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Noise Reduction in Side Channel Attack

Using Fourth-Order Cumulant
Thanh-Ha Le, Jessy Clédière, Christine Servière, and Jean-Louis Lacoume, Senior Member, IEEE

Abstract—Side channel attacks exploit physical information
leaked during the operation of a cryptographic device (e.g., a
smart card). The confidential data, which can be leaked from side
channels, are timing of operations, power consumption, and elec-
tromagnetic emanation. In this paper, we propose a preprocessing
method based on the fourth-order cumulant, which aims to im-
prove the performance of side channel attacks. It takes advantages
of the Gaussian and nonGaussian properties, that respectively
characterize the noise and the signal, to remove the effects due to
Gaussian noise coupled into side channel signals. The proposed
method is then applied to analyze the electromagnetic signals of
a synthesized application-specific integrated circuit during a data
encryption standard operation. The theoretical and experimental
results show that our method significantly reduces the number of
side channel signals needed to detect the encryption key.

Index Terms—Correlation power analysis (CPA), data en-
cryption standard (DES), differential power analysis (DPA),
fourth-order cumulant, Gaussian noise, higher order statistics,
side channel attack.

I. INTRODUCTION

S
IDE channel analysis was first introduced in the form of

timing attacks by Kocher in 1996 [1]. Some years later,

Kocher et al. proposed another attack based on power consump-

tion information, known as differential power analysis (DPA)

[2]. Power consumption signals of complementary metal–oxide

semiconductor (CMOS) chips were used to deduce the key of

the DES algorithm [3] by the difference of mean curves selected

on defined criteria. Later, electromagnetic emanation signals

obtained by different kinds of sensors were successfully used

to replace power consumption signals [4]–[6]. This kind of at-

tack is known as differential electromagnetic analysis (DEMA).

The effectiveness of DPA and DEMA has been verified in dif-

ferent types of devices [application-specific integtated circuit

(ASIC), field-programmable gate array (FPGA)], implemented

with different cryptographic algorithms (DES, AES, RC4, ECC,

RSA). Several countermeasures have been proposed to secure

them from first- and high-order differential attacks [7]–[10].

Numerous authors have extended Kocher’s et al. point of view

by introducing multibit DPA methods to improve the differen-

tial attack [11]–[14]. Recently, the new technique of correlation
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power analysis (CPA) has been investigated alot [28], [30], [31].

For the sake of simplicity, we will use the terms “DPA” and

“CPA” in this paper for any differential or correlation analysis

on power or electromagnetic signals.

Since the detection of an encryption key is mainly based on

side channel signals, their signal-to-noise ratio (SNR) may sig-

nificantly influence the key guess accuracy. If the undesirable

noise level is extremely high, the secret key can be undetectable.

Therefore, adding noise to side channel signals is one of the

countermeasures against side channel analysis. The averaging

operation can be used to reduce noise as in [2] and [15]. How-

ever, this method requires many power consumption signals.

Messerges et al. introduced another method which consists of

filtering noise and using the multibit DPA attack to improve the

SNR of DPA signals [12]. Contrary to many approaches which

try to eliminate noise, the template attack technique [15] is based

on a precise noise model to collect the maximum information

from a single signal. Template attacks were then developed in

[16]–[18].

Our work is directed toward filling the gap between signal

processing and what has been previously proposed. The idea of

improving the detection of transient signals embedded in addi-

tive Gaussian noise using higher order statistics was investigated

in [19] and [20]. Transient and impulsive signals have super-

Gaussian probability densities and, thus, high values of kurtosis.

As a result, by using the fourth-order cumulant of the observa-

tions, the effects due to Gaussian noise can be removed and the

dynamics of the signal can be enhanced.

Our contribution focuses on exploiting the fourth-order cu-

mulant properties as a preprocessing phase before the standard

DPA/CPA methods. We calculate the probability of detection

and the SNR which represent the capacity of the secret key

detection. We show theoretically and experimentally that our

method supports the reduction of the number of signals needed

to detect the encryption key.

