
1

Vibration Signal-based Tool Condition Monitoring
Using Regularized Sensor Data Modelling and

Model Frequency Analysis
Zepeng Liu, Member, IEEE, Zi-Qiang Lang, Yufei Gui, Yun-Peng Zhu, Member, IEEE, Hatim Laalej, David

Curtis

Abstract—Tool condition monitoring (TCM) plays a vital role
in maintaining product quality and improving productivity in
advanced manufacturing. However, complex machining envi-
ronments often limit the monitoring accuracy of conventional
monitoring systems. In the present study, a new diagnostic
framework is proposed for TCM during machining using a novel
regularization-based sensor data modelling and model frequency
analysis. For the first time, the physical information of the
underlying machining process is incorporated into the modelling
procedure for the design of the associated regularization pa-
rameter. This ensures that significant underlying physics can be
taken into account during the modelling so as to enhance the
TCM performance. This idea is referred to as tool condition
monitoring-oriented regularization (TCMoR). After a model has
been identified from TCMoR-based sensor data modelling, the
frequency domain properties of the model are extracted to reveal
unique and physically meaningful features of the underlying
machining process for the TCM purpose. The effectiveness of the
proposed diagnostic framework is validated by extensive in-situ
experimental studies under both variable and controlled tool-
workpiece engagement conditions, demonstrating its advantages
over conventional TCM methods and its potential applications
in industry.

Index Terms—Tool condition monitoring, Regularization,
Data-driven modelling, Nonlinear AutoRegressive with eXoge-
nous input (NARX) model, Nonlinear output frequency response
functions (NOFRFs)

I. INTRODUCTION

IN advanced manufacturing, the focus is naturally on pro-
ducing high-performance components with tighter toler-

ances in the required time frame under conditions of maxi-
mized profit [1]. The failure of machine tools will result in
the halt of the whole production, which in turn will result in
economic losses [2]. Some scholars have estimated that the
increase in unit machining costs due to the malfunction of
machine tools is around 50% [3], while others put the figure
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closer to 100% [4]. Therefore, efficient and cost-effective tool
condition monitoring (TCM) methods have gained extensive
attention from both academia and industry.

According to different application scenarios, TCM methods
can be categorized into direct and indirect methods [5]. Direct
methods mainly utilize optical sensors, cameras, and other spe-
cialized equipment to directly observe and quantify changes
in the material composition or geometric profile of the cutting
tool [6]. You et al [7]. captured cutting tool images in an
industrial environment and employed a lightweight network
model based on the adaptive activation function to classify
different tool wear levels. Miao et al [8]. applied a charge-
coupled device (CCD) camera to capture the flank face of cut-
ting tools from turning machining and used the U-Net-based
network to detect and identify the tool wear levels. You et al
[9]. proposed an evaluation metric for TCM based on wear
distance dispersion in order to evaluate different flank wear
forms throughout the tool life cycle. In addition to 2D imaging
for TCM, there has been great interest in quantifying the 3D
morphology of tool wear to evaluate cutting tool conditions.
Zhu et al [10]. utilized microscopes to capture the raw 3D
tool wear images and applied low-pass and high-pass filters to
obtain reconstruction images for tool wear volume evaluations.
Wang et al [11]. reconstructed a 3D crater profile to measure
tool wear cracks relating to crater center, crater width, crater
depth, and crater front distance. However, direct methods can
usually only be used when the machine is stopped, and the
relatively high cost of the associated measurement equipment
prevents their widespread use in manufacturing. As a result,
these direct methods have very limited applicability in real-
world industrial manufacturing environments [12].

Alternatively, the indirect methods rely on the changes in
sensor signals to monitor tool wear in machining processes
[13]. The widely used sensor signals for TCM include cutting
force, torque, temperature, acoustic emission and vibration
[14], [15]. These approaches directly extract features from
collected signals to reveal the physical states of cutting tools.
The signal features can be the time-domain features including
mean, kurtosis, etc., frequency domain features including
frequency variance and time and frequency-domain features,
such as wavelet packet energy [16]. Then, based on the
extracted signal features, the classification models, such as
support vector machines (SVM), artificial neural networks
(ANN), etc., or regression models such as Gaussian process
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regression are built to diagnose cutting tool health conditions
or prognose remaining useful life (RUL) of the tools [8]. In
[17], the signal features were extracted from force, vibration
and acoustic emission (AE) signals, and the tool wear was sub-
sequently monitored and predicted by feeding these extracted
features into a deep learning regression model known as the
sequence-to-sequence model with attention and monotonicity
loss (SMAML). Wang et al [18]. utilized a t-distributed
stochastic neighbor embedding (t-SNE) method to classify
various tool wear levels, utilizing features extracted from
both vibration and force signals. Liu et al [19]. incorporated
the extracted signal features into the switching Hidden semi-
Markov model (HSMM)), aiming to predict the tool wear level
under time-varying cutting model conditions where machining
parameters such as cutting speed, cutting depth and feed
speed were set to be inconstant during machining. The afore-
mentioned indirect methods are supervised learning methods
requiring labeling of the extracted features. In situations where
labeling becomes infeasible, resorting to an unsupervised
learning algorithm becomes essential. For instance, Gui et
al [20]. proposed an unsupervised tool breakage detection
(TBD) framework based on both time and sensor domain data
decomposition and analysis. Within this framework, the time
series analysis is applied to generate the features for TBD, and
sensor domain data is exploited to determine the threshold for
the unsupervised learning model.

Although signal feature-based TCM has been extensively
studied in the literature, only a very few implementations
have been found in real-world applications [21]. This is
because these techniques have two fundamental limitations and
drawbacks. First, robustness is the most important concern.
The techniques can often only be used on repeated and
simple machining processes which would enable the signal
features to be representative of cutting tool conditions. This
implies that the techniques may not be suitable for real-world
applications where the machining processes are often much
more complicated. Secondly, different signal features must
be designed for different milling processes, which makes the
feature design a significantly demanding task to be completed
every time [14].

In order to resolve the challenges faced by current signal
feature-based methods, a model feature-based approach known
as sensor data modelling and model frequency analysis was
proposed [22], [23]. The main difference between the model
feature-based approach and the signal feature-based approach
is that the model feature-based approach does not directly ex-
tract features from collected sensor signals for TCM. Instead,
the collected signals are firstly utilized to build a dynamic
process model representing the relationship between the sig-
nals. After that, the frequency response characteristics of the
built dynamic model are extracted and used as model features
to conduct TCM. As has already been demonstrated by [22],
the model feature-based method can resolve limitations and
fundamentally address low robustness and complexity issues
associated with signal feature-based methods.

The key to the model feature-based TCM introduced is
that an effective model has to be built to appropriately reveal
tool wear-induced dynamic changes in the machining pro-

Fig. 1. The illustration of the machining and data acquisition process.

cess. However, our recent studies show that the conventional
nonlinear system identification as applied in [22] sometimes
cannot achieve this objective. This is because the identified
model may not capture the key information of a machining
process over tooth passing frequencies in many complicated
scenarios even though overall the model may perform well in
representing the time domain behaviors of the process.

