Couverture : Sylvie Cabrit et Marc Sauvage

CERN LIBRARIES, GENEVA

M AR

CM-P00048458

DAPNIA-03-50 March 2003

Gray and color image contrast enhancement
by the curvelet transform

J.L. Starck, F. Murtagh, E.J. Candes, D.L. Donoho

Submitted to IEEE Transactions on Image Processing

Département d’'Astrophysique, de Physique des Particules, de Physique Nlucléaire et de I'Instrumentation Associée

DSM/DAPNIA, CEA/Saclay F - 91191 Gif-sur-Yvette Cédex
Tel : (1) 69 08 24 02 Fax : (1) 69 08 99 89
http : //www-dapnia.cea.fr



PR TRANBAUTIIONE ON IMAGE PROU PR, ASHIEPTED

Gray and Color Image Contrast Enhancement by the Curvelet
Transform

Sl Starck®, P, Murtagh , £.J. Candés |, D.L. Donoho

Abstroct— W present in this paper n new method for con-
trast subancement based on the curvelet transform. The survelet
transform represents edges better than wavelets, and is therefore
well-anited for multiseale edge enbancement. We compure this
appronch with enhancement bassd on the wavelet transform, aud
the Multisenle Retinex. In o range of sxamples, wa use edge de-
toction and segmentation, among other processing applications,
to provide for quantitative comparative evaluation. Our find-
ings are that curvelet based enhancement out-porforms other
sulancement methods on noisy lmages, but on nolseless or near
nodseless bmages curvelet based enhancement is not vemarkably
better than wavelet bused snhapcement,

Keywords— Wavelets, Ridgelets, Curvelets, Contrast Enlance-
pritis et

1. INTRODUCTION

Because some features arve hardly detectable by eye in an
image, we often transform images before display.  Histogram
equalization is one the most well-known methods for contrast
enhancement. Such an approach is generally useful for images
with poor intensity distribution. Shce edges play a fundamen-
tal role in image understanding, one good way to enhance the
contrast is to enhance the edges. For example, we can add to
the original bnage its Laplacian &1 (f "= [+ A, where [
is the enhanced image and v is a parameter). Only features ab
the finest scale are enhanced {Jinearly). For a high v value, only
the high Bequencies are visible. Multiscale edge enhancement
[15] can be seen as a generalization of this approach, taking all
resolution levels into account.

In color images, objects can exhibit variations in color satu
ration with Litle or no correspondence in luminance variation,
Several methods have been proposed in the past for color bn-
age enhancement [14]. The retinex concept was introduced by
Land [7] as a model for human color constancy. The single
scale retinex (SSR) method [6] consists of applying the follow-
ing transform to each band 2 of the color linage:

R;(.z':, y) = log(Fde, )} = log{Flo )y » Lile, y)) {H

where Ri{x,y) is the retinex output, L{x, y) s the image disted-
bution in the ith spectral band, F is a Gaussian function, and
i convolubion, A gain/offset is applied to the refinex ontput
which clips the highest and lowest signal excursions. This can
be done by k-sigma clipping. The retinex method is efficient for
dynamic range compression, but does not provide good fonal
rendition [10]. The Multiscale Retinex (MSR) cormbines several
S8R outputs fo produce a single ontput image which has both
good dymamic range compression and color constancy {color
constancy may be defined as the independence of the perceived
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color from the color of the light source 8], 191}, and good tonal
rendition [5]. The MBR can be defined by:

Y
Rugsp, = Zw}' R 53
pud
with
Ri sz, y) = log(Lile, y)) — log(Fi(z,y) + Iz, 4)) (3)

N is the number of scales, /7 ; is the ith spectral component of
phe MSR outpui, and w, is the weight associated with the scale
3. The Ganssian F; is given by

2

Fy(z,y) = K exp wgg (4)
7

where ¢, defines the width of the Gaussian. ln (5], three
scales were recommended with ¢ values equal respectively fo
15,80,250, and all weights w; fixed to +. These parameters
may however be image dependent, and automatic parameter
estimation by a genetic algorithm was proposed in [9].

The Multiscale Retinex introduces the concept of multiresolu-
tion for contrast enhancement. 1t performs dynamic range com-
pression and can be used for different Image processing goals,
Improvements of the algorithm have been presented in (1], lead-
ing to better color Hdelity.

