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DP-ADMM: ADMM-based Distributed Learning

with Differential Privacy
Zonghao Huang, Rui Hu, Yuanxiong Guo, Eric Chan-Tin, and Yanmin Gong

Abstract—Alternating direction method of multipliers
(ADMM) is a widely used tool for machine learning in
distributed settings, where a machine learning model is trained
over distributed data sources through an interactive process
of local computation and message passing. Such an iterative
process could cause privacy concerns of data owners. The goal
of this paper is to provide differential privacy for ADMM-based
distributed machine learning. Prior approaches on differentially
private ADMM exhibit low utility under high privacy guarantee
and assume the objective functions of the learning problems to
be smooth and strongly convex. To address these concerns, we
propose a novel differentially private ADMM-based distributed
learning algorithm called DP-ADMM, which combines an
approximate augmented Lagrangian function with time-varying
Gaussian noise addition in the iterative process to achieve higher
utility for general objective functions under the same differential
privacy guarantee. We also apply the moments accountant
method to analyze the end-to-end privacy loss. The theoretical
analysis shows that DP-ADMM can be applied to a wider class
of distributed learning problems, is provably convergent, and
offers an explicit utility-privacy tradeoff. To our knowledge,
this is the first paper to provide explicit convergence and utility
properties for differentially private ADMM-based distributed
learning algorithms. The evaluation results demonstrate that
our approach can achieve good convergence and model accuracy
under high end-to-end differential privacy guarantee.

Index Terms—Machine learning, ADMM, distributed algo-
rithms, privacy, differential privacy, and moments accountant.

I. INTRODUCTION

D ISTRIBUTED machine learning is a widely adopted

approach due to the high demand of large-scale and

distributed data processing. It allows multiple entities to keep

their datasets unexposed, and meanwhile to collaborate in

a common learning objective (usually formulated as a reg-

ularized empirical risk minimization problem) by iterative

local computation and message passing. Therefore, distributed

machine learning helps to reduce computational burden and

improves both robustness and scalability of data processing.

As pointed out in recent studies [1], [2], existing approaches

to decentralizing an optimization problem mainly consist of

subgradient-based algorithms [3], [4], alternating direction
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method of multipliers (ADMM) based algorithms [5]–[8],

and composite of sub-gradient descent and ADMM [9]. It

has been shown that ADMM-based algorithms can converge

at the rate of O(1/t) while subgradient-based algorithms

typically converge at the rate of O(1/
√
t), where t is the

number of iterations [10]. Therefore, ADMM has become a

popular method for designing distributed versions of a machine

learning algorithm [5], [8], [11], and our work focuses on

ADMM-based distributed learning.

With ADMM, the learning problem is divided into several

sub-problems solved by agents independently and locally, and

only intermediate parameters need to be shared. However,

the iterative process of ADMM involves privacy leakage,

and the adversary can obtain the sensitive information from

the shared model parameters as shown in [12], [13]. Thus,

we aim to limit the privacy leakage during the iterative

process of ADMM using differential privacy. Differential

privacy is a widely used privacy definition [14]–[16] and

can be guaranteed in ADMM through adding noise to the

exchanged messages. However, in existing studies on ADMM-

based distributed learning with differential privacy [1], [2],

[17]–[19], noise addition would disrupt the learning process

and severely degrade the performance of the trained model,

especially when large noise is needed to provide high privacy

protection. Besides, their privacy-preserving algorithms only

apply to the learning problems with both smoothness and

strongly convexity assumptions about the objective functions.

Such weaknesses and limitations motivate us to explore further

in this area.

In this paper, we mainly focus on using ADMM to enable

distributed learning while guaranteeing differential privacy,

and propose a novel differentially private ADMM-based dis-

tributed learning algorithm called DP-ADMM, which has good

convergence properties, low computational cost, and an ex-

plicit and improved utility-privacy tradeoff, and can be applied

to a wide class of distributed learning problems. The key

algorithmic feature of DP-ADMM is the combination of an

approximate augmented Lagrangian function and time-varying

Gaussian noise addition in the iterative process, which enables

the algorithm to be noise-resilient and provably convergent.

The moments accountant method [20] is used to analyze the

end-to-end privacy guarantee of DP-ADMM. We also rigor-

ously analyze the convergence rate and utility bound of our

approach. To our knowledge, this is the first paper to provide

explicit convergence and utility properties for differentially

private ADMM-based distributed learning algorithms.

The main contributions of this paper are summarized as

follows:

http://arxiv.org/abs/1808.10101v6
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1) We design a novel differentially private ADMM-based

distributed learning algorithm called DP-ADMM, which

combines an approximate augmented Lagrangian func-

tion with time-varying Gaussian noise addition in the

iterative process to achieve higher utility for more gen-

eral objective functions than prior works under the same

differential privacy guarantee.

2) Different from previous studies providing only differ-

ential privacy guarantee for each iteration, we use the

moments accountant method to analyze the total privacy

loss and provide a tight end-to-end differential privacy

guarantee for DP-ADMM.

3) We provide rigorous convergence and utility analysis

of the proposed DP-ADMM. To our knowledge, this

is the first paper to provide explicit convergence and

utility properties for differentially private ADMM-based

distributed learning algorithms.

4) We conduct extensive simulations based on real-world

datasets to validate the effectiveness of DP-ADMM in

distributed learning settings.

The rest of the paper is organized as follows. In Section II,

we present our problem statement. In Section III, we describe

a differentially private standard ADMM-based algorithm and

propose our DP-ADMM. In Section IV and Section V, we

theoretically analyze our privacy guarantee and convergence

and utility properties of DP-ADMM, respectively. The numer-

ical results of DP-ADMM based on real-world datasets are

shown in Section VI. Section VII discusses the related work,

and Section VIII concludes the paper.

II. PROBLEM STATEMENT

In this section, we first introduce the problem setting. Then

we present the standard ADMM-based distributed learning

algorithm and discuss the associated privacy concern. A sum-

mary of notations used in this paper is listed in Table I.

A. Problem Setting

We consider a set of agents [n] := {1, . . . , n} and a central

aggregator. Each agent i ∈ [n] has a private training dataset

Di := {(ai,j , bi,j) : ∀j ∈ [mi]}, where mi is the number

of training samples in the dataset Di, ai,j ∈ R
d is the d-

dimensional data feature vector of the j-th training sample,

and bi,j ∈ R
p is the corresponding p-dimensional data label.

In this paper, we consider a star network topology where each

agent can communicate with the central aggregator and the

aggregator is responsible for message passing and aggregation.

Note that our approach can be generalized to other network

topologies where agents are connected with their neighbors

without a central aggregator, as discussed in [1], [2], [17].

The goal of our problem is to train a supervised learning

model on the aggregated dataset {Di}i∈[n], which enables

predicting a label for any new data feature vector. The learning

objective can be formulated as the following regularized

empirical risk minimization problem:

min
w

n
∑

i=1

mi
∑

j=1

1

mi
ℓ(ai,j , bi,j ,w) + λR(w), (1)

TABLE I: List of notations

ai,j Data feature vector

bi,j Data label

ℓ(·) Loss function

R(·) Regularizer function

λ Regularizer parameter

ℓ
′

(·) Subgradient of loss function

R
′

(·) Subgradient of regularizer

∇ℓ(·) Gradient of loss function

∇R(·) Gradient of regularizer

w Global machine learning model

wi Local learning model from agent i
γi Dual variable from agent i
ρ Penalty parameter

Lρ(·) Augmented Lagrangian function

L̂ρ,k(·) Approximate augmented Lagrangian function

wk
i Primal variable from agent i in k-th iteration

w̃k
i Noisy version of wk

i after perturbation

γk
i Dual variable from agent i in k-th iteration

wk Global variable in k-th iteration

ξk
i Sampled noise from agent i in k-th iteration

σ2

i Constant variance of Gaussian mechanism

ηk
i Time-varying step size in k-th iteration

σ2

i,k Time-varying variance of Gaussian mechanism

where w ∈ R
d×p is the trained machine learning model,

ℓ(·) : Rd×Rp×Rd×p → R is the loss function used to measure

the quality of the trained model, R(·) refers to the regularizer

function introduced to prevent overfitting, and λ > 0 is the

regularizer parameter controlling the impact of regularizer.

Note that the problem formulation (1) can represent a wide

range of machine learning tasks by choosing different loss

functions. For instance, the loss function of binary logistic

regression is:

ℓ(ai,j , bi,j ,w) = ln
(

1 + exp(−bi,jw⊺ai,j)
)

, (2)

and the loss function of multi-class logistic regression is:

ℓ(ai,j , bi,j ,w) =

p
∑

h=1

b
(h)
i,j ln

(∑p
l=1 exp(w

(l)⊺ai,j)

exp(w(h)⊺ai,j)

)

. (3)

In this paper, we assume that the loss function ℓ(·) and the

regularizer function R(·) are both convex but not necessarily

smooth. Throughout this paper, we use ℓ
′

(·) and R
′

(·) to

denote the sub-gradient of ℓ(·) and R(·) respectively. When we

consider smooth functions, we use ∇ℓ(·) and ∇R(·) instead.

B. ADMM-Based Distributed Learning Algorithm

To apply ADMM, we re-formulate the problem (1) as:

min
{wi}i∈[n]

n
∑

i=1

( mi
∑

j=1

1

mi
ℓ(ai,j , bi,j ,wi) +

λ

n
R(wi)

)

, (4a)

s.t. wi = w, i = 1, . . . , n, (4b)

where wi ∈ R
d×p is the local model, and w ∈ R

d×p is the

global one. The objective function (4a) is decoupled and each

agent only needs to minimize the sub-problem associated with

its dataset. Constraints (4b) enforce that all the local models

reach consensus finally.
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In standard ADMM, the augmented Lagrangian function

associated with the problem (4) is:

Lρ(w, {wi}i∈[n], {γi}i∈[n]) =

n
∑

i=1

Lρ,i(wi,w,γi), (5)

where

Lρ,i(wi,w,γi) =

mi
∑

j=1

1

mi
ℓ(ai,j , bi,j ,wi) +

λ

n
R(wi)

−
〈

γi,wi −w
〉

+
ρ

2
‖wi −w‖2.

(6)

In (6), {γi}i∈[n] ∈ R
d×p×n are the dual variables associated

with constraints (4b) and ρ > 0 is the penalty parameter. The

standard ADMM solves the problem (4) in a Gauss-Seidel

manner by minimizing (5) w.r.t. {wi}i∈[n] and w alternatively

followed by a dual update of {γi}i∈[n]. The ADMM-based

distributed algorithm is shown in Algorithm 1.