In order to address this problem, in the present study, a new
diagnostic framework is proposed for TCM during machining
using a novel regularization-based sensor data modelling and
model frequency analysis. Under this framework, for the first
time, the tooth passing frequency-related physical information
of the underlying machining process is incorporated into
the modelling procedure for the design of the associated
regularization parameter. This ensures significant underlying
physics can be taken into account during the modelling so
as to enhance the model feature-based TCM performance.
The idea is referred to as tool condition monitoring-oriented
regularization (TCMoR). Compared with the conventional
regularization (CR) method introduced in most studies [24],
TCMoR can produce a model that can much more effectively
represent the dynamics of the machining process induced by
worn cutting tools, enabling model features to better reveal
cutting tool status and be better exploited for TCM purposes.
Extensive in-situ experimental studies under both variable and
controlled tool-workpiece engagement conditions were carried
out. These studies demonstrate that this novel TCMoR-based
TCM framework is a significant development of the sensor
data modelling and model frequency analysis-based TCM and
has better potential to be applied in industry.

II. SENSOR DATA MODELLING AND MODEL FREQUENCY
ANALYSIS FOR TOOL CONDITION MONITORING

A. The Idea

Fig.1 shows a machining process of cutting tool system
where u(t) and y(t) are the vibration signals measured on
the spindle and on the milling fixture beneath the workpiece,
respectively. To monitor the health status of cutting tools, a
model feature-based method was proposed which involves two
primary steps.
1) Sensor data modelling is applied to build a dynamic model

to represent the dynamic relationship between u(t) and
y(t) collected from the vibration sensors mounted on the
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spindle and the milling fixture, respectively. According to
[25], a general model representing the dynamics between
u(t) and y(t) can be expressed as y(t) = D [u(t)] where
the notation D indicates a dynamic relationship between
the two measured signals.

2) Model frequency analysis is conducted to extract the fre-
quency response characteristics of the built models, and
the extracted frequency characteristics are used as the
model features to evaluate the health conditions of the
underlying machining process. In comparison with the
conventional signal features, the proposed model features
can reveal unique and physically meaningful characteristics
of machining processes which can overcome the problems
with conventional signal feature-based methods and be
potentially applied to perform a more effective TCM.

For sensor data modelling, if the dynamic relationship D
is linear, data-driven modelling methods will produce a linear
model to represent the linear relationship, and the frequency
response characteristics of the model can be obtained as
F [y(t)]
F [u(t)] = H(jωl) where the notation F represents the
Fourier transform and ωl indicates the frequency variable.
H(jωl) indicates the frequency response function (FRF) of
the model, which can be used as the model features for TCM.
However, if the dynamic relationship between u(t) and y(t)
is nonlinear, nonlinear data-driven modelling and nonlinear
model frequency analysis are proposed where Nonlinear Out-
put Frequency Response Functions (NOFRFs) can be used to
replace FRF for TCM.

Nonetheless, the conventional nonlinear data-driven mod-
elling techniques sometimes have poor performance when ap-
plied to sensor data modelling and model frequency analysis-
based TCM. This is because, in many complicated machining
processes, the nonlinear models determined by conventional
techniques often fail to capture critical information relating
to the tooth passing frequency, i.e., the frequency at which
the teeth of the tool cut the workpiece during machining.
To overcome this issue, a novel TCMoR-based sensor data
modelling is proposed which, for the first time, incorporates
the physical information of the underlying machining process,
i.e., tooth passing frequency, into the data-driven modelling
procedure which can more effectively reveal the cutter status
and be better exploited for the TCM purpose. More details of
the sensor data modelling and model frequency analysis will
be introduced in Section II-B to Section II-D, and the novel
idea of the TCMoR will be introduced in detail in Section III.

B. Sensor Data Modelling

The relationship between u(t) and y(t) in Fig.1 can be
represented by using the Nonlinear AutoRegressive with eX-
ogenous input (NARX) model

y(t) = f ℓ[x(t)] + e(t) (1)

where t = 1, ...,Γ with the sampling frequency fs. f ℓ[.]
represents the polynomial function with maximum degree
ℓ ∈ Z+. e(t) represents the noise and unmodeled dynamics.

x(t) =[y(t− 1), · · ·, y(t− ny), u(t− 1), · · ·, u(t− nu)]

=[x1(t), ..., x∆(t)]
(2)

where nu and ny are, respectively, the length of the input
lag and output lag, and ∆ = ny + nu [26]. Under rather
general conditions [26], the polynomial function f ℓ[.] can be
represented by M weighted regressors

y(t) =

M∑
m=1

θmϕm(t) + e(t), t = 1, ...,Γ (3)

where ϕm(t), m = 1, ...,M is a m-th order monomial
term composed of x1(t), ..., x∆(t), and M is the total
number of candidate regressors or model terms. Define
y = [y(1), .., y(Γ)]T, Φm = [ϕm(1), ..., ϕm(Γ)]T, Φ =
[Φ1, ...,ΦM ], θ = [θ1, ..., θm]T and e = [e(1), .., e(Γ)]T,
the regression model (3) can be written in the matrix form
of y = Φθ + e. In order to determine the structure of
the model, the Forward Regression with Orthogonal Least
Squares (FROLS) learning algorithm can be applied [26].
The final model structure is the linear combination of the
M0 (M0 ≤ M ) significant model terms chosen from the M
candidate regressors Φ, producing

y = Wg + e (4)

where g = [g1, ..., gM0
]T is the FROLS regression weight

vector, and W = [Φ1, ...,ΦM0
] is the selected regressors.

Therefore, the g can be evaluated by solving the following
l2-norm regularization problem.

g =argmin
g

{∥Wg − y∥22 + λg∥g∥22}

=WTy/(WTW + λgI)
(5)

where λg is the regularization parameter, and I is an M0×M0

identity matrix.

C. Model Frequency Analysis
After u(t) and y(t) collected from the sensors fitted on

the spindle and milling fixture, respectively, are used to build
dynamic models, the frequency response characteristics of the
model are extracted in order to conduct TCM. To extract non-
linear system frequency response characteristics, the Nonlinear
Output Frequency Response Functions (NOFRFs) are applied
here following the idea introduced in [27].

When the identified NARX model is stable at zero equilib-
rium, the output can be described by the Volterra series in the
time domain as [26]

y(t) ≈
N∑

n=1

yn(t)

=

N∑
n=1

∞∑
τ1=0

· · ·
∞∑

τn=0

hn(τ1, · · · τn)
n∏

i=1

u(t− τi)dτi

(6)

where N is the maximum order of the system nonlinearity.
yn(t) denotes the nth order output, and hn(τ1, · · · , τn) is the
nth order Volterra kernel of the system output. Based on [26],
[27], the Fourier transform of y(t) can be expressed by the
NOFRFs-based representation as

F (y(t)) = Y (jω) ≈
N∑

n=1

Yn(jω) =

N∑
n=1

Gn(jω)Un(jω) (7)
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where ω denotes frequency variables. F (·) denotes the Fourier
transform. Yn(jω) = F (yn(t)) and Un(jω) = F (un(t)) are
the nth-order output frequency spectrum and nth-order input
frequency spectrum, respectively. Gn(jω) is the NOFRFs and
is defined by

Gn(jω) = Yn(jω)/Un(jω) (8)

where ω ∈ Ωn, n = 1, ..., N with Ωn indicating the frequency
support of Un(jω) such that Un(jω) ̸= 0 with ω ∈ Ωn [28].

