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Abstract—In multi-goal reinforcement learning (RL), al-
gorithms usually suffer from inefficiency in the collection
of successful experiences in tasks with sparse rewards.
By utilizing the ideas of relabeling hindsight experience
and curriculum learning, some prior works have greatly
improved the sample efficiency in robotic manipulation
tasks, such as hindsight experience replay (HER), hind-
sight goal generation (HGG), graph-based hindsight goal
generation (G-HGG), and curriculum-guided hindsight ex-
perience replay (CHER). However, none of these can learn
efficiently for solving challenging manipulation tasks with
distant goals and obstacles, since they rely either on
heuristic or simple distance-guided exploration. In this
work, we introduce graph-curriculum-guided hindsight goal
generation (GC-HGG), an extension of CHER and G-HGG,
that works by selecting hindsight goals on the basis of
graph-based proximity and diversity. We evaluated GC-
HGG in four challenging manipulation tasks involving ob-
stacles in both simulations and real-world experiments,
in which significant enhancements in both sample effi-
ciency and overall success rates over prior works were
demonstrated. Videos and codes can be viewed at this link:
https://videoviewsite.wixsite.com/gc-hgg.

Index Terms—Reinforcement learning, hindsight experi-
ence replay, robotic arm manipulation, path planning.

[. INTRODUCTION

EEP reinforcement learning has successfully revolution-

ized the process of solving decision-making problems

in many areas ranging from robotics, for example, solving
a Rubik’s cube or enabling autonomous driving, to mind
games such as AlphaGo, Atari games, and Starcraft [1]-[6].
A recurrent problem of RL, however, is that it requires hand-
crafted reward functions that are tailored to individual tasks,
which usually feature complex and as yet unknown behaviors
in most real-world applications. Therefore, the design of a
proper reward is challenging and a major impediment to the
widespread adoption of RL for use in real-world applications.
On the one hand, recent work has shown that learning
with sparse rewards, such as binary signals indicating a task’s
completion, can enable better applicability to multi-goal RL
tasks than engineered dense rewards, since sparse rewards can
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easily be derived from the task definition without any further
manual engineering effort. On the other hand, the sparsity of
such rewards hinders the ability to collect sufficient successful
experience, usually resulting in a long learning period and
a low success rate. To tackle this issue, researchers have
proposed several ideas to improve the sample efficiency, such
as relabeling hindsight experience with different tasks [7] or
learning on a designed sequence of training samples, such as
a curriculum, to progress from easy to difficult [8].

One such relabeling approach is hindsight experience replay
(HER) [9], which greatly improves the success rate and sample
efficiency of RL algorithms in multi-goal RL tasks with sparse
rewards. HER first learns with hand-crafted heuristic hindsight
goals from previously achieved states that are easy to reach
and then continues with difficult goals. However, it is limited
in that it is only applicable when goals can be easily reached
by heuristic explorations and fails in environments with distant
goals. In such environments, the agent only explores around
the initial states and will never be able to reach real goals, since
it experiences no positive reward during random explorations.

Curriculum-guided HER (CHER) [8] extended the idea
of HER by adaptively prioritizing the replay buffer entries
according to the diversities with respect to other replay goals
and the proximities to target goals. The diversity metric is for-
mulated as the intra-distances among hindsight goals selected
for training and is maximized to encourage exploration. The
proximity metric is modeled as the Euclidean distance between
hindsight goals and target goals and is minimized to encourage
exploitation. However, CHER is not applicable to tasks with
obstacles that are able to mislead the Euclidean distance.
Moreover, it fails to provide a mechanism for designing
a proper trade-off with which to balance the diversity and
proximity, which leads to low sample efficiency in complex
tasks where delicate exploration strategies are required.

Another idea for improving the sample efficiency is based
on curriculum learning, which aims to design a proper cur-
riculum for guiding the exploration step by step towards final
goals. Hindsight goal generation (HGG) [10] is an automatic
curriculum generation approach that selects proper intermedi-
ate goals that can lead the agent to the target goals and are
also easy to reach at the same time. HGG is better able to
solve tasks with long-distant goals than HER or CHER, since
it can experience positive rewards when reaching intermediate
goals generated by the curriculum. Similar to CHER, HGG
uses the Euclidean distance to define the Wasserstein distance
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to measure the distance between a set of intermediate goals
and the final goal distribution. Therefore, HGG is also not
applicable in environments with obstacles, in which the short-
est obstacle-avoiding distance between two goals cannot be
computed using the Euclidean metric. On the basis of HGG,
our prior work, graph-based hindsight goal generation (G-
HGG), solves this problem by selecting hindsight goals based
on shortest distances in an obstacle-avoiding graph, which is
a discrete representation of the environment [11]. Although
G-HGG is applicable to environments with obstacles, it only
learns from randomly sampled hindsight goals from replay-
buffer, in which not all the experiences are equally useful to
different learning stages. Furthermore, the sample efficiency
of G-HGG highly depends on the gird size. A larger grid-size
means a higher error in the shortest obstacle-avoiding distance
and therefore miss-lead the selection of intermediate goals.

