (ggT ) (2)

where f ′ is an averaging filter with support Ω. While ggT is
always of rank one, the structure tensor obtained by averaging
may well be of full rank. Widely used choices for fx, fy , and
f ′ are horizontal and vertical derivatives of Gaussian filters
resp. Gaussian lowpass filters (cf. [29]). If a N -variate signal
complies perfectly with the single orientation model in (1) over
Ω, the structure tensor S(1) has one zero eigenvalue. The cor-
responding eigenvector represents the sought orientation. For
noisy data or model violations, the eigenvector corresponding
to the smallest eigenvalue defines the orientation in which the
signal is “most constant”.

B. Related approaches

The structure tensor S(1) is not the only possibility to
analyse single-oriented structures. Higher order directional
derivatives also vanish along the orientation [30]:

∂s

∂u
= 0 and

∂2s

∂u2
= 0 and

∂3s

∂u3
= 0 and · · · (3)
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which allows to design a wide class of approaches based
on combinations of different order derivatives1. This freedom
can be used for filter design. For instance, Granlund and
Knutsson [6] give a slightly different definition of the orienta-
tion concept: the invariance requirement states that an entity
which characterizes orientation must not depend on the signal
variations orthogonal to the sought orientation. This defines
a much stronger concept of orientation than the one in (1).
For instance, in bivariate signals such as images, it forces
us to design an orientation estimator such that it makes no
distinction between two especially important types of oriented
linear structures: “lines” (a light-dark-light signal orthogonal
to the orientation direction or vice versa; also called “ridges”)
and “edges” (only a single light-dark transition). A detector
that reacts uniformly to these two types of structures is called
phase invariant and can be realized with quadrature filters [6]
(cf. also [31], [32], [22]).

If, on the contrary, we are interested in detecting line
structures only (and not edges), the second order directional
derivative defines an appropriate and widely used filter; this
can be traced back to [33]. A recent paper [34] also discusses
line-specific and edge-specific orientation estimation in the
context of steerable filters. An extension of steerability to-
wards multi-steerable filters, which are steerable to different
simultaneous orientations, is described in [35], [36].

Two generalizations of the structure tensor to phase-
invariant feature detectors are the 2D energy tensor defined
by Felsberg and Granlund in [14] and the boundary tensor
by Köthe in [37]. The connections between energy tensor and
boundary tensor are analyzed recently by both authors in a
joint paper [38]. A variant of the energy tensor, the gradient
energy tensor, can be found in [39]. All these approaches are
based on higher (up to fourth) order derivatives.

We summarize that the standard structure tensor approach
can be extended with combinations of higher order derivatives
to obtain certain desired properties. Odd order filters can be
optimized for edge detection, even order filters for lines, and
mixed order filters for phase invariant behavior.

II. MODELLING AND ESTIMATION OF MULTIPLE
ORIENTATIONS

In the context of orientation estimation, higher order deriva-
tives also appear in the analysis of multiple orientations.
Despite its ability to characterize various important low level
image features like lines or edges, the single orientation model
underlying the above discussion is too restrictive for many real
signals. For instance, the presence of two oriented textures in
a region Ω calls for an extended mathematical model. This
observation led to the study of double-oriented signals. We
will denote the multiplicity of orientations by M , so double
orientation estimation means M = 2.

For image sequences, double orientation estimation means
the analysis of two independent optical flows; this is the
area where double orientation estimation appeared first in the
beginning of the 90s in pioneering work of Shizawa and

1We assume throughout this paper that the signal s is sufficiently regular
for the derivatives to exist.

a
Eigensystem Analysis- -Tensor

Sought
Orientation

b
Eigensystem Analysis Decomposition- - -Tensor

MOP
Vector

Sought
Orientations

-MOP vector as feature descriptor

Fig. 4. While standard single orientation estimation (a) consists of only a
single estimation step, multiple orientation estimation (b) is more complicated.
The first step, viz., the estimation of the mixed orientation parameters (MOP)
vector, is analoguous to the single orientation case. This vector can already
be used as a feature vector. However, if the orientations are explicitly needed,
an additional decomposition step is required.

Mase [40], [16] (additive superposition model, gray value
image sequences), followed by Shizawa and Iso [41] (addi-
tive superposition, gray value images, connection to steerable
filters). More recent results can be found in [42], [43] (additive
model, images; first theoretical steps towards higher multiplic-
ity of signals beyond double orientations) and [13] (occluding
model). An extensive discussion of these double-orientation
approaches can be found in [17].

However, the algorithms above are still limited to the
estimation of double orientations (M = 2) in image or volume
data (N ≤ 3). Here, we extend the theory of multiple orienta-
tion estimation into ‘orthogonal’ directions: model (additive or
occluding superposition, and both of these combined), scalar-
or vector-valued signals (gray value or multispectral), and
multiplicity M (double orientations or M > 2).

A. Outline of multiple orientation estimation

The main difference between single orientation estimation,
either via the standard structure tensor or via advanced variants
composed from higher order derivatives, and multiple orien-
tation estimation is that the latter is a two-step procedure. As
illustrated in Fig. 4, the mathematical core of single orientation
estimation is an eigensystem analysis. The resulting eigenvec-
tor (usually corresponding to the smallest eigenvalue) is a unit
vector which directly represents the sought orientation.

For multiple orientation estimation, on the other hand,
the eigensystem analysis is only a first step, from which a
single eigenvector of higher dimensionality is retained, viz.,
the eigenvector corresponding to the lowest eigenvalue. This
eigenvector encodes the sought set of multiple orientations.
This vector is called the mixed orientation parameters (MOP)
vector. Therefore, we have to apply a subsequent decompo-
sition step after the eigensystem analysis, as shown in Fig.
4b.

In some specific applications, though, such as segmentation
or classification, the MOP vector itself can directly be used as
a feature vector without further decomoposition, as also shown
Fig. 4b.
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B. Additive and occluding orientations
Two different ways of combining M oriented signals si,

i = 1, . . . ,M , to form a new signal s can be found in the
literature. These are the occluding orientations model (OOM)
and the additive orientations model (AOM):

Multiple orientation models:

OOM : s(x) = si(x) ∀ x ∈ Ωi

AOM : s(x) =
M∑
i=1

αi si(x) ∀ x ∈ Ω .

