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Abstract
While the introduction of temporal extensions into data-

base standards has proven difficult to achieve, the newly in-
troduced SQL:2003 and XML/XQuery standards have actu-
ally enhanced our ability to support temporal applications
in commercial database systems. We illustrate this point
by discussing three approaches that use temporally grouped
representations. We first compare the approaches at the log-
ical level using a common set of queries; then we turn to
the physical level and discuss our ArchIS system that sup-
ports the three different approaches efficiently in one unified
physical implementation. We conclude that the approaches
of managing transaction-time information using XML and
SQL can be integrated and supported efficiently within the
current standards, and claim that the proposed approach
can be extended to valid-time and bitemporal databases.

1. Introduction

In this paper, we seek to support historical information
management and temporal queries without extending cur-
rent standards. Our insistence on using only current stan-
dards is inspired by the lessons learned from the very his-
tory of temporal databases, where past proposals failed to
gain much acceptance in the commercial arena, in spite of
great depth, breadth [1, 2] and technical elegance [3, 4]. An
in-depth review of the technical (and often non-technical)
reasons that doomed temporal extensions proposed in the
past would provide an opportunity for a very interesting and
possibly emotional discussion; but such a discussion is out-
side the scope of this paper. Here, we simply accept the
fact that temporal extensions to existing standards are very
difficult to sell, in spite of the growing pull by temporal
applications; then, we move on from there by exploring so-
lutions that do not require extending current standards. This
low-road approach is hardly as glamorous as the “new tem-
poral standards” approach pursued in the past, but it is not
without interesting research challenges and opportunities,
as we will show in this paper. In particular, new oppor-
tunities are offered by two recent developments that have
taken information systems well beyond SQL:1992 which, in
the past, supplied the frame of reference for temporal data-
base research. The first development is the introduction of

XML/XQuery standards, that have gained wide acceptance
by all DBMS vendors, and the second is the introduction of
SQL:2003 [5, 6, 7], which contains new advanced features
such as nested relations and OLAP functions.

The benefits of XML in temporal information manage-
ment include: i) XML can be used to represent data in a
temporally grouped data model, ii) XQuery provides an ex-
tensible and Turing-complete language [8], where new tem-
poral functions can be defined in the language itself.

These features make it possible to use XML to repre-
sent the history of relational databases by timestamping the
grouped attribute histories of each table, and XQuery to ex-
press complex temporal queries [9, 10, 11, 12]. This ap-
proach requires no extension to current standards, and it
is very general, insofar as it can be used to represent and
query the transaction-time, valid-time and bitemporal his-
tory of databases[11], and arbitrary XML documents [13].
Therefore, contrasting this experience with the past one fo-
cusing on SQL, we might simply conclude that XML and
its query languages are more supportive to historical infor-
mation management and temporal queries than SQL.

However, there are many reasons for which we are not
prepared to give up on SQL. Indeed, relations represent
a simple and intuitive data model which comes with (i)
a built-in graphical representation in form of tables, (ii)
WYSIWYG query languages such as QBE, and (iii) unique
areas of commercial strength, such as OLAP applications
and data warehousing. By contrast, (i) there is no built-in
graphical rendering for an XML document, and this must be
provided by the user via stylesheets, (ii) WYSIWYG XML
query languages require further research and development,
and (iii) XQuery is more complex than SQL, and its com-
mercial application areas are still emerging.

There is also the critical issue of performance. In particu-
lar, in supporting transaction-time history of relationaldata-
bases in XML [10, 12], we compared the two approaches of
(i) implementing temporal queries directly in a native XML
system, and (ii) recasting these views into historical tables,
whereby the original XQuery statements are then mapped
into equivalent SQL (or SQL/XML [14]) queries. Our ex-
periments show that the second approach tends to be signif-
icantly more efficient [10, 12].



Therefore, both logical and physical considerations point
to the conclusion that SQL is to remain the database lan-
guage of choice, for a long time to come— particularly in
data warehousing and business-intelligence applications—
and every effort should be made to assure efficient man-
agement for historical information and temporal queries in
SQL:2003. Toward this goal, we will take full advantage of
the lessons learned in supporting temporal queries in XML
and seek an efficient support for temporal queries indepen-
dent of whether they are expressed in SQL or XQuery.