This paper is structured as follows. The background of side

channels attacks and higher order statistics is presented in

Section II and Section III. In Section IV, we provide a detailed

explanation of the proposed method. Section V describes the

theoretical analysis of our solution which is then experimentally

validated in Section VI.

II. SIDE CHANNEL ATTACKS

A. Information Leaked From Side Channel Signals

Today, CMOS technology is the most widely used in digital

design applications, such as smart cards. Two main side chan-

nels which can be leaked in CMOS circuits are the power dissi-

pation and the electromagnetic emanation.
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1) Power Dissipation: The amount of power dissipated in

a CMOS circuit is the sum of static and dynamic dissipation

[21]. The static dissipation, which is, in general, very small,

is due to leakage current or other currents drawn continuously

from the power supply. The dynamic dissipation is due to the

switching transient current, the charging, and the discharging of

load capacitance. From a side channel attack point of view, the

dynamic dissipation contains significant information which can

be exploited by attackers.

2) Electromagnetic Emanations: A sudden current pulse in a

CMOS circuit causes a sudden variation of the electromagnetic

field surrounding the device, which can be captured by inductive

sensors. The relation between the magnetic field and its source

current is given by Biot–Savart’s law ,

where is an infinitesimal length of the conductor carrying

electric current , is the magnetic permeability, and is the

directional vector representing the distance between the current

and the field point. According to Faraday’s law, any change in

the magnetic environment of a coil of wire will cause a voltage

to be induced in the coil , where the magnetic flux

is . Hence, if useful information is contained in ,

it can also be detected by measuring . The advantage of elec-

tromagnetic signals compared to power consumption signals is

the possibility of measuring without direct device access. Fur-

thermore, for each message, several electromagnetic signals can

be captured by placing sensors in different positions [5] to ob-

tain more localized information.

B. Side Channel Noise

1) Gaussian Noise: When performing a power analysis of

smart cards, the following kinds of noise should be taken into

account.

• Intrinsic noise is due to physical fluctuations in circuits.

Such noise can be distinguished into at least four different

types: thermal noise, shot noise, noise, and genera-

tion–recombination noise [22].

• Added noise is due to voluntary physical fluctuations in

circuits. It can be added by using a linear feedback shift

register (LFSR) or random generators, which allow chip

developers to partially block side channel attacks.

• Quantization noise is caused by analog-to-digital conver-

sion and is assumed to be an uncorrelated stationary white

noise source [23]. Numerical noise can also be generated

during DPA/CPA computation.

• External noise is generated by external sources, such as

measuring equipment or environment conditions.

In practice, all fluctuating currents and voltages generated

in electrical devices have a probability density function of

Gaussian form [22] since the fluctuating quantity is the sum of

a large number of independent random variables. In such a case,

the central limit theorem holds and, thus, the intrinsic noise is

Gaussian. By the same way, we can consider the quantization

noise and the external noise as Gaussian noise.

2) Temporal Misalignment: The temporal misalignment of

signals provokes a great amount of noise into signals and desta-

bilizes side channel attacks. The misalignment sources in power

analysis can be divided into two groups. The first one consists

of unintentional sources generated by the device or measure-

ments [24]. The second one includes intentional sources added

by device developers, for example, the random process inter-

rupts (RPIs) [25]. Some solutions were proposed in [25]–[27]

to solve the temporal misalignment.

C. Differential Power Analysis

DPA exploits the dependence between the handled data and

the power consumption of the circuit. The original DPA at-

tack proposed by Kocher et al. [2] is based on the fact that

the power dissipation to manipulate one bit to 1 is different

from the power dissipation to manipulate it to 0. To test dif-

ferent keys , DPA uses ciphertexts (or plaintexts)

and a selection function which predicts

the value of an examined bit . DPA computes the differen-

tial trace as the difference between the average of the

traces for which is 1 and the average of the traces

for which is 0. If we denote as the power

consumption signal corresponding to the message , the trace

is computed as follows:

(1)