(4)

The first model states that we take the first oriented signal if the
point x is in some region Ω1, the second signal s2(x) in region
Ω2, and so on. All regions must be distinct and sum up to the
entire analysis region Ω. For instance, this model is applicable
with M = 2 if the region Ω1 corresponds to some object
which occludes another object observable in Ω2, provided
that both objects can be modelled reasonably well as single-
oriented structures. As another example, a model using three
occluding orientations can be used to describe bifurcations of
blood vessels in medical images: without any separate junction
detection step, we directly detect the presence of three vessel
orientations and estimate these.

The second model, AOM, assumes that all basic signals
are present over the entire region Ω, and that we observe
their superposition, possibly weighted with some constants αi.
Computing directional derivatives, we obtain the constraints:

Multiple orientation constraints, derivative forms:

OOM :
M∏
i=1

∂s

∂ui
= 0 ∀ x ∈ Ω

AOM :
∂Ms

∂u1 · · · ∂uM
= 0 ∀ x ∈ Ω .

(5)

Note that the OOM needs only first order derivatives, since
for each region Ωi, the i-th factor in the constraint is zero,
while the AOM constraint needs M -th order derivatives.

Both models can be summarized under the more general
approach s(x) =

∑
i αi(x)si(x). This model is structurally

similar to the AOM model, but we now allow the weights
to depend on the position x. Computing the M -th order
directional derivatives w.r.t. all M orientations, each summand
decomposes into 2M summands because of the product rule.
Half of these summands contain ∂si

∂ui
(or derivatives of it),

which vanish for the sought orientations. However, 2(M−1)

summands remain in which the signal-dependent part does not
vanish. In total, we obtain M2(M−1) summands containing
derivatives of the weight-functions αi(x). Consequently, they
can only vanish for special choices of the weight functions.

As an example, we examine the general additive model
with weight functions for M = 2, i.e. s(x) = α1(x)s1(x) +
α2(x)s2(x). The second order directional derivative then is

∂2s

∂u1∂u2
=

∂2α1

∂u1∂u2
s1 +

∂2α2

∂u1∂u2
s2 +

∂α1

∂u1

∂s1

∂u2
+
∂α2

∂u2

∂s2

∂u1

The last two summands can only vanish if either the sig-
nal si is constant (the only case where it can be oriented
in both directions u1 and u2 simultaneously) or, which is
the more interesting case, if we impose restrictions on the
weight functions αi. If they are constant, then all derivatives
vanish and we arrive at (5) for the AOM. A slightly relaxed
requirement is piece-wise constancy. Then the constraint holds
almost everywhere, i.e., everywhere except at discontinuities.
The OOM case is one specific realization for this, namely
where the whole region Ω is divided into distinct regions Ωi

with weights αi(x) = 1 if x ∈ Ωi and 0 else. This shows that
the orientations of signals generated from the OOM model
can also be estimated using the AOM constraint.

With (ui)j denoting the j-th component of vector ui, the
directional derivative is defined as

〈g,ui〉 =
∂s

∂ui
= 〈∇s,ui〉 =

N∑
j=1

∂s

∂xj
(ui)j . (6)

Inserting this into the OOM constraint (5) yields

M∏
i=1

 N∑
j=1

∂s

∂xj
(ui)j

 = 0 . (7)

The left hand side is a product of M factors which are sums
consisting of N summands each. Multiplying out leads to
a sum of NM summands. By introducing the tensor scalar
product between order-M tensors as

〈O,U〉 :=
N∑

k1,...,kM =1

(O)k1···kM
(U)k1···kM

, (8)

we can now encapsulate the entire dependency on the sought
orientations in the tensor

U = u1 ⊗ · · · ⊗ uM (9)

where “⊗” denotes the tensor product operator. Then we
express (7) as

Multiple occluding orientations constraint:

〈O,U〉 = 0 with (O)k1···kM
=

M∏
i=1

∂s

∂xki

.
(10)

Each point in Ω yields one data tensor O and from all these
tensors, we have to estimate the sought orientation tensor U
which is orthogonal to the given data tensors, i.e., leads to
the scalar products being zero. Both O and U are M th-order
N × · · · ×N tensors, since each index ki, i = 1, . . . ,M , runs
from 1 to N . Analogously, we find the

Multiple additive orientations constraint:

〈A,U〉 = 0 with (A)k1···kM
=

∂Ms

∂xk1 · · · ∂xkM

.
(11)

We emphasize the structural similarity of both models: the
tensors constructed from signal derivatives are different –
product of first derivatives in O versus higher order derivatives
in A –, but once we have constructed the data tensor, the
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computation of the sought orientations, i.e., the estimation of
an orientation tensor U being orthogonal to it, is exactly the
same.

For vector-valued signals s(x), s : RN → RP , for
instance color images, the models extend as follows: Under
the AOM, the scalar AOM-constraint in (5) must hold for all
signal components, while under the OOM, the scalar OOM-
constraint must hold for all combinations of signal components
and directional derivatives. The multispectral version of (5)
thus is

OOM :
∂s
∂u1
⊗· · ·⊗ ∂s

∂uM
= 0⊗· · ·⊗0 ∀ x ∈ Ω

AOM :
∂M (s)`

∂u1 · · · ∂uM
= 0 ∀ x ∈ Ω, ` = 1, . . . , P

(12)

where (s)` is the `-th component of s, and ∂s/∂ui =
[uT

i ∇(s)1, . . . ,uT
i ∇(s)P ]T . For the AOM, we thus obtain P

data tensors of size RN×···×N :

(A)`
k1···kM

=
∂M (s)`

∂xk1 · · · ∂xkM

(13)

and P constraints 〈A(`),U〉 = 0, ` = 1, . . . , P , where
A(`) denotes the tensor in (13) evaluated for a specific `.
Analogously, the multispectral OOM constraint is given by
〈O(`1···`M ),U〉 = 0 for all `i = 1, . . . , P , i = 1, . . . ,M ,
and with O(`1···`M ) denoting a specific slice of the tensor
O ∈ RN×···×N×P ···×P :

(O)`1···`M

k1···kM
=
∂(s)`1

∂xk1

· · · ∂(s)`M

∂xkM

. (14)

In subsection II-F, we will see that the computation of the
multispectral structure tensors requires only one additional
tensor contraction over ` in the AOM case, and M tensor
contractions over `1, . . . , `M for the OOM. The resulting
structure tensors are then all of the same size, regardless of
whether they are computed from scalar or vector-valued data
under OOM or AOM. Orientation estimation for all these cases
can thus be done in exactly the same way.