The paper is organized as follows. After the discussion
of related work, in Section 3, we study the problem of repre-
senting relational database history in XML, along the lines
proposed in [9, 12]. In the core of the paper, we seek to
apply the lessons learned on XML to SQL:2003. Thus, in
Section 4, we try to use the nested relations constructs pro-
vided by SQL:2003 to represent temporally grouped repre-
sentations of database table histories. We use the same ba-
sic temporal queries to compare this approach to the XML-
based approach and the SQL:2003-based approach of Sec-
tion 5, where we support a temporally grouped represen-
tation using an OLAP-inspired view based on null values
and flat tables. The representation used in Section 5 dove-
tails with data warehousing and business intelligence appli-
cations, and it is also capable of reconciling the event-based
and state-based views of temporal databases. Finally, we
consider efficient implementation issues and, in Section 6,
we describe the architecture of our ArchIS system that uni-
fies the support for both SQL-based and XML-based tem-
poral views and queries at the physical level.

2. Related Work

Time in XML. Interesting research work has recently fo-
cused on the problem of representing historical information
in XML. Approaches to support temporal XML documents
by extending XML or its query languages have been pro-
posed in [15, 16, 17, 18, 19].

For instance in [15], valid time on the Web is supported
by introducing a new<valid > tag. TheτXQuery lan-
guage proposed in [19], extends XQuery with new con-
structs for temporal support.

An archiving technique for scientific data was presented
in [20], but XML query language support is not provided.

Temporal Databases and Grouped Representations.
There is a large number of temporal data models and query
languages, including those discussed in [3, 21]; thus the de-
sign space for the relational data model has been exhaus-
tively explored [1]. A useful taxonomy was introduced by
Clifford et al. [22] who classified them into two main cate-
gories:temporally ungroupedandtemporally groupeddata
models. Clifford had also suggested that the latter represen-
tation has more expressive power and is more natural since

empnosalary title deptno start end
1001 60000 Engineer d01 1995-01-011995-05-31
1001 70000 Engineer d01 1995-06-011995-09-30
1001 70000Sr Engineer d02 1995-10-011996-01-31
1001 70000Tech Leader d02 1996-02-011996-12-31

Table 1. The table employeehistory
it is history-oriented [22, 23].

The basic representation used in ungrouped data mod-
els is tuple timestamping. As shown in Table 1, a new
timestamped tuple is generated whenever there is a change
in any of the attribute values. The well-know problem with
this approach is that coalescing is needed when some of the
attributes are projected out [24]. Much research has focused
on this problem, and the solutions proposed include the
TSQL2 [3] approach, and the point-based temporal model
[25].

Versioning of DBMS was discussed in [26], and tech-
niques for accurate time-stamping of transactions were
discussed in [27] and Immortal DB [28]. Recently Oracle
implemented Flashback [29], which supports the rollback
to old versions of tables in case of errors. However, these
systems do not provide much support for temporal queries.

SQL:2003. SQL:2003 [5], the latest release of SQL stan-
dards, is similar to SQL:1999, but provides significant ex-
tensions from SQL:1992. In particular, SQ:2003 O-R fea-
tures include multiset, nested collection types (supported by
both Oracle [7] and Informix [30]), and user-defined types.
Another major feature is SQL/XML [14], which defines
how SQL can be used together with XML in a database, and
is supported by major database vendors. Publishing func-
tions provided by SQL/XML can directly construct query
results as XML documents or fragments.

3. Viewing Database History in XML
The use of XML to publish the history of database rela-

tions has been discussed in [10, 11, 31, 12], using a tempo-
rally grouped representation such as that of Figure 1 (which
we call H-document) for the employee table as shown in
Table 1. Powerful temporal queries on such representations
can be expressed using XQuery. (In the remainder of this
paper, our granularity for time is a day; however, all the
techniques we present are equally valid for any granularity
used by the application. For finer granularity, techniques in
[27, 28] can be used. Furthermore, throughout this paper,
we assume that relation keys remain invariant.)

3.1. Temporal Queries with XQuery
A full spectrum of queries was presented in [10] to illus-

trate the effectiveness of the approach—including temporal
projection, temporal snapshot, temporal slicing, temporal
join, and temporal aggregate. Because of space limitations,
we restrict ourselves to the following three examples that
will be used throughout the paper.