To determine NOFRFs, Generalized Associated Linear
Equations (GALEs) are used which allow an evaluation of
the NOFRFs up to any order from the solutions to a series of
linear difference equations. More explanations of GALEs are
presented in Appendix A. Suppose u∗(t) is the input excitation
signal for NOFRFs evaluation, the model output y∗n(t) can
be evaluated using GALEs; and the NOFRFs, G∗

n(jω), can
be calculated based on the input signal u∗(t) and the model
output y∗n(t) as

G∗
n(jω) = F [y∗n(t)]/F{[u∗(t)]n} = Y ∗

n (jω)/U
∗
n(jω) (9)

where U∗
n(jω) ̸= 0. As a result, The NOFRFs-based model

features are obtained as

F = [f1, ..., fN ] (10)

with fn = [
∣∣G∗

n(jω
1
n)
∣∣ , ..., ∣∣G∗

n(jω
Ln
n )

∣∣], n = 1, ...N repre-
senting the n-th order NOFRFs-based model features. Here,
Ln indicates the number of model features of the n-th order,
and ω1

n, ..., ω
Ln
n ∈ Ω̄n, Ω̄n ∈ Ωn.

D. Tool Condition Monitoring

The technique of sensor data modelling and model fre-
quency analysis for TCM implements a strategy of off-line
training and on-line monitoring, and a pictorial view of this
framework is presented in Fig.2. As can be seen, the first stage
is the off-line training which is summarized as follows.
Step 1: Sensor data modelling is conducted off-line in order

to build a NARX model via the collected spindle
vibration signal u(t) and milling fixture vibration
signal y(t).

Step 2: Based on the built NARX model, model frequency
analysis is applied to extract the NOFRFs-based
model features F.

Step 3: A classifier is trained off-line by using the labeled
NOFRFs-based model features F.

After the classifier is trained, the second stage is to con-
duct on-line TCM using the on-line extracted NOFRFs-based
model features and the off-line trained classifier. The details
are as follows:
Step 1: Sensor data modelling is used on-line to build a

NARX model in order to find the dynamic relationship
between the vibration signals measured on the spindle
and milling fixture.

Step 2: Model frequency analysis is applied on-line to extract
the NOFRFs-based model features F.

Step 3: The on-line TCM is carried out by using the on-line
extracted NOFRFs-based model features F and the
off-line trained classifier.

Fig. 2. The flowchart of the off-line training and on-line monitoring strategy.

E. The Need for Tool Condition Monitoring-oriented Regular-
ization (TCMoR)

To obtain a satisfactory NARX model for TCM, one key
factor is the regularization parameter λg that controls the bias-
variance error associated with the identified NARX model.
Different λg can produce different NARX models and, con-
sequently, different NOFRFs. As a result, an appropriate λg

is very important for the performance of the NOFRFs-based
TCM.

In conventional nonlinear system identification, λg is often
determined to find a mathematical model that can best fit the
system input and output data in the time-domain. However,
this can lead to over-fitted models which are either unstable
or lack generalization. To overcome these difficulties, a spe-
cific procedure of CR was proposed which is to ensure that
the identified NARX models can meet the requirements of
stability, generalization, and accuracy at the same time [22].
But our recent studies show that for many more complicated
machining processes this procedure can still not achieve a
satisfactory TCM performance. This is because, in these
complicated scenarios, CR often fails to facilitate the capture
of key dynamics of machining processes over tooth passing
frequencies, although overall the identified model may perform
well in terms of stability, generalization and accuracy in the
time domain.

It is to profoundly resolve this challenge that the novel
regularization method of TCMoR is proposed in the present
study. The objectives are not only to guarantee that the
identified NARX model possesses stability, generalization and
accuracy in the time domain, but also ensure that the NOFRFs
extracted from the identified NARX model can well represent
the dynamics of machining processes over tooth passing
frequencies. The details of the novel TCMoR method will be
introduced in the following section.

III. TOOL CONDITION MONITORING-ORIENTED
REGULARIZATION (TCMOR)

A. Identified NARX Model and Model Predicted Output
(MPO) in the Time and Frequency Domain

Assume that the original datasets u(t) and y(t) can be split
into two datasets which are the training dataset used for model
training and the testing dataset used for model evaluation (See
Fig.3). The training dataset is expressed as uα(t1) and yα(t1)
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Fig. 3. Illustration of the data split.

with t1 = 1, ...,Γ1 and Γ1 < Γ; and the testing dataset is
represented as uβ(t2) and yβ(t2) with t2 = 1, ...,Γ2 and Γ2 <
Γ. Based on the training dataset, the identified NARX model
using FROLS is given by

yα(t1) =F ℓ[yα(t1 − 1), · · ·, yα(t1 − ny),

uα(t1 − 1), · · ·, uα(t1 − nu)], t1 = 1, ...,Γ1

(11)

where F ℓ[.] represents the polynomial function of the variables
yα(t1−1), · · ·, yα(t1−ny), uα(t1−1), · · ·, uα(t1−nu). Then,
the Model Predicted Output (MPO) [26] of the model can be
evaluated by using the testing dataset as

ŷβ(t2) =F ℓ[ŷβ(t2 − 1), .., ŷβ(t2 − ny),

uβ(t2 − 1), ..., uβ(t2 − nu)], t2 = 1, ...,Γ2

(12)

Finally, to study the frequency domain properties of the
MPO predictions of the testing dataset, the Fourier transform
of MPO is obtained as

Ŷβ(ω) = F (ŷβ(t2)) (13)

B. Stability and Generalization Criteria

Stability is evaluated for the sensor data modelling in order
to guarantee the built model is asymptotically stable at the
zero equilibrium and can then be used for NOFRFs evaluation.
More rigorously, the criterion of stability is as follow.

Criterion 1 (Stability). Let uβ(t2) = 0, ∀t2 and ŷβ(t2) ≤ TTTs,
∀t2 ≤ 0. The identified model (11) is stable if

es(t2) = |ŷβ(t2)| − ϵs ≤ 0 with t2 → ∞, ϵs → 0 (14)

where the notation TTTs represents the initial condition thresh-
old. ϵs denotes the stability threshold and es represents the
stability error.

The generalization of the built model is also evaluated at
the sensor data modelling stage in order to enable the built
model to be less sensitive or even insensitive to an increasing
amount of extreme values in the training dataset. The criteria
of generalization is as follow.