C. Geometric interpretations of OOM and AOM

In general, all constraints for orientation estimation are
orthogonality constraints in an N×· · ·×N -dimensional space,
where a set of data tensors — evaluated at all points inside
the region Ω — are given and an orientation tensor orthogonal
to it is sought. For scalar-valued signals, we can also find
geometric interpretations in N -dimensional space. With (6),
the OOM constraint in (5) becomes

〈O,U〉 = 〈g,u1〉 · · · 〈g,uM 〉 = 0 ∀ x ∈ Ω , (15)

i.e., the constraint factorizes into M scalar products, each
containing the same gradient vector g for a given x ∈ Ω.
Expanding this constraint shows that it is a homogeneous
polynomial of degree M in the components of the gradient
g. All gradients measured inside the analysis region Ω must
thus lie on a union of M hyperplanes in N -dimensional space,

each of which is described by a normal vector ui. For the
AOM, the constraint in (5) can be turned into a similar form
by expressing it in the Fourier domain, yielding

〈A,U〉 = (〈ω,u1〉 · · · 〈ω,uM 〉)SΩ(ω) = 0 ∀ ω , (16)

where SΩ(ω) is the spectrum of s(x) taken over Ω, and ω
the spatial frequency vector. If s(x) satisfies the AOM in Ω,
SΩ(ω) must vanish everywhere except on the M hyperplanes
with normals ui, 1 = 1, . . . ,M . The structure of (16) is thus
the same as that of (15), with the only difference that the
gradients g(x), x ∈ Ω, are replaced by the vectors ωSΩ(ω).

The normal vectors ui can be estimated by generalized
principal component analysis (GPCA, [27], [44]). Its basic idea
is to first compute the coefficients of the expanded version of
(15), yielding the equivalent of the MOP vector in Fig. 4. The
resulting coefficients are then decomposed into the subspace
normals ui, i = 1, . . . ,M by polynomial differentiating and
evaluation at distinct data points g [44, Sec. 3.4].

D. Symmetry properties of the data tensors

The commutativity in the definitions of (10) and (11) is
the key to the understanding of multiple orientations. The
data tensors are invariant against any arbitrary permutation of
indices and therefore have some very pronounced symmetry
properties. For M = 2, the data tensors O and A are
symmetric N × N matrices, but for higher M , we cannot
rely on concepts from matrix algebra anymore. We therefore
define the space of fully symmetric M -tensors2 as

RN×···×N
⊕ =

{
T ∈ RN×···×N

∣∣∣∣(T )i1···iM
= (T )P (i1···iM )

}
(17)

with P (i1 · · · iM ) denoting any arbitrary permutation of the
indices i1 · · · iM .3

While the data tensors are fully symmetric, the orientation
tensor U = u1⊗· · ·⊗uM clearly is not. But the symmetry of
the left operand in some scalar product, like 〈A,U〉, always
implies that the value of the scalar product does not change if
the same symmetry transformations are applied to the second
operand (here: U). Hence, if 〈A,U〉 = 0, then 〈A,U ′〉 = 0
with U ′ denoting any arbitrary permutation of the order of
orientations in the tensor product U . The interpretation is that
we can only estimate a set of M orientations, but cannot
identify them as “first”, “second”, “M -th” orientation; they
are interchangeable. As a consequence, the original tensor
U cannot be recovered uniquely, any linear combination of
permuted tensors is consistent with the constraint.

However, it is possible to describe a set of M orientations
with a unique order-M tensor. The key is symmetrization:
among all possible orientation tensors U which are orthogonal
to A, i.e., for which 〈A,U〉 = 0 holds, there is – up to a
non-zero scale factor – only a single fully symmetric one.

2Fully symmetric in order to allow the term symmetric also for invariance
against special permutations only, for instance the exchange of indices 1 and 2.
Fully symmetric as used here means ”invariant under the permutation group”.

3The space of fully symmetric tensors is a subset of general M -tensors.
The sets are identical only for vectors, i.e., M = 1, as there is no possible
permutation for a single index. Therefore the statement that the data tensors
are fully symmetric tensors is consistent with single orientation estimation.
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It is given by the sum over all possible permutated tensors
with equal weights. This implies that, instead of estimating a
general U ∈ RN×···×N , we have to estimate the orientation
tensor subject to U ∈ RN×···×N

⊕ to obtain a unique solution.
From (9) follows that the sought orientation tensor U is even

restricted to reside in a subset of RN×···×N
⊕ , namely the set

of tensors which are elements of

RN×···×N
~ =

{∑
P (i1···iM )

ui1⊗· · ·⊗uiM

∣∣∣∣ui1 , . . . ,uiM
∈ RN\{0}

}
.

(18)
We will call this space of symmetrized outer products the
minimal fully symmetric tensors from now on. However, it
is difficult to enforce this additional constraint directly in
the estimation step. Therefore, we will only estimate the
orientation tensor subject to the constraint that it is an element
of RN×···×N

⊕ , and impose the restriction to RN×···×N
~ later on

in the decomposition step.
All tensor scalar products can be converted to standard

scalar products by stacking the tensor elements to form a vec-
tor. The symmetry properties of both operands, however, call
for a modified version of vectorization. Our fully symmetric
tensors have

k =
N∑

i=1

(
N +M − 1− i

M − 1

)
=
(
N +M − 1

M

)
(19)

different elements or degrees of freedom (DOF). Therefore,
the space RN×···×N

⊕ can be mapped to Rk. We thus define as
follows:

Definition 1: Let T ∈ RN×···×N
⊕ denote a fully symmetric

tensor of order M . Then we define the mapping VecSymm (·) :
RN×···×N
⊕ → Rk with k defined in (19) as stacking all

independent elements in some arbitrary but fixed order. Fur-
thermore, we define VecSymmN (·) : RN×···×N

⊕ → Nk as
counting the number of appearances or index permutations of
each independent element in the tensor.
Note that the VecSymmN (·) operation only depends on the
dimensionality of the argument, not on the entries. Thus, every
element of RN×···×N

⊕ produces the same VecSymmN (·) result.
As an example, we consider the estimation of two orien-

tations in bivariate images; then all data tensors are 2 × 2
matrices. For the OOM, we obtain

O =
(

s2
x sxsy

sxsy s2
y

)
(we use O instead of O since the tensor is a matrix here,
and sx, sy to denote the partial derivatives), which is then
vectorized to

g̃OOM = (s2
x, sxsy, s

2
y)T .

and the ‘appearance counter’ yields

VecSymmN (O) = (1, 2, 1)T .