<employees tstart="1995-01-01" tend="1996-12-31">
<employee tstart="1995-01-01" tend="1996-12-31">
<empno tstart="1995-01-01" tend="1996-12-31">1001</empno>
<salary tstart="1995-01-01" tend="1995-05-31">60000</salary>
<salary tstart="1995-06-01" tend="1996-12-31">70000</salary>
<title tstart="1995-01-01" tend="1995-09-30">Engineer</title>
<title tstart="1995-10-01" tend="1996-01-31">Sr Engineer</title>
<title tstart="1996-02-01" tend="1996-12-31">Tech Leader</title>
<deptno tstart="1995-01-01" tend="1995-09-30">d01</deptno>
<deptno tstart="1995-10-01" tend="1996-12-31">d02</deptno>

</employee>
</employees>

Figure 1. H-document: XML-based Representa-
tion of Employees’ History

QUERY Q1. Temporal Projection. Retrieve the title history
of employee “1001”:
element title_history{

for $t in doc("employees.xml")/employees/
employee[empno="1001"]/title

return $t }

Observe that no coalescing is needed after this projec-
tion, since the history of titles is temporally grouped.

QUERY Q2. Temporal Snapshot. Retrieve titles and
salaries of all employees on 1994-05-06:
for $e in doc("employees.xml")/employees/

employee
let $t:=$e/title[ tstart(.) <=

date("1994-05-06") and
tend(.) >= date("1994-05-06") ]

let $s:=$e/salary[ tstart(.) <=
date("1994-05-06") and
tend(.) >= date("1994-05-06") ]

return <employee>{$e/empno,$t,$s}</employee>

In this query, we need to check only the timestamps of
the leaf nodes, since the H-document has atemporal cov-
ering constraint, i.e., the interval of a parent node always
covers that of its child nodes.

Here,date() is a built-in function of XQuery (for sim-
plicity, we omit the namespacefn ). Instead,tstart()
and tend() are user-defined functions to shield the user
from the complexity of the underlying representation, since,
e.g., ‘now’ [32] requires special representation and special
handling (in ArchIS [10] we use the end-of-time to repre-
sent ‘now’). date() is a built-in function of XQuery ( for
simplicity, the namespacefn is omitted here).

QUERY Q3. Retrieve the salary history of employees in
dept. “d01”, while they were in that department.
for $e in doc("employees.xml")/employees/

employee[deptno="d01"]
for $s in $e/salary
for $d in $e/deptno[.="d01"]
let $ol:=overlapperiod($s, $d)
where not (empty($ol))
return
element salhistory{

element empno {$e/empno/text()},
element salary{$s/text()},
$ol

}

Here overlapperiod( $a, $b) is a user-defined
function that returns an elementPERIODwith overlapped
period as attributes(tstart, tend) ; if there is no over-
lap, then no element is returned which satisfies the XQuery
built-in functionempty() .

3.2. Discussion
The previous examples illustrate that XQuery is capable

of expressing complex temporal queries, but the expression
of these queries can be greatly simplified by a suitable li-
brary of temporal functions. The ArchIS system [10], dis-
cussed in Section 6, supports a rich set of functions, includ-
ing the simple scalar functions described above, and also
complex functions, including temporal aggregates and coa-
lesce functions.

A significant benefit offered by the XML/XQuery-based
approach to temporal information management is that it is
very general and can handle the history of arbitrary XML
documents that have evolved through successive versions
[13]. The approach can also be extended to valid-time data-
bases and bitemporal databases [11].

On the other hand, the ease of use of XQuery is ques-
tionable, and the problem of displaying the results of tem-
poral queries in user-friendly ways can be a real challenge,
since the tagged representations, such as that of Figure 1,
are not suitable for casual users. To produce visually ap-
pealing representations, the query designer might have to
code a stylesheet, using XSL [33]—possibly a different one
for each query. This problem is far from trivial, and the
visual rendering of temporal information poses interesting
research challenges.

Finally, the growing popularity of XML in web-oriented
applications does not change the fact that SQL remains the
cornerstone of database applications, and its importance in
areas such as business intelligence and data warehouses is
growing every day. For these reasons, efficient support for
temporal information and queries in SQL remains critical
[?]. Therefore, we explore two approaches: one based on
nested relations, which is discussed next, and another based
on OLAP tables, which is discussed in Section 5.

4. DB History and Nested Relations
Nested relations are part of the latest SQL:2003 stan-

dards, and also supported by some commercial database
vendors [7, 30]. Therefore a temporally grouped repre-
sentation, similar to that used with XML, can also be
achieved within SQL standard. For instance, for ourem-
ployee history example, we can use the following
schema containing the nested table (‘n-table’ for short, or
‘n-view’ if it is a nested view)n employee :



CREATE TYPE salary_typ AS OBJECT(
salary NUMBER(7),
timep PERIOD

);
...
CREATE TYPE salary_tbl AS TABLE OF

salary_typ;
...