In theory, if the bits inside the algorithm are uniformly dis-

tributed and if the choice of and text messages is suitable, then

for the correct hypothesis , the at the instant

when the bit is handled. It is thus represented by a peak in

the differential trace at the instant , which is called the DPA

peak. For incorrect keys, tends to 0 and no significant

peak appears. However, in practice, the bit distribution condi-

tions are never perfect, and some output correlations can occur

with incorrect key guess, so we observe other peaks which are

not the DPA peak. We define a ghost peak as the one which ap-

pears at the instant and in a differential curve corresponding

to an incorrect key hypothesis. The ghost peak problem was ex-

plained in [28] and [29]. We call also a secondary peak as the one

which appears at an instant other than in a differential curve

corresponding to any key hypothesis (wrong or correct). In our

experiment, we detect the subkey used in the first S-box of

the first round of DES. The size of is 6 b, so we have 64 key

assumptions. The bit is one bit of the S-box output.

D. Correlation Power Analysis

Correlation approaches are based on the relation between the

actual power consumption of a circuit and a power consumption

model (e.g., the Hamming weight model [30], [31]). In [28], the

Hamming distance model was used. The relationship between

the power consumption and the Hamming distance is linear

and the correct key is the one which maximizes their correla-

tion factor. If we denote as the Hamming
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distance between the actual state of message and a reference

state , the correlation factor is formulated as

(2)

where and are the standard deviations of and .

In our evaluation, we examine four bits of an S-box output

and is the Hamming distance between the S-box output

and its reference state.

III. HIGHER ORDER STATISTICS

Moments and cumulants are statistical measures which char-

acterize signal properties. The first-order moment (the mean)

and the second-order cumulant (the variance) have been widely

used to characterize the probability distribution of a signal. If

a signal has a Gaussian probability density function, it is suffi-

cient to use the first- and second-order measures to characterize

it. However, many real-life signals are nonGaussian and higher

order statistics (HOS, moments and cumulants of orders higher

than 2) are needed to fully describe them. As for applications,

HOS first play an important role in blind array signal processing

[32], [33]. The idea of the Gaussian noise suppression using

cumulants was investigated in [34]. Another application using

cumulants is the retrieval harmonics in noise [35], [36]. Blind

source separation also obtains much success using HOS [37],

[38].

Consider a 1-D real random variable which is associated

with its first and second characteristic functions. The moments

of can be obtained by deriving the first characteristic function

at point 0, whereas the cumulants can be obtained by deriving

the second characteristic function at point 0 [39]. The th-order

cumulant is a function of the moments of orders up to . If the

variable is centered (i.e., ), for the orders from 1 to

4, these relations are

where and are the -order moment and cumulant,

respectively.

Many interesting properties of cumulants can be found in

[40]. In our work, we are mainly interested in the following

characteristic: cumulants of order higher than 2 can remove the

Gaussian noise present in the signal. It means that if

are Gaussian random variables independent of

, then we have

.

In general, we do not have the knowledge about the proba-

bility density of the signal, the moments and cumulants are cal-

culated by estimators. Let be a centered scalar random vari-

able, be realizations of . The unbiased esti-

mator of the fourth-order cumulant is formulated as [39]

(3)

IV. CUMULANT-BASED ANALYSIS

A. Gaussian Noise Suppression Using the Fourth-Order

Cumulant

Consider the side channel signal corresponding to the

message . This signal can be considered as the sum of a useful

signal and Gaussian noise . As cumu-

lants of an order higher than two of a Gaussian random variable

are equal to zero, the cumulants of the signal plus Gaussian noise

are equal to the cumulants of the useful signal

(4)

The fourth-order cumulant is generally used versus the third-

order one since for any signal with a symmetric probability den-

sity, its third-order cumulant is equal to zero. Therefore, we use

the fourth-order cumulant in our case.