To overcome the aforementioned limitations, we pro-
pose graph-curriculum-guided hindsight goal generation (GC-
HGG), an extension of CHER and G-HGG, to improve the
sampling efficiency of solving complex robotic manipulation
tasks with obstacles within the framework of sparse-reward
RL. First, we create an obstacle-aware graph representation
of the environment as pre-training steps. Second, we define
a graph-based diversity that is lightweight to compute and a
graph-based proximity that can guide the object through ob-
stacles. Third, we design a trade-off mechanism that automat-
ically balances diversity and proximity exploration. Finally,
by comparing performances in four challenging manipulation
environments, we show that GC-HGG provides a significant
enhancement in both sample efficiency and success rate over
HER, CHER, HGG, and G-HGG. By transferring learned poli-
cies from simulations, we were able to successfully perform
GC-HGG on the four tasks in the real world.

Our main contribution to the literature is an algorithm that
bridges graph-based planning, diversity and proximity-based
exploration, and automatic curriculum generation for solving
complex manipulation tasks. First, we upgrade the design of
the graph-based representation of an environment proposed in
G-HGG [11] by eliminating the possible interference between
the obstacles and the body of the robotic arm. Second, the new
lightweight graph-based diversity and objective optimization
approach can greatly reduce the computation burden, while
the graph-based proximity can guide the agent through en-
vironments with obstacles. By introducing this graph-based
diversity, the negative effect of large gird-size on G-HGG
can be largely reduced because the agent can still explore
the environment, even intermediate goals are not selected
appropriately. Third, our automatic mechanism for balancing
proximity and diversity is a general solution that can be
applied to different environments at different training stages.

[I. RELATED WORK

There are a number of previous studies that aim to develop
informative and effective exploration strategies for solving
goal-conditioned RL tasks with sparse rewards. We briefly
introduce them on the basis of two main ideas.
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A. Hindsight Experience Relabeling and Prioritization

Hindsight experience relabeling is a data enrichment
method, and its intuitive idea is that some trajectory that is
less informative for the current task is likely to be a rich
information source for other tasks. By relabeling one trajectory
with a different task that the behavior is better suited to, the
knowledge gained can be used for different tasks and thus
improves the sample efficiency. HER achieves its success by
relabeling past experience with a heuristic choice of hindsight
goals from achieved states, but it suffers from its inefficient
random replay of experience. Prioritized sampling is a method
of enforcing exploration on valuable experiences, and some
of its ideas are based on the temporal-difference error [12],
reward-weighted entropy [13], transition energy [14], and
diversity-proximity of achieved goals [8].

B. Curriculum Learning and Automatic Goal Generation

Curriculum learning is another method of tackling the
exploration problem in sparse-reward multi-goal RL. It aims
to create a curriculum that enforces the agent to learn skills
that are suitable for the current learning stage, according to
the current ability of the agent. There are several ways of
creating such a curriculum, for example, using an intrinsic
motivation to improve exploration [15]-[20]. Another way of
constructing a meaningful curriculum is to predict high-reward
states and to generate goals close to these meaningful states
[8], [21]-[23]. Another idea for improving exploration that is
similar to curriculum learning is automatic goal generation,
which aims to first solve some sub-problems (easy problems)
that will be helpful later on for solving the complex problems.
The generation of these sub-problems (which are often inter-
mediate goals) is expected to be automatic. One approach for
selecting appropriate goals for the current training stage is to
use a goal generative adversarial network (Goal GAN) [24].
A goal discriminator is trained to evaluate whether a goal is at
the appropriate level of difficulty for the current policy. Some
other ideas are based on making some certain characteristics of
a goal [25], inverse dynamics [26], and imitation learning [7].

Although all of the above methods have demonstrated
improved exploration, they share one significant drawback:
exploration is not well guided towards distant target goals.
In other words, when the goals are “hidden” from the agent,
e.g., when the target goals are far away from the initial goals
or blocked by obstacles, the unguided exploration process may
take too long to learn the task or may even fail to do so.

[1l. PRELIMINARY
A. Curriculum-Guided Hindsight Experience Replay

C-HER [8] samples hindsight goals guided by the diversity
and proximity. The diversity demonstrates an agent’s curiosity
to explore an environment. A set of goals with high diversity
means that there is more exploration in different states and
different areas within the environment. The proximity denotes
how close these goals are to the desired goals. A large
proximity enforces training towards the desired goals.

Consider that we have already sampled all the achieved
trajectories in a replay buffer B. A set of B contains all goals
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achieved in previous exploration. In each iteration, a mini-
batch needs to be sampled to train the policy. In contrast to
uniform sampling, C-HER proposes selecting a subset A of B
(A C B), according to the diversity and proximity of A. The
proximity of A can be defined as,

Fprox £ Cl - Z (dzs(gz,g)) (1)

gi€A

where dis(g;, g) is the Euclidean distance between a hindsight
goal g; and the target goal g. C; is a constant to ensure
Fprow > 0. Apparently, as the distance dis(g;,g) decreases,
the proximity of set A increases. The diversity is defined as

Fain(A) £ Cy — Z Tiléigldis(giagj), 2)
jeB/A

where C5 is a constant to ensure Fg;,, > 0. It should be
noted that the values of C; and C> do not require any prior
knowledge, since they can simply be set with large values
in practice. Then the selection of A from B can be solved
by following combinatorial optimization that maximizes both
proximity and diversity:

glca)é F(A) £ /\Fp'r'oa: (A) + Fdi’U(A) 3
where A is a trade-off weight that balances the proximity and
diversity, which controls the proportion of the diversity and
proximity during training. It increase gradually in line with

A= (14+7) X “4)

where 7 determines the increasing rate of the proximity.

