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Abstract—Internet of Things (IoT) systems comprise
massive volumes of smart devices. Through exchanges of
information, smart objects are capable of reasoning and
generate higher level of intelligence. The effectiveness of
data collection processes is a key factor to the success
of IoT systems as it can seriously affect the freshness of
the captured data. Efficient data collection processes have
been well-studied on sensory systems with static topologies
and single data extraction point. Smart devices in IoT
systems are often shared by different parties, therefore
concurrent data collection processes are always expected.
Such a unique characteristic of IoT systems has imposed
new challenges to the designs of efficient data collection
processes. In this paper, concurrent data collection trees
specifically designed for IoT applications are proposed.
It is shown that, comparing with an existing single-user
data collection structure, systems with the proposed tree
structures can significantly shorten their concurrent data
collection processes.

Index Terms—Internet of things, concurrent transmis-
sions, data collection processes, tree topology

I. INTRODUCTION

BY 2050, 70% of the worlds’ population is expected
to live in cities. To support such a rapid growth, it is

important for cities to deliver up-to-date information to
its residents in a timely manner by adopting modern in-
formation and communications technologies. Among the
technologies, Internet of Things (IoT) is well recognized
as a promising solution [1], [2]. Currently, most existing
smart cities are equipped with non-interoperable isolated
IoT infrastructures [3]. To maximize the effectiveness
and fully unleash the potential of smart cities, IoT
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devices installed on different assets should be inter-
connected instead of forming multiple discrete closed-
form systems [4]. Furthermore, to avoid over- provision
and unnecessary redundancy, public and private sectors
should share their IoT infrastructures.

Therefore, it is safe to assume that for future IoT
systems, a set of sensors and middleware will be owned
and shared by multiple users. Users or even IoT devices
may submit their queries simultaneously, which trigger
multiple parallel data streams in the same network. The
effectiveness of data collection processes is always an
important issue for IoT systems as it can seriously
affect the freshness of the captured data and ultimately
affect the decision-making process behind [5]. Parallel
data streams introduce new challenges to the delay
optimization in IoT systems. In this paper, concurrent
data collection trees are proposed to keep the overall
data collection duration short. Simulation results show
that the proposed idea can greatly reduce delays in
concurrent data collection processes. The rest of the
paper is organized as follows. Section II presents the
related work of this project. Section III introduces the
characteristics of the proposed data collection trees struc-
ture. Detailed mathematical analyses on the performance
of the proposed data collection trees and the delay-
aware data collection network structure (DADCNS) in
[6] are provided in Section IV. Practical procedures
for achieving feasible transmission schedules under the
proposed tree structure are introduced and elaborated in
Section V. Results are presented and analyzed in Section
VI. Concluding remarks are given in Section VII.

II. RELATED WORK

The problem of data collection in large-scale sensory
systems has been studied in the early work of Cheng et
al. [7]. In their work, they considered collecting data
from a large volume of individuals to a single data
extraction point. Based on the fact that all the nodes
in a sensory system are owned by the same party, the
authors in [7] have provided a new insight to the well-
studied routing problem in computer networks. That is,
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instead of avoiding congested links, one should maxi-
mize the utilization of his network resources by means
of having a coordinated transmission schedule. In [8],
Florens et al. provided a framework for evaluating the
time performance of data collection and data distribution
tasks in sensory systems. In their work, they derived
low bounds for networks with various topologies and
given their corresponding optimal transmission sched-
ule. Ji et al. are the pioneers studying the problem of
continuous data collection in sensory systems. In their
work [9], they derived the lower bounds for single-
snapshot data collections and continuous data collec-
tions. They also showed that a data collection process
can be significantly shortened by employing devices
with multiple transceivers. The above works provided
the foundations for the development of delay-aware data
collection network structures in [6], [10], [11]. In [6],
Cheng et al. introduced a delay minimized network
structure for fusible data and its corresponding formation
algorithms for centralized and distributed systems. In
[10], Cheng et al. introduced another network structure
to facilitate opportunistic in-network data fusion, which
the upper bound will never exceed that of a star network.
For sensory systems that require consecutive data col-
lection processes, a delay-aware network structure and
its formation algorithm have been proposed in [11] to
resolve conflicts among transmission schedules. The data
collection problem has been further investigated with
the consideration of channel models by Chen et al. in
[12]. In their work, they provided the upper and lower
bounds for data collection processes in networks that
data fusion is not applicable. In [13], Durmaz Incel
et al. proposed a fast data aggregation tree for single-
snapshot data collection in wireless sensor networks.
In their tree construction process, interferences among
sensor nodes are taken into account. Wang et al. was
taking the approach of obtaining an approximate data
collection by selectively sampling some of the nodes
[14]. Their proposed idea is highly efficient and re-
liable for scenarios with data showing a high degree
of correlation geographically. Recently, studies in [15]
have considered optimizing transmission schedules in
sensory systems with dynamic traffic patterns. Sensory
systems with a probabilistic network model have been
investigated in [16] and [17]. Data collection processes in
sensory systems with mobility have been studied in [18].
Nevertheless, the works done by Kapoor et al. in [19],
[20] considered the task scheduling problem in wireless
sensor networks (WSNs), which may show the highest
similarity to the problem considered in this work. It is
noted that machine-to-machine (M2M) communication
is the key enabling technology that differentiates IoT