MER softens the strongest edges and keeps the faint edges als
most untouched. The opposite approach was proposed by Velde
[15] in using the wavelet transform for enhancing the faintest
edges and keeping untouched the strongest. The strategies are
different, but both methods allow the user to see details which
were hardly distinguishable in the original mage, by reducing
the ratio of strong features to faint fentures.

The wavelet approach [15] consists of first transforming the
image using the dyadic wavelet transform {two divections per
scale). The gradient G, at scale j and ab pixel location &

i . . in
is caloulated at each scale § from the wavelet coefficients w) 2

anil wﬁéf relative to the horizontal and vertical wavelet bands:
{wiiﬁ JE iwigz V2. Then the two wavelet coefhicients
at scale 7 and at pixel position k (e k == {2y, 22)) are wulii
plied by y(G, ), where y is defined by:

g o=

wz) = (w)” iz l<e
#
ylw} = E{’%’ He<lalam
yz) = Lif |2 [2m (5)

Three parameters are needed: p, m and ¢ p determines the
degree of non-linearity in the nonlinear rescaling of the hami-
pance, and must be in [0,1) Coefficients larger than m are
not modified by the algorithm. The ¢ parameter corresponds
to the noise level, Figure 1 shows the modified wavelet coel-
ficients versus the original wavelet coefficients for a given set
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Fig. 1. EBnhanced noeficients versus originel coefficients, Parnmeters are
mad0 s and peis,

of parameters {m = 30, ¢ = 3 and p = 0.5}, Finally, the en-
hanced image is obtained by the inverse wavelet transform from
the modified wavelet coefficients. For color images, a similar
method can be used, but by caleulating the overall multiscale
gradient 1, ¢ from the multiscale gradient of the three L, u, v
components: I';(i) = /| G7 P + [ G712+ 1G] [F. All
wavelet coefficients at scale j and at position k are multiplied
by (1), the enhanced L, 4, & components are reconstructed
from the modified wavelet coefficients, and the {L.49.%) image is
transfornied into an RGB image. More details can be found in
[15].

Wavelet bases present some limitations, because they are not
well adapted to the detection of highly anisotropic eloments,
such as alignments in an bmage, or sheets in a cube. Recently,
other multiscale systems have been developed, which include in
particular ridgelets [2] and curvelets [3], [12], and these are very
different from wavelet-like systems. Curvelets and ridgelets take
the form of basis elements which exhibit very high directional
sensitivity and are highly amisotropic. The curvelet transform
wses the ridgelet transform in its digital implementation. We
first deseribe the ridgelet and the curvelet transforms, and then
we show how contrast enbancement can be obtained from the
curvelet coefficients. Following that, we present a munber of
evaluations of the use of wavelet- and curveleb-based enhance-
ment.

. CoNTRAST ENHANCEMENT UsiNG THE CURVELET
TRANSFORM
A, The Hidgelet Transform

The two-dimensional continuous ridgelet transform in R? can
be defined as follows [2]. We pick a smooth unpivariate function
§ 0 Rowr Rowith sufficient decay and satisfying the admissibility
condition

iR e .
/%’V(f}% JIE17dE < o, {6)
where & denotes the Fourier transform of z. Equation 6 holds
if, say, ¥ has a vanishing mean [ y{(f)dt = 0. We will suppose
a special normalization about ¥ so that ff izﬁ?{é)?f R

For each a > 0, each b € R and each ¢ € [0,2r), we define
the bivariate ridgelet ¥, 50 : R* —» R by

Yo palng, e} e a~i? Pliay cosd 4 agsinf — b}jay {7}

A ridgelet is constant along lines xycosd + xpsind = const,
Transverse to these ridges it is a wavelet,

Figure 1A graphs a few ridgelets with different parameter
values. The top right, bottom left and right panels are obtained
after simple geometric manipulations of the upper left ridgelet,
namely rotation, rescaling, and shifting.