Algorithm 1 ADMM-Based Distributed Algorithm

1: Initialize w0, {w0
i }i∈[n], and {γ0

i }i∈[n];

2: for k = 1, 2, . . . , t do

3: for i = 1, 2, . . . , n do

4: wk
i ← argmin

wi
Lρ,i(wi,w

k−1,γk−1
i );

5: end for

6: wk ← 1
n

∑n
i=1 w

k
i − 1

n

∑n
i=1 γ

k−1
i /ρ;

7: for i = 1, 2, . . . , n do

8: γk
i ← γk−1

i − ρ(wk
i −wk).

9: end for

10: end for

C. Privacy Concern

In Algorithm 1, the intermediate parameters {wk
i }i∈[n],k∈[t]

need to be shared with the aggregator, which may reveal

the agents’ private information as demonstrated by model

inversion attacks [21]. Thus, we need to develop privacy-

preserving methods to control such information leakage. The

main goal of this paper is to provide privacy protection

against inference attacks from an adversary, who tries to infer

sensitive information about the agents’ private datasets from

the shared messages. We assume that the adversary can neither

intrude into the local datasets nor have access to the datasets

directly. The adversary could be an outsider who eavesdrops

the shared messages, or the honest-but-curious aggregator who

follows the protocol honestly but tends to infer the sensitive

information. We do not assume any trusted third party, thus

a privacy-preserving mechanism should be applied locally by

each agent to provide privacy protection.

In order to provide privacy guarantee against such attacks,

we define our privacy model formally by the notion of differ-

ential privacy [14]. Specifically, we adopt the (ǫ, δ)-differential

privacy defined as follows:

Definition 1 ((ǫ, δ)-Differential Privacy). A randomized mech-

anism M is (ǫ, δ)-differentially private if for any two neigh-

bouring datasets D and D′

differing in only one tuple, and

for any subsets of outputs O ⊆ range(M):

Pr[M(D) ∈ O] ≤ eǫ · Pr[M(D′

) ∈ O] + δ, (7)

which means, with probability of at least 1 − δ, the ratio of

the probability distributions for two neighboring datasets is

bounded by eǫ.

In Definition 1, the parameters δ and ǫ are privacy bud-

gets indicating the strength of privacy protection from the

mechanism. Smaller ǫ or δ indicates better privacy protection.

Gaussian mechanism is a common randomization method used

to guarantee (ǫ, δ)-differential privacy, where noise sampled

from normal distribution is added to the output. In this paper,

we use MN d,p(0, σ
2
Id, σ

2
Ip) to denote the matrix normal

distribution with variance σ2.

III. ADMM WITH DIFFERENTIAL PRIVACY

In this section, we achieve differential privacy under the

framework of ADMM. First, we introduce an intuitive method

by directly combining standard ADMM and primal variable

perturbation (PVP) and discuss the weaknesses of this method.

Then we propose our new approach to achieving differential

privacy in ADMM with an improved utility-privacy tradeoff.

A. ADMM with Primal Variable Perturbation (PVP)

As described in Section II, we need to use a local privacy-

preserving mechanism in order to guarantee (ǫ, δ)-differential

privacy for each agent. An intuitive way to achieve this goal is

to combine the primal variable perturbation mechanism (PVP)

and standard ADMM directly as proposed in [17]. Specifically,

as given in Algorithm 2, at the k-th iteration, after obtaining

the local primal variable wk
i , we apply Gaussian mechanism

with a pre-defined variance σ2
i to perturb it and share the

noisy primal variable w̃k
i , which can guarantee differential

privacy. According to [22], [23], by assuming the smoothness

of loss function l(·) and regularizer function R(·), strongly

convexity of regularizer R(·), and the bounded l2 norm of

the derivative of loss function by c1, the l2 sensitivity of wk
i

update function in standard ADMM is 2c1/
(

mi(λ/n + ρ)
)

as proved in Appendix A. Therefore, the noise magnitude

σi = 2c1
√

2 ln(1.25/δ)/
(

(λ/n + ρ)miǫ
)

can achieve (ǫ, δ)-
differential privacy in each iteration.

Algorithm 2 ADMM with PVP

1: Initialize w0, {w0
i }i∈[n], and {γ0

i }i∈[n].

2: for k = 1, 2, . . . , t do

3: for i = 1, 2, . . . , n do

4: wk
i ← argmin

wi
Lρ,i(wi,w

k−1,γk−1
i ).

5: w̃k
i ← wk

i +MN d,p(0, σ
2
i Id, σ

2
i Ip).

6: end for

7: wk ← 1
n

∑n
i=1 w̃

k
i − 1

n

∑n
i=1 γ

k−1
i /ρ.

8: for i = 1, 2, . . . , n do

9: γk
i ← γk−1

i − ρ(w̃k
i −wk).

10: end for

11: end for

However, the added noise from the perturbation mechanism

would disrupt the learning process, break the convergence

property of the iterative process, and lead to a trained model

with poor performance. This is especially the case when



4

the privacy budget is small. Specifically, when the iteration

number k is large, the trained model would keep changing

dramatically due to the existence of large noise. Besides, the

above perturbation method can only be applied when the

objective function is smooth and the regularizer is strongly

convex [17], [23]. In order to address such problems, we need

to consider an alternative way to preserving differential privacy

of ADMM-based distributed learning algorithms.

B. Our Approach

Our approach is inspired by the intuition that it is not

necessary to solve the problem up to a very high precision in

each iteration in order to guarantee the overall convergence. In

our approach, instead of using the exact augmented Lagrangian

function, we employ its first-order approximation with a scalar

l2-norm prox-function. Here we define:

L̂ρ,k,i(wi, w̃
k−1
i ,w,γi)

=

mi
∑

j=1

1

mi
ℓ(ai,j , bi,j , w̃

k−1
i ) +

λ

n
R(w̃k−1

i )

+
〈

mi
∑

j=1

1

mi
ℓ
′

(ai,j , bi,j , w̃
k−1
i ) +

λ

n
R

′

(w̃k−1
i ),wi − w̃k−1

i

〉

−
〈

γi,wi −w
〉

+
ρ

2
‖wi −w‖2 + ‖wi − w̃k−1

i ‖2

2ηki
,

(8)

where ηki ∈ R is the time-varying step size, and it decreases

as the iteration number k increases.

The proposed approximate augmented Lagrangian function

used in our approach is defined by:

L̂ρ,k({wi}i∈[n], {w̃k−1
i }i∈[n],w, {γi}i∈[n])

=

n
∑

i=1

L̂ρ,k,i(wi, w̃
k−1
i ,w,γi).

(9)

Our approach minimizes (9) in a Gauss-Seidel manner and

adds zero-mean Gaussian noise with time-varying variance

σ2
i,k that decreases as the iteration number k increases.

The resulting ADMM steps that provide differential privacy

are as follows:

wk
i =argmin

wi

L̂ρ,k,i(wi, w̃
k−1
i ,wk−1,γk−1

i ), (10a)

w̃k
i =wk

i +MN d,p(0, σ
2
i,kId, σ

2
i,kIp), (10b)

wk =
1

n

n
∑

i=1

w̃k
i −

1

n

n
∑

i=1

γk−1
i /ρ, (10c)

γk
i =γk−1

i − ρ(w̃k
i −wk), (10d)

where (10c) is computed at the aggregator while (10a), (10b)

and (10d) are performed at each agent.

The details are given in Algorithm 3. The central aggregator

firstly initializes the global variable w0, and the agents also

initialize their noisy primal variables {w̃0
i }i∈[n] and dual

variables {γ0
i }i∈[n]. At the beginning of each iteration k, each

agent i first samples a zero-mean Gaussian noise ξki with

variance σ2
i,k and updates the noisy primal variable w̃k

i based

on (10a) and (10b). Then the aggregator receives the noisy

primal variables {w̃k
i }i∈[n] and the dual variables {γk−1

i }i∈[n]

from the agents, and uses them to update the global variable

wk according to (10c). After that, agents receive the updated

global variable wk from the aggregator and continue to update

the dual variables {γk
i }i∈[n] by (10d). The iterative process

will continue until reaching t iterations.

Algorithm 3 DP-ADMM

1: Initialize w0, {w̃0
i }i∈[n], and {γ0

i }i∈[n].

2: for k = 1, 2, . . . , t do

3: for i = 1, 2, . . . , n do

4: wk
i ← argmin

wi
L̂ρ,k,i(wi, w̃

k−1
i ,wk−1,γk−1

i ).

5: ξki ←MN d,p(0, σ
2
i,kId, σ

2
i,kIp).

6: w̃k
i ← wk

i + ξki .
7: end for

8: wk ← 1
n

∑n
i=1 w̃

k
i − 1

n

∑n
i=1 γ

k−1
i /ρ.

9: for i = 1, 2, . . . , n do

10: γk
i ← γk−1

i − ρ(w̃k
i −wk).

11: end for

12: end for

Algorithm 3 is different from Algorithm 2 in three aspects.

Firstly, the approximate augmented Lagrangian function used

in this approach replaces the objective function with its

first-order approximation at w̃k−1
i , which is similar to the

stochastic mirror descent [24]. This approximation enforces

the smoothness of the Lagrangian function and makes it easy

to solve (10a). Even when the objective function is non-

smooth, we can still get a closed-form solution to (10a), which

achieves fast computation. More importantly, this approxima-

tion can lead to a bounded l2 sensitivity in differential privacy

guarantee without the limitation that the objective function

should be smooth and strongly convex. Thus our approach

can be applied to any convex problems. We demonstrate this

in Section IV.

Secondly, similar to linearized ADMM [25], [26], there

is an l2-norm prox-function ‖wi − w̃k−1
i ‖2 but scaled by

1/2ηki added in (8), where the step size ηki decreases when

the iteration number k increases. Such additional part can

guarantee the consistency between the updated model wk
i

and the previous one, especially when k is large. Thus, as

k increases, the updated model would change more smoothly.

Note that the time-varying step-size ηki is significant for the

overall convergence guarantee. In Section V, we will define

ηki and show its importance in algorithmic convergence.

Lastly, the variance σ2
i,k of Gaussian mechanism used in

Algorithm 3 is time-varying rather than constant as adopted

in prior studies [20]. It decreases when the iteration number

k increases. The motivation of using Gaussian mechanism

with time-varying variance is to mitigate the negative effect

from noise and guarantee the convergence property of our

approach. As explained before, the added noise would disrupt

the learning process. By using the Gaussian mechanism with

time-varying variance, the added noise will decrease when the

iteration number k increases. Therefore, the negative affect

from the added noise will be mitigated, enabling the updates
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to be stable. In Section IV, we would define the magnitude of

time-varying variance σ2
i,k to achieve differential privacy.