Criterion 2 (Generalization). k-fold cross-validation is used
to assess the generalization performance of the model. The
particulars are summarized in the following steps.

1) As can be seen in Fig.3, the training dataset uα(t1) and
yα(t1) are partitioned into k subsets which are denoted as
uk
α(t

k
1) and ykα(t

k
1) with k = 1, ...,K and tk1 = 1, ...,Γk

1 ,
Γk
1 < Γ1.

2) The modelling process is conducted K times by using the
selected candidate λg . For each modelling process, the
k − 1 subsets are combined together to train the model
and the remaining one subset is used to validate the model
performance. The MPO of the remaining one subset is
denoted as ŷkα(t

k
1)

3) An overall performance of the MPO across K validation
sets is evaluated as

CV =

K∑
k=1

Γk
1∑

tk1=1

[ŷkα(t
k
1)− ykα(t

k
1)]

2
(15)

The identified model (11) has the required generalization
performance if

er = CV − ϵr ≤ 0 (16)

where ϵr is a predefined generalization threshold and er
denotes the generalization error.

C. Accuracy Criteria

Accuracy refers to how well the mathematical model that
was found can fit the input-output data. In conventional system
identification, time domain-based criterion is very commonly
used as below

Criterion 3 (Accuracy in the time domain). Let E (t) be the
time-domain accuracy which can be defined as

E (t2) = ŷβ(t2)− yβ(t2), t2 = 1, ...,Γ2 (17)

The identified model (11) is said to be accurate if

et = EEE TEEE − ϵt ≤ 0 with ϵt → 0 (18)

where EEE = [E (1), ...,E (Γ2)]
T. ϵt denotes a predefined accu-

racy threshold and et is the accuracy error.

However, Criterion 3 often cannot guarantee the identified
model captures the key information of a machining process
over tooth passing frequencies in complicated scenarios. To
solve this issue, a novel accuracy criterion is proposed to re-
place the conventional time-domain accuracy with frequency-
domain accuracy that takes the tooth passing frequency related
physical information into account. The new criterion is as
follows.

Criterion 4 (Accuracy in the frequency domain). Assume
that the tooth passing frequency is located in the frequency
range [ωlow, ωhigh], and the number of the discrete frequency
components within this frequency range is Nt; therefore, the
ςth harmonic of the tooth passing frequency is located in
the frequency range [ςωlow, ςωhigh] where the number of the
discrete frequency components is ςNt. Based on the frequency
ranges of the tooth passing frequency and its harmonics, the
frequency-domain accuracy is defined as

Ef (ω
∗) = Ŷβ(ω

∗)− Yβ(ω
∗) (19)

where ω∗ ∈ [ω1
1 , ..., ω

Nt
1 , ..., ω1

ς , ..., ω
ςNt
ς ] with ω1

1 = ωlow,
ωNt
1 = ωhigh, ω1

ς = ςωlow and ωςNt
ς = ςωhigh, and ς ∈ 1, ...,Ξ

where the notation Ξ indicates the total number of the consid-
ered harmonics. Finally, the frequency-domain accuracy can
be written in the matrix format in the frequency domain as
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EEE f = [Ef (ω
1
1), ...,Ef (ω

Nt
1 ), ...,Ef (ω

1
ς ), ...,Ef (ω

ςNt
ς )]T (20)

where the length of the vector EEE f denoted as Lf can be
derived as Lf = Nt+, ...,+ςNt. For this new criterion, the
identified model (11) is said to be accurate if

ef = EEE f
TEEE f − ϵf ≤ 0 with ϵf → 0 (21)

where ϵf denotes a predefined frequency-domain accuracy
threshold and ef is the frequency-domain accuracy error.

Comparing Criterion 3 and Criterion 4, Criterion 4
integrates the physical information relating to the tooth passing
frequency. It is the combination of Criterion 1, Criterion
2 and Criterion 4 that is referred to as TCMoR which can
not only ensure that the identified NARX model has stability,
generalization and accuracy in the time domain, but also
ensure the NOFRFs extracted from the identified NARX model
can well represent the dynamics of machining processes over
tooth passing frequencies.

D. Implementation of Tool Condition Monitoring-oriented
Regularization (TCMoR)

Based on TCMoR, the regularization parameter λg selection
is determined by three criteria: 1) Criterion 1 guarantees the
model can be used for NOFRFs evaluation, 2) Criterion 2
ensures the model is less sensitive to extreme data and 3)
Criterion 4 ensures the desired dynamics can be accurately
modeled. Only when these three criteria are met at the same
time, the established model can be used for TCM. To find an
ideal λg that can meet these three criteria, the procedure of
the regularization parameter selection is given as follows:
Step 1: To find the candidate regularization parameters λg

which can satisfy (21) in Criterion 4, some algo-
rithms based on exhaustive search, such as Random-
ized Search (RS), Evolutionary Algorithm (EA) or
Genetic Algorithm (GA) [29] can be used to find
a series of relatively optimal candidate regulariza-
tion parameters denoted as Λ = [λ1, ..., λZ ] with
ef (λz) ≤ 0 and z = 1, ..., Z.

Step 2: Rank the candidate regularization parameters in order
from best to worst based on the performance of
the accuracy error ef (λz). The ranked regularization
parameters are denoted as Λr = [λr

1, ..., λ
r
Z ] with

ef (λ
r
1) ≤, ...,≤ ef (λ

r
Z).

Step 3: Finally, these ranked parameters Λr are sequentially
checked from λr

1 to λr
Z by Criterion 1 and Criterion

2 until the one denoted as λr
ξ with ξ ≤ Z can meet

both criteria. Therefore, the final selected regulariza-
tion parameter is λr

ξ and the built model based on
λr
ξ can be guaranteed to be stable and to provide a

relatively optimal accuracy with a certain degree of
generalization.

E. Summary of the Algorithm

In consequence, the final implementation of sensor data
modelling with TCMoR can be summarized in Algorithm 1.

Algorithm 1 TCMoR-based sensor data modelling

Input: Input signals, u; output signals, y; output lag, ny; input
lag, nu; polynomial degree ℓ.

Output: The identified NARX model.
1: Split the raw dataset into training and testing datasets.
2: Using FROLS to identify final model structure W by using

the training dataset.
3: Define the accuracy threshold ϵf , stability threshold ϵs and

generalization threshold ϵr.
4: Find a proper regularization parameter λg based on Step

1 to Step 3
5: Based on the selected λg , the regression weight vector g

can be calculated according to (5), and the final identified
NARX model can be obtained as (11).

As can be seen, apart from the regularization parameter, there
are several other critical parameters, which are input lag nu,
output lag ny , polynomial degree ℓ, sampling frequency fs,
accuracy threshold ϵf , stability threshold ϵs and generalization
threshold ϵr. In order to tune these parameters, the following
methods are used.

1) nu and ny: Selecting appropriate values for nu and ny is
crucial since a large value can provide more candidate
model terms, including more useful information, but
may also lead to the inclusion of redundant terms. The
selection of nu and ny was made through trial and error in
the present study. Based on Section III-D, a combination
of nu and ny that can produce the smallest frequency-
domain accuracy error is used for sensor data modelling.