CREATE TABLE
n_employee(

empno VARCHAR2(8),
timep PERIOD,
n_name name_tbl,
n_salary salary_tbl,
n_title title_tbl,
n_deptno deptno_tbl)

NESTED TABLE n_salary STORE AS n_salary,
NESTED TABLE n_title STORE AS n_title,
NESTED TABLE n_deptno STORE AS n_deptno;

This definition uses the user-defined typePERIOD,
which can be defined in SQL:2003 as follows:
CREATE TYPE PERIOD AS OBJECT(

tstart DATE,
tend DATE

);

The same temporal queries that we have expressed on
XML using XQuery can now be expressed on nested tables
using SQL:2003, as follows:

QUERY Q1n. History projection. Retrieve the title history
of employee “1001”:
SELECT t. *
FROM n_employee e, TABLE(e.n_title) AS t
WHERE e.empno=’1001’

QUERY Q2n. Temporal Snapshot. Retrieve titles and
salaries of all employees on 1994-05-06:
SELECT t.title, s.salary
FROM n_employee e, TABLE(e.n_title) AS t,

TABLE(e.n_salary) AS s
WHERE tstart(t.timep) <= ’1994-05-06’

AND tend(t.timep) >= ’1994-05-06’
AND tstart(s.timep) <= ’1994-05-06’
AND tend(s.timep) >= ’1994-05-06’

Here too we use the functionststart() and tend()
to isolate the user for the internal representation of time,
including ‘now’. (Support for user-defined scalar functions
is now available in all commercial OR-DBMSs.)

QUERY Q3n. Retrieve the salary history of employees in
dept.“d01”, while they were in that department.
SELECT e.empno,

overlapperiod(d.timep, s.timep),
s.salary

FROM n_employee AS e, TABLE(e.n_dept) AS d,
TABLE (e.n_salary) AS s

WHERE d.deptno = ’d01’ AND
overlaps(d.timep, s.timep)

Hereoverlaps() is defined to return true if two pe-
riods overlap, and false otherwise;overlapperiod() is
defined to return the overlappedPERIOD.

In addition to scalar functions, such asoverlappe-
riod() , temporal aggregates (e.g., the temporal version
of min and sum [3] ) will be required by temporal queries.
These new functions could be easily built into commercial
systems by the vendors, or by the users, since commercial
OR-DBMSs now support the introduction of new scalar and
aggregate functions coded in a procedural language. (In
the ATLaS system [34], user-defined aggregates can also
be introduced natively in SQL, with no recourse to external
PLs.) The new temporal aggregates that must be introduced
include, therising function of TSQL2 [3], and also the
tcoalesce aggregate for temporal coalescing— since the
temporally grouped representation made possible by nested
tables has greatly reduced the need for coalescing, but not
eliminated it all together (and the same is true for XML).

Assuming that a library containing the basic temporal
functions is available, the complexity of writing temporal
queries in SQL:2003 and nested tables is about the same as
writing them in XQuery and XML. Both approaches present
users with more alternatives in presenting data than flat re-
lations. For instance, the join of nested employees and de-
partments tables can be represented by a one-level hierar-
chy where the department and employee attributes are at the
same level, or as a hierarchy where employees are grouped
inside departments, or vice-versa. We next return to the
‘Spartan simplicity’ of flat relations, in which the alterna-
tives are fewer and the problem is simplified.

5. An OLAP-Inspired Representation
A temporally grouped representations can also be ob-

tained by using null values in flat tables such as those re-
turned by OLAP aggregates. Thus, the transaction-time his-
tory of employees, that was described by tuple timestamp-
ing in Table 1, and as an XML document in Figure 1, is now
described as a flat table with null values as shown in Fig-
ure 2, where the null value is represented by the question
mark, “?”. This representation can be defined by aROLLUP

operation on Table 1, defined by the following SQL state-
ment (again here we usetimep to represent the period of
tstart and tend ). As in the case of OLAPs, we might
also want to represent the null values generated by the rullup
operation differently from those representing null valuesin
the original table.