Given an imtegrable bivariate funciion f{z}), we define itz
ridgelet coefficients by

Ry(arh,8) = f s o) ()i,

where ¥ denotes the conjugate of x. We have the exact recon
struction formula

e 5 s da d#
f(l;‘} e j j / OQ'!(&@ 3), g)’ég{xhb,@{xj ”’”’g’"{ibw {X}
i w3 oF 1 @ A

valid a.e. for functions which are both integrable and square
integrable,

Ridgelet analysis may be construed as wavelet analysis in the
Radon domain. Recall that the Radon transform of an object f
is the collection of line integrals indexed by (8,4) € [0,27) x R
given by

Rf{#, 1) = V/’j‘{x;,m}f?{x; cos b g sinf o~ thdadey,  {9)

where § s the Dirac function, Then the ridgelet teansform s
precisely the application of a L-dimensional wavelet transform
to the shices of the Radon transform where the angular variable
# is constant and 1 s varying.

This viewpoint strongly suggests developing approximate
Radon transforms for digital data. This subject has received
considerable attention over the past decades since the Radon
transform naturally appears as a fundamental tool in many
fields of scientific investigation, Our implementation follows a
widely used approach in the literature of medical imaging and
is based on fast Fourier transforms. The key component is to
abtain approximate digital samples from the Fourier transform
an a polar grid, f.e. along lines going through the origin in the
frequency plane. Figure 3 (left) represents the flowgraph of the
ridgelet transform.  We will not detail this approach further
here, and instead refer the reader to [12].

The ridgelet transform of a digital array of size n % n is an
array of size 2n x 2n and hence introduces a redundancy factor
equal to 4.

Local Ridgelet Transforms

Speaking in engincering terms, one might say that the ridgelet
transform is well-adapted for picking linear structures of about
the size of the image. However, interesting linear structures,
e.g. line segments, may occur at a wide range of scales. Follow-
fng a well-established tradition in thne-frequency analysis, the
opportunity arises of developing a pyramid of ridgelet frans
forms, We may indeed apply classical ideas such as recursive
dyadic partitioning, and thereby construct dictionaries of win-
dowed ridgelets, renormalized and transported to a wide range
of scales and locations.

To make things more explicit we consider the situation al a
fixed scale, The image is decomposed into smoothly overlapping
hlocks of side length b pixels in such a way that the overlap
between two versically adjacent blocks s a rectangnlar array of
size b by b/2: we use overlap to avoid blocking artifacts. For an
n by nimage, we count 2n/b such blocks in each direction. The
partitioning introduces redundancy, since a pixel belongs to 4
neighboring blocks. More details on a possible hmplementation
of the digital ridgelet trapsform can be found in {12]. Taking
the ridgelet transform of these smoothly localized data is whal
we call the local ridgelet Leansform,



PHBE TRANSACTIING ON IMAGE PROCERSING, ACOBPTED

Fig. 2. A fow

B. The Curvelet Transform

The idea of curvelets [3] is to represent a curve as a super-
position of functions of various lengths and widths obeying the
sealing law width s length®. This can be done by first decom-
posing the image into subbands, e, separating the object into
a series of disjoint scales. Fach scale is then analyzed by means
of a local ridgelet transform.

Curvelets are based on multiscale ridgelets combined with a
spatial bandpass filtering operation to isolate different scales.
This spatial bandpass flter nearly kills all multiscale ridgelets
which are not in the frequency range of the flter. lIn other
words, a curvelet is a multiscale ridgelet which lives in a pre-
scribed frequency band. The bandpass is set so thab the curvelet
length and width at fine scales are related by a scaling law
width 22 length” and so the anisotropy increases with decreas.
ing seale like a power law. There is a very special relation-
ship between the depth of the multiscale pyramid and the index
of the dyadic subbands; the side length of the localizing win-
dows is doubled af every other dyadic subband, hence maintain.
i the Mndamental property of the curvelet trassform which
says that elements of length about 277/% serve for the analy-
sis and synthesis of the j-th subband [27,2%']. While multi-
seale ridgelets have arbitrary dyadic length and arbitrary dyadic
widths, curvelets have a scaling obeying width = length®,
Loosely speaking, the curvelet dictionary is a subset of the mul-
tiscale ridgelet dictionary, but which allows reconstruction,

Ire our opinion the A trous” subband fltering algorithm s es-
pecially well-adapted to the needs of the digital curvelet trans
form, The algorithm decomposes an n by 0 image [ a5 a super-

ridgelats.