2) ℓ: An ideal value of ℓ helps with determining appropriate
nonlinear model terms. However, increasing ℓ can signifi-
cantly increase the number of candidate model terms. For
ease of use, ℓ is initially selected as 2, and it can then be
incrementally adjusted until a satisfactory model is built.

3) fs: An appropriate sampling frequency fs is vital for
generating an accurate NARX model that represents the
dynamics of the milling process. As suggested by [30],
fs can be set to 10-20 times the tooth passing frequency.

4) ϵf , ϵs and ϵr: The accuracy threshold, stability thresh-
old, and generalization threshold are crucial parameters
for ensuring that the built model satisfies the accuracy,
stability, and generalization criteria, respectively. It is
advised that these thresholds are set to very small values
for this purpose. In the context of our case studies, we
suggest setting ϵf 1 × 10−1 for the accuracy threshold,
ϵs 1× 10−5 for the stability threshold, and ϵr 1× 10−1

for the generalization threshold.

IV. CASE STUDY 1: VARIABLE TOOL-WORKPIECE
ENGAGEMENT CONDITIONS

A. Experiment Design

In this section, an in-situ experiment is designed at the
Advanced Manufacturing Research Centre (AMRC), The Uni-
versity of Sheffield, Sheffield, U.K., where a DMU 40 evo
universal machine tool, as shown in Fig.4(a), is used to
conduct a run-to-failure test on cutting tools. The testing
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(a) (b)

Fig. 4. (a) View of the experimental setup and (b) A CAD drawing of a
complete toolpath.

cutting tools are OSG solid carbide end mills (UVX TI 6FL)
which have six flutes, and the machining parameters used
in the experiments are summarized in Table I. During the
milling processes, a new cutting tool was used to create pocket
features on the first titanium (Ti-6AI-4V) workpiece using
the dynamic milling strategy; and this workpiece is denoted
as W1. Fig.4(b) presents the computer-aided design (CAD)
drawing which shows the complete toolpath when machining
W1. As can be seen, the toolpath can be divided into four
cutting processes which are outer cutting (denoted as W1-O),
main pocket cutting (denoted as W1-M), first triangle pocket
cutting (denoted as W1-F) and second triangle pocket cutting
(denoted as W1-S). After the machining of the first workpiece
was finished, a new cutting tool was used to cut the second
workpiece (denoted as W2) with the same toolpath. The
corresponding four cutting processes for the second workpiece
are denoted as W2-O, W2-M, W2-F and W2-S which again
represent outer cutting, main pocket cutting, first triangle
pocket cutting and second triangle pocket cutting, respectively.
Microscope images of each flute of the cutter were taken after
completing each feature in order to measure the maximum
flank wear of the profile of cutting tools. Table II summarizes
the flank wear of each flute of the cutter. Based on the
measured flank wear, the wear of cutting tools is categorized
into 3 levels. If the flank wear of every flute is less than 0.300
mm, we define the level of tool wear as Level 1. If one of
the cutter flute has wear between 0.300 to 0.400 mm, we
define the level of tool wear as Level 2. If one of the cutter
flute has a flank wear of more than 0.400 mm, we define the
level of tool wear as Level 3. These levels of tool wear can
represent different wear phases in a typical Tool Wear Curve
(TWC) showing the relationship between the cutting distance
and measured flank wear [31]. In a TWC, there are three well-
defined wear phases which are i) initial wear phase, ii) steady
state phase and iii) rapid wear phase. Level 1 corresponds to
the initial wear and steady state stages. Level 2 relates to the
rapid wear stage before tool failure. Level 3 refers to the rapid
wear stage after tool failure. Table II also summarizes the three
levels of cutting tool wear.

B. TCMoR-based Sensor Data Modelling

To conduct TCM, two PCB-type accelerometers (PCB
604B31) were mounted on the spindle and on the milling

fixture beneath the workpiece, respectively. The sensitivity of
the accelerometer is 100 mV/g and it has a constant frequency
gain between 0.5 to 5 kHz. Vibration signals were collected
by a data acquisition card (NI 9234) and the sampling rate was
set to 51.2 kHz in order to cover the entire frequency range
of the accelerometer. For each cutting process, 35 datasets
were collected throughout the whole toolpath, and the time
interval between each dataset was fixed. For the outer cutting,
the time interval is 20 secs. For the main pocket cutting and
triangle pocket cutting, the time interval is 10 secs and 5 secs,
respectively. Furthermore, each dataset consists of two files
that are one 1-second spindle vibration signal snapshot and one
1-second milling fixture vibration signal snapshot. Then, for
each of the 35 datasets, sensor data modelling was applied to
build a NARX model in order to find the dynamic relationship
between the vibration signal collected from the spindle and
the vibration signal collected from the milling fixture. The
execution time for the proposed TCMoR-based sensor data
modelling to identify a NARX model using one snapshot of
sensor data is around 3 seconds [our tests were implemented
using a desktop with a 12th Gen Intel(R) Core(TM) i9-12900k
CPU and 64-GB memory]. As a result, for each machining
process, 35 NARX models were produced from the 35 datasets
in order to extract the NOFRFs features for TCM.

For TCMoR, the physical knowledge is the tooth passing
frequency. Since the spindle rotation speed is 2586 RPM,
the tooth passing frequency is 258.6 (= 2586/60 × 6) Hz.
As a result, the frequency variables in (19) can be set to
ω∗ ∈ [250, 260] ∪ [500, 520] Hz to include the tooth passing
frequency and its harmonics for TCMoR. It is worth men-
tioning that, during the machining process, the tooth passing
frequency is not strictly constant due to different machining
strategies, cutting head deteriorations and fluctuations in spin-
dle speed depending on the spindle motor control, and it is
difficult to know the exact variation in advance. In Fig.5, the
blue line is the first order NOFRF associated with the healthy
tool where the dominant frequency component is 258.6 Hz
which is the tooth passing frequency. In contrast, the red line
is the first order NOFRF associated with the worn tool where
the dominant frequency component has increased to 288.5 Hz
which is a bit far away from the tooth passing frequency. The
region demarcated by the dashed black rectangle represents
a predetermined frequency range of [250, 260] Hz around
the designed tooth passing frequency. From Fig.5, it can be
observed that within the frequency range of [250, 260] Hz,
the first order NOFRF associated with the healthy tool and
the first order NOFRF associated with the worn tool are very
different. This difference enables the differentiation between
a health and worn tool.

To find an ideal λg that can meet Criterion 1, Criterion
2 and Criterion 4 introduced in Section III, the accuracy
threshold ϵf , stability threshold ϵs and generalization threshold
ϵr are set to 1 × 10−2, 1 × 10−4 and 10, respectively; and
the EA-based algorithm is used to search for a relatively
optimal λg . More details of the EA-based algorithm have been
introduced in [29].
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Table I
Summary of the machining parameters.