In the same way, we obtain for the AOM the matrix

A =
(
sxx sxy

sxy syy

)
which is vectorized to

g̃AOM = (sxx, sxy, syy)T ,

and where sxx, sxy and syy are second-order partial deriva-
tives. Applying these definitions to (10) and (11) now allows
to generalize the single orientation constraint 〈g,u〉 = 0 that
the gradient must be orthogonal to the sought orientation to
〈g̃, ũ〉 = 0 with the generalized gradient vector

OOM : g̃OOM = VecSymm (O) (20)

resp.
AOM : g̃AOM = VecSymm (A) (21)

and the mixed orientation parameters (MOP) vector

ũ = VecSymmN (U) · VecSymm (U) (22)

with “·” indicating element-by-element multiplication. The
vectors g̃, where, for P = 1, g̃ : RN → Rk, are the multiple
orientation counterparts of the gradients. In analogy to the
single orientation structure tensor (2), we can therefore define
the double [triple, M -] orientation structure tensor S(2) [S(3),
S(M)] as spatial integration, i.e., convolution with averaging
filter f ′, over the outer product of g̃ with itself:

S(M) = f ′ ∗ (g̃g̃T ) . (23)

For our example of M = 2, the structure tensor S(2) thus is

S(2) = f ′ ∗ g̃OOMg̃T
OOM = f ′ ∗

 s4
x s3

xsy s2
xs

2
y

s3
xsy s2

xs
2
y sxs

3
y

s2
xs

2
y sxs

3
y s4

y


for the OOM, and

S(2) = f ′ ∗ g̃AOMg̃T
AOM = f ′ ∗

 s2
xx sxxsxy sxxsyy

sxxsxy s2
xy sxysyy

sxxsyy sxysyy s2
yy


for the AOM.

For M = 3 orientations, we obtain in the same way g̃OOM =
(s3

x, s
2
xsy, sxs

2
y, s

3
y)T and g̃AOM = (sxxx, sxxy, sxyy, syyy)T ,

yielding structure tensors S(3) of size 4× 4.
The eigenvector of S(M) corresponding to the smallest

eigenvalue — which, ideally, is equal to zero — will then
yield the MOP vector for M orientations, thus completing
the first step of Fig. 4. Depending on M and N , though,
the MOP vector is overparameterized in the sense that it has
clearly too many DOF: k is a polynomial with leading term
NM , whereas M unit vectors only have M(N − 1) DOF.
Still, the MOP vector itself – without decomposition into the
underlying orientations – could already be used as a feature
for applications like texture classification or segmentation.

E. Polynomial representation via the Veronese Map

Under the OOM, the entries in the generalized gradient
vector g̃OOM as defined in (20) are all monomials of degree M
which can be formed from the gradient components ∂s/∂xi.
Similarly under the AOM, the entries in g̃AOM as defined in
(21) are all derivatives of the order M which can be formed
with respect to the coordinate axes xi. For the latter, this can
formally be interpreted as first composing all monomials of
degree M of the components of the gradient operator ∇ and
applying the result to s, generating higher-order derivatives
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instead of products of first-order derivatives. The mapping
between a vector (here: ∇s resp. ∇ itself) and the set of
all degree-M monomials which can be constructed from its
components is the Veronese map [45]. These monomials form
a basis for the set of homogeneous polynomials of the same
degree [45], [44].

A homogeneous polynomial of degree M is a polynomial
p(x) such that p(λx) = λMp(x) for all λ ∈ R. As already
discussed in section II-C, the scalar OOM constraints (5)
and (15) are homogeneous polynomials. The homogeneous
polynomials of degree M in N variables form a vector space
of dimension

DM (N) =
(
M +N − 1
N − 1

)
=
(
M +N − 1

M

)
(24)

which is the same number as k in (19).
A basis for this space is given by the set of all monomials

of degree M in N variables. We denote this basis as xI =
xm1

1 xm2
2 · · ·xmN

N with 0 ≤ mj ≤ M for j = 1, . . . , N , and∑N
j=1mj = M [44]. Each homogeneous polynomial can then

be written as a linear combination of the monomials xI with
some coefficient vector c ∈ RDM (N) as

p(x) = cT vM (x) =
∑

cm1,m2,...,mN
xm1

1 xm2
2 · · ·xmN

N ,
(25)

where vM (x) : RN → RDM (N) is the Veronese map of degree
M , defined as vM (x) : (x1, x2, . . . , xN )T 7→ (. . . ,xI , . . .)
with I chosen in degree-lexicographic order. For instance, the
Veronese map of degree 2 of the vector (x, y)T ∈ R2 is the
vector (x2, xy, y2)T ∈ R3.

Using these definitions, one can also define the generalized
gradients for either of the two data models without reference
to tensor-valued entities and vectorization of such tensors. We
find

g̃OOM = vM (∇s) (26)

and
g̃AOM = vM (∇)s (27)

where vM (∇) has to be understood as applying the Veronese
mapping to the nabla operator, yielding operators of higher
order derivatives. The OOM- and AOM constraints in (5) can
then alternatively be expressed as

ũT vM (∇s) = 0 ∀x ∈ Ω (28)

and
ũT vM (∇)s = 0 ∀x ∈ Ω (29)

respectively, with ũ being the mixed orientations parameter
vector defined in (22). For the OOM, the constraint equation
(28) is a homogeneous polynomial in the gradient components,
in fact, (28) is the expanded version of (15). As discussed
in section II-C, this constraint can also be derived by first
calculating all gradients in Ω, and then requiring each one
to lie in a subspace formed by a union of M hyperplanes,
showing that both the polynomial and tensor representation
are thus appropriate under the OOM. Although slightly dif-
ferent for the AOM, the tensor formulation allows the unified
treatment of both models via the structure tensors S(M) given
in (23). Also, it allows to distinguish between the spaces

RN×···×N
⊕ of all fully symmetric tensors, which is equivalent

to all potential MOP estimates, and RN×···×N
~ which contains

only those fully symmetric tensors which can be formed
by tensor products of orientation vectors. In the polynomial
formulation, this corresponds to distinguishing between the
space of homogeneous polynomials which comply with (28),
and the subset of these which can be factorized into the
normals ui in (15). In the next section, we show how structure
tensors for vector-valued data can be computed.