from conventional sensory systems [21].
In ordinary WSNs, sensor nodes are normally owned

and managed by a single party. In IoT applications,
however, IoT devices can be jointly owned by multiple
users or applications, who may trigger concurrent data
aggregations simultaneously on the same set of nodes.
Unfortunately, none of the above works consider concur-
rent data collection processes and the existence of mul-
tiple data extraction points. Data collection in real-world
IoT systems have drawn much attention in recent years
[1], [22]. In [23], Kawamoto et al. suggested to realize
a global-scaled IoT federation by utilizing satellite data
links to connect remote IoT fragments together. In IoT
systems, while an average packet loss rate of around
25% is expected, delays due to retransmissions can
be shortened by compressing data and avoiding packet
fragmentations [24]. Wu et al. stated that data collection
systems based on the ordinary IEEE 802.11 standard
can suffer from performance degradations when devices
are sharing a single channel [25]. They proposed an
adaptive channel allocation mechanism and an energy-
aware access control protocol for achieving efficient data
collection in large-scale IoT systems. Bellavista et al.
are the very first in the area who bring mobility into IoT
by integrating mobile ad hoc networks (MANETs) with
WSNs [26].

III. CONCURRENT DATA COLLECTION TREES

In this section, properties of the proposed trees struc-
ture will be elaborated. An expression for the duration
of a data collection process under the proposed structure
will be given, followed by a working example.

Consider an IoT network N = {n1, n2, · · · , n|N |}
and a set of base stations S = {s1, s2, · · · , s|S|}. It
is assumed that all these |N | IoT nodes can commu-
nicate with each other and reach the base stations. Data
collected from different IoT devices are assumed to be
perfectly fusible, such that multiple received data packets
can be fused into one before forwarding to one’s parent
node [6]. Transmission of a single unit of data will
last for 1 time-slot and the duration of a data fusion
process is assumed to be negligible. Each concurrent
data aggregation process will use a different base station
(BS) to access the IoT network and the total number of
concurrent data streams is k. To maintain fairness among
these users, all concurrent data stream should begin and
end at the same time-slot. Nevertheless, parallel data
streams should utilize the same number of nodes at each
time-slots. To shorten the overall data collection process,
each data stream should utilize the maximum possible
number of nodes at each time-slot. In a network N
with k concurrent data aggregation processes, such that
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Fig. 1. Data collection in a network N with |N | = 9 nodes and k = 3 concurrent data streams. Circles and triangles are representing IoT
nodes and base stations, respectively. Arrows are indicating the flow of data streams. The text next to an arrow is indicating its data stream
(i.e. A, B, C) and the time-slot number (i.e. 1, · · · , 5).

|N | ≥ k, the maximum possible number of nodes that
can be utilized by a single data stream at the first time-
slot is expressed as

umax = ⌊ |N |
k
⌋. (1)

Here, ⌊x⌋ represents the largest integer smaller than or
equal to x. Let ui be the number of nodes utilized by a
data stream in the ith time-slot, such that ui ≤ umax, ∀i.
If ui is an odd number, it indicates one of the nodes
is involved in a node-to-BS (N2BS) transmission, while
the other nodes are paired up and involved in node-to-
node (N2N) transmissions. In contrast, if ui is an even
number, it indicates all ui nodes are involved in N2N
transmissions. In general, ui can be expressed as

ui = min[umax, |N | −
i−1∑
j=1

ûj ], (2)

where ûj represents the number of nodes that have
finished their transmissions after the jth time-slot and
it is expressed as

ûj = ⌈
uj
2
⌉. (3)