CREATE VIEW e_employee AS
SELECT empno,

tcoalesce(timep,salary,title,deptno)
FROM employee_history
GROUP BY GROUPING SETS(empno,(empno,salary),

(empno,title),(empno,deptno) )

We refer to the representation shown in Figure 2 as an ‘e-
table’ (or ‘e-view’ if it is a view) because this captures the
event-history for employees, as it will be discussed in Sec-
tion 5.1. Moreover, temporal queries on e-tables preserve



???1996-12-311995-01-011001
d02??1996-12-311995-10-011001
d01??1995-09-301995-01-011001
?Tech Leader?1996-12-311996-02-011001
?Sr Engineer?1996-01-311995-10-011001
?Engineer?1995-09-301995-01-011001
??700001996-12-311995-06-011001
??600001995-05-311995-01-011001

deptnotitlesalarytendtstartempno

???1996-12-311995-01-011001
d02??1996-12-311995-10-011001
d01??1995-09-301995-01-011001
?Tech Leader?1996-12-311996-02-011001
?Sr Engineer?1996-01-311995-10-011001
?Engineer?1995-09-301995-01-011001
??700001996-12-311995-06-011001
??600001995-05-311995-01-011001

deptnotitlesalarytendtstartempno

Figure 2. The history view e employees

the traditional style of SQL queries:

QUERY Q1e. History projection. Retrieve the title history
of employee “1001”:
SELECT title, tstart, tend
FROM e_employee
WHERE empno= ’1001’
AND title IS NOT NULL

QUERY Q2e. Temporal Snapshot. Retrieve titles and
salaries of all employees on 1994-05-06:

SELECT e.empno, e.title, e.salary
FROM e_employee AS e
WHERE tstart(e.timep) <= ’1994-05-06’

AND tend(e.timep) >= ’1994-05-06’
AND e.title IS NOT NULL
OR e.salary IS NOT NULL

This query assumes that we only want to retrieve the in-
formation, without reformatting it. However, if we want to
reformat the information derived into a join table, then we
also want to join the titles and salaries of all employees at
that date into a flat relation as follows:
SELECT s.empno, t.title, s.salary
FROM e_employee AS s, e_employee AS t
WHERE tstart(t.timep) <= ’1994-05-06’

AND tend(t.timep) >= ’1994-05-06’
AND tstart(s.timep) <= ’1994-05-06’
AND tend(s.timep) >= ’1994-05-06’
AND s.empno=t.empno
AND t.title IS NOT NULL
AND s.salary IS NOT NULL

QUERY Q3e. Retrieve the salary history of employees in
dept. “d01”, while they were in that department:
SELECT n1.empno, n1.salary,

overlapperiod(n1.timep,n2.timep)
FROM e_employee n1, e_employee n2
WHERE n1.empno = n2.empno

AND n1.salary IS NOT NULL
AND n2.deptno IS NOT NULL
AND n2.deptno = "d01"
AND overlaps(n1.timep, n2.timep)

This query illustrates the use of temporal joins, with
intersection of overlapping periods; these are required for
query Q3 in all three representations. While the complex-
ity of queries is similar for our three temporally-grouped

approaches, e-tables offer unique advantages that are dis-
cussed next.

5.1. Event-Oriented Histories
An advantage of this last representation is that grouping

can be easily controlled by theORDER BY clause in SQL.
For instance, the representation of Figure 2, where the his-
tory of each employee attribute is grouped together, is pro-
duced by the following clause:
SELECT empno, timep, salary, title, deptno
FROM e_employee
ORDER BY empno, salary, title, deptno,

tstart(timep)

Since the null value is assumed to be the last value in
each domain, thisORDER BY clause indeed produces the
table of Figure 2.

Assume now that we want to view the history of events,
pertaining to employees’ salaries and departments, that have
occurred in the company; then we can just list them in as-
cending chronological order as follows:
SELECT timep, empno, salary, deptno
FROM e_employee
WHERE title IS NULL
ORDER BY tstart(timep),empno,salary,deptno

However, in order to visualize the salary history of
employees in a given department, we need first to write
a query similar to that of Example Q3e to derive a ta-
ble (or a view)depthist(deptno, empno, salary,
timep) , on which we can write following query:
SELECT deptno, timep, empno, salary
FROM depthist
ORDER BY deptno,tstart(timep),empno,salary

This last statement returns all the events grouped by de-
partment and arranged in chronological order.

The visual presentation of historical data and query re-
sults is much simpler using e-tables than using n-tables or
H-tables (which is discussed later in Section 6.1). This is
because flat tables come with their built-in graphical repre-
sentation, while, e.g., XML requires the user to write a style
sheet to visualize data. Moreover, as demonstrated by the
previous examples, restructuring on e-tables can be realized
by simply reordering the tuple using anORDER BY clause,
whereas it might require complex nesting and unnesting in
the other representations.