B. Hindsight Goal Generation (HGG)

HGG [10] extends HER to tasks with distant goal distri-
butions that are far away from the initial state distribution
and cannot be solved by heuristic exploration. These target
goals Gr belong to a goal space G and the initial states Sp
belong to the state space S. The distribution 7* : G xS — R
determines how they are sampled. Instead of optimizing V™
with the difficult target goal-initial state distribution 7*, which
carries the risk of being too far from the know goals, HGG
tries to optimize with a set of intermediate goals sampled from
T. On the one hand, the goals contained in 7 should be easy
to reach, which requires a high V(7). On the other hand,
goals in 7 should be close enough to 7* to be challenging
for the agent. This trade-off can be formalized as

max V™(T)—L-D(T*,T). 5)
The Lipschitz constant L is treated as a hyper-parameter. In
practice, to select these goals, HGG first approximates 7 * by
taking K samples from 7* and storing them in T*. Then,
for an initial state and goal (53,§%) € T*, HGG selects a
trajectory 7 = {s;}7_, that minimizes the following function:

N

w($,4',7) = cllm(85) — m(so)|

i (1" = (o)l = V" (Gsllm(s0)).
©
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m(-) is a state abstraction that maps from the state space to
the goal space. || is a symbol of concatenation. ¢ > 0 provides
a trade-off between 1) the distance between target goals and
2) the distance between the goal representation of the initial
states. Finally, from each of the K selected trajectories Tt
the hindsight goal ¢* is selected from the state s¢ € 7¢, that
minimized (6).

gt = arg min (3" = m(s)] = V" (salbms) ) )

StET

C. Graph-based Hindsight Goal Generation (G-HGG)

Our prior work G-HGG replaces the Euclidean-distance
with Graph-based distance to get the appropriate obstacle-
avoiding shortest distance to guide the exploration. To do that,
we create a bounded goal space G4 containing all the goals
that the object can reach. Then we create a representation of
G4 with a graph G = (P, E), which consists of a set of
vertices P, weighted edges F, and an assigned weight w.

E - {(plap2aw) ‘ (p17p2) S P27p1 7ép27w S R}a (8)

where p; and py are two possible vertices.

In environments with obstacles, any goals g.ps € G lying
within an obstacle that are blocked from being reached are not
elements of the accessible goal space gops ¢ Ga. Since G4 is
bounded, it can be enclosed in a parallelepipedic bounding
box defined by values Z,yin, Tmaz> Ymins Ymaz> Zmins Zmaz
€ R, which describes the span of the box in each coordinate
direction. We then use this box to generate a finite set of
vertices P, spatially arranged in an orthorhombic lattice. Pis
defined by the total number of vertices n = n, - n, - n., with
Ng, Ny, N, € N in each direction of G4, or alternatively by the
distance between two adjacent grid-points in each coordinate
direction given by

— Tmazr—Tmin — Ymaz —Ymin — Zmaxz—Zmin
AI - Ng—1 ’ Ay - ny—1 ’ Az - n,—1 :
9)

Finally, the set of vertices are defined as P = Pn G4, where

i€[0,n, —1],j €[0,n, — 1],k € [0,n, —1]}.
(10)
In the next step, we connect two adjacent vertices p; =
(Z1,91,21) € P, p2 = (22,72,22) € P with an edge of
weight w considering the following:
(plaPQaw) el — “iQ 7‘i1‘ < Ar’ QQ 7?31' < Ay
and ‘22 — 21‘ S AZ,

(an

where w := \/(jg — £1)2 + (gg — g1)2 + (,‘2’2 — 21)2.

In environments with obstacles, it is important to ensure
that no edge in the graph cuts through an obstacle. To achieve
that, we define the space of one of the cuboids with the
edges «, f3,v. The graph must therefore satisfy the graph
density criterion (12) for every convex sub-obstacle, i.e., the
continuous set goals not included in G 4:

A, <

obs
min)? A’l/ < Bmina

Az < ,yobs

min?

12)
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where a2, 3obs | 405 € R, describing the infimum length

of edges of all the obstacles.

Considering the graph that represents the environment,
we employ a shortest path algorithm, such as Dijkstra’s
algorithm [27], to calculate the shortest paths and shortest
distances d; between every possible pair of vertices (p1,p2) =
((#1,91,21), (22,92, 22)) € P? in a graph G = (P, E).
All possible combinations of the resulting shortest distance
function (ZG can be efficiently pre-computed and stored in an
n X n table, where n denotes the number of vertices in P.