Here, ⌈x⌉ represents the smallest integer greater than
or equal to x. According to (2), a data stream in the
proposed data collection tree will utilize umax nodes

in the first τ1 time-slots consecutively, where τ1 is
expressed as

τ1 =

{
⌊2(|N |−umax)

(umax+1) + 1⌋, if umax is odd,

⌊2(|N |−umax)
umax

+ 1⌋, if umax is even.
(4)

There will be |N |−τ1⌈umax
2 ⌉ nodes waiting for transmis-

sion at the (τ1 + 1)th time-slot. These nodes will take τ2
time-slots to finish the remaining data collection process
of the current data stream by using DADCNS in [6].
Therefore, τ2 of the proposed data collection tree is
expressed as{
⌊log2(|N | − τ1⌈umax

2 ⌉)⌋+ 1, if |N | − τ1⌈umax
2 ⌉ > 0,

0, otherwise.
(5)

By considering cases with umax being odd or even
numbers, τ2 can be further elaborated as

⌊log2(|N | − τ1
umax+1

2 )⌋+ 1, if |N | − τ1
umax+1

2 > 0

and umax is odd,
⌊log2(|N | − τ1

umax
2 )⌋+ 1, if |N | − τ1

umax
2 > 0

and umax is even,
0, otherwise.

(6)
Therefore, the overall duration of k concurrent data
collection processes in a network N is expressed as

T = τ1 + τ2. (7)
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Example 1: Consider a network N with |N | = 9
nodes and k = 3 concurrent data streams. The maximum
possible number of nodes that can be utilized by a single
data stream is umax = ⌊9/3⌋ = 3. Using (4), (6), and (7),
the overall duration of the 3 concurrent data collection
processes in the network is expressed as

T = ⌊2(|N |−umax)
umax+1 + 1⌋

+ ⌊log2 (|N | − ⌊
2(|N |−umax)

umax+1 + 1⌋umax+1
2 )⌋+ 1

= ⌊4⌋+ ⌊log2(1)⌋+ 1 = 5.

According to (2), a data stream will utilize 3, 3, 3, 3, and
1 nodes in the 1st to the 5th time-slot, respectively. A fea-
sible data transmission schedule is illustrated in Fig. 1.
Procedures for obtaining such transmission schedule will
be elaborated in Section V.

Comparatively, if only DADCNS in [6] is employed,
as all the nodes will be utilized by one data stream in
the first time-slot, concurrent data collection processes
are not feasible. Multiple data collection processes on
the same set of nodes can only be carried out sequen-
tially and thus the overall duration of k data collection
processes in a network N is expressed as

T = k(⌊log2(|N |)⌋+ 1). (8)

IV. PERFORMANCE ANALYSES

In this section, analytical proofs will be used to
verify the improvements, in terms of delays in data
collection processes, brought by the proposed structure
over DADCNS.

Lemma 1: For k ≥ 2, |N | − τ1⌈umax
2 ⌉ ≤

|N |
2 is true.

Proof: First consider cases when umax is odd, it can
be shown that

|N | − τ1⌈umax
2 ⌉ = |N | − τ1

umax+1
2

≤ |N | − 2(|N |−umax)
umax+1

umax+1
2

= umax ≤ |N |
k ≤

|N |
2 .

(9)

Now consider cases when umax is even, it can be shown
that

|N | − τ1⌈umax
2 ⌉ = |N | − τ1

umax
2

≤ |N | − 2(|N |−umax)
umax

umax
2

= umax ≤ |N |
k ≤

|N |
2 .

(10)

The lemma is proven.
Lemma 2: For k ≥ 2 and |N | ≥ 4, then

k⌊log2(|N |)⌋ ≥ k + ⌊log2(|N |)⌋ is true.
Proof: Consider the inequality ab ≥ a + b, which

holds when b ≥ a
a−1 and a ≥ 2. Together with (1), it

can be show that

⌊ |N |
umax
⌋ = k ≥ 2 ≥ ⌊log2(|N |)⌋

⌊log2(|N |)⌋ − 1
, (11)

and therefore

k⌊log2(|N |)⌋ ≥ k + ⌊log2(|N |)⌋. (12)

The lemma is proven.
Theorem 1: With the proposed arrangement, the over-

all duration of k data collection processes in a network
N with |N | ≥ 4 is always lower or equal to that of a
network with the DADCNS proposed in [6].