In most temporal database approaches, including TSQL2
[3], a temporal relation can be either declared as a state table
or as an event table but the two views are not easily com-
bined. A simple mapping between the two views is highly
desirable since, in everyday life, states and events are two
facets of the same evolving reality. Moreover, many ad-
vanced applications, such as time-series analysis [35], se-
quence queries [36], and data stream queries [37], view the
database as a sequence of events, rather than a sequence of
states.



The e-tables just described, make it possible the unifica-
tion of state-based and event-based representations by sim-
ply using SQLORDER BY construct. For instance, say that
we want to find employees who have been transferred from
a department to another, and from this, back to the old one.
To answer this query by perusing the history of employees,
we would probably start by carefully viewing the results of
the following query:

QUERY Q4. Reordering to detect round-trip transitions be-
tween departments:
SELECT empno, timep, depno, salary, title
FROM e_employee
ORDER BY empno, tstart(timep)

Then, the immediate sequence of any three tuples
with non-null deptno column, would satisfy the query—
provided that the first department is equal to the third (and
that there was no interruption in the employee’s employ-
ment).

Although this query is conceptually simple, it requires
the detection of three successive tuples—an operation that
is rather complex and inefficient to express in standard SQL.
A first solution to this problem is to write a user-defined
aggregate (UDA); in fact UDAs can easily express state-
based computations [38]. Moreover, several event-patterns
and sequence languages for time-series analysis have been
proposed in the literature [39, 35, 36] and would work very
nicely with the representation discussed here. For instance,
using SQL-TS [36] our query could be expressed as fol-
lows:

QUERY Q5. From department A to B and back, with no
other change in between:
SELECT A.empno, A.title
FROM e_employee [ORDER BY empno,

tstart(timep)] AS (A,B,C)
WHERE A.deptno = C.deptno

AND B.deptno IS NOT NULL

Here, theFROM clause specifies that, given the ordering
described above,A, B andC are three successive tuples that
are also related by the conditions specified in theWHERE

clause. Space limitation prevents us from delving into lan-
guages as SQL-TS [36], although they represent a very in-
teresting and pertinent topic in temporal database research.
Here, it suffices to observe that these languages rely on tu-
ples being arranged in a suitable order—which is easier to
achieve with e-tables than with H-tables or n-tables.

6. Efficient Implementation
In the previous sections, we have discussed the pros and

cons of alternative representations for temporal history.In
reality, these are likely to be supported together, rather than
as alternatives, since database vendors are gung ho on sup-
porting both SQL and XML in their systems. Practical con-
siderations also suggest that a unified implementation at the

internal level should be provided for these multiple external
views. At UCLA, we have been developing the ArchIS sys-
tem that unifies the support for multiple external temporal
models into one architecture [10, 12].

The basic architecture of ArchIS [10] is shown in Fig-
ure 3. ArchIS is designed to preserve and archive the his-
tory of the database by preserving the evolution of its con-
tent, either by using active rules attached to the database
or by periodically visiting their update logs. ArchIS then
supports alternative logical views of the database historyde-
scribed in the previous sections, by mapping queries against
these views into equivalent queries against the history data-
base. In our previous work on the implementation of stor-
ing H-documents [10, 12], we have compared the use of a
native XML DBMS such as the Tamino XML Server [40],
against the approach of shredding these documents and stor-
ing them into RDBMSs. The second approach was found to
offer substantial performance advantages and will be used
here. (In our implementation, the ‘current database’ and the
archived one are managed by the same system. But the re-
sults are easily generalized to the situations where these two
are separate and even remote.)

In the next sections we first discuss the structure of
the Key & Attribute History Tables, used at the internal
level and then we describe the problem of mapping external
queries into internal ones. We finally describe the temporal
clustering and indexing techniques used in improving the
performance of such queries.

The problem of supporting XML views through stored
RDBMS tables is hardly new since it has recently provided
a major focus for database research [41, 42, 43]. How-
ever, here we do not need to support all XML documents
and queries, but only historical views of database tables
and temporal queries on such tables; thus, specialized tech-
niques can be used for more efficient storage, and optimized
query mapping.