Number of Axial depth of Radial depth of Feed rate Spindle speed Chip thickness Cutting Speed Coolant delivery
flutes cut (mm) cut (mm) (mm/min) (rpm) hex (mm) (m/min)
6 19.5 0.15 1738.32 2586 0.08 130 Flood

Table II
Flank wear of each cutter flute.

Workpiece 1
Flank wear (mm)

Flute 1 Flute 2 Flute 3 Flute 4 Flute 5 Flute 6 Wear level
W1-O 0.115 0.099 0.103 0.128 0.119 0.119 Level 1
W1-M 0.175 0.197 0.164 0.314 0.437 0.318 Level 2
W1-F 0.212 0.208 0.233 0.312 0.486 0.459 Level 3
W1-S 0.257 0.255 0.274 0.314 0.483 0.526 Level 3

Workpiece 2
Flank wear (mm)

Flute 1 Flute 2 Flute 3 Flute 4 Flute 5 Flute 6 Wear level
W2-O 0.128 0.126 0.106 0.122 0.158 0.192 Level 1
W2-M 0.133 0.126 0.136 0.125 0.194 0.301 Level 2
W2-F 0.121 0.169 0.134 0.138 0.189 0.302 Level 2
W2-S 0.155 0.170 0.135 0.142 0.260 0.302 Level 2
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Fig. 5. First order NOFRFs of health and worn tools.

C. Model Frequency Analysis

After TCMoR-based sensor data modelling, the next step
is to conduct model frequency analysis via NOFRF eval-
uations. As the tooth passing frequency is 258.6 Hz, in
order to observe the frequency domain properties at this
frequency, we designed an input excitation with a frequency
range from 250 to 260 Hz to evaluate the NOFRFs of
each model. The input excitation signal u∗(t) is designed as
u∗(t) = 3 · [sin(2 · 260 · π · t)− sin(2 · 250 · π · t)]/2 · π · t
where −2 ≤ t ≤ 2. Based on Eqs. (9) and (10), the NOFRFs
of each identified model were determined. For this case study,
the first, second and third-order NOFRFs were extracted as
model features. The execution time for the evaluation of the
NOFRFs of the identified NARX model takes around 1 second.

Fig.6 shows an experimental evidence of the NOFRFs-based
model features under three different levels of tool wear (Levels
1, 2 and 3 introduced in Table II). The NOFRFs amplitudes
under tool wear Level 1 (black lines) are mainly concentrated
in the range from 0.15 to 2; under tool wear level 2 (red
lines), the NOFRFs amplitudes are between 0.1 and 1; while
under tool wear level 3 (blue lines), the NOFRFs amplitudes
are limited to 0.18. These observations demonstrate that the
NOFRFs-based frequency analysis can be effectively exploited
to monitor the conditions of cutting tools.
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Fig. 6. NOFRFs-based model features of tool wear Level 1, Level 2 and Level
3.

Fig. 7. Design of the diagnostic procedure.

D. Model Feature-based TCM

To conduct TCM, a classification approach was applied
based on the extracted NOFRFs-based model features. Fig.7
displays the diagnostic procedure. As can be seen, three binary
classification processes were designed in order to classify
different levels of tool wear. For example, the classifier de-
noted as C12M was designed to classify tool wear Level 1
and Level 2. The training and validation datasets were from
W1-O and W1-M and the testing dataset was from W2-O
and W2-M. In the same way, such nomenclature also applies
to C13M and C23M. It is worth mentioning that, in the
present study, three binary classifiers were used instead of a
single multiclass classifier. This is because the binary classifier
can output Receiver Operating Characteristics (ROC) curves,
within which the threshold and Area Under the Curve (AUC)
can be analyzed in order compare the effectiveness of the
developed NOFRFs-based model features with conventional
features. On the contrary, a single multiclass classifier can
only output a confusion matrix, making it difficult to evaluate
the feature performance in detail.

During the training and validation stage shown in Fig.7,
k-fold cross-validation was used, and we used a support
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Fig. 8. The classification results on validation datasets by using the TCMoR-
based method of the classifier (a) C12M, (b) C13M, (c) C23M.

vector machine (SVM) for classification training since it is
a powerful classification approach in relevant applications. To
quantify the performance of the classifier on the validation
datasets, the ROC-AUC curve is utilized. If the ROC is close
to the top-left corner with the coordinates O(0, 1), then the
trained classifier has a good performance. Furthermore, as the
trained SVM classifier has a particular threshold on the ROC
curve, to quantify this trained classifier, an indicator termed
as Distance to Top Left Corner (DTLC), is proposed [32],
[33]. If DTLC is close to 0, then the classifier has an overall
good classification performance. Finally, the combination of
ROC-AUC and DTLC allows the performance of the classifier
to be evaluated from several perspectives including quality
and accuracy. Fig.8 shows the ROC-AUC curves of validation
datasets from C12M, C13M and C23M where their AUCs
are 0.97, 1 and 0.93, respectively. Furthermore, the red circle
on the ROC curve corresponds to the trained SVM classifier.
For example, the red circle on Fig.8(a) has the coordinates
of T(0.04, 0.96), so the DTLC of the trained classifier is
0.96(≈

√
0.042 + 0.962).

In the training and validation stage, the classification train-
ing was repeated 5 times, so the mean AUC and mean
DTLC can be recorded in the validation results; and Table III
summarizes the validation results of C12M, C13M and C23M.

Finally, After the SVM classifier was trained off-line by
using the whole training and validation datasets, it was then
utilized to predict the testing dataset. The prediction results
including ROC-AUC and DTLC of the classifiers C12M,
C13M and C23M on testing datasets are presented in Fig.9(a)
to Fig.9(c), and summarized in Table III.

E. Comparative Study

1) CR-based method: To demonstrate the advantages of the
proposed TCMoR method, some comparisons with the
CR method were carried out where Criterion 1, Crite-
rion 2 and Criterion 3 were taken into account during
the sensor data modelling stage. After using the CR-
based sensor data modelling, the corresponding NOFRFs-
based model features were extracted for TCM. For the
diagnostic procedure, as presented in Fig.7, the classifiers
C12C, C13C and C23C, were designed respectively to
classify different tool wear levels. The results on vali-
dation datasets and testing datasets were summarized in
Table III and presented in Fig.9(d) to Fig.9(f). As can
be seen, the results on the training/validation datasets
may perform well but the results on the testing dataset

Table III
Case study 1: summary of the results under variable tool-workpiece

engagement conditions by using different TCM methods.