Proof: Denote Tp and To as the overall durations
of k data collection processes in a network N with the
proposed arrangement and the DADCNS, respectively.
When k = 1, |N | = umax. Therefore,

Tp = τ1 + ⌊log2(|N | − τ1⌈umax
2 ⌉)⌋+ 1

= ⌊2(|N | − umax)/umax + 1⌋
+ ⌊log2(|N | − τ1⌈umax

2 ⌉)⌋+ 1

= 1 + ⌊log2(|N | − ⌈
|N |
2 ⌉)⌋+ 1

≤ 1 + ⌊log2(|N | −
|N |
2 )⌋+ 1

= ⌊log2(|N |)⌋+ 1
= To.

(13)

For cases with k ≥ 2 and umax is odd, it can be shown
that
Tp = τ1 + ⌊log2(|N | − τ1

umax+1
2 )⌋+ 1

= ⌊2∗(|N |−umax)
umax+1 + 1⌋

+ ⌊log2(|N | − τ1
umax+1

2 )⌋+ 1

≤ ⌊2∗(|N |−umax)
umax+1 + 1⌋

+ ⌊log2(
|N |
2 )⌋+ 1 ∵ Lemma 1

≤ ⌊2∗(|N |−umax)
umax

+ 1⌋
+ ⌊log2(

|N |
2 )⌋+ 1

= ⌊2|N |
umax
⌋+ ⌊log2(

|N |
2 )⌋

≤ 2⌊ |N |
umax
⌋+ 1 + ⌊log2(

|N |
2 )⌋

= 2k + ⌊log2(|N |)⌋
≤ k + k⌊log2(|N |)⌋ = To ∵ Lemma 2.

(14)
For cases with k ≥ 2 and umax is even, it can be shown
that
Tp = τ1 + ⌊log2(|N | − τ1

umax
2 )⌋+ 1

= ⌊2∗(|N |−umax)
umax

+ 1⌋
+ ⌊log2(|N | − τ1

umax
2 )⌋+ 1

≤ ⌊2|N |
umax
⌋+ ⌊log2(

|N |
2 )⌋ ∵ Lemma 1

≤ 2⌊ |N |
umax
⌋+ 1 + ⌊log2(

|N |
2 )⌋

= 2k + ⌊log2(|N |)⌋
≤ k + k⌊log2(|N |)⌋ = To ∵ Lemma 2.

(15)
The theorem is proven.

V. FEASIBLE TRANSMISSION SCHEDULES

In this section, two special network topologies, known
as α-ring and β-ring are proposed to obtain the afore-
mentioned performance in data collection processes. It
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Fig. 2. Data collection in a network N with |N | = 6 nodes and k = 3 concurrent data collection processes. Circles and triangles are
representing IoT nodes and base stations, respectively. Arrows are indicating the flow of data streams. The text next to an arrow is indicating
its data stream (i.e. A, B, C) and the time-slot number (i.e. 1, · · · , 6).

will be shown that the transmission schedules derived
from the proposed structures can fulfill (7) for different
values of |N | and k. For scenarios with umax = 1, the
BS of each data stream can collect data from |N | IoT
nodes using star topologies (i.e. T = |N |). For networks
with umax = 2 and umax = 3, data aggregation processes
with durations equal to (7) can be achieved by arranging
the nodes into an α-ring and a β-ring, correspondingly.

A. The α-ring

An α-ring is a ring structure with |Nα| nodes, which
|Nα| ≥ 2k. Consider a case with umax = 2, each data
stream will utilize a maximum of 2 nodes in a time-slot.
A data stream in an α-ring Nα will need τ1 time-slots to
aggregate data from |Nα| − 1 nodes onto a single node.
Such node will take one time-slot to report the fused
data to the BS. Such result concurs with (7) for cases
with umax = 2 and |N ′| ≥ 2k.

Suppose nodes in an α-ring are assigned with ar-
bitrary node numbers, i.e. n1, · · · , n|Nα|. At time-slot
0 < t ≤ τ1, node nc1 in the κth data collection process
will transmit its data to node nc2 , where

c1 = (1 + mod(2(κ− 1) + t− 1, |Nα|)),
c2 = (1 + mod(2(κ− 1) + t, |Nα|)).

(16)

Node nc2 will fuse the incoming data with its own data.
Concurrent data collection processes will cycle around

the ring structure. At time-slot t = τ1 + 1, |Nα| − τ1
nodes in an α-ring will be waiting to transmit their data.
Data from these |Nα| − τ1 nodes will then be collected
using the DADCNS, which will last for τ2 time-slots (6).
An example of an α-ring with |Nα| = 6 and k = 3 is
shown in Fig. 2, which has T = τ1 + τ2 = 5 + 1 = 6.