6.1. History Tables
The history of each relation is preserved by a set of ta-

bles: one table for each attribute, and an additional table for
the primary key of the original relation. Each tuple in the
tables is timestamped with the two attributeststart and
tend . For example, consider our evolving DB relation
employee(empno , salary, title, deptno)
with keyempno. The history ofemployee is preserved by
following tables in ArchIS:

The Key Table:
employee empno(empno, tstart, tend)

Sinceempno will not change along the history, the period
(tstart,tend) in the key table also represents the valid
period of the employee. The use of keys is for easy joining
of all attribute histories of an object such as an employee.

Attribute History Tables:
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Figure 3. ArchIS: Arch ival I nformation System

employee_salary(empno, salary, tstart,tend)
employee_title (empno, title, tstart,tend)
employee_deptno(empno, deptno, tstart,tend)

The values ofempno in the above tables are the correspond-
ing key values, thus indexes on suchempno can efficiently
join these relations.
When a new tuple is inserted, thetstart for the new tu-
ple is set to the current timestamp, andtend is set tonow.
When there is a delete on a current tuple, we simply change
the tend value in that tuple as current timestamp. An up-
date can be viewed as a delete followed by an insert. We
will later refer to these as key & attribute history tables (H-
tables for short). H-tables could also be viewed as yet an-
other candidate representation at the logical level; we have
not considered them here because they do not provide real
query advantages with respect to e-tables, and they make
tasks such as reordering and visualization harder.

In addition to these, we also store information about the
schema in a global relation:

relations(relationname, tstart, tend)
Our design builds on the assumption that keys (e.g.,

empno) remain invariant in the history. Otherwise, a
system-generated surrogate key can be used.

6.2. Query Mapping
Mapping from e-views to H-tables. Mapping from H-
tables to the e-views (or e-tables) of Figure 2 is simple,
since the latter can be obtained taking the union of the H-
tables after padding them with null values. This simple cor-
respondence simplifies the translation and optimization of
queries expressed on e-tables into equivalent queries on H-
tables. The pattern of null values associated with the query
plays an important role in the translation. Take for instance
QUERY Q1e. There, the condition thattitle IS NOT
NULLimplicitly determines that salary and department must
be null, and attribute tableemployee title will appear
in theWHEREcondition of mapped query. Thus our original
query is translated into:
SELECT T.title, T.tstart, T.tend
FROM employee_title as T
WHERE T.empno = ’1001’

However, this is only the first step of the translation per-
formed by ArchIS which also adds conditions to exploit the
temporal clustering and indexing discussed later.

Mapping from n-views to H-tables. In DBMS that support
nested relations, n-views (or n-tables) can be supported di-
rectly at the physical level. But even so, we might prefer to
‘shred’ and store them into flat H-tables, to simplify support
for alternative external views (in particular, e-views), of for
performance reasons, e.g., to take advantage of the cluster-
ing techniques available for H-tables, that will be discussed
later. A simple approach to achieve this is to define a nested
object-view (as defined in SQL:2003) on H-tables, as fol-
lows:
CREATE VIEW n_employee OF employee_t
WITH OBJECT IDENTIFIER (empno) AS
SELECT e.empno,

PERIOD(e.tstart, e.tend) AS timep,
CAST(MULTISET(

SELECT s.salary, s.tstart, s.tend
FROM employee_salary s
WHERE s.empno = e.empno)

AS salary_tbl)
) AS n_salary,

...
FROM employee_empno e;

With such a mapping, temporal queries on n-views are
automatically translated by the DBMS into queries on H-
tables through view definitions.

Mapping from XML-views to H-tables. The mapping
from XML-views (or H-documents) to H-tables is signifi-
cantly more complex. The problem of supporting XQuery
on H-tables is similar in the sense that we have to generate
efficient SQL queries, but more complex insofar as XML
documents must be structured as output. Therefore, we use
SQL/XML [14], whereby the results of SQL queries can
be efficiently assembled into XML documents for output.
Many database vendors now support efficient SQL/XML
implementations, in which tag-binding and structure con-
struction are done inside the relational engine for best per-
formance [44]. In ArchIS [10], we compile XQuery state-
ments on temporal XML-views, and optimize their transla-
tion into SQL/XML on the H-tables in five main steps, as
follows:
1. Identification of variable range. For each distincttuple

variable in the original query, a distinct tuple variable
is created in the FROM clause of the SQL/XML query,
which refers to a certain key table or attribute table.

2. Generation of join conditions. There is a join condi-
tion T.empno andN.empno for any pair of distinct tuple
variables.

3. Generation of the WHERE conditions. These are the
conditions in WHERE clause of XQuery or specified
in the XPath expressions.