Classifier
Cross-

Testing Accuracy1 Specificity2 Recall3

validation

C12M
AUC 0.94 AUC 0.74

84.00% 72.00% 96.00%
DTLC 0.16 DTLC 0.28

C13M
AUC 0.96 AUC 1 100.00% 100.00% 100.00%
DTLC 0.14 DTLC 0

C23M
AUC 0.92 AUC 1 98.00% 96.00% 100.00%
DTLC 0.22 DTLC 0.04

C12C
AUC 1 AUC 0.50

52.00% 4.00% 100.00%
DTLC 0.12 DTLC 0.96

C13C
AUC 1 AUC 1

52.00% 4.00% 100.00%
DTLC 0 DTLC 0.96

C23C
AUC 0.48 AUC 0.77

70.00% 56.00% 84.00%
DTLC 0.67 DTLC 0.47

C12S
AUC 0.98 AUC 1 98.00% 100.00% 96.00%
DTLC 0.16 DTLC 0.04

C13S
AUC 1 AUC 0.72

52.00% 100.00% 40.00%
DTLC 0 DTLC 0.96

C23S
AUC 0.94 AUC 0.85

80.00% 64.60% 86.00%
DTLC 0.12 DTLC 0.36

C12L
AUC 0.93 AUC 0.85

66.00% 36.00% 96.00%
DTLC 0.12 DTLC 0.64

C13L
AUC 0.97 AUC 1

86.00% 72.00% 100.00%
DTLC 0.96 DTLC 0.28

C23L
AUC 0.89 AUC 0.98

96.00% 96.00% 96.00%
DTLC 0.89 DTLC 0.06

1Accuracy = (TP+TN)/(TP+FP+TN+FN)
2Specificity = 1 - FPR = TN/(FP+TN)
3Recall = TPR = TP/(TP+FN)

are unsatisfactory. This is because there are some vari-
ations between the training/validation datasets and the
testing dataset due to different machining strategies, noise
and some unknown reasons. Consequently, the extracted
NOFRFs-based model features may fail to reveal the true
cutting tool states. However, when applying the TCMoR-
based method, the physical information of the machining
process is incorporated into the modelling procedure. As
a result, the TCM performance has been improved.

2) Signal feature-based method: An alternative yet an ap-
pealing method for TCM is the signal feature-based ap-
proach which extracts the candidate signal features from
the collected datasets; and the significant signal features
are selected from the candidate features in order to train
the classifier for TCM [34]. To classify different tool wear
levels, as presented in Fig.7, the classifiers C12S, C13S
and C23S, were designed respectively. The results of the
signal feature-based approach were presented in Table III
and demonstrated in Fig.9(g) to Fig.9(i). Compared with
the model feature-based method using TCMoR shown in
Fig.9(a) to Fig.9(c), the signal feature-based method often
fails to identify the cutting tool states especially when
the machining strategies are complicated. Furthermore,
for different machining processes, signal features have
to be redesigned increasing the difficulty of the feature
extraction. One of the unique contributions of the model
feature-based method is that the features are always the
NOFRFs which can be fixed when applied to TCM of
different machining processes.

3) Linear model-based method: The linear ARX model was
used as a comparison to represent the dynamic relation-
ship between u(t) and y(t) collected from the vibration
sensors mounted on the spindle and milling fixture,



10

0 0.5 1

False positive rate

0

0.5

1

T
ru

e
 p

o
s
it
iv

e
 r

a
te AUC = 0.74

DTLC = 0.28

(a)

0 0.5 1

False positive rate

0

0.5

1

T
ru

e
 p

o
s
it
iv

e
 r

a
te AUC = 1

DTLC = 0

(b)

0 0.5 1

False positive rate

0

0.5

1

T
ru

e
 p

o
s
it
iv

e
 r

a
te AUC = 1

DTLC = 0.04

(c)

0 0.5 1

False positive rate

0

0.5

1

T
ru

e
 p

o
s
it
iv

e
 r

a
te AUC = 0.50

DTLC = 0.96

(d)

0 0.5 1

False positive rate

0

0.5

1

T
ru

e
 p

o
s
it
iv

e
 r

a
te AUC = 1

DTLC = 0.96

(e)

0 0.5 1

False positive rate

0

0.5

1

T
ru

e
 p

o
s
it
iv

e
 r

a
te AUC = 0.77

DTLC = 0.47

(f)

0 0.5 1

False positive rate

0

0.5

1

T
ru

e
 p

o
s
it
iv

e
 r

a
te AUC = 1

DTLC = 0.04

(g)

0 0.5 1

False positive rate

0

0.5

1

T
ru

e
 p

o
s
it
iv

e
 r

a
te AUC = 0.72

DTLC = 0.96

(h)

0 0.5 1

False positive rate

0

0.5

1

T
ru

e
 p

o
s
it
iv

e
 r

a
te AUC = 0.85

DTLC = 0.36

(i)

0 0.5 1

False positive rate

0

0.5

1

T
ru

e
 p

o
s
it
iv

e
 r

a
te

AUC = 0.85

DTLC = 0.64

(j)

0 0.5 1

False positive rate

0

0.5

1

T
ru

e
 p

o
s
it
iv

e
 r

a
te

AUC = 1

DTLC = 0.28

(k)

0 0.5 1

False positive rate

0

0.5

1

T
ru

e
 p

o
s
it
iv

e
 r

a
te

AUC = 0.98

DTLC = 0.06

(l)

Fig. 9. The classification results on testing datasets by using the TCMoR-
based method produced the classifier (a) C12M, (b) C13M, (c) C23M.
The classification results on testing datasets by using the CR-based method
produced classifier (d) C12C, (e) C13C and (f) C23C. The classification
results on testing datasets by using the signal feature-based method produced
classifier (g) C12S, (h) C13S and (i) C23S. The classification results on
testing datasets by using the linear model-based method produced classifier
(g) C12L, (h) C13L and (i) C23L.

respectively; and the frequency response function (FRF)
was extracted as model features to conduct TCM. The
diagnostic procedure is shown in Fig.7, and the classifiers
C12L, C13L and C23L, were designed respectively to
classify different tool wear levels. The diagnostic results
are presented in Fig.9(j) to Fig.9(l), and summarized in
Table.III. As can be seen, the linear model-based method
has a lower accuracy rate. This is because the linear
model cannot capture the nonlinear dynamics induced by
the tool wear.

V. CASE STUDY 2: CONTROLLED TOOL-WORKPIECE
ENGAGEMENT CONDITIONS

The second case study is about controlled engagement
milling, which was designed to cut the workpieces into differ-
ent regular shapes. As can be seen in Fig.10(a), the workpiece
was stratified into three discrete layers. The top layer was used
to machine a round-shaped feature, the second layer was used
to machine a diamond-shaped feature, and the third layer was
used to machine a square-shaped feature. Lastly, the straight
cutting milling was conducted where the cutting tool was used
to cut straight lines.

(a) (b)

Fig. 10. (a) A CAD drawing of machining features and (b) view of the
experimental setup.

For this case study, the machining operation was also
performed using a DMU 40 evo machine, and, as presented in
Fig.10(b), titanium (Ti-6Al-4V) workpieces with dimensions
of 100 mm × 100 mm × 40 mm were used to conduct the
experiment. Throughout the machining operation, the spindle
operated at a speed of 300 rpm, and the cutter was equipped
with 7 flutes. Consequently, the tooth passing frequency is
computed to be 35 Hz, derived from the formula = 300/60×7.
Furthermore, the utilized accelerometers, data acquisition card,
sampling rate are the same with the previous cast study.