B. The β-ring

Consider another case with umax = 3, following the
same logic, the network Nβ should have |Nβ| ≥ 3k
nodes. When 3 nodes are being utilized at the same
time-slot, 2 of them will be involved in an N2N com-
munication and the remaining node will be involved
in an N2BS communication. Suppose the nodes in an
β-ring is assigned with arbitrary node numbers, i.e.
n1, · · · , n|Nβ |. At time-slot 0 < t ≤ τ1, node nc3 in the
κth data collection process will be involved in a N2BS
communication. At the same time, node nc4 in the κth

data collection process will transmit its data to node nc5 ,
where

c3 = (1 + mod(3(κ− 1) + 2(t− 1), |Nβ|)),
c4 = (1 + mod(3(κ− 1) + 2(t− 1) + 1, |Nβ|)),
c5 = (1 + mod(3(κ− 1) + 2(t− 1) + 2, |Nβ|)).

(17)
Node nc5 will fuse the incoming data with its own data.
At time-slot t = τ1+1, |Nβ|−2τ1 nodes in a β-ring will
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be waiting to transmit their data. Data from these |Nβ|−
2τ1 nodes will then be collected using the DADCNS,
which will last for τ2 time-slots (6). The example shown
earlier in Fig. 1 is a β-ring with |Nβ| = 9 and k = 3,
which has T = τ1 + τ2 = 4 + 1 = 5.

C. Multiple rings

For scenarios with umax > 3, multiple α and β rings of
different sizes are needed to ensure the data aggregation
duration as suggested in (7).

1) umax is an even number ≥ 4: For umax being an
even number ≥ 4, an nα = umax

2 number of α-rings are
formed, i.e. |Nα1|, |Nα2|, · · · , |Nαnα

|. Each of these α-
ring will first be allocated with 2k nodes. The remaining
|N | − nα(2k) nodes will then be allocated to those nα

rings one by one. The difference in ring size between 2
arbitrary α-rings will therefore be less than or equal to 1.
Nodes in each α ring will operate according to the rules
in Section V-A. In each of the first τ1 time-slots, a data
stream will utilize 2 nodes in every α-ring. Therefore,
2nα = umax nodes are utilized in each of the first τ1 time-
slots. At time-slot τ1+1, the remaining |N |−τ1umax will
be ready to report their data. Data from these nodes can
be collected using the DADCNS using τ2 time-slots (6).

2) umax is an odd number ≥ 5: For umax being
an odd number ≥ 5, a single β-ring together with
an n′

α = umax−3
2 number of α-rings are formed, i.e.

|Nβ|, |Nα1|, |Nα2|, · · · , |Nαn′
α
|. Initially, the β-ring will

be allocated with 3k nodes, while each α-ring will be
allocated with 2k nodes. The remaining |N | − 3kBS −
n′

α(2kBS) node will be allocated to the β-ring until
|Nβ| = 2τ1 + 1. The rest will be further distributed to
the α-rings one by one. The reason to fill up the β-ring
before any α-ring is because comparatively, β-ring can
yield a shorter data collection process duration for the
same number of nodes. Furthermore, the maximum size
of the β-ring is limited to 2τ1 + 1 to ensure all its local
N2N communications can be completed in the first τ1
time-slots. For cases with |Nβ| = 2τ1 + 1, the whole
network will utilize umax nodes in the first τ1 time-slots,
while data in the remaining nodes will take the BS τ2
time-slots to collect. However, if 3k ≤ |Nβ| < 2τ1 + 1,
local N2N communications within the β-ring can be
completed earlier than t = τ1. To ensure umax nodes
are being utilized in each of the first τ1 time-slots, the
following refinement procedures are required.
Step–1: Initialize t = ⌈ |Nβ |

2 ⌉
Step–2: Initialize κ = 1.
Step–3: At time-slot t of the κth data stream, identify

nodes that a) were not involved in previous
N2BS communications, b) were not senders

in previous N2N communications, and c) are
currently available. Put them into a set V .

Step–4: Among nodes in V , further identify nodes that
have been scheduled d) to be involved in fu-
ture N2BS communications or e) to be senders
in future N2N communications of the current
stream. Put them into a subset V ′ ⊂ V .

Step–5: Among nodes in V \V ′, assign one node nx to
be involved in a N2BS communication at time-
slot t and another node ny as the sender in a
N2N communication at time-slot t.

Step–6: Among nodes in V ′, assign one node nz as the
receiver in a N2N communication at time-slot
t. This node will receive data from ny and fuse
that with its own.