F. Vector-valued signals

Based on work by Di Zenzo [4] and Förstner [46] on multi-
band gradients, we now derive multiple orientations structure
tensors for vector-valued signals s(x), s : RN → RP . For
a vector-valued signal with P components, the gradient is a
N × P matrix containing the gradients of the components
as columns, the generalized gradients g̃OOM and g̃AOM become
k × P matrices, and the directional derivatives are therefore
P -dimensional vectors. Products of scalars then become scalar
products of vectors, i.e., sums over the products of their
components. Let

g̃`
AOM , ` = 1, . . . , P (30)

denote the vectorized version of A(`) in (13), i.e., the `-th
column of the matrix g̃AOM, and let

g̃`1···`M
OOM , `i = 1, . . . , P, i = 1, . . . ,M (31)

denote the vectorized `1 · · · `M -slice of the multispectral ver-
sion of O defined in (14). Then structure tensor computation
for vector-valued signals turns into tensor contraction over all
P -dimensional indices, i.e., local integration over

P∑
`=1

g̃`
AOM ⊗ g̃`

AOM (32)

resp.
P∑

`1=1

· · ·
P∑

`M =1

g̃`1···`M
OOM ⊗ g̃`1···`M

OOM . (33)

For instance, multispectral AOM orientation estimation for
N = 2 and M = 2 yields the tensor

S(2) = f ′ ∗

 〈sxx, sxx〉 〈sxx, sxy〉 〈sxx, syy〉
〈sxx, sxy〉 〈sxy, sxy〉 〈sxy, syy〉
〈sxx, syy〉 〈sxy, syy〉 〈syy, syy〉

 . (34)

where sxx, sxy and syy denote the vector-valued derivatives.
Their scalar products realize the summation over ` in (32).
For the AOM, it is worth mentioning that convolution (local
integration) and the sum over the signal bands commute. It
is therefore mathematically equivalent to compute structure
tensors for all P bands individually and then sum up these
tensors in the end. For the OOM, S(2) is with (33) given as
local integration over 〈sx,sx〉2 〈sx,sx〉〈sx,sy〉 〈sx,sy〉2

〈sx,sx〉〈sx,sy〉 1
2 〈sx,sx〉〈sy,sy〉+ 1

2 〈sx,sy〉2 〈sx,sy〉〈sy,sy〉

〈sx,sy〉2 〈sx,sy〉〈sy,sy〉 〈sy,sy〉2

 .

(35)
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In summary, we can thus compute structure tensors for an
arbitrary number M of orientations, occludingly or additively
superposed, in arbitrary P -dimensional and N -variate signals.

III. DECOMPOSITION OF THE MOP VECTOR

Once an estimate ˆ̃u for the MOP vector is computed, we first
reverse (22) by dividing each component by the corresponding
number of permutations, i.e., by the corresponding entry of
VecSymmN (·). Then the mapping itself is reversed, thus
producing an estimate Û which is a fully symmetric tensor,
i.e., an element of RN×···×N

⊕ . However, this tensor is in
general not an element of the space RN×···×N

~ of minimal fully
symmetric tensors defined in (18). Therefore, our estimate
does not generally represent a valid set of M orientations.
Going back to vector representation, this implies that the set
of valid MOP vectors is a subset of Rk. The outward sign of
this discrepancy is the overparametrization of the MOP vector
estimates discussed at the end of section II-D. Consequently,
the above estimated MOP vector does therefore not necessarily
represent a vector which can be decomposed into the sought
orientations, i.e., into the unit vectors ui, since its decompos-
ability was nowhere enforced. This problem does not arise in
single orientation estimation, because there RN

~ ≡ RN
⊕ ≡ RN

holds – there are no indices which allow permutations. The
tensor notation allows a convenient characterization of the
valid subspace RN×···×N

~ within RN×···×N
⊕ . In the equivalent

vector representation, this subset is some highly complicated
M(N −1)-dimensional manifold within Rk, which is homeo-
morphic to the set of homogeneous polynomials of degree M
in N-1 variables that factorize as a product of linear factors.
In the following, we discuss decomposition techniques where
we focus on images (N = 2), but also point out one approach
for higher-dimensional data.

A. Multiple orientation estimation for images

For bivariate images, i.e. N = 2, we find with (19) that
the MOP vectors exhibit k =

(
2+M−1

M

)
=
(
M+1

M

)
= M + 1

components. A MOP vector is the eigenvector corresponding
to the lowest eigenvalue of S(M) = f ′∗(g̃g̃T ) in (23) which, in
the case of M ideal orientations being present in Ω, is equal to
zero. The MOP vector is therefore a so-called homogeneous
vector which can only be determined up to scale and sign
[15, section 13.1]. Its length can therefore be normalized to
one, and it thus has k − 1 = M DOF. Simultaneously, M
unit orientation vectors in bivariate data together have M
DOF, too. Therefore, the problem of overparameterized MOP
vectors does not appear in images, regardless of the number
of orientations sought. This means that we have to qualify the
above considerations: for images, and – apart from univariate
signals where orientation cannot be defined – only for images,
the MOP vector is in fact a minimal description of the sought
parameters. For M = 2, decomposition techniques via roots
of a polynomial can be found in [27], [47], [42], [43], [17].
For M > 2, the approach can be extended as follows: M = 3,

� �
1 function solution = solveMultiOri(vec)
2 % test degree of polynomial
3 if abs(vec(1)) < 1e−10
4 % at least one vertical orientation : recursion
5 verticalOri = [0; 1];
6 solution = [verticalOri solveMultiOri(vec(2:end))]
7 else
8 % solve polynomial for orientation vector slopes
9 len = length(vec);

10 temp = [1 −1 1 −1 1 −1];
11 firstRow = vec(2:len)’ / vec(1) .* temp(1:len−1);
12 M = [firstRow; eye(len−2) zeros(len−2,1)];
13 temp = eig(M);
14 solution = [ones(1,len−1); temp’];
15 % normalize solutions
16 for i = 1:len−1
17 temp = solution(:,i);
18 solution(:,i) = temp/norm(temp);
19 end
20 end� �

Listing L-1. Decomposition of the MOP vector for bivariate data and
arbitrary M .