IV. PRIVACY GUARANTEE

In this section, we analyze the privacy guarantee of the

proposed DP-ADMM. In DP-ADMM, the shared messages

{w̃k
i }k∈[t] may reveal the sensitive information of agent i,

which has been discussed in Section II. Thus, we need to

demonstrate that DP-ADMM guarantees differential privacy

with outputs {w̃k
i }k∈[t]. We first estimate the l2 norm sensi-

tivity of wk
i update function, then analyze the privacy leakage

from the shared primal variable w̃k
i in each iteration, and

finally compute the end-to-end differential privacy guarantee

across t iterations using the moments accountant method. Here

we use wk
i,Di

and wk
i,D

′

i

to denote the local primal variables

updated from two neighboring datasets Di and D′

i.

A. L2-norm Sensitivity

In our approach, we apply Gaussian mechanism to add noise

whose magnitude is calibrated by the l2-norm sensitivity. Note

that compared with Algorithm 2 and prior works [1], [2], [17],

the derivation of the sensitivity in our proposed algorithm does

not require the assumption of smoothness and strong convexity

of the objective function due to the first-order approximation

used in the approximate augmented Lagrangian function.

Lemma 1. Assume that ‖ℓ′(·)‖ ≤ c1. The l2-norm sensitivity

of local primal variable wk
i update function is given by:

max
Di,D

′

i

‖wk
i,Di
−wk

i,D
′

i

‖ = 2c1

mi(ρ+ 1/ηki )
. (11)

Proof. Since L̂ρ,k,i(wi, w̃
k−1
i ,wk−1,γk−1

i ) in the first step

of DP-ADMM (10a) is a quadratic function w.r.t. wi and

therefore convex, we could obtain that:

wk
i,Di

=

(

−
mi
∑

j=1

1

mi
ℓ
′

(ai,j , bi,j , w̃
k−1
i )− λ

n
R

′

(w̃k−1
i )

+γk−1
i + ρwk−1 +

w̃
k−1
i

ηki

)(

ρ+ 1/ηki

)−1

, (12a)

wk
i,D

′

i

=

(

−
mi−1
∑

j=1

1

mi
ℓ
′

(ai,j , bi,j , w̃
k−1
i )

− 1

mi
ℓ
′

(a
′

i,mi
, b

′

i,mi
, w̃k−1

i )− λ

n
R

′

(w̃k−1
i )

+γk−1
i + ρwk−1 +

w̃k−1
i

ηki

)(

ρ+ 1/ηki

)−1

, (12b)

by computing the derivative of (8) with inputs wk−1 and γk−1
i

and letting ∇L̂ρ,k,i(wi, w̃
k−1
i ,wk−1,γk−1

i ) to be 0.

With wk
i,Di

and wk
i,D

′

i

calculated by (12a) and (12b) respec-

tively, the l2-norm sensitivity of primal variable wk
i update

function is defined by:

max
Di,D

′

i

‖wk
i,Di
−wk

i,D
′

i

‖

= max
Di,D

′

i

∥

∥ℓ
′

(ai,mi
,bi,mi

, w̃k−1

i )− ℓ
′

(a
′

i,mi
, b

′

i,mi
, w̃k−1

i )
∥

∥

mi(ρ+ 1/ηk
i )

.

(13)

Since ‖ℓ′(·)‖ is bounded by c1, the sensitivity of wk
i update

function is given by 2c1/
(

mi(ρ+ 1/ηki )
)

.

Lemma 1 shows that the sensitivity of wk
i update function

in our approach is affected by the time-varying ηki . When we

set ηki to decrease with increasing k, the sensitivity becomes

smaller with larger k, then the noise added would be smaller

when ǫ is fixed. Thus, the updates would be stable in spite of

the existence of the noise.

B. (ǫ, δ)-Differential Privacy Guarantee

In this section, we prove that each iteration of Algorithm 3

guarantees (ǫ, δ)-differential privacy.

Theorem 1. Assume that ‖ℓ′(·)‖ ≤ c1. Let ǫ ∈ (0, 1]
be arbitrary and ξki be the noise sampled from Gaussian

mechanism with variance σ2
i,k where

σi,k =
2c1

√

2 ln(1.25/δ)

miǫ(ρ+ 1/ηki )
. (14)

Each iteration of DP-ADMM guarantees (ǫ, δ)-differential

privacy. Specifically, for any neighboring datasets Di and D′

i,

for any output w̃k
i , the following inequality always holds:

Pr[w̃k
i |Di] ≤ eǫ · Pr[w̃k

i |D
′

i] + δ. (15)

Proof. The privacy loss from w̃k
i is calculated as

∣

∣

∣

∣

ln
Pr[w̃k

i |Di]

Pr[w̃k
i |D

′

i]

∣

∣

∣

∣

=

∣

∣

∣

∣

ln
Pr[w̃k(h,l)

i |Di]

Pr[w̃k(h,l)

i |D′

i]

∣

∣

∣

∣

=

∣

∣

∣

∣

ln
Pr[ξk

(h,l)

i ]

Pr[ξk,
′(h,l)

i ]

∣

∣

∣

∣

,

(16)

where ξk
(h,l)

i and ξk,
′(h,l)

i are the (h, l)-entry of ξki and ξ
k,′

i ,

and are sampled from N (0, σ2
i,k). This leads to:

∣

∣

∣

∣

ln
Pr[w̃k

i |Di]

Pr[w̃k
i |D

′

i]

∣

∣

∣

∣

=
∣

∣

1

2σ2
i,k

(∥

∥ξk
(h,l)

i

∥

∥

2

−
∥

∥ξk,
′(h,l)

i

∥

∥

2
)∣

∣

=
∣

∣

1

2σ2
i,k

(

‖ξk(h,l)

i ‖
2
− ‖ξk(h,l)

i + (wk(h,l)

i,Di
− wk(h,l)

i,D
′

i

)‖
2)∣
∣

=
∣

∣

1

2σ2
i,k

(

2ξk
(h,l)

i ‖wk(h,l)

i,Di
− wk(h,l)

i,D
′

i

‖+ ‖wk(h,l)

i,Di
− wk(h,l)

i,D
′

i

‖
2)∣
∣.

(17)

Since ‖ℓ′(·)‖ ≤ c1, according to Lemma 1, we have ‖wk(h,l)

i,Di
−

wk(h,l)

i,D
′

i

‖ < ‖wk
i,Di
−wk

i,D
′

i

‖ ≤ 2c1/
(

mi(ρ+1/ηki )
)

. Thus, by

letting σi,k = 2c1
√

2 ln(1.25/δ)/
(

miǫ(ρ+ 1/ηki )
)

, we have

∣

∣

∣

∣

ln
Pr[w̃k

i |Di]

Pr[w̃k
i |D

′

i]

∣

∣

∣

∣

≤
∣

∣

∣

∣

ξk
(h,l)

i mi(ρ+ 1/ηki ) + c1
4 ln(1.25/δ)c1/ǫ2

∣

∣

∣

∣

. (18)

When |ξk(h,l)

i | ≤
(

4 ln(1.25/δ)c1/ǫ − c1
)

/
(

ǫmi(ρ + 1/ηki )
)

,
∣

∣ ln
(

Pr[w̃k
i |Di]/Pr[w̃

k
i |D

′

i]
)∣

∣ is bounded by ǫ. Next, we

need to prove that Pr
[

|ξk(h,l)

i | >
(

4 ln(1.25/δ)c1/ǫ −
c1
)

/
(

ǫmi(ρ + 1/ηki )
)]

≤ δ, which requires Pr
[

ξk
(h,l)

i >
(

4 ln(1.25/δ)c1/ǫ− c1
)

/
(

ǫmi(ρ+1/ηki )
)]

≤ δ/2. According

to the tail bound of normal distribution N (0, σ2
i,k), we have

Pr
[

ξk
(h,l)

i > r
]

≤ σi,k

r
√
2π

e−r2/2σ2
i,k . (19)
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By letting r =
(

4 ln(1.25/δ)c1/ǫ − c1
)

/
(

ǫmi(ρ + 1/ηki )
)

in

the above inequality, we have:

Pr

[

ξk
(h,l)

i >
4 ln(1.25/δ)c1/ǫ− c1

mi(ρ+ 1/ηki )

]

≤ 2
√

2 ln(1.25/δ)

(4 ln(1.25/δ)− ǫ)
√
2π

exp

(

− (4 ln(1.25/δ)− ǫ)
2

8 ln(1.25/δ)

)

.

(20)

When δ is small (≤ 0.01) and let ǫ ≤ 1, we have

2
√

2 ln(1.25/δ)

(4 ln(1.25/δ)− ǫ)
√
2π

<
1√
2π

, (21)

and

−
(

4 ln(1.25/δ)− ǫ
)2

8 ln(1.25/δ)
< ln(

√
2π

δ

2
). (22)

As a result, we have:

Pr

[

ξk
(h,l)

i >
4 ln(1.25/δ)c1/ǫ− c1

mi(ρ+ 1/ηki )

]

<
δ

2
. (23)

So far we have proved that Pr
[

ξk
(h,l)

i >
(

4 ln(1.25/δ)c1/ǫ−
c1
)

/
(

ǫmi(ρ + 1/ηki )
)]

≤ δ/2, thus we can prove that

Pr
[

|ξk(h,l)

i | >
(

4 ln(1.25/δ)c1/ǫ−c1
)

/
(

ǫmi(ρ+1/ηki )
)]

≤ δ.

We define:

A1 ={ξk(h,l)

i : |ξk(h,l)

i | ≤ 4 ln(1.25/δ)c1/ǫ− c1

mi(ρ+ 1/ηki )
}, (24a)

A2 ={ξk(h,l)

i : |ξk(h,l)

i | > 4 ln(1.25/δ)c1/ǫ− c1

mi(ρ+ 1/ηki )
}. (24b)

Therefore, we obtain the result:

Pr[w̃k
i |Di] =Pr[wk(h,l)

i,Di
+ ξk

(h,l)

i : ξk
(h,l)

i ∈ A1]

+ Pr[wk(h,l)

i,Di
+ ξk

(h,l)

i : ξk
(h,l)

i ∈ A2]

<eǫ · Pr[w̃k
i |D

′

i] + δ,

(25)

which proves that each iteration of DP-ADMM guarantees

(ǫ, δ)-differential privacy.

C. Total Privacy Leakage

We have proved that each iteration of the proposed algo-

rithm is (ǫ, δ)-differentially private. Here we focus on the total

privacy leakage of our algorithm. Since Algorithm 3 is a t-fold

adaptive algorithm, we follow prior studies [20], [27] and use

the moments accountant method to analyze the total privacy

leakage.