Given two goals g1 = (21,y1,21) € G, g2 = (Z2,Y2,22) €
G and a graph G = (P, E) representing the approximate goal
Space gA C g where Tmins Lmazxs Ymins Ymazs min> Zmazs
Az, Ay, and A, the graph-based distance d : G? 5> Ris
defined such that

JG(V(gl),V(gﬂ), ifgr€GaNgr€Ga

otherwise

da(91,92) =
Cx>7

(13)

where v maps goals in G4 to the closest vertex in P:

o]
=)

V(g) = U($7y72) = (‘%7@’2) = (mmin +A;- {

Y — Ymin

Ymin + Ay . L Ay

(14)
|a] rounds any a € R to the closest integer value. Mathemat-

ically, d(g1,92) = JG(V(91)7V(92))-

IV. METHODOLOGY
A. Problem Statement

Our method aims to solve robotic manipulation tasks with
sparse rewards by making it applicable to environments with
obstacles and improving its sample efficiency on the basis of
G-HGG.

First, even G-HGG is capable of guiding exploration in
environments with obstacle, the sample efficiency of G-HGG
is sensitive to the grid size. In Fig. 1, we show an example
in a 2D environment, in which the task is to push an object
from its initial position m(s) to the goal g. Figure la shows a
case that Euclidean distance may select an invalid path that cut
through an obstacle, while Fig. 1b shows a properly designed
graph to generate a valid graph-based distance to bypass the
obstacle. As shown in Fig. lc and 1d, a larger grid size
will lead to great distant error or even totally failure, since
it might mislead the selection of intermediate goals. However,
a much fine-tuned grid will lead to great computation burden
or manual parameter tuning. One way to reduce the influence
of large distance error is to ensure the diversity of hindsight
goals selection. Second, G-HGG uniformly selects hindsight
goals from all achieved goals with different significance for a
success training, but it is not properly designed to control the
adaptive exploration-exploitation trade-off in selecting suitable
experiences for different environments, which is extremely
important when there is a lack of distance-based guidance
from the environment. Third, G-HGG simply considers the
movement of the robotic arm as segments of lines, while it
should be modeled as a region of space due to its body size.
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Fig. 1: The shortest Euclidean distance and graph-based dis-
tance between two points in a 2D environment with obstacles.

As illustrated in Fig. le, the space covered by the body of the
robot is represented as light red circles. Although the trajectory
(red lines) of the robotic arm has no intersection with the
obstacle, its body still has interference with the obstacle during
the movement, which may cause collision in the real world.

In this paper, we propose an algorithm named graph-
curriculum-based hindsight goal generation (GC-HGG), in
which graph-based distance is used to select suitable hindsight
goals using graph-based diversity and proximity metrics. The
architecture of GC-HGG is shown in Fig. 2. We first create a
graph representation of the environment that can be used to
calculate graph-based distances. We then reformulate (6) and
(7) to select intermediate goals by replacing the Euclidean
metric |[g? — m(s?)|| with the graph-based distance dg.
Finally, we reformulate (1), (2), and (4) to prioritize hindsight
experiences so as to improve the sample efficiency, replacing
them with graph-based proximity and diversity, as well as a
dynamic trade-off mechanism.

B. Graph Creation With Collision Tolerance

As illustrated in Fig. 1f, we improve the graph creation by
incorporating the idea of the safety region, which is designed
to avoid the potential collision between the obstacle and the
body of the robotic arm. In theory, the best way to avoid the
collision is to calculate any interference at every time step,
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Fig. 2: Architecture of GC-HGG. GC-HGG creates a graph representation to define two metrics: graph-based diversity for
selecting proper hindsight goals and graph-based proximity for selecting proper intermediate goals.

which consumes a great amount of computation. In this work,
we simply tackle this by virtually increasing the size of the
obstacle as a safety region, which is not accessible to the agent.
The increased size can be determined by the radius e of the
space occupied by the robotic arm (the flange). Therefore,
Tnins Tmazs Ymins Ymazs Zmin, 2maz US€d in Section III-C
are updated a8 Tmin —€; Tmaz T6 Ymin =€ Ymax +€, Zmin—€,
Zmaz + €, respectively. Then, the graph can be created by
following the steps in Section III-C.

C. Graph-Based Proximity

we can replace the Euclidean distance (1) in CHER by our
graph-based distance given as

Cl - Z (dG(gz;g)),

gi€A

L

Fproa 15)

where dg is the graph-based distance as defined in (13). An
illustration of such graph-based distance is given in Fig. 1b.

D. Graph-Based Diversity

The diversity (2) in CHER is a metric with the evaluation
time complexity around O(|A||B|), where |A| and |B| are
the sizes of the mini-batch and replay buffer, respectively.
This large time complexity makes it infeasible when the task
requires a large batch size for training. In this work, we
redesign it by proposing a graph-based diversity that can
sufficiently encourage the exploration and yet with a much
smaller complexity of O(|Allogz|Al).