for instance, yields for the components of the MOP vector

(ũ)1 = (u1)x(u2)x(u3)x

(ũ)2 = (u1)x(u2)x(u3)y +(u1)x(u2)y(u3)x+(u1)y(u2)x(u3)x

(ũ)3 = (u1)x(u2)y(u3)y +(u1)y(u2)x(u3)y +(u1)y(u2)y(u3)x

(ũ)4 = (u1)y(u2)y(u3)y ;

extension to arbitrary M is straightforward. We thus have to
solve an equation system of k = M + 1 equations, where the
vector elements on the left-hand sides are taken from the MOP
vector normalized to unit length; this reduces the number of
independent equations to M = 3. The system possesses 2M
unknowns, because every orientation vector consists of two
unknowns (ui)x and (ui)y . With the additional M constraints
((ui)x)2 + ((ui)y)2 = 1, solving this equation system is
feasible. We reformulate the problem as an unconstrained
problem: If (ũ)1 = 0, then one of the sought orientations,
say uM , is (0, 1)T , and the degree of the problem is reduced
by 1. Otherwise, we form the new unknowns zi := (ui)y

(ui)x
. The

set of M values for the zi – which can be regarded as the
slopes of the orientation vectors – can now be found as roots
of a polynomial; for M = 3, the polynomial is

(ũ)1(z−z1)(z−z2)(z−z3) = (ũ)1z
3−(ũ)2z

2+(ũ)3z−(ũ)4 = 0 .
(36)

For M arbitrary, the polynomial is
M∑

j=0

(−1)j (ũ)j+1 z
M−j = 0 . (37)

In all cases, the polynomial can directly be formed from the
given components (ũ)j+1 of the MOP vector. Note that the
actual length of the MOP vector cancels out when calculating
pi, thus, it has no influence on the solution. The M orientation
vectors are finally given by normalizing the vectors (1, zi)T ,
i = 1, . . . ,M , combined with the vertical orientation (0, 1)
if applicable. Listing L-1 shows the implementation of this
algorithm in MATLAB.

B. Double orientation estimation in multivariate signals
For double orientation estimation, all tensors are matrices.

Matrix algebra offers a convenient interpretation of the dif-
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ference between the space of fully symmetric tensors RN×N
⊕

and its subspace RN×N
~ . While the first space is the space

of symmetric N × N matrices, the latter space is the space
of N × N -matrices formed by u1 ⊗ u2 + u2 ⊗ u1, i.e., the
space of symmetric rank-2 matrices of size N ×N . Methods
to decompose such matrices into u1 and u2 can be found in,
e.g., [40], and in [43], [48], and are outlined in the following.
After estimating the MOP vector ũ, it is mapped to the space
of fully symmetric tensors, which is now equivalent to the
space of symmetric N × N -matrices, including the division
by the permutation count according to (22). Let U denote the
result of this operation; we now have to find the two unit
vectors u1 and u2 which fulfill

U = c(u1 ⊗ u2 + u2 ⊗ u1) (38)

for some nonzero scaling factor c ∈ R. It can be shown
that u1 + u2 and u1 − u2 are eigenvectors of U. Being
a rank-2 matrix, U has only two non-zero eigenvalues, one
of which is positive while the other one is negative. With
λ+, λ− denoting the non-zero eigenvalues and x+,x− the
corresponding eigenvectors of U, the sought orientations can
be found by

u1 =
√
λ+ x+ +

√
−λ− x− and

u2 =
√
λ+ x+ −

√
−λ− x− . (39)

In practice, the estimate U will exhibit N − 2 eigenvalues
which are close to zero, and which lie between λ+ and
λ−. Ignoring these intermediate eigenvalues corresponds to
replacing U by its closest symmetric rank-2 matrix in the
sense of the Froebenius norm, from which the orientations are
computed as specified in (39).

C. Combining both strategies: Two occluding areas with dou-
ble additive orientations

The unified treatment of additive and occluding orientations
enables us to deal also with the simultaneous presence of both
models within one region Ω. In the following, we assume that
we observe the occlusion of two signals each of which consists
of an additive superposition of two oriented signals. Examples
are given in Figs. 6 and 7. The model thus is

s(x) =
{
s1(x) + s2(x) x ∈ Ω1

s3(x) + s4(x) x ∈ Ω2
(40)

Let u1 to u4 denote the corresponding orientation vectors. The
combined OOM-AOM-model constraint is the product of two
AOM constraints

∂2s

∂u1∂u2
· ∂2s

∂u3∂u4
= 0 (41)

where, in region Ω1, the first factor is zero; otherwise, the
second factor is zero. The first AOM-factor is with (11)

∂2s

∂u1∂u2
= 〈A,U12〉 = g̃T

AOMc12 (42)

where A is the matrix for additive double orientation estima-
tion

A =


∂2s
∂x2

1
· · · ∂2s

∂x1∂xN

...
...

∂2s
∂x1∂xN

· · · ∂2s
∂x2

N

 , (43)

and with U12 = 1
2 (u1uT

2 + u2uT
1 ) as in (9). From A, g̃AOM is

formed as in (21) by g̃AOM = VecSymm (A), while the vector
c12 is computed from the tensor U12 as in (22) by c12 =
VecSymmN (U12) · VecSymm (U12). Applying the same to
the second factor in (41), the constraint can be rewritten to

∂2s

∂u1∂u2
· ∂2s

∂u3∂u4
= cT

12g̃AOMcT
34g̃AOM

= 〈g̃AOMg̃T
AOM, c12cT

34〉 = 0 . (44)

The constraint now exhibits the form of a double orientation
constraint with the only exception that, instead of two orienta-
tion vecors, we estimate here the mixed orientation parameter
vectors c12 and c34 for s1(x) + s2(x) and s3(x) + s4(x),
respectively. With the two techniques discussed in the previous
subsections, we solve this problem in a two-step scheme:
we first determine an estimate for the symmetrized form
c12cT

34 + c34cT
12 by the eigensystem analysis of the structure

tensor S2 = f ′ ∗ (g̃AOMg̃T
AOM) formed from g̃AOM according

to (23). As described in section III-B, this estimate is, if
necessary, replaced by the rank-2 matrix closest to it, and
decomposed into the two MOP vectors c12 and c34. These, in
turn, are then decomposed into the sought orientation vector
pairs u1, u2 and u3, u4, respectively.

The hierarchical two-step procedure is also applicable if
more than two occluding regions with more than two addive
orientations in each are present. In this case, each step must
solve for more than two orientations using correspondingly ex-
tended structure tensors S(M), and MOP vector decomposition
techniques as in section III-A.