Theorem 2 (Advanced Composition Theorem). Assume

‖ℓ′(·)‖ ≤ c1. Let ǫ ∈ (0, 1] be arbitrary and ξki be sampled

from Gaussian mechanism with variance σ2
i,k where

σi,k =
2c1

√

2 ln(1.25/δ)

miǫ(ρ+ 1/ηki )
. (26)

Then Algorithm 3 guarantees (ǭ, δ)-differential privacy, where

ǭ = c0
√
tǫ for some constant c0.

Proof. See Appendix B.

V. CONVERGENCE ANALYSIS

In this section, we analyze the convergence of the proposed

DP-ADMM. Let w∗ denote the optimal solution of problem

(4), and cw denote ‖w∗‖. Firstly, we analyze the convergence

property based on the general assumption that the objective

function is convex and non-smooth. Secondly, we refine the

convergence property under a stricter assumption that the

objective function is convex and smooth.

We define the following notations to be used for the

analysis:

fi(wi) =

mi
∑

j=1

1

mi
ℓ(ai,j , bi,j ,wi) +

λ

n
R(wi),

w̄t =
1

t

t
∑

k=1

wk, γ̄t
i =

1

t

t
∑

k=1

γk
i , w̄t

i =
1

t

t−1
∑

k=0

w̃k
i ,

uk
i =





w̃k
i

wk

γk
i



 , ui =





wi

w

γi



 , F (uk
i ) =





−γk
i

γk
i

w̃k
i −wk



 .

We show that DP-ADMM achieves an O(1/
√
t) rate of

convergence in terms of both the objective value and the

constraint violation:
∑n

i=1

(

fi(w̄
t
i)− fi(w

∗)+β‖w̄t
i− w̄t‖

)

,

where
∑n

i=1

(

fi(w̄
t
i) − fi(w

∗)
)

represents the distance be-

tween the current objective value and the optimal value

while
∑n

i=1 β‖w̄t
i − w̄t‖ measures the difference between

the local model and the global one. Therefore, when we have
∑n

i=1

(

fi(w̄
t
i) − fi(w

∗) + β‖w̄t
i − w̄t‖

)

= 0, our training

result converges to the optimal one and all local models reach

consensus.

A. Non-Smooth Convex Objective Function

In this section, we analyze the convergence when the ob-

jective function is convex but non-smooth. We firstly analyze

a single iteration of our algorithm in Lemma 2 and then give

the convergence result of DP-ADMM in Theorem 3.

Lemma 2. Assume ℓ(·) and R(·) are convex. For any k ≥ 1,

we have:
n
∑

i=1

(

fi(w̃
k−1
i )− fi(wi) + (uk

i − ui)
⊺

F (uk
i )

)

≤
n
∑

i=1

(

ηki
2

∥

∥f
′

i (w̃
k−1
i )− (ρ+ 1/ηki )ξ

k
i

∥

∥

2 − ρ

2
‖wi −wk‖2

+
ρ

2
‖wi −wk−1‖2 −

(

ρ+ 1/ηki
)〈

ξki ,wi − w̃k−1
i

〉

+
1

2ηki
‖wi − w̃k−1

i ‖2 − 1

2ηki
‖wi − w̃k

i ‖
2

+
1

2ρ
‖γi − γk−1

i ‖2 − 1

2ρ
‖γi − γk

i ‖
2
)

.

(28)

Proof. See Appendix D.

Based on Lemma 2, we give the following convergence

theorem.
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Theorem 3. Assume ℓ(·) and R(·) are convex, ‖ℓ′(·)‖ ≤ c1,

and ‖R′

(·)‖ ≤ c2. Let

ηki =
cw√
2k

(

(c1 + λc2/n)
2 +

8dpc21 ln (1.25/δ)

m2
i ǫ

2

)− 1
2

. (29)

Define

M1(ǫ, δ) =

n
∑

i=1

cw

√

2(c1 + λc2/n)2 +
16dpc21 ln (1.25/δ)

m2
i ǫ

2
,

(30)

and

M2 =
n(ρc2w + β2/ρ)

2
. (31)

For any t ≥ 1 and β, we have:

E

[ n
∑

i=1

(

fi(w̄
t
i)− fi(w

∗) + β‖w̄t
i − w̄t‖

)]

≤ M1(ǫ, δ)√
t

+
M2

t
.

(32)

Proof. See Appendix E.

Theorem 3 shows an explicit utility-privacy trade-off of our

approach: when privacy guarantee is weaker (larger ǫ and δ),

our approach has better utility. In addition, it demonstrates that

our algorithm converges at a rate of O(1/
√
t).

B. Smooth Convex Objective Function

In this section, we refine Theorem 3 under a stricter

assumption that ℓ(·) and R(·) are both convex and smooth.

Here, we replace the definition of w̄t
i: w̄

t
i =

1
t

∑t−1
k=0 w̃

k
i by

w̄t
i =

1
t

∑t
k=1 w̃

k
i . Similar to Section V-A, we first focus on

a single iteration and then give the final convergence result.

Lemma 3. Assume ℓ(·) and R(·) are convex and smooth,

‖∇2ℓ(·)‖ ≤ c3, and ‖∇2R(·)‖ ≤ c4. For any k ≥ 1, we

have:
n
∑

i=1

(

fi(w̃
k
i )− fi(wi) + (uk

i − ui)
⊺

F (uk
i )

)

≤
n
∑

i=1

(

(

ρ+ 1/ηki
)2

2/ηki − 2(c3 + λc4/n)

∥

∥ξki
∥

∥

2 − 1

2ηki
‖wi − w̃k

i ‖
2

+
1

2ηki
‖wi − w̃k−1

i ‖2 −
(

ρ+ 1/ηki
)〈

ξki ,wi − w̃k−1
i

〉

+
ρ

2
‖wi −wk−1‖2 − ρ

2
‖wi −wk‖2

+
1

2ρ
‖γi − γk−1

i ‖2 − 1

2ρ
‖γi − γk

i ‖
2
)

.

(33)

Proof. See Appendix F.

Based on Lemma 3, we give the following theorem.

Theorem 4. Assume ℓ(·) and R(·) are convex and smooth,

‖∇2ℓ(·)‖ ≤ c3, and ‖∇2R(·)‖ ≤ c4. Let

ηki =

(

c3 + λc4/n+
4c1

√

dpk ln(1.25/δ)

miǫcw

)−1

. (34)

Define

M3(ǫ, δ) =

n
∑

i=1

4cwc1
√

dp ln(1.25/δ)

miǫ
, (35)

and

M4 =
nc2w(c3 + λc4/n+ ρ) + nβ2/ρ

2
. (36)

For any t ≥ 1 and β, we have:

E

[ n
∑

i=1

(

fi(w̄
t
i)−fi(w∗)+β‖w̄t

i−w̄t‖
)]

≤ M3(ǫ, δ)√
t

+
M4

t
.

(37)

Proof. See Appendix G.

Theorem 4 also shows an explicit relation between the

privacy budget (i.e., ǫ and δ) and the utility of our approach

with smoothness, and demonstrates that the result from our

algorithm converges to the optimal result at a rate of O(1/
√
t).

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of DP-ADMM

with both non-smooth objectives and smooth objectives by

considering logistic regression problems with l1-norm and l2-

norm regularizers, respectively.

Dataset. We evaluate our approach on a real-world dataset:

Adult dataset [28] from UCI Machine Learning Repository.

Adult dataset includes 48, 842 instances. Each instance has

14 attributes such as age, sex, education, occupation, marital

status, and native country, and is associated with a label rep-

resenting whether the income is above $50, 000 or not. Before

the simulation, we firstly preprocess the data by removing all

the instances with missing values, converting the categorical

attributes into binary vectors, normalizing columns to guaran-

tee the maximum value of each column is 1, normalizing rows

to enforce their l2 norm to be less than 1, and converting the

labels {> 50k,< 50k} into {+1,−1}. After this, we obtain

45, 222 entries each with a 104-dimensional feature vector

(d = 104) and a 1-dimensional label belonging to {+1,−1}
(p = 1). In each simulation, we sample 40, 000 instances for

training, and the remaining 5, 222 instances for testing. In the

training process, we divide the training data into n groups

randomly, and thus each group contains 40000/n data points

(mi = 40000/n).

Baseline algorithms. We compare our DP-ADMM (Al-

gorithm 3) with five baseline algorithms: (1) non-private

centralized approach, (2) ADMM algorithm (Algorithm 1), (3)

ADMM algorithm with PVP (Algorithm 2), (4) ADMM with

dual variable perturbation (DVP) in [17], and (5) differentially

private stochastic gradient descent (DPSGD) in [20] for dis-

tributed settings. We evaluate the accuracy and effectiveness of

our approach by comparing it with the five baseline algorithms.

Setup. We set up the simulation by MATLAB in an Intel(R)

Core(TM) 3.40 GHz computer with 16 GB RAM. In the

simulation, we set the total iteration number t = 100 and

the penalty parameter ρ = 0.1, and choose the optimal

regularizer parameter λ/n to be 10−6 by 10-cross-validation

in non-private setting. In DPSGD, we set the optimal learning
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(d) ǫ = 0.1, ǭ = 1.0193, δ = 10
−3

Fig. 1: Impact of distributed data source number on DP-ADMM (l1-regularized logistic regression).
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(d) δ = 10
−6

Fig. 2: Convergence properties of DP-ADMM (l1-regularized logistic regression).
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Fig. 3: Accuracy comparison in empirical loss and classification error rate (l1-regularized logistic regression).

TABLE II: Computation Time (100 iterations).

ADMM PVP DVP DPADMM

ǫ = 0.01 67.242s 102.282s 59.743s 6.937s

ǫ = 0.05 67.242s 78.798s 65.935s 5.322s

ǫ = 0.1 67.242s 79.013s 69.855s 5.218s

rate to be 0.1 and the sampling ratio to be 1. We focus on

the settings with strong privacy guarantee and thus we set

privacy budget per iteration ǫ = {0.01, 0.05, 0.1, 0.2} and

δ = {10−3, 10−4, 10−5, 10−6}, and use moments accountant

method to obtain the corresponding total privacy loss ǭ. In

each simulation, we run it for 10 times to get averaged result.

Evaluations. We consider logistic regression problem in

a distributed setting and evaluate our approach for logistic

regression problems with l1-norm and l2-norm regularizers

respectively, in terms of convergence, accuracy, and compu-

tation cost. The loss function of binary logistic regression is

defined by (2). The convergence properties are evaluated with

respect to the augmented objective value, which measures

the loss as well as the constraint penalty and is defined as
∑n

i=1

(

fi(w̄
k
i ) + ρ‖w̄k

i − w̄k‖
)

. We evaluate the accuracy by

empirical loss 1
n

∑n
i=1

∑mi

j=1
1
mi

ℓ(ai,j , bi,j , w̃
k
i ), and classifi-

cation error rate. We measure the computation cost using the

running time of training.