As illustrated in Fig. 3a, we first define By, Ba, ..., Bja) €
B, and B; contains those goals that are close to g; € A. Then
the diversity in (2) can be approximated as

|A|

Faiv 2 Co =) > dalg,9:);

i=1 geB;

(16)

where B;...B| 4 are | A| clusters of goals which have relatively
small intra-class distances. Since Fy;,, is designed to encourage
the diversity of goal distributions and we know that a good
clustering should have both large inter-class distances and
small intra-class distances, we can redesign the diversity on
the basis of the inter-class distance, which is formulated as

Z Z dc(9:: 95)

gi€Ag;€EA

a7
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Fig. 3: Inter-class distance and intra-class distance.

To compute (17), we need 2 nested loops to iterate over all
possible combinations of (g;, g;) in subset A and sum up the
distances of each goal pair. Therefore the time complexity is
O(]AJ?). To reduce this time complexity, we derive the lower
bound as

Z Z dc(9i, 95) = Z(\A| —1) "l
gi€Ag;€A gi€A 7 ’ (18)

> (A1) ) min dg(g;, ;)
giGAgj

where Vg;, g5 € A, gi # gj» da(gi, 9;5) > minge a da(gi, 9)-

The advantage of using this lower bound as a metric for
diversity is that we only need to calculate the distance between
each goal in the subset A and its nearest neighbor rather than
all other goals in A. By leveraging the k-nearest-neighbor algo-
rithm with k-d tree structure, we can complete the calculation
of diversity within time complexity of O(]|A|log|A|), because
for each goal in A, querying its nearest neighbor only needs
O(log|A|) and there exists |A| goals in the set A. Finally,
after normalization, the diversity Fy;,(A) from (2) can be
reformulated as

Fain(A) = Z mélj}‘da(gmgj).
gieAg]

19)

E. Trade-off Between Curiosity and Proximity

To increase the sample efficiency, an agent has to sample
from a large diversity to explore the environment and gradually
focus on specific goals. In CHER, the trade-off A\ was defined

ermission. See httrt\)/:I//www.ieeeorg/publicationsﬁstandards/]iublications/rights/indexhtml for more information.

ay 19,2022 at 06:06:28 UTC from IEEE Xplore. Restrictions apply.



0278-0046 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIE.2022.3172754, IEEE

Transactions on Industrial Electronics

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS

Algorithm 1 Curriculum-guided sampling

Algorithm 2 GC-HGG

1: Given: the number of random samples K, the trade-off A
calculated as (4)

2: Fmar = 7ZTLf, Aselect = @

3: for 1 to K do

4 randomly sample A from replay buffer B using EBP

5: find K-nearest-neighbour of A

6: calculate F'(A) = Fyip(A) + AFprox(A)

7 if F(A) > Fiq. then

8 Aselect = A, Fraz = F(A)

9:

return Ageject

only as a simple exponential function in (4). This naive design
cannot adapt to tasks with different difficulties and results in
poor sample efficiency.

Based on the Wasserstein distance of the desired goal
distribution 7* and the current intermediate goal distribution
T, we propose a new and adaptive trade-off as

—De(T, 7'*))

where 7 and o are hyper-parameters and D¢ (-, -) is the graph-
based Wasserstein distance, given as

A = nexp( (20)

g

Dg(TW, T®) := inf epr) 7 <Eu {dG(S(()UHg(Ds3[()2>H9(2))]) .

(2D
This trade-off mechanism will encourage the agent to explore
the environment with a large degree of curiosity in the initial
learning state or at a stage at which the intermediate goals
(achieved hindsight goals) are far from the desired goals.
Also, as Dg(+,-) decreases (intermediate goals approach the
desired goals), A will gradually and adaptively increase, so as
to enlarge the weight of the proximity.

F. Objective Optimization

Optimizing the final objective (3) can be regarded as the
facility location problem, which is NP-hardness with high
computational complexity. CHER uses a greedy algorithm to
obtain an approximate solution, which largely reduces the
complexity of this NP-hard problem. Meanwhile, it still needs
O(|B||A]) times Fg;, and Fj,,, evaluations, where |A| and
| B| are the sizes of mini-batch and replay buffer, respectively.
However, considering the millions of samples throughout the
whole training process, it is not necessary to calculate the max-
imum value of F'(A) from the entire replay buffer. A sampled
minibatch A with relatively higher F'(A) would have a positive
impact on our training. In this work, we reduce this computa-
tion complexity by randomly sampling Aq, Ao, ..., Ax from B
and only selecting A; = argmaxy,cya, a,,.. 4.} £ (4i) as
the mini-batch (See Algorithm 1). Therefore, the computation
time of the sampling is reduced to O(K|A|log,|A|), since
the computation time of Fj05(A) is O(|A|) and Fg;,(A) is
O(]A|log, |Al), using the k-nearest-neighbor algorithm. With
such a complexity reduction, each iteration in the training
process costs only about 180 seconds with these sizes of
minibatch (256) and replay buffer (10000) in our experiment,

