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0F Abstract—Leaf area parameters are crucial in ecosystem 
studies. As ecophysiological models advance toward finer detail, 
accurately estimating LA at various scales becomes essential, 
particularly for diverse units like urban individual trees. Several 
algorithms based on terrestrial laser scanning (TLS) data have 
been developed to obtain the LA of individual trees. However, 
their use at the stand level needs further research. In this study, 
the comparative shortest-path algorithm (CSP) is introduced for 
the automatic individual tree segmentation, thereby facilitating 
the application of the path length distribution model (PATH) for 
leaf area estimation at the stand level. Using high-density TLS 
data, we presented a bottom-up estimation of stand leaf area 
index (LAI) from 50 individual tree measurements and validated 
the results at different scales. At the tree scale, the LA derived 
from TLS and allometric model were highly correlated, with an 
R-value of 0.83. At the stand scale, the proposed method provides 
consistent results with the allometric and TRAC instrument 
measurements, performing better than vertical upward 
photography. Generally, 23 shared stations under the forest are 
enough to accurately obtain the LA of 50 trees and the LAI in an 
urban forest stand. Sensitivity analysis shows that the method is 
not sensitive to TLS scan resolution and parameters used in tree 
crown envelope reconstruction. The proposed bottom-up 
approach provides a new way of estimating the LAI at stand level 
using TLS and has the advantage of providing multi-level leaf 
area information and avoiding the scale effect. 
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I. INTRODUCTION 
oliage serves as the dominant control over the 
vegetation-atmosphere exchanges of mass and energy 
through photosynthesis, respiration, and transpiration 

[1-4]. Studies investigating the implications of the terrestrial 
carbon cycle, species competition, ecosystem, and 
agroecosystem dynamics, as well as climatological, rely on the 
fast and accurate extraction of leaf area parameters [5-9]. Leaf 
area parameters are generally expressed on a horizontal 2D 
map of leaf area index (LAI) or in a 3D space of foliage area 
volume density (FAVD) [3, 10, 11]. As the fundamental 
variable identified by the Global Climate Observing System 
(GCOS), LAI estimation at various spatial scales from 
individual trees to the whole terrestrial surface has attracted 
significant efforts [12, 13].  

A key issue in this context is that the LAI estimated at 
different scales might be inconsistent due to the discrepancies 
among the sensors and collected data, the clumping effect, 
spatial heterogeneity of LAI, etc. This problem may be posed 
as, how can a consistent LAI product be developed from data 
acquired from a series of sensors that have different spatial 
resolutions. Considering the LAI definition does not suffer 
from the scale effect, estimating the leaf area of all individual 
trees and then calculating the stand LAI based on the LAI 
definition, which we name as a “bottom-up” approach, may be 
a new way to understand and solve the scale effect.  

At the individual tree scale, the approaches to measure leaf 
area can be classified into two broad categories: direct and 
indirect. The direct method involves the counting and 
measurement of leaves, represented by the methods of 
destructive sampling and allometry [14, 15]. These typically 
serve as accurate references to validate results from indirect 
methods, but are not practical in measuring all trees for a 
region because they are time-consuming, labor-intensive, and 
usually destructive [11, 16]. Indirect methods rely on the 
contact frequency [17] or gap fraction [18] observed by optical 
instruments to derive stand leaf area parameters. In recent 
years, passive optical devices such as LAI-2200 [19-22] and 
digital hemispherical photography (DHP) [23-25] are used to 
estimate leaf area parameters at an individual tree scale. The 
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use of these methods needs the input of auxiliary data such as 
tree crown profile, however, these passive devices themselves 
cannot provide three-dimensional information to characterize 
the complex tree crown of an individual tree [3].  

As an active remote sensing technology, LiDAR has seen 
increasingly widespread use to quantify vertical and horizontal 
canopy structures such as tree height, diameter at breast height 
(DBH), canopy density, and biomass, because of its 
fascinating three-dimensional observation ability [26-30]. This 
has led to efforts to derive more complex and precise leaf area 
parameters such as individual tree FAVD and vertical FAVD 
profiles from TLS systems [31, 32].  