A. L1-Regularized Logistic Regression

We obtain the DP-ADMM steps for l1 regularized logistic

regression by:

wk
i =

(

1

mi

mi
∑

j=1

bi,jai,j

1 + exp(bi,jw̃
k−1⊺

i ai,j)
− λ

n
sgn(w̃k−1

i )

+γk−1
i + ρwk−1 + w̃k−1

i /ηki

)(

ρ+ 1/ηki

)−1

, (38a)

w̃k
i =wk

i +MN d,p(0, σ
2
i,kId, σ

2
i,kIp), (38b)

wk =
1

n

n
∑

i=1

w̃k
i −

1

n

n
∑

i=1

γk−1
i /ρ, (38c)

γk
i =γk−1

i − ρ
(

w̃k
i −wk

)

, (38d)

where sgn(·) is the sign function.

Since the l1 regularized objective function is convex but

non-smooth, we apply Theorem 3 to set ηki . Since we en-

force ‖ℓ′(·)‖ ≤ 1 by data preprocessing, and we have
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‖R′

(·)‖ ≤ √dp (d = 104 and p = 1), we set c1 = 1
and c2 =

√
104. We obtain w∗ by pre-training and set

cw to be 23. According to Theorem 3, we set ηki to be

23
(

2k(1 + 10−6
√
104/n)2 + 1664k ln (1.25/δ)/

(

m2
i ǫ

2
))− 1

2 .

Since PVP and DVP cannot be applied when the objective

function is non-smooth, we only compare our approach with

ADMM and DPSGD in this section. We first investigate

the performance of our approach with different numbers of

distributed data sources and compare it with the centralized

approach. Figure 1 shows that the accuracy of our training

model would decrease if we consider larger number of data

sources. Since the size of local dataset is smaller for larger

number of agents, more noise should be introduced to guar-

antee the same level of differential privacy, thus degrading

the performance of the trained model. This is consistent with

Theorem 1 that the noise magnitude is scaled by 1/mi. In

following simulations, we consider the case when the number

of agents n equals 100. Figure 2 demonstrates the convergence

properties of our approach by showing how the augmented

objective value converges for different ǫ and δ. It shows that

our approach with larger ǫ and larger δ has better convergence,

which is consistent with Theorem 3. Finally, we evaluate the

accuracy of our approach by empirical loss and classification

error rate by comparing with ADMM and DPSGD. Figure

3 shows our approach outperforms DPSGD due to the faster

convergence property, demonstrating the advantage of ADMM

framework. In addition, Figure 3 shows the privacy-utility

trade-off of our approach. When privacy leakage increases

(larger ǫ and larger δ), our approach achieves better utility.

B. L2-Regularized Logistic Regression

The DP-ADMM steps for l2 regularized logistic regression

are described as follows:

wk
i =

(

1

mi

mi
∑

j=1

bi,jai,j

1 + exp(bi,jw̃
k−1⊺

i ai,j)
− λ

n
w̃k−1

i + γk−1
i

+ ρwk−1 + w̃k−1
i /ηki

)(

ρ+ 1/ηki

)−1

, (39a)

w̃k
i =wk

i +MN d,p(0, σ
2
i,kId, σ

2
i,kIp), (39b)

wk =
1

n

n
∑

i=1

w̃k
i −

1

n

n
∑

i=1

γk−1
i /ρ, (39c)

γk
i =γk−1

i − ρ
(

w̃k
i −wk

)

. (39d)

Here the l2 regularized objective function is convex and

smooth, thus we apply Theorem 4 to set ηki . Since we have

‖∇2R(·)‖ ≤ 1, and we enforce ‖∇ℓ(·)‖ ≤ 1 and ‖∇2ℓ(·)‖ ≤
0.25 by data preprocessing, thus we set c1 = 1, c3 = 0.25, and

c4 = 1. We obtain the optimal solution w∗ by pre-training,

and set cw to be 89. According to Theorem 4, we set ηki to

be
(

0.25 + 10−6 + 2
√

416k ln(1.25/δ)/
(

89miǫ
))−1

.

We fist investigate the performance of our approach under

the settings with different numbers of distributed data sources

and Figure 4 depicts the corresponding accuracy changes

(accuracy decreases with increasing number of agents). Since

the total data size is fixed, when we consider a larger number

of agents, the size of local dataset is smaller, so the training

model has lower accuracy due to more added noise for the

same level of privacy guarantee. In the following simulations,

we focus on the case where the number of agents is 100. Next,

we show the convergence properties of our approach. Figure

5 demonstrates that under weaker privacy guarantee (larger

ǫ and larger δ), our approach has better convergence, which

is consistent with Theorem 4. We evaluate the accuracy of

our approach by comparing it with ADMM, PVP, DVP, and

DPSGD on empirical loss and classification error rate. Figure 6

shows that our approach outperforms PVP, DVP, and DPSGD.

Specifically, ADMM has fast convergence but is sensitive

to noise. Thus the methods directly perturbing intermediate

results in ADMM (PVP and DVP) have poor performance.

Gradient-based method (DPSGD) has good noise-resilience

property but converges slowly. Our approach is based on

ADMM framework, and combines the approximate augmented

Lagrangian function with time-varying Gaussian noise addi-

tion to achieve higher utility. Furthermore, the results in Figure

6 also show the utility-privacy trade-off of our approach: larger

ǫ and larger δ indicating weaker privacy guarantee would

result in better utility. Finally, we show the advantage of our

approach in computation cost by running time. Table II gives

the comparison and shows that DP-ADMM has much less

computation cost than all three ADMM baseline algorithms,

which is resulted from the first-order approximation used in

our approach enabling updates with closed-form solutions.

VII. RELATED WORK

The existing literature related to our work could be

categorized by: privacy-preserving empirical risk minimiza-

tion, privacy-preserving distributed learning, and variants of

ADMM.

Privacy-preserving empirical risk minimization. There

have been tremendous research efforts on privacy-preserving

empirical risk minimization [23], [29]–[31]. Most of them

focus on a centralized setting where sensitive data is collected

and stored centrally, thus the privacy leakage comes from the

final released trained model. Chaudhuri et al. [23] propose

two perturbation methods: output perturbation and objective

perturbation to guarantee ǫ-differential privacy. Bassily et

al. [29] provide a systematic investigation of differentially

private algorithms for convex empirical risk minimization and

propose efficient algorithms with tighter error bound. Wang

et al. [30] focus on a more general problem: non-convex

problem, and propose a faster algorithm based on a proximal

stochastic gradient method. Smith and Thakurta [31] explore

the stability of model selection problems, and propose two

differentially private algorithms based on perturbation stability

and subsampling stability respectively.

Privacy-preserving distributed learning. Preserving pri-

vacy in distributed learning is challenging due to fre-

quent information exchange in the iterative process. Re-

cently, much works have been done to develop privacy-

preserving distributed learning algorithms. Some of them

employ cryptography-based methods in the protocol to hide

the private information [32]–[35]. A recent work [34] uses par-

tially homomorphic cryptography in ADMM-based distributed
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Fig. 4: Impact of distributed data source number on DP-ADMM (l2-regularized logistic regression).
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Fig. 5: Convergence properties of DP-ADMM (l2-regularized logistic regression).
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Fig. 6: Accuracy comparison in empirical loss and classification error rate (l2-regularized logistic regression).

learning to preserve data privacy but the proposed approach

cannot protect the information leakage of the private user

data from the final learned models. In contrast, our approach

provides differential privacy in the final trained machine

learning models. Among the works on distributed learning

with differential privacy, most of them focus on subgradient-

based algorithms [36]–[39] and only a few works consider

ADMM-based methods [1], [2], [17]–[19]. Zhang and Zhu

[17] propose two perturbation methods: primal perturbation

and dual perturbation to guarantee dynamic differential privacy

in ADMM-based distributed learning. Zhang et al. [1] propose

to perturb the penalty parameter of ADMM to guarantee

differential privacy. Zhang et al. [2] propose recycled ADMM

with differential privacy guarantee where the results from odd

iterations could be re-utilized by the even iterations, and thus

half of updates incur no privacy leakage. Guo and Gong

[18] preserve differential privacy in the asynchronous ADMM

algorithm. We design an ADMM-based distributed learning

scheme with differential privacy which uses approximate aug-

mented Lagrangian function for all iterations and adaptively

changes the variance of added Gaussian noise in each iteration.

We also use moments accountant method to analyze the total

privacy loss to better estimate the trade-off between the data

privacy and utility. We are the first to analyze rigorously

the convergence rate and utility performance of ADMM with

differential privacy.

Variants of ADMM. Some variants of ADMM have been

proposed recently for applicability to more generous problems.

Linearized ADMM [25], [26] replaces the quadratic function

in the augmented Lagrangian function with a linearized ap-

proximation and thus provides a better way to solve subprob-

lems without closed-form solutions. Stochastic ADMM [40],

[41] considers stochastic and composite objective functions

caused by natural uncertainties in observations. Our DP-

ADMM algorithm inherits the features of linearized ADMM

and stochastic ADMM, and guarantees strong differential

privacy with good utility and low computation cost.

VIII. CONCLUSION

In this paper, we have proposed an improved ADMM-

based differentially private distributed learning algorithm, DP-

ADMM, for a class of learning problems that can be for-

mulated as convex regularized empirical risk minimization.

By designing an approximate augmented Lagrangian function

and Gaussian mechanism with time-varying variance, our
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novel approach is noise-resilient, convergent and computation-

efficient, especially under high privacy guarantee. We have

also applied the moments accountant method to analyze the

end-to-end privacy loss of the proposed iterative algorithm.

The theoretical convergence guarantee and utility bound of our

approach are derived. The evaluations on real-world datasets

have demonstrated the effectiveness of our approach in the

setting under high privacy guarantee.
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APPENDIX A

LEMMA 4 (l2 SENSITIVITY OF PRIMAL VARIABLE UPDATE IN ALGORITHM 2)

Lemma 4. Assume the objective function is smooth, R(·) is 1-strongly convex, and ‖∇ℓ(·)‖ ≤ c1. The l2 sensitivity of primal

variable update in Algorithm 2 is defined by:

max
Di,D

′

i

‖wk
i,Di
−wk

i,D
′

i

‖ = 2c1
(λ/n+ ρ)mi

. (40)

Proof. We define:

G(wi) = Lρ,i(wi,w
k−1,γk−1

i ),

g(wi) =
1

mi
ℓ(a

′

i,mi
, b

′

i,mi
,wi)−

1

mi
ℓ(ai,mi

, bi,mi
,wi).