4. Translation of built-in functions. The built-in functions
(such asoverlaps( $a, $b) ) are simply mapped into



the corresponding SQL built-ins we have implemented
for ArchIS.

5. Output generation. This is achieved through the use of
the XMLElement and XMLAgg constructs defined in
SQL/XML [14].

For instance, the SQL/XML translation of Query Q1 is:
SELECT XMLElement (Name "title_history",

XMLAgg (XMLElement (Name "title",
XMLAttributes (T.tstart as "tstart",

T.tend as "tend"), T.title)))
FROM employee_title as T
WHERE T.empno = ’1001’

6.3. Clustering and Indexing
Efficient support for historical queries requires support

for temporal clustering and indexing; in ArchIS, this is
achieved by a simple usefulness-based scheme whereby the
H-tables are partitioned into segments [10]. For each table,
the usefulnessof its current segment is defined as the per-
centage of the segment tuples that have not expired yet (i.e.,
whosetend timestamp is still ’now’). The usefulness of
the current segment is monotonically decreasing with time,
and as soon as it falls below a user-specified percentage, the
whole segment is archived, and a new segment is started
containing only those tuples whose timestamps are ‘now’.
The segment number then can become part of the search
keys supported by the indexes used in the database.

Thus, a request to find the salary of a given employee at
certain time, could involve finding the corresponding seg-
ment in a small memory-resident index, and then using the
(segment no, empno ) pair in the index search.

This usefulness-based scheme achieves temporal cluster-
ing through redundancy. Since there is no update in the
archived tuples of a transaction-time database (unlike valid-
time databases), redundancy does not generate additional
execution costs. For reasonable usefulness values the ex-
tra storage costs are modest (e.g., 30% storage overhead for
33% usefulness [10]); this cost represents a minor draw-
back, because of the fast decreasing cost of storage, and
the applicability of compression techniques which has been
proven in [10]. (The cost of re-compressing after updates
is not present for archived data, since these are not up-
dated.) On the other hand, the usefulness-based approach
expedites archival search in a predictable and controllable
fashion. For instance, for usefulness of 33% (1/3) we are
assured that, when searching in the corresponding segments
for records with a given timestamp, at least one of the three
records visited has the right timestamp. Therefore, the time
required to regenerate the past snapshot of a relation can be
expected to be less than three times of that needed to gen-
erate the current snapshot from the current database [10].
Also, observe that the joining of H-tables require little extra
time since they are already sorted onempno. The architec-
ture and performance of ArchIS is covered in [10].
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Figure 4. Temporal Scheme Comparison

6.4. Summary
Only the skeleton of ArchIS is currently operational, and

many improvements are planned for the future; even so,
its realization confirms the practicality of supporting both
SQL-based and XML-based temporal views and queries
with a unified and efficient internal representation. ArchIS
can now run on top of IBM DB2 and the ATLaS system
[34]. We are currently working on extending it to run on
commercial DBMS that support nested relations [7, 30], and
explore any performance improvement that can be gained
with this approach. We also plan to experiment with addi-
tional storage structures, such as R-trees, to better support
valid-time and bitemporal databases.

7. Conclusion and Future Work
An important conclusion emerges from the research pre-

sented in this paper: a unified multi-model support for
transaction-time databases can be achieved effectively us-
ing a temporally grouped data model. This requires the
introduction of new temporal functions and aggregates,
but no extension to the current standards. A unified effi-
cient implementation for the three external models relies on
well-understood query mapping/optimization techniques,
and temporal clustering/indexing techniques at the internal
level. In practice, the ArchIS approach is desirable since
it provides a low-cost approach to address a wide range of
applications. In particular, XML-based views dovetail with
web applications, while nested-relations are more natural
for object-oriented applications, and the null-filled flat ta-
bles are best for traditional database applications, decision-
support applications, and event-oriented queries. This last
approach provides a simple framework for the presenta-
tion of the data, which can require significantly more effort
when XML is used. Figure 4 summarizes the features of the
temporally-grouped schemes proposed, comparing them to
the basic ungrouped scheme.

While we have concentrated here on transaction-time
databases, it was recently shown that, for XML, this ap-



proach can be extended to bitemporal representations and
queries as well [11]. Support for valid-time and bitem-
poral views and queries using nested relations and null-
filled tables represents an important topic of forthcoming re-
search. Many research issues also remain open at the phys-
ical level, including the use of nested relations and of clus-
tering schemes that support updates on historical data (such
updates are not present in transaction-time databases).
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