position of the form

J
e, gy == cslmy) + Z wile, y),

g

where oy 18 a coarse or smooth version of the original image [
and w; represents “the details of /7 at scale 277, See [13] for
more information. Thus, the algorithm ontputs J 4 1 subband
arrays of size n x n. {The indexing is such that, here, j = 1
corresponds to the finest scale, 1o, high frequencies. )

As a side comment, we nobe that the coarse description of the
image ¢ is not processed. We used the defanlt value byin = 16
pixels it our implementation. Figure 3 (right) gives an overview
of the organization of the algorithm,

This implementation of the curvelet transform is redundant.
The redundancy factor is equal to 167+ 1 whenever J scales are
emploved, Finally, the method enjoys exact reconstruckion and
stability, because each step of the transform is both invertible
and stable

11 Conrpast ENHANCEMENT USING THE CURVELET
TRANSFORM

Since the curvelet transform is well-adapted to represent im-
ages containing edges, it is a good candidate for edge enhance-
ment. Curvelet coefficients can be modified in order Lo enhance
edges in an image. A function y. must be defined which modi-
fies the values of the curvelet coefficients. T could be a function
similar to the one defined for the wavelet coefficients [15] (see
equation 5). This function however gives rise to the drawhback
amplifving the noise (linearly) as well as the signal of interest.
We introduce explicitly the noise standard deviation o in the
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applied to sach bock.

b ey \ my 7 .
eouation: wolw, o) = (w) o> m {10}
¥
yolw,oy = 1Tile <o p determines the degree of nop-linearity and s mtroduces dy-
. g fn NP Do e g namic range compression, Using a non-zero s will enhance bhe
s f - s " % . ) .
yelz,0) Py my> if v < 20 faintest edges and soften the strongest edges at the same time.

¢ becomes a normalization parameter, and a ¢ value larger than

P
S . o s PE ey 2 & P . . . s e
yelz o) = <3> i 2co S w<m 3 guaranties that the noise will not be amplified. The m pa-
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rameter is the value under which coefficients are amplified. This
value depends obviously on the pixel values inside the curvelet
scale. Therefore, we found it necessary to derive the m value
from the data, T'wo options are possible:

« m can be derived from the noise standard deviation {m =
Kme) using an additional parameter Km. The advantage is
that K. is now independent of the curvelet coefficient values,
and therefore much easter for a user to set. For nstance, using
c o 3and Ko = 10 amplifies all coefficients with a SNR between
3 and 10,

s m can also be derived from the maximum curvelet coefficient
M of the relative band (m = IM,, with 1 < 1), In this case,
choosing for instance ¢ = 3 and | = 0.5, we amplify all coeffi-
cients with an absolute value between 3o and half the maximum
absolute value of the band.

The first choice allows the user to define the coefficients to be
amplified as a function of their signal to noise ratio, while the
second one gives an easy and general way to fix the m param-
eter independently of the range of the pixel values. Pigure 4
shows the curve representing the enbhanced coefficients versus
the original coeflicients for two sets of parameters.

The curvelet enhancement method for grayscale images con-
sists of the following steps:

1. Estimate the noise standard deviation o in the input hnage
I

2. Caleulate the curvelet transform of the input image. We get
a set of bands w;, each band w; contains N, coefficients and
corresponds to a given resolution level.

3, Calculate the noise standard deviation o, for each band j of
the curvelet transform (see [12] for more details on this step).
4. For each band 3 do

s Calculate the maximum M, of the band,

» Multiply each curvelet coefficient wyx by ye{lwie Loy )

5, Reconstruct the enhanced fmage from the modified curvelet
coefficients,

For color images, we apply fist the curvelet transform to
the three components L,u,v.  For each corvelet coefhiciens,
we caloulate ¢ o= Wg where {cg, cu, o) are re-
spectively the curvelet coefficients of the thres components,
ard the modified coefficients are obtained by {f0, 0., 86 =
(yele, oien, pele, oo, yole, o)

Values in the enhanced compounents can be larger than the
authorized upper lmit (n general 2533, and we found it neces-
sary 1o add a final step to our method, which is a gain/olfset
selection applied uniformly to the three color sub-images, as
described in [6].