According to the first step of ADMM, we have:

wk
i,Di

=argmin
wi

G(wi), (42a)

wk
i,D

′

i

=argmin
wi

G(wi) + g(wi). (42b)

Also by assuming the smoothness of the objective function, the functions G(·) and G(·) + g(·) are smooth, thus we have:

∇G(wk
i,Di

) = ∇G(wk
i,D

′

i

) +∇g(wk
i,D

′

i

) = 0. (43)

Since we assume that the regularizer R(·) is 1-strongly convex, then function G(·) is (λ/n+ ρ)-strongly convex. From the

Lemma 14 of [42], we have:
(

∇G(wk
i,Di

)−∇G(wk
i,D

′

i

)
)⊺

(wk
i,Di
−wk

i,D
′

i

) ≥ (λ/n+ ρ)‖wk
i,Di
−wk

i,D
′

i

‖2. (44)

Combining this with the Cauchy-Schwartz inequality, we can get:

‖wk
i,Di
−wk

i,D
′

i

‖ · ‖∇g(wk
i,D

′

i

)‖ ≥
(

∇G(wk
i,Di

)−∇G(wk
i,D

′

i

)
)⊺

(wk
i,Di
−wk

i,D
′

i

)

≥(λ/n+ ρ)‖wk
i,Di
−wk

i,D
′

i

‖2.
(45)

By dividing both sides of the above inequality by (λ/n+ ρ)‖wk
i,Di
−wk

i,D
′

i

‖, we can get:

‖wk
i,Di
−wk

i,D
′

i

‖ ≤
‖∇ℓ(ai,mi

, bi,mi
,wk

i,D
′

i

)−∇ℓ(a′

i,mi
, b

′

i,mi
,wk

i,D
′

i

)‖
mi(λ/n+ ρ)

. (46)

As we assume that ‖∇ℓ(·)‖ ≤ c1, then we obtain the result:

max ‖wk
i,Di
−wk

i,D
′

i

‖ = 2c1
(λ/n+ ρ)mi

. (47)

APPENDIX B

PROOF OF THEOREM 2

Proof. We use the log moments of the privacy loss and their linear composability to get a tight bound of the total privacy loss.

The τ th log moment of the privacy loss of agent i for k-th iteration could be defined by the log moment generating function

at τ :

αk
i (τ) = ln

(

Ew̃k
i

[(

Pr
[

w̃k
i |Di

]

Pr
[

w̃k
i |D

′

i

]

)τ])

. (48)

In the k-th iteration of Algorithm 3, we employ Gaussian mechanism with variance σ2
i,k to achieve (ǫ, δ)-differential privacy

guarantee. We use µ0 to denote the probability density function (pdf) of N (0, σ2
i,k), and µ1 to denote the pdf ofN (2c1/

(

mi(ρ+

1/ηki )
)

, σ2
i,k). We obtain that αk

i (τ) by αk
i (τ) = ln

(

max(E1, E2)
)

, where

E1 = Ez∼µ0

[(

µ0(z)

µ1(z)

)τ]

and E2 = Ez∼µ1

[(

µ1(z)

µ0(z)

)τ]

.
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Since,

Ez∼µ0

[

(
µ0(z)

µ1(z)
)τ
]

=exp

(

τ(τ + 1)ǫ2

4 ln(1.25/δ)

)

, (49a)

Ez∼µ1

[

(
µ1(z)

µ0(z)
)τ
]

=exp

(

τ(τ + 1)ǫ2

4 ln(1.25/δ)

)

, (49b)

we have:

αk
i (τ) =

τ(τ + 1)ǫ2

4 ln(1.25/δ)
. (50)

According to Theorem 2 (linear composability) in [20], we have the τ th log moment of the overall privacy loss from i:

αi(τ) =

t
∑

k=1

αk
i (τ) =

tτ(τ + 1)ǫ2

4 ln(1.25/δ)
. (51)

We aim to prove that our proposed algorithm DP-ADMM (Algorithm 3) achieves (ǭ, δ)-differential privacy. According to

Theorem 2 (tail bound) in [20], we have:

δ = min
τ∈Z+

exp(αi(τ)− τ ǭ) = min
τ∈Z+

exp

(

tτ(τ + 1)ǫ2

4 ln(1.25/δ)
− τ ǭ

)

.

Since δ ∈ (0, 1), there exists a positive integer τ to make tτ(τ + 1)ǫ2/
(

4 ln(1.25/δ)
)

− τ ǭ < 0. Furthermore, tτ(τ +
1)ǫ2/

(

4 ln(1.25/δ)
)

− τ ǭ is a quadratic function w.r.t. τ . Thus, if there is a solution to the above minimization problem, we

must have: when τ = 1,
tτ(τ + 1)ǫ2

4 ln(1.25/δ)
− τ ǭ =

tǫ2

2 ln(1.25/δ)
− ǭ < 0. (52)

Therefore, we obtain:
tǫ2

2 ln(1.25/δ)
< ǭ. (53)

The minimum of tx(x + 1)ǫ2/
(

4 ln(1.25/δ)
)

− xǭ is −tǫ2/
(

16 ln(1.25/δ)
)

+ ǭ/2− ǭ2 ln(1.25/δ)/
(

tǫ2
)

when x ∈ R. Thus:

ln(δ) = min
τ∈Z+

(

tτ(τ + 1)ǫ2

4 ln(1.25/δ)
− τ ǭ

)

≥ − tǫ2

16 ln(1.25/δ)
+

ǭ

2
− ǭ2 ln(1.25/δ)

tǫ2
(54)

From (53) and (54), we obtain:

ln(1/δ) ≤ −3ǭ

8
+

ǭ2 ln(1.25/δ)

tǫ2
≤ ǭ2 ln(1.25/δ)

tǫ2
, (55)

which leads to the following inequality:

ǭ ≥
√

t ln(1/δ)

ln(1.25/δ)
ǫ. (56)

Therefore, there exists a constant c0, the overall privacy loss ǭ satisfies:

ǭ = c0
√
tǫ. (57)

APPENDIX C

LEMMA 5 USED IN THE PROOF OF LEMMA 2

Lemma 5. Assume L(·) is a convex differentiable function. s ≥ 0 is a scalar. For any vector x ∈ R
d and y ∈ R

d, we denote

their Bregman divergence as D(x,y) = h(x)−h(y)−
〈

∇h(y),x−y
〉

, where h(·) is a continuously-differentiable real-valued

and strictly convex function. If we define:

x∗ = argmin
x

L(x) + sD(x,y), (58)

then
〈

∇L(x∗),x∗ − x
〉

≤ s
(

D(x,y)−D(x,x∗)−D(x∗,y)
)

. (59)

Proof. According to the optimality condition,
〈

∇L(x∗) + s∇D(x∗,y),x− x∗
〉

≥ 0. (60)
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Then,
〈

∇L(x∗),x∗ − x
〉

≤s
〈

∇D(x∗,y),x− x∗
〉

=s
〈

∇h(x∗)−∇h(y),x− x∗
〉

=s
(

D(x,y)−D(x,x∗)−D(x∗,y)
)

.

(61)

APPENDIX D

PROOF OF LEMMA 2

Proof. Since we assume that ℓ(·) and R(·) are convex, the function fi(·) is convex. Due to the convexity of fi(·), we have:

fi(w̃
k−1
i )− fi(wi) ≤

〈

f
′

i (w̃
k−1
i ), w̃k−1

i −wi

〉

, (62)

which can lead to:

fi(w̃
k−1
i )− fi(wi) +

〈

w̃k
i −wi,−γk

i

〉

≤
〈

f
′

i (w̃
k−1
i ), w̃k−1

i −wi

〉

+
〈

w̃k
i −wi,−γk

i

〉

=
〈

f
′

i (w̃
k−1
i )− (ρ+ 1/ηki )ξ

k
i , w̃

k−1
i − w̃k

i

〉

−
(

ρ+ 1/ηki
)〈

ξki ,wi − w̃k−1
i

〉

+
〈

f
′

i (w̃
k−1
i )− γk

i − (ρ+ 1/ηki )ξ
k
i , w̃

k
i −wi

〉

.

(63)

According to the Line 10 of Algorithm 3, we have:
〈

f
′

i (w̃
k−1
i )− γk

i − (ρ+ 1/ηki )ξ
k
i , w̃

k
i −wi

〉

=
〈

f
′

i (w̃
k−1
i )− γk−1

i + ρ(w̃k
i −wk−1)− (ρ+ 1/ηki )ξ

k
i , w̃

k
i −wi

〉

+
〈

w̃k
i −wi, ρ(w

k−1 −wk)
〉

.
(64)

By combining (63) and (64), we obtain:

fi(w̃
k−1
i )− fi(wi) +

〈

w̃k
i −wi,−γk

i

〉

≤
〈

f
′

i (w̃
k−1
i )− (ρ+ 1/ηki )ξ

k
i , w̃

k−1
i − w̃k

i

〉

+
〈

f
′

i (w̃
k−1
i )− γk−1

i + ρ(w̃k
i −wk−1)− (ρ+ 1/ηki )ξ

k
i , w̃

k
i −wi

〉

+
〈

w̃k
i −wi, ρ(w

k−1 −wk)
〉

−
(

ρ+ 1/ηki
)〈

ξki ,wi − w̃k−1
i

〉

.

(65)

We handle the last three terms separately. Firstly, we have:

〈

w̃k
i −wi, ρ(w

k−1 −wk)
〉

=
ρ

2

(

‖wi −wk−1‖2 − ‖wi −wk‖2
)

+
ρ

2

(

‖w̃k
i −wk‖2 − ‖w̃k

i −wk−1‖2
)

≤ρ

2

(

‖wi −wk−1‖2 − ‖wi −wk‖2
)

+
ρ

2
‖w̃k

i −wk‖2

=
ρ

2

(

‖wi −wk−1‖2 − ‖wi −wk‖2
)

+
1

2ρ
‖γk

i − γk−1
i ‖2.

(66)

According to the Line 4 and 6 of Algorithm 3, w̃k
i is equal to the solution to minwi

〈

f
′

i (w̃
k−1
i ),wi − w̃k−1

i

〉

−
〈

γk−1
i ,wi −

wk−1
〉

+ρ‖wi −wk−1‖2/2+‖wi − w̃k−1
i ‖2/(2ηki )− (ρ+1/ηki )ξ

k
iwi. By applying Lemma 5 where D(x,y) = 1

2‖x− y‖2,

s = 1/ηki , and L(x) =
〈

f
′

i (w̃
k−1
i ),x− w̃k−1

i

〉

−
〈

γk−1
i ,x−wk−1

〉

+ ρ‖x−wk−1‖2/2− (ρ+ 1/ηki )ξ
k
iwi, we have:

〈

f
′

i (w̃
k−1
i )− γk−1

i + ρ(w̃k
i −wk−1)− (ρ+ 1/ηki )ξ

k
i , w̃

k
i −wi

〉

≤ 1

2ηki

(

‖wi − w̃
k−1
i ‖2 − ‖wi − w̃

k
i ‖

2 − ‖w̃k
i − w̃

k−1
i ‖2

)

.