ermission. See htt

1: Given: an off-policy RL algorithm A, a strategy S for
sampling goals for replay, a sparse reward function 7.
2: Construct a graph representation G > Sec. III-C
3: Pre-compute the shortest distance d¢ between every pair
of vertices (p1,p2) € P? with Dijkstra
4: Initialize A and replay buffer R
5: for iteration do
6:  Construct a set of M intermediate tasks { (35, ¢°)}M,:
o Sample target tasks {(58,9°)} 5, ~ T*
o Find K distinct trajectories {7'}X, that together
minimize (6) > weighted bipartite matching
o Find M intermediate tasks (3%, g%) by selecting an
intermediate goal ¢g° from each 7°
o Calculate the balance of proximity and diversity based
on the Wasserstein distance between the intermediate

and the target goal distribution > (20)
7: for episode = 1, M do
8 (s0,9) < (5b,9")
9: for t=0,7—1do
10: Sample a; using the policy from A with noise:
ay < m(se || g) + Ne (22)
11: Execute a; and observe a new state sy
12: for t=0,T7—1do
13: re = 1g(8¢, ar)
14: Store transition (s¢||g, at, 7+, St+1]lg) in R
15: Sample a set of additional goals for replay
G := S(current episode)
16: for ¢/ € G do
17: " = rg (st ar); Store the transition
(stllg’, ae, 7, st+1]lg’) in R > HER
18: for t =1,N do
19: B = curriculum-guided sampling > Alg. 1
20: One optimization step using A and B > DDPG

while CHER takes around 5 hours with the same setting. The
entire algorithm is provided as Algorithm 2.

V. EXPERIMENTS
A. Environments

To show the advantages of GC-HGG over HGG, HER, and
CHER, we create new experimental environments inspired
by the widely adopted Fetch-gripper benchmark [9]. All
our environments are MuJoCo environments, which feature
a modeled Kuka robot with a gripper. They all adopt the
following control strategy. The state space S contains positions
and velocities for all the joints of the robotic arm, the position
of the end-effector, and the position and orientation of the
object. Depending on whether gripper control is enabled or
disabled, the action space is three- or four-dimensional. An
action consists of the end effector’s position for the next time
step and the gripper’s opening control parameter.

KukaReach (Figure 4a): The goal is simply to control the
arm to reach a goal position. The gripper remains permanently
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(a) KukaReachEnv (b) KukaPushNewEnv

(c) KukaPickNoObstacleEnv (d) KukaPickObstacleEnv

Fig. 4: Robotic manipulation environments in simulations and the real world setup.
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Fig. 5: Median success rate (line) and interquartile range (shaded) in different environments. One iteration contains 50 episodes.

closed and the gripper control is disabled, leading to a 3D
action space. This environment is the easiest task that is
designed as a benchmark task to examine the usability of each
algorithm. KukaPushNew (Figure 4b): The goal is to push the
puck from its initial position around the blue obstacle towards
a goal. The gripper remains permanently closed and the
gripper control for picking up the object is disabled, leading
to a three-dimensional action space. KukaPickNoObstacle
(Figure 4c): The goal is to pick up the cube from its initial
position, lift it up, and place it at a goal position. No obstacle
is present in this scenario, but the target goals are located in
the air. Gripper control is enabled, and the gripper can be
symmetrically opened and closed by a single actuator, leading
to a 4D action space. This task is designed to compare the
exploration capability of different algorithms in an obstacle-
free environment that involves grasping. KukaPickObstacle
(Figure 4d): The goal is to pick up the cube from its initial
position, lift it over the obstacle, and place it at a goal position.
Gripper control is enabled, the gripper can be symmetrically
opened and closed leading to a 4-D action space. Note that all
four scenarios are multi-goal tasks and therefore the goal is
randomly picked in each episode within the predefined range.
The sparse reward used in each scenario is defined as

e {0 ,if [|g — m(s)]| < 0.05

. (23)
—1 , otherwise

where ||g —m(s)|| represents the Euclidean distance between
the gripper or the puck to the goal. 0.05 is a distance threshold.

B. Results

We tested GC-HGG in the four environments with that of
compare its performance to HGG, HER, and CHER. Since
we know that EBP [14] enhances the performance of both
HER and HGG, we used EBP in all training of HER and
HGG. The results clearly show that GC-HGG far outperforms