IV. RESULTS

Here, we provide a variety of results obtained for synthetic
data and real images from applications such as medicine, tex-
ture analysis and biology. We use the following notation: AOM
and OOM denote the model under which the corresponding
result was obtained, RGB indicates that the structure tensor
was calculated for color images. Partial derivatives in horizon-
tal and vertical directions were calculated by convolution with
finite filter kernels, where DoG1.2 denotes the derivative of a
Gaussian of width σ = 1.2, while D(1,0,-1)/L(1,3,1) denotes
a filter consisting of the finite-difference kernel [1,0,-1] com-
bined with orthogonal smoothing by the lowpass [1,3,1]. The
eigenvalues of the multi-orientation structure tensor S(M) are
for now denoted by λi, i = 1, . . . ,M + 1.

Fig. 5 shows results for synthetic local neighborhoods with
three orientations in noise (SNR 6 dB), both obtained using
the D(1,0,-1)/L(1,3,1) filters. For the additive superposition,
the estimation errors were 1.6◦, 1◦ and 0.7◦. The ratios of
the eigenvalues were λ2/λ1 = 0.62, λ3/λ1 = 0.08, λ4/λ1 =
0.02. In the noisefree case (not shown), the errors reduced
to 0.5◦, 0.4◦ and 0.2◦, and the eigenvalues were λ2/λ1 =
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Fig. 5. Triple-oriented neighborhoods, 25×25 pixel, generated synthetically
from triangle-shaped waves. Upper row, left: additive superposition, noisefree;
right: with additive Gaussian noise, SNR 6dB, true and estimated orientations
(AOM) shown in light and dark gray, respectively. Lower row, left: occluding
superposition, noise free; right: with additive Gaussian noise, SNR 6dB, and
true and estimated orientations (OOM).

SNR 12dB 6dB 3dB 0dB
OOM 0.4 1.1 1.8 2.99
AOM 0.33 1.14 1.74 3.23

TABLE I
MEAN ABSOLUTE ESTIMATION ERROR (20 REALISATIONS) IN DEGREES

OVER SNR FOR THE EXAMPLES IN FIG. 5.

0.6, λ3/λ1 = 0.07, λ4/λ1 = 0.0004. Note that the last
eigenvalue practically vanishes, indicating a practically perfect
compliance of the neighborhood with the model. For the
occluding superposition in noise, the estimation errors using
the same filters were 4.1◦, 3.3◦ and 0.5◦, with eigenvalues
λ2/λ1 = 0.56, λ3/λ1 = 0.07, λ4/λ1 = 0.04. When using the
DoG1.2 filter (not shown), the errors reduced to 2.1◦, 0.6◦

and 0.2◦. In the noisefree occluding case (not shown), the
errors were 1.1◦, 0.5◦ and 0.1◦, with λ4/λ1 = 0.004 again
indicating a practically perfect model compliance. The mean
absolute estimation errors for various SNRs are given in table
I.

Fig. 6 shows the estimation result for a synthetically gener-
ated occluding superposition of two additive double-oriented
signals, as described in section III-C, yielding a fourfold-
oriented signal. Using the DoG1.2 filter, the errors in the
noisefree case were 2.7◦, 2.5◦, 2.1◦ and 1.5◦. With additive
Gaussian noise at SNR 6dB (not shown), the errors became
3.7◦, 3.6◦, 2.8◦ and 1.7◦. Fig. 7 shows the same for a
fourfold-oriented image generated by combining a double-
oriented texture occludingly with a rotated version of itself.
The rotation angle was 40◦, followed by nearest-neighbor
interpolation. The upper right image shows the estimation
result for the region indicated by the square. Since in this case
no ground truth is available, the double orientations estimated

Fig. 6. Two synthetic additive double-orientation signals (left and center).
Their highlighted neighborhoods are combined occludingly (right). The four
orientations were estimated as described in section III-C, and are overlayed.

Fig. 7. Fourfold oriented neighborhoods generated by the occluding com-
bination of a double-oriented texture signal with a rotated version of itself.
From left to right and top to bottom: combined texture, 128 × 128 pixel,
with an occluding neighborhood inside the square; estimation result (D(1,0,-
1)/L(1,8,1)); double orientations estimated for the original texture alone; and
double orientations estimated for the rotated texture alone.

for the two individual textures in regions close to the fourfold-
neighborhood are provided in the lower row for comparison.
Evidently, the four estimated orientations indeed reflect each
of the individually estimated pairs.

Results for all examples shown in Fig. 3 are provided in
Fig. 8. Results for the color images (doll house gable, bladder
wall, crocodile) were computed by the AOM for P = 3 as
described in section II-F. In each case, the estimated orienta-
tions agree evidently well with the ones actually present. For
the ROI in the bladder wall, the orientations were correctly
identified by the multispectral algorithm even though they are
only very weakly pronounced. In the crocodile drawing, two
of the three detected orientations correspond to strokes by a
pencil in dark gray, while the third corresponds to strokes
by a green crayon. The latter is almost imperceptible in the
corresponding luminance component.

Fig. 9 shows a part of an X-ray image of a tire, revealing
its internal metal grating structure, which results in a varying
number of orientations across the image. Both the number of
orientations and the orientations themselves were estimated
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Fig. 8. Results for the highlighted regions of the images in Fig. 3. From left
to right and top to bottom: carpet, OOM, DoG1.2, λ2/λ1 = 0.48, λ3/λ1 =
0.07, λ4/λ1 = 0.06; toy spider: OOM, DoG1.2, λ2/λ1 = 0.28, λ3/λ1 =
0.07, λ4/λ1 = 0.01; doll house gable: AOM-RGB, DoG1.2; bladder wall:
AOM-RGB, DoG1.2; coloscopy: AOM, D(1,0,-1)/L(1,8,1), λ2/λ1 = 0.3,
λ3/λ1 = 0.07, λ4/λ1 = 0.04; angiography: AOM, DoG1.2, λ2/λ1 = 0.67,
λ3/λ1 = 0.09, λ4/λ1 = 0.07; plant roots: OOM, DoG1.2, λ2/λ1 = 0.3,
λ3/λ1 = 0.03, λ4/λ1 = 0.003; crocodile: AOM-RGB, DoG1.2.

within a sliding window Ω, subject to the AOM (DoG0.8,
with the integration over Ω realized as a convolution with a
Gaussian lowpass with σΩ = 1.6). The number of orientations
was detected by hierarchical testing, starting with M = 1
and increasing the multiplicity by one if the assumed model
did not fit. Model validation exploits the fact that an assumed
hypothesis of, say, M = 2 orientations is correct if and only
if the smallest eigenvalue λM+1 of the data tensor S(M) is
significantly smaller than all other eigenvalues. Let λ(M)

i with
i = 1, . . . ,M + 1 denote the M + 1 eigenvalues of S(M),
where the superscript (M) now indicates that each eigenvalue
depends on the size (M+1)×(M+1) of S(M), i.e., the second
eigenvalue λ