(67)

Lastly, based on Young’s inequality, we have:

〈

f
′

i (w̃
k−1
i )− (ρ+ 1/ηki )ξ

k
i , w̃

k−1
i − w̃k

i

〉

≤ ηki
2

∥

∥f
′

i (w̃
k−1
i )− (ρ+ 1/ηki )ξ

k
i

∥

∥

2
+

1

2ηki
‖w̃k

i − w̃k−1
i ‖2. (68)

Combining (65),(66),(67), and (68), we have:

fi(w̃
k−1
i )− fi(wi) +

〈

w̃k
i −wi,−γk

i

〉

≤ηki
2
‖f ′

i (w̃
k−1
i )− (ρ+ 1/ηki )ξ

k
i ‖

2 −
(

ρ+ 1/ηki
)〈

ξki ,wi − w̃k−1
i

〉

+
1

2ηki

(

‖wi − w̃k−1
i ‖2 − ‖wi − w̃k

i ‖
2)

+
ρ

2
(‖wi −wk−1‖2 − ‖wi −wk‖2) + 1

2ρ
‖γk

i − γk−1
i ‖2.

(69)
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Next, according to our algorithm where γk
i = γk−1

i − ρ(w̃k
i −wk) and wk = 1

n

∑n
i=1 w̃

k
i − 1

n

∑n
i=1 γ

k−1
i /ρ, we have:

n
∑

i=1

〈

wk −w,γk
i

〉

= 0. (70)

And also, we could obtain:

〈

γk
i − γi, w̃

k
i −wk

〉

=
1

ρ

〈

γk
i − γi,γ

k−1
i − γk

i

〉

=
1

2ρ

(

‖γi − γk−1
i ‖2 − ‖γi − γk

i ‖
2 − ‖γk

i − γk−1
i ‖2

)

. (71)

Thus, combining (69), (70) and (71), we obtain the result in the Lemma 2:

n
∑

i=1

(

fi(w̃
k−1
i )− fi(wi) + (uk

i − ui)
⊺

F (uk
i )

)

=

n
∑

i=1

(

fi(w̃
k−1
i )− fi(wi) +

〈

− γk
i , w̃

k
i −wi

〉

+
〈

γk
i ,w

k −w
〉

+
〈

γk
i − γi, w̃

k
i −wk

〉

)

≤
n
∑

i=1

(

ηki
2
‖f ′

i (w̃
k−1
i )− (ρ+ 1/ηki )ξ

k
i ‖

2 −
(

ρ+ 1/ηki
)〈

ξki ,wi − w̃k−1
i

〉

+
ρ

2

(

‖wi −wk−1‖2 − ‖wi −wk‖2
)

+
1

2ηki

(

‖wi − w̃k−1
i ‖2 − ‖wi − w̃k

i ‖
2)

+
1

2ρ
‖γi − γk−1

i ‖2 − 1

2ρ
‖γi − γk

i ‖
2
)

.

(72)

APPENDIX E

PROOF OF THEOREM 3

Proof. According to the convexity of fi(·) and the monotonicity of the operator F (·), and applying Lemma 2, we have:

n
∑

i=1

(

fi(w̄
t
i)− fi(wi) + (ūt

i − ui)
⊺

F (ūt
i)

)

=

n
∑

i=1

(

fi(w̄
t
i)− fi(wi) +

〈

− γ̄t
i, w̄

t
i −wi

〉

+
〈

γ̄t
i, w̄

t −w
〉

+
〈

γ̄t
i − γi, w̄

t
i − w̄t

〉

)

≤1

t

t
∑

k=1

n
∑

i=1

(

fi(w̃
k−1
i )− fi(wi) + (uk

i − ui)
⊺

F (uk
i )

)

=
1

t

t
∑

k=1

n
∑

i=1

(

fi(w̃
k−1
i )− fi(wi) +

〈

− γk
i , w̃

k
i −wi

〉

+
〈

γk
i ,w

k −w
〉

+
〈

γk
i − γi, w̃

k
i −wk

〉

)

≤
n
∑

i=1

1

t

t
∑

k=1

(

ηki
2

∥

∥f
′

i (w̃
k
i )− (ρ+ 1/ηki )ξ

k
i

∥

∥

2 −
(

ρ+ 1/ηki
)〈

ξ
k
i ,wi − w̃

k−1
i

〉

)

+
1

t

n
∑

i=1

(

1

2ηt

∥

∥wi − w̃0
i

∥

∥

2
+

ρ

2
‖wi −w0‖2 + 1

2ρ
‖γi − γ0

i ‖
2
)

.

(73)

Let (wi,w) be the optimal solution (w∗
i ,w

∗) in the above inequality. We get:

n
∑

i=1

(

fi(w̄
t
i)− fi(w

∗
i ) +

〈

− γ̄t
i, w̄

t
i −w∗

i

〉

+
〈

γ̄t
i, w̄

t −w∗
〉

+
〈

γ̄t
i − γi, w̄

t
i − w̄t

〉

)

≤
n
∑

i=1

1

t

t
∑

k=1

ηki
2

∥

∥f
′

i (w̃
k−1
i )− (ρ+ 1/ηki )ξ

k
i

∥

∥

2 −
n
∑

i=1

1

t

t
∑

k=1

(

ρ+ 1/ηki
)〈

ξki ,w
∗
i − w̃k−1

i

〉

+
1

t

n
∑

i=1

c2w
2ηti

+
n

t

ρ

2
c2w +

1

t

n
∑

i=1

1

2ρ
‖γi − γ0

i ‖
2
.

(74)
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The above inequality holds for all γi, thus it also holds for γi ∈ {γi : ‖γi‖ ≤ β}. By letting γi be the optimal solution, we

have the maximum of the left side of the above inequality:

max
{γi:‖γi‖≤β}

n
∑

i=1

(

fi(w̄
t
i)− fi(w

∗
i ) +

〈

− γ̄t
i, w̄

t
i −w∗

i

〉

+
〈

γ̄t
i, w̄

t −w∗
〉

+
〈

γ̄t
i − γi, w̄

t
i − w̄t

〉

)

= max
{γi:‖γi‖≤β}

n
∑

i=1

(

fi(w̄
t
i)− fi(wi)− γi(w̄

t
i − w̄t)

)

=

n
∑

i=1

(

fi(w̄
t
i)− fi(wi)− max

{γi:‖γi‖≤β}
γi(w̄

t
i − w̄t)

)

=

n
∑

i=1

(

fi(w̄
t
i)− fi(wi) + β(‖w̄t

i − w̄t‖)
)

.

(75)

And we also get the maximum of the right side:

n
∑

i=1

1

t

t
∑

k=1

ηki
2

∥

∥f
′

i (w̃
k−1
i )− (ρ+ 1/ηki )ξ

k
i

∥

∥

2 −
n
∑

i=1

1

t

t
∑

k=1

(

ρ+ 1/ηki
)〈

ξki ,w
∗
i − w̃k−1

i

〉

+
1

t

n
∑

i=1

c2w
2ηti

+
ρn

2t
c2w + max

{γi:‖γi‖≤β}

1

t

n
∑

i=1

1

2ρ
‖γi − γ0

i ‖
2

=
n
∑

i=1

1

t

t
∑

k=1

ηki
2

∥

∥f
′

i (w̃
k−1
i )− (ρ+ 1/ηki )ξ

k
i

∥

∥

2 −
n
∑

i=1

1

t

t
∑

k=1

(

ρ+ 1/ηki
)〈

ξki ,w
∗
i − w̃k−1

i

〉

+
1

t

n
∑

i=1

c2w
2ηti

+
ρn

2t
c2w +

n

t

β2

2ρ
.

(76)

Thus, we obtain the inequality:

n
∑

i=1

(

fi(w̄
t
i)− fi(wi) + β‖w̄t

i − w̄t‖
)

≤
n
∑

i=1

1

t

t
∑

k=1

ηki
2

∥

∥f
′

i (w̃
k−1
i )− (ρ+ 1/ηki )ξ

k
i

∥

∥

2 −
n
∑

i=1

1

t

t
∑

k=1

(

ρ+ 1/ηki
)〈

ξ
k
i ,w

∗
i − w̃

k−1
i

〉

+
1

t

n
∑

i=1

c2w
2ηti

+
ρn

2t
c2w +

n

t

β2

2ρ
.

(77)

Since we assume ‖ℓ′(·)‖ ≤ c1 and ‖R′

(·)‖ ≤ c2, we have E
[∥

∥f
′

i (w̃
k−1
i ) − (ρ + 1/ηki )ξ

k
i

∥

∥

2]
= (c1 + λc2/n)

2 +

8dpc21 ln (1.25/δ)/
(

m2
i ǫ

2
)

. With E
[〈

ξki ,w
∗
i − w̃k−1

i

〉]

= 0 and ηki = cw
(

2k(c1+λc2/n)
2+16kdpc21 ln (1.25/δ)/

(

m2
i ǫ

2
))− 1

2 ,

by taking expectation of the inequality (77), we obtain:

E

[ n
∑

i=1

(

fi(w̄
t
i)− fi(w

∗
i ) + β‖w̄t

i − w̄t‖
)

]

≤
n
∑

i=1

1

t

t
∑

k=1

E

[

ηki
2
‖f ′

i (w̃
k−1
i )− (ρ+ 1/ηki )ξ

k
i ‖

2
]

−
n
∑

i=1

1

t

t
∑

k=1

(

ρ+ 1/ηki
)

E

[

〈

ξki ,w
∗
i − w̃k−1

i

〉

]

+
1

t

n
∑

i=1

c2w
2ηti

+
ρn

2t
c2w +

n

t

β2

2ρ
,

(78)
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which leads to the result in the theorem:

E

[ n
∑

i=1

(

fi(w̄
t
i)− fi(w

∗
i ) + β‖w̄t

i − w̄t‖
)

]

=

n
∑

i=1

1

t

t
∑

k=1

cw

2
√
2k

√

(c1 + λc2/n)2 +
8dpc21 ln (1.25/δ)

m2
i ǫ

2

+

n
∑

i=1

1

t

t
∑

k=1

cw
√
2t

2

√

(c1 + λc2/n)2 +
8dpc21 ln (1.25/δ)

m2
i ǫ

2
+

nρ

2t
c2w +

nβ2

2ρt

=

n
∑

i=1

cw

2
√
2t

√

(c1 + λc2/n)2 +
8dpc21 ln (1.25/δ)

m2
i ǫ

2

( t
∑

k=1

1√
k
+ 2
√
t

)

+
nρ

2t
c2w +

nβ2

2ρt

≤
n
∑

i=1

√
2cw√
t

√

(c1 + λc2/n)2 +
8dpc21 ln (1.25/δ)

m2
i ǫ

2
+

n(ρc2w + β2/ρ)

2t
.