ermission. See htt

the other algorithms in all complex environments, in terms of
both sample efficiency and maximum success rate.
KukaReach: In KukaReach, there exists no much difference
in performance among HER, HGG, CHER, GC-HGG (See
Fig. 5a). Since no complex exploration is required and no
obstacle is present, FetchReach can be easily solved by all
algorithms within 10 iterations. In most instances, the success
rate peaks after around 10 iterations. It should be noted that, in
a scenario that no obstacle is present, the graph-based distance
can simply be replaced with the Euclidean distance.
KukaPushNew: In KukaPushNew, GC-HGG performs far
better than the other algorithms (Fig. 5b) in terms of their
success rates. While CHER, HGG, and HER are not be able to
solve this task over 200 training iterations, GC-HGG achieves
a success rate over 90% after 70 iterations. The reasons
are obvious. First, HGG and CHER repeatedly choose the
hindsight goals which are close to the target position, guided
by the sampled intermediate goals using the Euclidean metric.
These hindsight goals will be blocked by an obstacle, which
would have limited effects on exploration. Second, due to
a poor trade-off between exploration and exploitation, some
hindsight goals can even bypass the obstacle, they are rarely
selected as suitable intermediate goals, and resulting the failure
of the training. Since KukaPushNew is not as challenging as
the KukaPickNoObstalce and KukaPickObstacle, in which the
agent has to explore to learn to grasp the object, G-HGG is
also able to solve the task with slightly worse sample efficiency
and much higher variance than GC-HGG.
KukaPickNoObstacle: In this task, GC-HGG displays a
remarkable performance. Within 70 iterations, the success rate
of GC-HGG reaches over 90%. In terms of HGG and G-HGG,
they need more iterations to complete this task. This shows
that a diverse exploration at the beginning and a gradual focus
on the target have distinctly positive effects on the training.
KukaPickObstacle: In this task, GC-HGG is able to com-
plete the task in 250 iterations. Although G-HGG can also
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complete the task, GC-HGG demonstrates better sample effi-
ciency and robustness. The other methods HER, CHER and
HGG fail to finish the task. We can clearly see from the figure
that a large diversity at the beginning of the training process
and increasing the proximity based on the current learning
stage is helpful to both exploration efficiency and the median
success rate.

The computation time of each algorithm is demonstrated
in Table I. All experiments are performed on the Intel Core
19 9880H CPU and the AMD Radeon Pro 5300 GPU. The
training time of HER for each iteration is the shortest because
of its simple structure. HGG requires more time compared
to HER due to the selection of intermediate goals. G-HGG
spends more computation time than HGG, while most of the
time is used on reading out the graph-based distance metric
during the training process. The computational time for GC-
HGG is slightly higher than G-HGG due to the K time random
sampling algorithm to select the mini-batch. In our set up,
we set K equals 8 and implemented parallel computation.
CHER faces time issue, especially when the size of the reply-
buffer is large. It costs approximately 5 hours to finish one
iteration. The table also indicates that the total computational
cost of GC-HGG is even less than G-HGG in the environ-
ments KukaPickNoObstacle and KukaPickObstacle, because
we implemented the same stop condition check [11] of HGG
or G-HGG in our GC-HGG. The algorithm will continue with
HER if the selected intermediate goals are close enough to
the original target goals. Since GC-HGG has a better sample
efficiency, the agent can learn faster compared with G-HGG
so that it takes fewer iterations to switch to HER. Note that
Table I only shows the training time, while all the tasks are
performed in real time when deployed in the real world.

TABLE I: Computation time of experimental runs (* indicates
that the algorithm can not complete the task in 400 iterations)

Environment HER HGG G-HGG GC-HGG CHER
KukaReach 7(h) 7(h) 7(h) 7(h) 8(h)
KukaPushNew 7(h)*  9(h)* 11(h) 11.5(h) >10(d)*
KukaPickNoObstacle ~ 7(h)*  8.5(h) 15.5(h) 8(h) >10(d)*
KukaPickObstacle T(h*  7(h)* 15.5(h) 12.5(h) >10(d)*
Single Iteration 52(s) 87(s) 153(s) 179(s) 5(h)

C. Ablation Study

We present the ablation studies of 7 and o for the trade-
off coefficient A, the trade-off method (ours and CHER’s),
and distance metrics (graph-based distance and Euclidean
distance). Due to the page limit, we only show the ablation
study results in the environment KukaPickNoObstacle. The
full ablation study in other scenarios can be found at here!.
Figure 6a illustrates the success rates for various values of 7 in
(20) in the environment KukaPickNoObstacle. We set o = 0.3
and keep it unchanged during the experiments. The plot shows
that GC-HGG performs best when 1 = 1000. Other choices of
1 only show a slight degradation in sample efficiency. Figure
6b demonstrates the success rates for various of o, where
o = 0.3 gives the best performance. We set 7 = 1000 and
it remains the same during the experiments. Figure 6¢ shows

Ihttps:/videoviewsite.wixsite.com/gc-hgg

ermission. See htt

the success rates of different trade-off methods. The blue
curve indicates our trade-off based on (20). The other three
demonstrate the success rates of GC-HGG with CHER’s trade-
off which based on (4). As we can seen from the figure, our
trade-off has a better sample efficiency and more robust than
CHER’s, since our trade-off method is based on the current
learning progress rather a naive designed exponential function.
Figure 6d is an ablation study of distance metrics. There is no
much difference between graph-based distance and euclidean
distance since the environment KukaPickNoObstacle does not
contain an obstacle. The ablation study of distance metrics for
other environments can be found on our website.

D. Real-World Experiments

The real-world experiment setup comprised with a KUKA
LBR iiwa R800 robotic arm, a Robotiq 2F85 gripper, and
an XBOX 360 Kinect, used to obtain the coordinates of the
manipulatable object. Since the robotic arm is controlled via
its default Java interface and our RL controller is programmed
with Python, we use JPype, a python module that provides
full access to Java, to exchange data between the robot and
the RL controller. The control rate has the same value as the
simulation, which is 20 Hz across all experiments.