We perform the cumulant computation by sliding a window of

samples with a step sample as illustrated in Fig. 1. The

fourth-order cumulant of the signal in each window is computed

using (3). As , the influence of can be observed

on consecutive values of the corresponding cu-

mulant signal . The value of

is given by the following formula [39]:

(5)

B. Comparison With the Noise Variance Subtraction Method

A standard noise reduction technique in signal processing is

to calculate the noise variance and then subtract it. As the noise

is independent of the signal , the power of is the

power of minus the power of

(6)

To illustrate this technique, we use the same sliding window

and compute the power of the signal in each window. Then

we estimate the noise variance1 and subtract it from the power of

. We obtain the power of the useful signal as presented

in the third curve of Fig. 1. While comparing the second and the

third curves of Fig. 1, we observe that the contrast between the

signal and the noise of the cumulant signal (the second one) is

greater than that of the power signal (the third one). This can

be explained by two points. First, the noise variance subtrac-

tion method requires an estimation of the noise variance while

the cumulant method suppresses the noise itself. If this noise

estimation is not exact, the useful information for DPA can be

modified and the efficiency of the key detection may be reduced.

1We consider the signal between two consecutive peaks as noise.
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Fig. 1. Horizontal axes represent the time sampling proportional to clock cy-
cles. The first vertical axis represents the voltage value on the output of an elec-
tromagnetic sensor (mV), the second one represents its fourth-order cumulant
signal, and the third one represents the power signal with noise subtracted. The
two last signals are obtained by sliding a window of 100 samples on the upper
signal.

Second, the efficiency of our method using the fourth-order cu-

mulant is based on the fact that the useful signal is impulsive

(strongly superGaussian). This property of the signal is char-

acterized by high values of its kurtosis (i.e., the normalized

fourth-order cumulant)

(7)

From (7), we deduce that for impulsive signals with high kur-

tosis values, its fourth-order cumulant is superior to its

power . Consequently, the relative amplitude of the cu-

mulant signal to noise is greater than that of the power signal to

noise. The dynamics of cumulant signals allows us to detect the

correct key more easily.

C. Temporal Misalignment Correction

Like any attack based on a sliding window [25], the attack

using cumulant signals makes it possible to minimize the effect

of the lack of temporal synchronization. Note that the temporal

misalignment in our paper does not refer to countermeasures,

such as RPI or random order executions, but to the imprecision

of measurements or the clock jittering. We consider two signals

and which are not well aligned as represented in the upper

figure of Fig. 2. The summed signal is shown by the

lower curve of Fig. 2. We clearly observe that the information

contained in and is dispersed in two distinct peaks of .

The temporal misalignment of side channel signals reduces the

attack effectiveness. If we use the cumulant signals and

(upper figure of Fig. 3), the information in both signals and

is then accumulated into the signal (lower figure

Fig. 2. Upper figure: misaligned signals s and s . Lower figure: sum of two
signals s = s + s .

Fig. 3. Upper figure: misaligned cumulant signals c and c . Lower figure:
sum of two cumulant signals c = c + c .

of Fig. 3). Hence, useful data of and converge in and the

effect due to the temporal misalignment can be reduced.

V. THEORETICAL EVALUATION

A theoretical model was proposed in [41] to determine the

effect of hardware countermeasures against DPA (noise adding

and random disarrangement of the instant ). However, this

evaluation is only dedicated to original signals (power consump-

tion and electromagnetic signals). The goal of this section is

to provide a theoretical study which makes it possible to eval-

uate the DPA methods using different signal types: the original

DPA [2], the cumulant DPA, and two other methods based on

the sliding window technique: the integration DPA [25] and the

energy DPA [42].

In [25], the sliding window concept was used to collect peaks

distributed over consecutive cycles. This technique can also be

applied when the peak is distributed over consecutive samples.

In regard to the energy DPA proposed in [42], we make two re-

marks. First, the differential signal of DPA is the difference be-

tween two mean signals. If we use the energy signals instead of

the original signals, after the subtraction, the noise variance of

two mean signals will be removed. Therefore, the DPA method

using energy signals suppresses implicitly the noise variance.