Eramples

Figure 5 shows the results of, respectively, histogram erpuals
ization, wavelet and curvelet exhancement, using the standard
Lena test image. No noise was added to the image used, imply-
ing small levels only of quantization noise present. The better
vesult seen here for the curvelet enhancement (Figure 5 bot-
tom right) is in part due to the Velde method [15] used in the
wavelet-based method over-enhancing small nolse levels,

Figure 6 shows the results for the enbancement of a grayscale
satellite image (parameters were ¢ = 3, [ = p = 0.5 and s = 0).
Figure 7 shows the results for the enhancement of a color image
(Kodak image of the day 14/05/01) by the retinex {(same pa-
rameters), the multiscale retinex and the curvelet multiscale
edge enhancement methods.  Figure 8 shows the results for
the enhancement of a color image (Kodak image of the day
11/12/01). These examples present some evidence for the bere
efits of curvelet enhancement, Small, aligned features arve pre-
served well. Note however that better color fidelity can be ob-
tained for the MSR image by using the color restoration algo-
rithm deseribed in {1}

In summary, the results of these three fignres indicate thab
the curvelet based enhancement approach works well. In the
next section, we will evaluate it relative to other enhancement
approaches, and in particular wavelet based enhancement.

IV, EVALUATION
A, Evsluation Methodology

Image enhancement quality is difficult to assess. Considerable
literature exists relative to image quality estimation [11], [4].
Heowever this is most often in the context of image compression
where the problem is to estimate the distorsion or the loss of
information, with criterin other than PSNR {peak signal to noise
ratio), because PSNR does not reflect evrors in the way that
the human vision system does. For hmage enbancement, the
goal is to introduce distorsion, in such a way that some low
level or low contrast feabures can easily be seen by a human
aperator. A subjective assessment approach iz simply to present
images enhanced by different methods, as we did in the previous
section, and o let a domain expert ndge the best result.

In order to have an object quality criterion, we will make
the following assumption: between two edge enbancement tech-
niques, the better one will be that which produces the best
results for standard vision processing tasks, such as segmenta
tion or edge detection. We do not claim that image enhance-
ment should be applied before carrying oub a segmentation or
an edge detection {other pre-processing steps such as fltering
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Pig. 5. Top, part of Lenn image and s histogram equalization. Bottom, enhanced image by the wavelet transform and the curvelet bransform.

are certainly more appropriste), but we consider that i an im-
age enhancement method improves the buman performance for
analyzing a scene, it should do the same for a machine-based
vision approach. We describe two experiments in the following,
providing some measure of objectivity for comparison of results,
using edge detection and segmentation, PFinally, we return to
the issue of the limits of curvelet versus wavelet ephancement,

B. Eidge Detection

Figure 9 consists of an artificial image containing a mumber of
bars. The intensity is constant along each individual bar; from
left to right, the intensities of the six vertical bars {these are
in fact thin rectangles which are 20 pixels wide and 130 pixels
long, having a 30 degree angle with the x-axis) arve respectively
squal to 1,2,3,4,5,8. The noise standard deviation is 1.

We ran the wavelet and the curvelet methods on this sim-
ulated image. The curvelet method was applied twice, once
with Velde's enhancement function and once with the proposed
ephancement function. Then we applied a Canny edge detec-
tor on the three enhanced images, We estimated the noise in
the three edge images from pixels outside the bars, and consid-

ered as edges all pixels with a value larger than five times the
noise standard deviation. Knowing the right edges {they were
extracted by applying the Canny edge detector to the original
noise free image, see Figure O right), we derived the percentage
of vecovered edge pixels: this is 34.77% for the wavelet-based
image, 64.66% for the curvelet enhanced image using Velde's
function enhancement, and 73.91% for the curvelet snhanced
image using the new function enhancement. As each bar has
a different intensity lovel, we can also derive the percentage of
recovered edge pixels as a function of the edge signal to noise
ratio (SNR). Figure 10 shows such a curve, This gives the per-
centage of detected edge pixels versus the edge BNR using a
Clanny edge detector on (i) the wavelet enbanced image {dashed
Line), {it) the curvelet enhanced image nsing Velde's function en-
hancement, and (it} the curvelet enhanced Image using the new
function enhancement {continugus line}.
These results are clearly in favor of the curvelet transform.