As in the four environments in the simulation, we also
create four environments featuring the KUKA robotic arm with
the gripper (See Fig. 4). It should be noted that unlike the
simulation that obtains the coordinates of the object directly,
we use a camera to gather this information when the object
is on the table in the real world. Specifically, we use four
green markers to create a global coordinate and obtain the
coordinates of the object by tracking its red color. However,
when the object is picked up, we can directly calculate its
position from the kinematics of the robotic arm.

We took the policy directly from each of the tasks trained in
the simulation and deployed it in the real world without any
fine-tuning. Inspired by the experiment performed by HER,
we also add Gaussian noise to the observed object’s position
during policy training to compensate for the small errors
introduced by the camera, which can increase the success
rate of these tasks. The performances of these four tasks
demonstrate that the policy can be successfully transferred to
the corresponding tasks in the real world.

As shown in the video, the robot arm can always suc-
cessfully approach the target position in most trajectories.
KukaReach has the highest success rate among these four tasks
since it is the easiest one and the position of the end effector
obtained from the Kuka interface is accurate. Even the position
of the object is obtained using images, the robotic arm can still
solve KuakPush, KukaPickNoObstacle, and KukaPickObstacle
with no significant drop in the success rate compared to the
performances in the simulation. The median success of the
real-world experiments are listed in Table II. KukaReach has
the highest success rate among these four tasks, since it is
the easiest one and the position of the end effector obtained
from the Kuka interface is accurate. For KukaPushNew, there
exists only two cases that the robotic arm can not push the
cube to the right position. For one case, it pushed the cube
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Fig. 6: Ablation studies in the environment of KukaPickNoObstacle.

out of its reaching range by accident. For the other, the end
effector blocked the view of the camera so that the camera
could not detect the position of the cube. These unexpected
cases sometimes also happened in KukaPickObstacle and
KukaPickNoObestacle. The median success rates for those two
tasks are therefore decreased compared to the performance
in corresponding simulation environments. Videos of these
failure cases on the project page.

TABLE II: The median success rates of real-world envi-
ronments and simulation environments (- indicates that the
algorithm can not solve the task.)

KukaReach KukaPushNew
sim. real sim. real
HER 1.0 1.0(15/15) - -
HGG 1.0 1.0(15/15) - -
CHER 1.0 1.0(15/15) - -
G-HGG 1.0 1.0(15/15) 0.97 4+ 0.03 0.80(12/15)
GC-HGG 1.0 1.0(15/15) 0.99 + 0.01 0.86(13/15)
KukaPickNoObstacle KukaPickObstacle
sim. real sim. real
HER - - - -
HGG 0.99 £+ 0.01  0.80(12/15) - -
CHER - - - -
G-HGG 0.99 + 0.01 0.73(11/15) | 0.82 4+ 0.18 0.60(10/15)
GC-HGG | 0.99 + 0.01 0.8(12/15) 0.99 + 0.01 0.80(12/15))

E. Discussion

To summary the main differences between GC-HGG and
the other algorithms, we provide a brief discussion. The main
difference between GC-HGG and HGG lies in the intermediate
goal selection strategy, with which those intermediate goals are
selected and used for the optimization of the policy. GC-HGG
enables the agent to select intermediate goals only from the
accessible goal space, in which all the obstacles are eliminated.
Therefore, GC-HGG is applicable in scenarios with obstacles.
However, HGG only selects intermediate goals by replying on
the Euclidean distance, which is not applicable in scenarios
with obstacles. There is no mechanism for CHER or HER
to select proper intermediate goals. GC-HGG proposes an
automated trade-off mechanism to balance the diversity and
the proximity during training, which is designed on the basis
of graph-based distance and leads to superior performance.

To discuss the potential collision between the body of the
arm and the obstacle, a push task is illustrated in Figure 7, in
which the arm is controlled to push one object from its left
side to its right side by bypassing the obstacle. As explained

ermission. See htt
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Fig. 7: Illustration of potential collision between the robotic
arm and the obstacle.

before, the action space for this task is 3 dimensional, namely,
the position of the gripper in z,y, z direction. Therefore, the
gripper can only have translational movement in the x—y plane
in this task. Since the obstacle is not higher than the 7*" joint
of the robotic arm in the goal space, there is no possibility that
joint 1-5 will have potential collision with the obstacle. The
only possible collision can happen between the gripper and
the labyrinth obstacle. As explained in Figure 1.e and Figure
1.f in the revision paper, the safety region can make sure that
there is no collision between the gripper and the obstacle in
the x — y plane by setting a safety threshold.

VI. CONCLUSION

We introduced a novel automatic hindsight goal generation
and exploration algorithm GC-HGG on the basis of G-HGG
and CHER for complex object manipulation in environments
with obstacles, in which the selection of valuable hindsight
goals is generated by balancing the graph-based diversity
and proximity metrics. We schemed GC-HGG as a graph
construction as pretraining steps, and the graph-based diversity
and proximity computations as critical steps, during the train-
ing. Simulations and real-world experiments on four different
challenging object manipulation tasks demonstrated superior
performance by GC-HGG over HER, CHER, or HGG in terms
of both the maximum success rate and sample efficiency.
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