(2)
2 of the 3 × 3 tensor S(2) computed for two

orientations generally differs from the second eigenvalue λ(3)
2

of S(3) computed under the hypothesis of three orientations.
Hierarchical testing is based on the ratios

sM =
M+1

√
λ

(M)
1 · · ·λ(M)

M+1

M

√
1

M+1

∑M+1
i=1 λ

(M)
1 · · ·λ(M)

i−1 λ
(M)
i+1 · · ·λ

(M)
M+1

(45)

which are compared against predefined thresholds εM . Note
that both numerator and denominator of sM can be interpreted
as mean eigenvalues, with the numerator being the geomet-
ric mean of all eigenvalues. Moreover, both numerator and
denominator can be computed without eigensystem analysis
from quantities such as trace, determinant, and minors of
S(M). The upper bound for sM is one, which is reached when
all eigenvalues are equal. The lower bound is zero, which is
obtained when (at least) one eigenvalue vanishes. We therefore
require the thresholds εM to lie in the range [0, 1]. For each
region Ω, our procedure for decision making is as follows:

1) compute the average norm of the image gradient, and
mark region as homogeneous if it is lower than a
threshold ε0. Otherwise, set M = 1 and continue.

2) compute the tensor S(M) and the value of sM

3) if sM is lower than the threshold εM , mark the region
as M -oriented and compute its orientation vectors for
the M orientations model. Otherwise, increment M by
one and go to previous step (provided that M is smaller
or equal than some maximum value Mmax).

Applying this procedure with Mmax = 3 yields a segmentation
of the image into areas with one, two, or three orientations,
plus two classes for homogeneous neighborhoods and neigh-
borhoods with more than 3 orientations. The latter ones are
those with s3 ≥ ε3. Fig. 9 shows the region map obtained
for ε0 = 0.0009, ε1 = 0.5, ε2 = 0.7, and ε3 = 0.95.
Areas in dark gray represent single orientations, areas in
medium gray double orientations, and areas in light gray three
orientations. Apart from isolated decision errors, the estimated
region structure corresponds well to the original image. The
bottom part shows an enlarged portion of the orientation map,
with the orientations visualized in different gray levels by
lines, crosses or stars, depending on the number of local
orientations.

Figs. 10 and 11 show similar results for an image of
a house. Evidently, the image content is clearly reflected
in the region map with five different classes (homogeneous
regions, one, two, and three orientations, more than three
orientations). This demonstrates the relevance of (multiple)
local orientations as low level image or texture features. Also
shown is an enlargement of the region above the dormer
window where the two roof parts meet. It is clearly visible that
the estimated triple-orientation structure does not vary much
within the same roof area, but differs between both halves of
the image (the ‘stars’ indicating the three orientations roughly
appear mirrored), thus allowing further segmentation within
the regions having the same number of local orientations.

V. SUMMARY AND CONCLUSIONS

We have presented a theory for modelling multivariate
signals – such as textures – composed from multiple dom-
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Fig. 9. Hierarchical orientation estimation for an X-ray image of tire (301×
301 pixel). First row: original (left), detected number of orientations coded
as gray levels (right). Bottom: enlarged part of the estimated orientation map.

Fig. 10. Image of a house (left) and its color-coded region map (right).

Fig. 11. Close-up of the region in the house image where two differently
tilted roof parts meet (top), and the estimated orientations (bottom). Evidently,
the rooftile texture is captured well by three local orientations. The orientation
structure is homogeneous within each part of the roof, but differs between the
two parts by a rotation.

inant orientations, extending the well-known structure tensor
framework to a unified mathematical model for M orientations
in N -variate and P -component signals s(x). Generalization
of the signal gradient to multiple directional derivatives led
to tensor-valued entities. Depending on the assumed signal
model, this generalization can be done under the occluding
orientations model (OOM) or under the additive orientations
model (AOM), and for both scalar-valued and vector-valued
signals. In section II-B, we also discussed an even more
general model allowing for mixed or intermediate forms
between AOM and OOM; dealing with these in full depth
could be a topic for future research. After the discussion
of the different ways to generate data tensors, we derived a
suitable mathematical representation for a set of M orienta-
tions, namely the space of minimal fully symmetric tensors
RN×···×N

~ . From this tensor representation, vector descriptions
for the sought M orientations were formed by appropriate
vectorization, taking into account symmetry properties. An
analogous vectorization procedure exists for the OOM and
AOM data tensors, leading to generalized gradients. Alter-
natively, these generalized gradients could be formed as the
Veronese map of order M of the standard gradient for the
OOM respectively the standard gradient operator for the
AOM. The tensor representation provided a convenient way
of describing the space of admissible solutions. In particular,
we have shown that the MOP vector – which we derived for
general M , N and P – can be a highly overparameterized rep-
resentation of orientations. Based on this better mathematical
understanding of multiple orientation estimation, we presented
algorithms for the estimation of additively and occludingly
superimposed multiple orientations, and for a combination of
these. All algorithms are also applicable to vector-valued data,
for instance color images.

In the experimental part, we applied the framework for
multiple orientation estimation to both synthetic and real data.
Apart from estimating the orientations themselves, it turned
out that determining the number of orientations occurring
in a local neighborhood may provide a valuable feature for
tasks such as segmentation, classification or inspection. Note
that the region maps shown in Figs. 9 and 10 were obtained
purely data-driven, i.e., without prior assumptions on the
region shapes as expressed, for instance, by Gibbs-Markov
random fields (GMRFs) [49], [50]. Combining our framework
with GMRFs within a Bayesian approach would likely reduce
isolated segmentation errors. In addition, a statistical model
for the effects of noise on the lowest eigenvalue λM+1 of the
data tensor could be integrated into the Bayesian approach
(cf. [51]), thus allowing to tie the thresholds εi to error
probabilities.

Software (Matlab) to reproduce most of these results
(cf. [52]) is available for download at www.lfb.
rwth-aachen.de/de/highlights/tensor.html.
The program allows to vary the number M of superposed
signals in synthetic data, the basic signals themselves,
their orientations, their respective weight functions in the
combination process, the filters used for computing the
discrete derivatives, the filter used for spatial integration of
the structure tensors, the level and type of added noise, and
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Fig. 12. The GUI of our multiple orientation synthesis & analysis software.

others. Its user interface is shown in Fig. 12.
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