During the experiments, the new cutting tools and worn
cutting tools were used, respectively, to cut the workpieces of
these regular shapes. The datasets collected from new cutting
tools were denoted as Baseline and the datasets collected
from worn cutting tools were denoted as Toolwear. For each
cutting process of these regular-shaped features, 36 datasets
were collected throughout the whole toolpath meaning that 36
NARX models were produced from the 36 datasets with the
aim of extracting the NOFRFs features for TCM. For TCMoR,
since the spindle speed is 35 Hz, the frequency variables in
Eq.(19) were set to ω∗ ∈ [30, 40] ∪ [60, 80] Hz to include the
tooth passing frequency and its harmonics for TCMoR.

The diagnostic procedure for TCM is similar to the previous
case study where the original datasets from Baseline and Tool-
wear were divided into training, validation and testing datasets.
Then, the TCMoR-based method, CR-based method, signal
feature-based method and FRF-based method were used,
respectively, in order to extensively compare the proposed
method with other existing TCM techniques. The classification
results by using different methods are summarized in Table IV.
As can be seen, the proposed method achieves the highest
accuracy rate for square-shaped, round-shaped and straight
milling. Furthermore, the proposed method can produce the
highest AUC and lowest DTLC for three of the four controlled
tool-workpiece engagement machining processes. As a result,
the proposed method performs better in terms of AUC, DTLC
and accuracy, which demonstrates the superiority of the newly
proposed TCMoR-based sensor data modelling and model
frequency analysis over existing TCM methods.

VI. DISCUSSION

In order to illustrate the strength and weakness of the
proposed diagnostic approach, a discussion is presented below.
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Table IV
Case study 2: summary of the results under controlled tool-workpiece

engagement conditions by using different TCM methods.

Shapes Methods Accuracy Specificity Recall

Square

TCMoR
AUC 0.79 76.0% 68.6% 83.3%
DTLC 0.28

CR
AUC 0.61

58.2% 78.1% 36.3%
DTLC 0.65

Signal AUC 0.75
50.0% 100.0% 0%

feature DTLC 1

FRF
AUC 0.74

65.6% 42.5% 88.8%
DTLC 0.59

Diamond

TCMoR
AUC 0.80

72.9% 65.6% 80.2%
DTLC 0.39

CR
AUC 0.79 77.1% 79.2% 75.0%
DTLC 0.33

Signal AUC 0.78
68.8% 70.8% 66.7%

feature DTLC 0.44

FRF
AUC 0.69

58.3% 69.4% 47.2%
DTLC 0.61

Round

TCMoR
AUC 0.70 72.9% 62.5% 83.3%
DTLC 0.40

CR
AUC 0.79

68.6% 70.8% 66.7%
DTLC 0.44

Signal AUC 0.6
50.0% 100% 0%

feature DTLC 1

FRF
AUC 0.50

52.00% 4.00% 100%
DTLC 0.96

Straight

TCMoR
AUC 0.99 99.0% 99.0% 99.0%
DTLC 0.01

CR
AUC 0.80

75.5% 74.8% 76.2%
DTLC 0.35

Signal AUC 0.98
84.8% 71.0% 98.6%

feature DTLC 0.29

1) Time consumption: The proposed TCMoR is a regu-
larization method. In this respect, the performance of
the TCMoR including execution time is the same as
that of a CR-based method. The fundamental difference
between the TCMoR and a CR is the way by which
the regularization parameter λg is determined. When the
TCMoR is applied, the regularization parameter λg is
determined to make sure the identified NARX model
can sufficiently capture the dynamics of the underlying
machining process so that the NOFRFs of the identified
NARX model can be used for TCM.
The signal feature-based methods require a feature selec-
tion process in the offline training stage, which is time-
consuming. On the contrary, for the proposed method,
the features are always NOFRF features evaluated from
the identified NARX models. Therefore, the proposed
method is more efficient in terms of feature extraction
in the training stage.

2) Limitation: The proposed framework has several tunable
parameters, such as input lag nu, output lag ny , and
maximum degree of nonlinearity ℓ, in the sensor data
modelling stage.However, it is difficult to preset them
in advance. Thus, a more effective algorithm is needed
to automatically tune these parameters, which will be
explored in future research.

VII. CONCLUSION

In the present study, a new diagnostic framework based on
sensor data modelling and model frequency analysis is pro-
posed for tool condition monitoring (TCM) during machining.
Under this framework, for the first time, the physical knowl-
edge of the underlying machining process is incorporated into

the modelling procedure to design the associated regularization
parameter. This is known as the tool condition monitoring-
oriented regularization (TCMoR)-based sensor data modelling
and model frequency analysis. The application of the TCMoR-
based sensor data modelling and model frequency analysis
to TCM has been investigated by comprehensive machining
experimental studies. Compared with the existing sensor data
modelling and model frequency analysis-based method and
conventional signal feature-based approaches, the proposed
method can better exploit the physics underlying monitored
milling processes and has the advantage of not needing to
design different features for different milling processes. The
results of the experimental studies have demonstrated the
effectiveness of the proposed method especially in the scenar-
ios when conducting TCM for complicated milling processes
including variable tool-workpiece engagement conditions.

The primary limitation associated with the proposed method
relates to the computational speed of the NARX modelling.
Additionally, there is a challenge in implementing the pro-
posed method for real-time TCM in industrial-scale settings.
As a result, future works will focus on the development of
a real-time implementation approach to the TCMoR-based
method. The aim is to apply the approach to perform real-
time TCM in industrial-scale machining tests and evaluate the
performance of the new diagnostic framework for TCM in
industry application-oriented scenarios.

APPENDIX

Consider rewriting the built NARX model (6) into the
following discrete-time equation,

y(t) =

J∑
j=1

j∑
p=0

L∑
l1,...,lp+q=1

cp,q(l1, ..., lp+q)

×
p∏

i=1

y(t− li)

p+q∏
i=p+1

u(t− li)

(22)

where J and L are integers, p + q = j, and cp,q(l1, ..., lp+q)
denotes the coefficients of the model [35]. The GALEs of the
NARX model (22) can be described as [36]

yn(t) =

L∑
l1=1

c1,0(l1)yn(t− l1) +

L∑
l1,ln=1

c0,n(l1, ., ln)

×
n∏

i=1

u(t− li) +

n−1∑
q=1

n−q∑
p=1

L∑
t1,tp+q=1

cp,q(l1, ..., lp+q)y
L
n−q,p(t)

×
p+q∏

i=p+1

u(t− li) +

n∑
p=2

L∑
l1,lp=1

cp,0,k(l1, ..., lp)y
L
n,p,k(t)

(23)
where n = 1, ..., N , L = [l1, ..., ln] and

 yL
n,p(t) =

n−(p−1)∑
i=1

yi (t− lp) y
Lp

n−i,p−1(t)

yL
n,1(t) = yn (t− l1)

(24)
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