(79)

APPENDIX F

PROOF OF LEMMA 3

Proof. As we assume that ℓ(·) and R(·) are smooth and convex,
∥

∥∇2ℓ(·)
∥

∥ ≤ c3, and
∥

∥∇2R(·)
∥

∥ ≤ c4, thus we have
∥

∥∇2fi(·)
∥

∥ =
∥

∥∇2ℓ(·) + λ/n∇2R(·)
∥

∥ ≤ c3 + λc4/n is bounded. This leads to:
∥

∥∇fi(x)−∇fi(y)
∥

∥ ≤ (c3 + λc4/n)
∥

∥x− y
∥

∥. (80)

Thus, fi(·) is (c3 + λc4/n)-Lipschitz smooth. According to the property of Lipschitz smooth, we have:

fi(w̃
k
i ) ≤fi(w̃k−1

i ) +
〈

∇fi(w̃k−1
i ), w̃k

i − w̃k−1
i

〉

+
c3 + λc4/n

2
‖w̃k

i − w̃k−1
i ‖2

=fi(w̃
k−1
i ) +

(

ρ+ 1/ηki
)〈

ξki , w̃
k
i − w̃k−1

i

〉

+
c3 + λc4/n

2
‖w̃k

i − w̃k−1
i ‖2

+
〈

∇fi(w̃k−1
i )− (ρ+ 1/ηki )ξ

k
i , w̃

k
i − w̃k−1

i

〉

.

(81)

Due to the convexity of fi(·), we have:

fi(w̃
k
i )− fi(wi) ≤

〈

∇fi(w̃k
i ), w̃

k
i −wi

〉

. (82)

According to (81) and (82), we have:

fi(w̃
k
i )− fi(wi) +

〈

w̃k
i −wi,−γk

i

〉

≤fi(w̃k−1
i )− fi(wi) +

(

ρ+ 1/ηki
)〈

ξki , w̃
k
i − w̃k−1

i

〉

+
〈

∇fi(w̃k−1
i )− (ρ+ 1/ηki )ξ

k
i , w̃

k
i − w̃k−1

i

〉

+
c3 + λc4/n

2
‖w̃k

i − w̃k−1
i ‖2 +

〈

w̃k
i −wi,−γk

i

〉

,

(83)

which leads to:

fi(w̃
k
i )− fi(wi) +

〈

w̃k
i −wi,−γk

i

〉

≤
〈

∇fi(w̃k−1
i )− γk

i − (ρ+ 1/ηki )ξ
k
i + ρ(w̃k

i −wk−1), w̃k
i −wi

〉

+
(

ρ+ 1/ηki
)〈

ξki , w̃
k
i − w̃k−1

i

〉

+
c3 + λc4/n

2
‖w̃k

i − w̃k−1
i ‖2

+
〈

w̃k
i −wi, ρ(w

k−1 −wk)
〉

−
(

ρ+ 1/ηki
)〈

ξki ,wi − w̃k−1
i

〉

.

(84)

Based on Young’s inequality,

〈

(ρ+ 1/ηki )ξ
k
i , w̃

k
i − w̃k−1

i

〉

≤ 1

2(1/ηki − (c3 + λc4/n))

∥

∥(ρ+ 1/ηki )ξ
k
i

∥

∥

2
+

1/ηki − (c3 + λc4/n)

2

∥

∥w̃k
i − w̃k−1

i

∥

∥

2
. (85)

Combining (66), (67), (84) and (85), we have:

fi(w̃
k
i )− fi(wi) +

〈

w̃k
i −wi,−γk

i

〉

≤ (ρ+ 1/ηki )
2

2(1/ηki − (c3 + λc4/n))

∥

∥ξki
∥

∥

2 −
(

ρ+ 1/ηki
)〈

ξki ,wi − w̃k−1
i

〉

+
1

2ηki
(‖wi − w̃k−1

i ‖2 − ‖wi − w̃k
i ‖

2
)

+
ρ

2
(‖wi −wk−1‖2 − ‖wi −wk‖2) + 1

2ρ
‖γk

i − γk−1
i ‖2.

(86)
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Combining (86), (70) and (71), we get the result as desired:

n
∑

i=1

(

fi(w̃
k
i )− fi(wi) + (uk

i − ui)
⊺

F (uk
i )

)

=
1

n

n
∑

i=1

(

fi(w̃
k
i )− fi(wi) +

〈

− γk
i , w̃

k
i −wi

〉

+
〈

γk
i ,w

k −w
〉

+
〈

γk
i − γi, w̃

k
i −wk

〉

)

≤
n
∑

i=1

(

(

ρ+ 1/ηki
)2

2(1/ηki − (c3 + λc4/n))

∥

∥ξki
∥

∥

2 −
(

ρ+ 1/ηki
)〈

ξki ,wi − w̃k−1
i

〉

+
1

2ηki
(‖wi − w̃k−1

i ‖2 − ‖wi − w̃k
i ‖

2
)

+
ρ

2
(‖wi −wk−1‖2 − ‖wi −wk‖2) + 1

2ρ
(‖γi − γk−1

i ‖2 − ‖γi − γk
i ‖

2
)

)

.

(87)

APPENDIX G

PROOF OF THEOREM 4

Proof. According to the convexity of fi(·) and the monotonicity of F (·), and applying Lemma 3, we have:

n
∑

i=1

(

fi(w̄
t
i)− fi(wi) + (ūt

i − ui)
⊺

F (ūt
i)

)

=

n
∑

i=1

(

fi(w̄
t
i)− fi(wi) +

〈

− γ̄t
i, w̄

t
i −wi

〉

+
〈

γ̄t
i, w̄

t −w
〉

+
〈

γ̄t
i − γi, w̄

t
i − w̄t

〉

)

≤1

t

t
∑

k=1

n
∑

i=1

(

fi(w̃
k
i )− fi(wi) + (uk

i − ui)
⊺

F (uk
i )

)

=
1

t

t
∑

k=1

n
∑

i=1

(

fi(w̃
k
i )− fi(wi) +

〈

− γk
i , w̃

k
i −wi

〉

+
〈

γk
i ,w

k −w
〉

+
〈

γk
i − γi, w̃

k
i −wk

〉

)

≤
n
∑

i=1

1

t

t
∑

k=1

(

(

ρ+ 1/ηki
)2

2(1/ηki − (c3 + λc4/n))

∥

∥ξki
∥

∥

2 −
(

ρ+ 1/ηki
)〈

ξki ,wi − w̃k−1
i

〉

)

+
1

t

n
∑

i=1

(

1

2ηti
‖wi − w̃0

i ‖
2
+

ρ

2
‖wi −w0‖2 + 1

2ρ
‖γi − γ0

i ‖
2
)

.

(88)

By letting (wi,w) be the optimal solution (w∗
i ,w

∗), we have:

n
∑

i=1

(

fi(w̄
t
i)− fi(w

∗
i ) +

〈

− γ̄t
i, w̄

t
i −w∗

i

〉

+
〈

γ̄t
i, w̄

t −w∗
〉

+
〈

γ̄t
i − γi, w̄

t
i − w̄t

〉

)

=
n
∑

i=1

1

t

t
∑

k=1

(

(

ρ+ 1/ηki
)2

2(1/ηki − (c3 + λc4/n))

∥

∥ξki
∥

∥

2 −
(

ρ+ 1/ηki
)〈

ξki ,w
∗
i − w̃k−1

i

〉

)

+
1

t

n
∑

i=1

c2w
2ηti

+
ρn

2t
c2w +

1

t

n
∑

i=1

1

2ρ
‖γi − γ0

i ‖
2
.

(89)

The above inequality holds for all γi, thus it also holds for γi ∈ {γi : ‖γi‖ ≤ β}. By letting γi be the optimum, we have

max
{γi:‖γi‖≤β}

n
∑

i=1

(

fi(w̄
t
i)− fi(w

∗
i ) +

〈

− γ̄t
i, w̄

t
i −w∗

i

〉

+
〈

γ̄t
i, w̄

t −w∗
〉

+
〈

γ̄t
i − γi, w̄

t
i − w̄t

〉

)

= max
{γi:‖γi‖≤β}

n
∑

i=1

(

fi(w̄
t
i)− fi(wi)− γi(w̄

t
i − w̄t)

)

=

n
∑

i=1

(

fi(w̄
t
i)− fi(wi) + β‖w̄t

i − w̄t‖
)

.

(90)

Since we have E
[〈

ξki ,w
∗
i − w̃k−1

i

〉]

= 0 and E
[∥

∥ξki
∥

∥

2]
= dpσ2

i,k = 8dp ln(1.25/δ)c21/
(

m2
i ǫ

2(ρ+ 1/ηki )
2)

due to the variance

definition, we take the expectation of the (90) and let ηki =
(

c3 + λc4/n+ 2c1
√

4dpk ln(1.25/δ)/
(

ǫmicw
))−1

, which leads
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to the result:

E

[ n
∑

i=1

(

fi(w̄
t
i)− fi(w

∗
i ) + β

∥

∥w̄t
i − w̄t

∥

∥

)

]

≤E
[ n
∑

i=1

1

t

t
∑

k=1

(

ρ+ 1/ηki
)2

2(1/ηki − (c3 + λc4/n))

∥

∥ξki
∥

∥

2
]

−
n
∑

i=1

1

t

t
∑

k=1

(

ρ+ 1/ηki
)

E

[

〈

ξki ,w
∗
i − w̃k−1

i

〉

]

+
1

t

n
∑

i=1

c2w
2ηti

+
ρn

2t
c2w + max

{γi:‖γi‖≤β}

1

t

n
∑

i=1

1

2ρ
‖γi − γ0

i ‖
2

=
n
∑

i=1

cwc1
√

dp ln(1.25/δ)

miǫt

( t
∑

k=1

1√
k
+ 2
√
t

)

+
nc2w(c3 + λc4/n)

2t
+

ρn

2t
c2w +

n

t

β2

2ρ

≤
n
∑

i=1

4cwc1
√

dp ln(1.25/δ)

miǫ
√
t

+
nc2w(c3 + λc4/n)

2
+

nc2wρ+ nβ2/ρ

2
.

(91)
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