. Segmentalion

Contrast enhancement can facilitate user interpretation of ap
image, or it can help in antomated interpretation. Here, we will
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use segrmentation as an important processing goal. We will use
a grayscale 512 % 512 Lena test image on account of s smooth
and edge regions,

The aliernative contrast enbancement approaches used are
{1} histogram equalization, using the algorithm in the DL o
age processing package, (11} wavelet coeflicient ephancement, as
deseribed in section [ above, and (1) curvelet bransform based
enhancement, as desoribed in section 1L above.

Top, grayscale image, and bottons, curvelet enbanoed image

Figure 11 shows the marginal densities of these images. His-
fogram equalization essentially destroys information relative to
pixel classification through marginal density Htting. With his-
togram equalization, image quantization remains leasible, of
course, but it is clear From Figure 12 that possibly useful ine
formation is lost. Wavelet enbancement {bottom left panel in
Fignre 127 also smooths out information. Only the curvelet en-
hancement {bottom right panel in Figure 12) retains marginal
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.

Fig, 7. Top, color imnge {Kodak picture of the day 14708702 and retinex method. Bottom, multisenle yetines method and curvelet adge enhancement.

density fidelity to the original image marginal density {upper
teft panel).

To investigate the quality of segmentations carried oul on
these images, we used a S-component Gaussian fit, based on a
Markov random field model with peighborhood 3 23, and with
a Potts/Ising spatial model. The spatial influence parameter,
&, did not differ greatly among these results. We found, for the
original and histogram-equalized bmages, and the wavelet- and

cupvelet-enhanced images, respective values of: 0.72, 0.72, 0.63
and .73, We also determined, as measures of model i, pseudo-
Likelihood information criterion values, with limited explanatory
capability in this instance.

The segmentation resulis are shown in Figures 12415, In the
histogram equalized result {(Figure 13) edge information is de-
stroyed: of. details of the big cap feather. The wavelet-enhanced
vesult {Figure 14) does very well in edge regions: of. details
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v, onge containing o number of bars, and right, bar edge image

of the cap feather, and hair. However some injustice is done  to the smooth regions. The curvelet enhancement (Flgure 15)
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Fig. 10, Percentage of detected sdge pixels versus the edge SNE using o Canny edge detector on the wavelet snhancosd image {deshed lne), the
curvelet enhanced Hnage using Velde's function enhancement {dotted Hoe), anid the ourvelet enbanced image using the new function enhanoemunt
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performs well in edge regions {feather, background ) while stiul-
taneously respecting smooth areas. Overall, from the points of
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image.

view of marginal density, and also spatial segmentation, we find
the curvelet transform enhancement method to provide a bet-
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ter result which is simnltaneously “close” to the original input
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Fig. 12, A Besegraent result, using a Markov Potis model, of the origiosl
Lrpnge

Fig, 13, A Sesegment result, using o Murkov Potts model, of the his
togram eounhized bnage.

V. CONCLUSION

A pumber of properties, respected by the curvelet filtering
described bere, are mportant for conbrast stretching:
L. Noise must not be amplified in enbancing edges.
2. Colors should pot be unduly modified.  In the mulliscale
refinex, for example, a tendency towards increased graynes:
seen. Fhis is not the case using curvelets, However color restoras

tion could also be carvied out in a final step, as proposed for

the multiscale retinex [1], This should lmprove the final image
gualiby.

300 s very advantageous i block effects do not oceur. Block
overlapping is usually not necessary in curvelet-based contrast
enbancement, unlike fo the case of noise Gltering.

Fig. 14, A Besegrment result, using a Markov Povts model, of the wavelet.
enhnneed image.

Fig. 15, A Sesegroent result, using a Markov Potts model, of the curvelet-
enbanoed nnge

A range of further examples can be seen at
http:/ /www-stabstanford. edu/~jstarck fcontrast. hbml,
Or conclusions are as follows:

1. The curvelet and wavelet enhancement functions take ac
count very well of limage nolse,

2. As evidenced by the experiments with the curvelet trans-
form, thers 1s betler detection of noisy contours than with other
methods,

3. For noise-free images, there is not a great deal to be gained
by curvelel enbancement over wavelet enhancement since the
enhancement function tends towards Velde's approach in such
weak noise cases, Contours and edges are detected quite ade-
guately by wavelets in such situations,
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