Second, as the power of a signal is its energy divided by the

signal length, the energy signals can be replaced by the power

signals. In our case, the signal length is the sliding window

length, which is fixed. Therefore, the energy DPA method is

nothing other than the DPA using power signals presented in

Section IV-B. Hereafter, we call this method the power DPA.
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Fig. 4. Two electromagnetic signals s and s .

We consider the monobit analysis where one bit is exam-

ined. Side channel signals are distributed in two groups corre-

sponding to the value of ( or ). If the bit is handled

to 1, the corresponding side channel signal is denoted by , and

if is handled to 0, the corresponding side channel signal is de-

noted by . Fig. 4 shows an example of two electromagnetic

signals and , which are used in the theoretical evaluation.

A. First Index: Probability of Detection

In our context, the probability of detection represents the

capacity of correctly detecting the secret key among key hy-

potheses. This parameter is computed at the instant when

the examined bit is handled. In order to simplify the problem

without loss of generality, we consider two hypotheses: the cor-

rect hypothesis and the wrong hypothesis . We choose

as the detection threshold. The key hypothes,

whose peak is higher than , is considered to be the

correct key. Let us denote:

• as the height of the detection peak of ;

• as the height of the detection peak of ;

• and as the expectations of and ;

• and as the standard deviations of and . As

differential signals are computed from the same elementary

signals, we can consider that the distributions of and

are Gaussian with the same standard deviation, that is

(Fig. 5).

The probability of detection is , where is

the probability of a miss

The probability of detection can be written as

(8)

where is the complementary error function

. In order to compute ,

Fig. 5. Probability of detection P and the probability of a miss P .

TABLE I
THEORETICAL VALUES OF THE DPA PEAK HEIGHT AND THE NOISE LEVEL

we must calculate the values , , and for each method:

the original DPA, the integration DPA, the power DPA, and the

cumulant DPA. These values depend on the signals , , and

the noise level (see the Appendix).

B. Second Index: SNR

In many cases, we do not have any knowledge about the in-

stant when the examined bit is handled. The detection peak

of the correct key cannot be observed because it is covered with

noise. We thus define the second parameter, which is the SNR

of the differential curve corresponding to the correct key. The

detection peak is considered to be the signal and the other parts

of the curve are defined as noise. The SNR of each method is

height of the detection peak

standard deviation of noise
(9)

The theoretical values of DPA peak height and the standard

deviation of noise are given in Table I. ( denotes the mean of

). The calculations of noise are given in the Appendix.

Note that , where is the kurtosis of

the signal . We develop of the cumulant DPA method

as follows:
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As , we have

The value represents the noise variance of and , so

, , or . As

signal (and ) is impulsive,2 we have . We

obtain:

(10)

The previous demonstration confirms the advantage of the cu-

mulant method compared to the power one when the examined

signal is impulsive (i.e., its kurtosis is highly superior to 1).

C. About CPA Using Fourth-Order Cumulant Signals

If the Hamming weight or the Hamming distance model is

adopted , where is the instant when the

data are handled, is the Hamming weight or Hamming

distance of the data and and are constant values. The side

channel at the instant becomes

(11)

As is Gaussian noise, it will disappear after the cu-

mulant computation. We can write

, where , ,

, , and are constant values computed from and . As

only the term contributes in the correlation factor be-

tween and , this correlation factor is exactly the

one between and multiplied by a constant. The prob-

ability of detection of CPA with cumulant signals, calculated at

the instant , is equivalent to that of CPA with original signals.

However, using cumulant signals, the SNR of CPA will clearly

be enhanced because of the signal denoising. Consequently, the

key detection is more efficient.

D. Discussion

The criteria defined previously allow us to evaluate the per-

formance of an attack. A method is powerful if both the proba-

bility of detection and the SNR of the DPA signal are high.

It is obvious that and SNR depend on the number of side

channel signals and the standard deviation of noise in a side

channel signal . However, these dependences are simple: when

increases, and SNR increase and when increases,

and SNR decrease. In this section, we present only the variation

of given by (8) (Fig. 6), and the variation of SNR given in

Table I (Fig. 7) according to the sliding window length . The

number of side channel signals is set to and the noise

level of an elementary side channel signal is mV.