Step–7: Set κ← κ+ 1, while κ ≤ k, repeat Steps-3 to
6.

Step–8: Set t ← t + 1, while t ≤ τ1, repeat Steps-2 to
7.

The above procedures ensure there will be umax nodes
being utilized in the first τ1 time-slots. Similar to the
aforementioned situations, data in the remaining nodes
can be collected in τ2 time-slots using DADCNS.

Example 2: Consider a network N with |N | = 15
nodes and k = 3 concurrent data streams. It can be
considered as an α-ring with |Nα| = 6 together with
a β-ring with |Nα| = 9. The umax values of these two
rings are 2 and 3, respectively, which can be added to
yield umax = ⌊15/3⌋ = 5. After time-slot t = τ1 = 4,
the network will have 3 nodes waiting to transmit their
data. Based on (6), τ2 = 2 time-slots are required for the
BS to collect them. Therefore, its T = 4 + 2 = 6.

VI. RESULTS AND DISCUSSIONS

The performance of the proposed network structure
is further studied using computer simulations. In the
simulations, the duration of a data collection process T
with k concurrent streams is used as the performance
indicator. T is expressed as the total number of time-
slots required by the BS of different streams to collect
data from all the nodes in the network. Simulations were
conducted in Matlab. In each simulation, a network with
|N | IoT nodes is considered. In the tests, performance of
the original DADCNS will be used as a reference. The
DADCNS is configured to form a single cluster. In order
to evaluate the effect of |N | and k to the performance of
networks with different network structures, |N | is varied
from 30 to 300 with a step-size of 15 while k is varied
from 1 to 10. Results are shown in Figs. 3 and 4.

The results concur with the analyses in Section IV.
Data collection durations of networks with the proposed
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Fig. 3. Data collection durations of the proposed data collection tree in networks with |N | nodes and k data concurrent data streams.

data collection trees are significantly lower than networks
with the DADCNS. The performance gap between the
two network structures under test becomes widened for
larger values of |N | and k. In networks with DADCNS,
since concurrent data collection processes are required
to be carried out sequentially, their T values increase
linearly with k. An increase in |N | will cause umax of
the proposed data collection tree to increase as well. As
more nodes can be utilized to performance transmissions
in parallel, the T values of the proposed tree structure
increase slowly with |N |, comparatively.

It can be observed that the T values of networks with
the proposed tree structure do not increase monotonically
with k and |N |. It is because when, k or |N | is incre-
mented, umax can be varied. The variations in umax may
change the numbers of α and β rings in the network
and lead to such observation. Nevertheless, under all
combinations of k and |N |, T values of networks with
the proposed tree structure are lower than those obtained
in networks with the DADCNS.

In the proposed network structure, the process for
obtaining its transmission schedules can be modified
easily to accommodate other optimization constraints or
criteria. One common concern for mobile networks is
the total communication distance of the data collection
tree, which may seriously affect the lifetime of battery-
powered mobile devices. Once the sizes and number

of α and β rings are determined, N2N communication
distance within each ring of the proposed structure can
be reduced with the help of clustering algorithms with
specified cluster sizes. Such parameter can be further
reduced by adopting traveling salesman problem solvers
to rearrange the nodes’ order inside each loop, such
that the total path length of the ring can be shorten.
Other criteria, such as channel quality and bandwidth,
can also be incorporate to transform the procedures into a
multi-objective optimization process. Another concern is
the interferences due to concurrent transmissions, which
can be resolved or alleviated by imposing minimum
separation constraints among conflicting nodes in the
formation of feasible transmission schedules. Further-
more, interferences among IoT devices can be mitigated
by using different communication channels, which is a
feasible option for most modern transceiver modules.

VII. CONCLUSIONS

It can be foreseen that in the near future, public and
private internet of things (IoT) systems will be jointed
together to form an IoT federation. Under these intercon-
nected systems, IoT devices will be shared among dif-
ferent parties. Multiple data collection processes initiated
by different users can be carried out on the same set of
IoT devices simultaneously. In this paper, a delay-aware
network structure specifically designed for concurrent
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Fig. 4. Data collection durations of the DADCNS in networks with |N | nodes and k data concurrent data streams.

data collection processes in IoT systems is proposed.
The proposed network structure can shorten the delays
of concurrent data collection processes. Results in this
paper show that the proposed idea can yield shorter
data collection durations than an existing data collection
network structure designed for a single data collection
process. Detailed procedures for obtaining feasible trans-
mission schedules of the proposed network structure are
also provided.
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