2For example, if we truncate an electromagnetic peak (the first curve of Fig. 1)
by a window of 100 samples, its kurtosis is about 13.

Fig. 6. Variation of the detection probability in function of N .

Fig. 7. Variation of SNR in a function of N .

The and the SNR of the original method, which does not

use the sliding window technique, are independent of . They

are thus represented by horizontal lines (Figs. 6 and 7). For the

integration method, the longer the window is, the greater the

noise is added to the window. Consequently, its and SNR

decrease rapidly when the window length increases. The de-

crease of SNR of the integration DPA was explained in [25].

This method is even worse than the original one if is large

. It means that the integration method is only appli-

cable to weak misalignments [i.e., the peak is distributed over

a small number of consecutive samples (or cycles)]. Regarding

the power DPA, the fact that the noise variance is removed by

the subtraction of two mean signals makes it better than the orig-

inal and the integration methods.

The variations of and SNR corresponding to the cumulant

method presents a fall when . It can be explained by

two reasons. On one hand, when the sliding window is too small,

the signal cannot be considered as impulsive. Accordingly, its

kurtosis is not high, and the values of and SNR are close to

0. On the other hand, if the window is not large enough, the as-

sumption about the Gaussian noise may not hold and the cumu-

lant of noise can be different from 0. When the window is large,

the conditions of impulsive signal and of Gaussian noise hold.

6



Fig. 8. DPA, cumulant DPA, CPA and cumulant CPA signals. Left column:
signals corresponding to the correct key. Right column: signals corresponding
to a wrong key.

Therefore, the cumulant DPA performs better than the power

DPA and it becomes the best method in both criteria: the prob-

ability of detection and the SNR.

VI. EXPERIMENTAL RESULTS

For a real experiment, the probability of detection is replaced

by index , which is easier to compute. It is defined as the ratio

between the DPA/CPA peak corresponding to the correct key

(expected peak) and the highest DPA/CPA peak resulting from

incorrect keys (ghost peaks). These peaks are observed at the

same time location when the data are handled. If this index

is greater than 1, the expected peak is higher than any ghost

peak and the key detection is reliable. In contrast, if this index

is smaller than 1, a ghost peak exists which is higher than the

expected peak and the method is not effective. The second index,

denoted , is the signal-to-noise ratio of the DPA/CPA signal

corresponding to the correct key. This index is the SNR defined

in the previous section.

A. Experimental Validation of the Cumulant-Based Analysis

In our experiment, we measure the electromagnetic emana-

tions of a synthesized application-specific integrated circuit

(ASIC) during a DES operation. The sampling rate is 612.5

MHz and the clock rate is 2.1 MHz. We obtain an electro-

magnetic signal from each random message used in the input

(upper curve of Fig. 1). Here, the notation represents

the voltage value at the output of our electromagnetic sensor

corresponding to the message .

In the first experiment, we used 3000 messages to test 64 key

assumptions. The DPA and CPA signals were computed using

Fig. 9. Variation of the index i .

(1) and (2), respectively.3 For DPA, a selection function based

on 1-b Hamming distance was used. For the CPA method, we

examined 4 b. The cumulant signals were collected by sliding a

window of samples with a step . The choice of

is verified by the theoretical evaluation in Section V.

It corresponds to the high values of and SNR (Figs. 6 and 7).

Fig. 8 represents from top to bottom the DPA, cumulant-based

DPA, CPA, and cumulant-based CPA signals corresponding to

the correct key (left column) and a wrong key resulting in the

highest ghost peak (right column). First, the results show that all

four methods allow the retrieval of the correct key. It means that

the cumulant operation does not eliminate the useful informa-

tion for DPA and CPA in the electromagnetic signals. Second,

thanks to the high dynamic of cumulant signals, the peaks at

other instants than of DPA signals (the secondary peaks),

which appear frequently in monobit DPA, are clearly reduced

using the cumulant method. Third, we observe a high level of

noise in the CPA signal. Index gives a good measure of the

noise problem.

B. Performance Evaluation

The variation of index , when the number of cipher mes-

sages varies from 100 to 10000 message, is illustrated in Fig. 9.

This figure shows that the cumulant-based DPA method per-

forms much better than the original DPA. This improvement is

explained by the fact that the cumulant operation removes the

Gaussian noise impact, corrects the misalignment, and keeps the

difference of power dissipation to manipulate one bit to 1 or to

0. When comparing CPA and cumulant-based CPA, we see that

the latter method still works but its improvement is not signifi-

cant.

The evaluation of index is depicted in Fig. 10. It shows that

the SNR of DPA and cumulant-based DPA signals are always

good. Index of CPA- and cumulant-based CPA methods is

low because of the normalization of CPA [13].

3The main goal here is not to compare DPA and CPA but to investigate the
effect of cumulant computation. In the experimental result, DPA is performed
with 1-b weighting and CPA with 4-b weighting. Thus, CPA will give better
results.
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Fig. 10. Variation of the index i .

Fig. 11. Choice of i .

The key detection depends on both indexes and . It is

feasible and reliable if the two following conditions are satisfied

and . The first condition is trivial. The choice of

depends on the probability of false alarm (see Fig. 11). For a

centered normalized Gaussian noise and a signal of 3, the SNR

is equal to 3, then the corresponding probability of false alarm

(i.e., noise amplitude signal amplitude) is about 7%.

According to Figs. 9 and 10, the DPA method needs about

2500 messages and CPA needs about 400 messages to detect the

correct key. By using the cumulant tool, our proposed methods

require only 200 messages to retrieve the encryption key. Fig. 12

confirms our conclusion about the required number of messages.

The left column signals correspond to the experiment with 400

cipher messages. We see the appearance of many unexpected

peaks in DPA signals (i.e., the encryption key cannot be un-

covered). Meanwhile, CPA, the cumulant-based DPA, and CPA

methods are effective. If the number of messages is reduced to

200, only the cumulant-based DPA/CPA methods allow detec-

tion of the secret key.

The experimental results show that our cumulant based

methods are more powerful than the original ones. The cu-

mulant application improves DPA significantly in terms of

the number of messages. Instead of using 2500 messages, the

cumulant based DPA needs only 200 messages.

Note that in this experiment, the misalignment of signals

is relatively weak (about 3, 4 samples). If the misalignment

becomes more important, the key detection of the original

DPA and CPA methods will be reduced. The performance of

cumulant methods, which use the sliding window technique,

is not affected. In this case, the attack efficiency is much more

remarkable.

Fig. 12. DPA, cumulant DPA, CPA, and cumulant CPA signals. Left column:
400 used messages. Right column: 200 used messages.

Fig. 13. Upper: a cumulant signal with N = 400 and p = 1. Lower: a cu-
mulant signal with N = 100 and p = 100.

C. Choice of the Window Length and the Sliding Step

As we observed in the previous paragraph, the cumulant

method gives good values of index ; hence, the detection

efficiency is related to . It depends strongly on the choice of

the window size and the sliding step . One should note

that the relevant information from the side channel signals of

DES operation is located around 16 peaks corresponding to

16 rounds of DES. In our case, the distance between two

consecutive peaks is about 300 samples. If we choose ,

some positions of the sliding window exist that contain two

consecutive peaks. After performing cumulant calculation, the

information included in two consecutive peaks will be merged

into one large cumulant peak as depicted in the upper curve of

Fig. 13 ( , ). The 16 original peaks in the side

channel signal are completely deformed, and the effectiveness

of the cumulant DPA will be degraded.
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Fig. 14. First index evaluation with 1000 messages.

The cumulant signals used in Section VI are computed by

sliding the window with a step which makes it possible

to examine exhaustively the behavior of side channel signals.

However, when , the cumulant information of each elec-

tromagnetic peak will be repeated times in cumulant sig-

nals. We can reduce this redundancy by selecting a greater value

of . Note that step should be smaller than or equal to the

sliding window size to avoid the loss of informa-

tion. When , electromagnetic signals are truncated into

pieces of size . The lower curve of Fig. 13 represents a cu-

mulant signal with 100 and 100. We observe that

the signal size is divided by and the peaks are still well

distinguished.

In order to investigate the performance fluctuation of the cu-

mulant-based DPA method in the function of , we ob-

serve the variation of index as presented in Fig. 14 when

varying from 1 to 100 and from 20 to 400. This result

is obtained by using 1000 side channel signals. First, the result

confirms that when is superior to the distance between two

electromagnetic peaks , or when is too small

, index decreases. The best values for the window

length are about , which are consistent with

Figs. 6 and 7. Second, when , we observe the bad values

of due to the loss of information. Third, the performance of

a cumulant-based DPA method is reduced when the values of

become dividers of . In our case, 2952 is the position

where data are handled, thereby for , 2, 3, 4, 6, 8, 9, 12,

18, 24, 36, 41, the dividers of 2952, is small. It can be ex-

plained by the fact that the position will be found at the edge

of a sliding window. This is called the edge effect (see Fig. 3).

It affects the cumulant calculation which then affects the effec-

tiveness of the cumulant-based DPA. In conclusion, the values

which satisfy the conditions 1) , 2) ,

and 3) not being a divider of , will allow the detection of the

correct key with a good attack-efficient index .

VII. CONCLUSION

In this paper, we have proposed a new method to reduce the

Gaussian noise of signals in DPA and CPA attacks using the

fourth-order cumulant of side channel signals. We have given

the theoretical evaluation based on two criteria—the probability

of detection and the SNR. The formulas to calculate these pa-

rameters have been given under a general form with flexible pa-

rameters, such as the noise level, the number of side channel

signals, and the length of sliding window. They can be applied

to any type of side channel signals for selecting the most suit-

able parameters. The proposed cumulant method has been val-

idated by real experiments with electromagnetic signals of an

ASIC. The cumulant method is a powerful solution for the noise

suppression and the temporal misalignment correction in a side

channel attack.

APPENDIX

In this appendix, we want to show how the values , ,

and defined in Section V-A can be computed from the signals

, , and the standard deviation of noise of an elementary

electromagnetic signal. We first present the common part of all

methods. Then, the calculations dedicated to each method (the

integration DPA, the power DPA, and the cumulant DPA) are

separately developed. The calculations of noise are shown in

the last section of the Appendix.

We assume that for the correct hypothesis , signals

are correctly distributed in two groups , and the number

of signals in each group is . In the case of , for each

group and , there are signals that are wrongly dis-

tributed and only signals are correctly placed in their

group. To obtain the results shown in Section V, we have chosen

. The value of does not change the relative results

between the examined methods.

The probability of detection is

. As the differential signals are computed from el-

ementary signals, to obtain , and , we have to calculate

the expectation and the variance of the peak at the instant of

each elementary signal. If we note and , the expectation

and the standard deviation of the peak of the signal , , and

, respectively, for , it is easy to demonstrate that

(12)

(13)

(14)

The calculations of and (or and ) are similar.

Hence, we consider a signal (which can be or ) of

length , added by a centered i.i.d Gaussian noise of

variance . After the integration, power or cumulant operations

in the window , is replaced by a value . We calcu-

late the mathematical expectation and the variance of in three

cases: integration, power, and cumulant operations

9



Integration operation

The mathematical expectation and the variance of are

So for the intergration method, , , and can be cal-

culated by replacing in (12)–(14) ,

, .

Power operation

(15)

Let us denote , we can write

Cumulant operation

By performing the same calculation steps of the power op-

eration, we can obtain the expectation and the variance of the

cumulant. As these calculations are quite complex, we present

the final results here

Denote that , is given by

Calculations of the noise level: In each case, the variance of

noise is given by the value of with for all (noise

only, no signal). To obtain the standard deviation of noise, we

extract the root of the variance . In consequence, we have
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