Currently, four categories of methods have been proposed 
to estimate the leaf area of an individual tree based on TLS, 
which are regression-, computer graphic-, contact frequency-, 
and gap probability-based methods. In the regression-based 
method, TLS is mainly used to obtain tree dimensions such as 
tree height and DBH, and then these parameters are 
substituted into a regression model of tree dimensions and leaf 
area to obtain an individual tree leaf area [33]. The 
establishment of the regression model usually relies on manual 
measurement data of several trees sampled in the forest, which 
makes the regression-based method inefficient and less 
portable [34]. Methods based on computer graphic attempt to 
directly obtain the conversion relationship from discrete points 
to leaf area[35]. Yun et al. [36] utilized the Delaunay 
triangulation algorithm to construct the scanned leaf surface, 
and then estimated the leaf area in each layer in combination 
with the ratio and number of the scanned points. Ma et al. [37] 
developed an approach that directly converts classified points 
into surface area by considering sampling space, laser 
incidence angle, and leaf orientation information, leading to 
estimation of true LAI. Such methods are not affected by 
clumping effect, but depend on a sufficiently dense and 
complete point cloud to mitigate occlusion effect. The contact 
frequency-based method originates from inclined point 
quadrats theory and typically uses voxels to organize point 
clouds. Segmenting the canopy into voxels allows for 
convenient computation of contact frequency in each layer 
based on the number or empty and non-empty voxels, 
enabling the description of the vertical foliage profile in tree 
crowns[38, 39]. In addition, Béland et al. [40] proposed the 
average free path length to calculate the corrected contact 
frequency and achieved Estimated distribution of leaf area in 
individuals. This method has also been verified by the 
maximum likelihood estimation theory[41]. The choice of 
voxel size in these methods requires more research as it affects 
the accuracy of the results[7]. Furthermore, such methods 
usually require multiple scan data for an individual tree, which 
limits the application efficiency in a real forest. The gap 
probability-based method relates structural attributes such as 
the LAI to the gap probability of canopy based on Beer’s law, 
which avoids the influence of the uneven point cloud density 
or incomplete point cloud of a tree. Calculating the gap 
probability at the voxel scale based on pulse tracking 
technology can reduce the clumping effect and extract the leaf 

area parameters at the voxel scale[42, 43]. However, these 
methods require more research on the optimal voxel size[3, 44] 
and how to solve the problems of occluded voxels[45, 46]. Li 
et al. [47] developed a point cloud slicing method based on 
different incident zenith angle ranges to obtain the true LAI of 
individual trees. This method retrieves gap fraction using 
multiple-return information and employs gap size analysis 
theory to correct the clumping effect. Path length distribution 
method (PATH) is a gap probability-based method that can be 
used for estimating the leaf area of an individual tree based on 
tree crown envelope reconstruction (Hu et al., 2018). This 
method is efficient, requiring fewer scans, and it thoroughly 
considers the inequality of path lengths at the tree scale. 
However, the manual segmentation of the studied tree limits 
the automation and application of the method in a larger area.  

At the stand scale, it is a prevalent idea to extend the direct 
measurements of individual tree scale to the stand scale by 
constructing an empirical regression equation. By using the 
litterfall collection and optical methods, Liu et al. [14] 
estimated the seasonal variation of LAI in four mixed 
evergreen-deciduous forests. Sirri et al. [48] destructively 
sampled 61 trees to calibrate allometric models suitable for 
Tropical African broadleaved forests, which was a rare 
attempt at the estimation of LA and LAI in a tropical forest. 
These direct and semidirect estimations are inevitably 
restricted by the representativeness of the sample trees, with 
high uncertainty and poor portability. Correspondently, due to 
the developed theory and operational efficient measurement 
scheme, the optical indirect methods based on the Beer-
Lambert law have been invested in more studies [49-51]. The 
clumping effect is generally recognized as the primary issue 
causing the underestimation of indirect LAI measurement. As 
commonly applied methods, finite-length averaging method 
(LX) [52], gap-size distribution method (CC) [53], 
combination of the CC method and the LX method (CLX) 
[54], and path length distribution method (PATH) [55] have 
provided substantial support for correcting the clumping effect 
and calculating the true LAI. Relying on the gap size method, 
Zhu et al. [56] eliminated the clumping effect and improved 
the LAI estimation of 31 forest plots with TLS. Chen et al. [57] 
proposed a method to reduce the clumping effect that occurs 
within plots and estimate LAI in open-canopy forests using 
TLS data and PATH. Although correction methods have been 
proposed and improved constantly, optical indirect methods 
are still restricted by the clumping effect [58], and especially, 
it is difficult to consider the disparity of leaf area density 
among different tree crowns.  

This paper proposes a bottom-up approach to estimating 
stand LAI from individual tree measurements using TLS data 
and the PATH method. In addition, the influences of 
unavoidable factors in real forests, such as under-canopy 
stations, special-shaped canopy envelope, and inter-canopy 
occlusion, on the results are evaluated to furnish practical 
guidance for indirect in situ LA measurements on individual 
trees. The proposed approach will provide a new way of 
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Fig. 1. Overview of the studied trees and acquired data of the study plots. (a) The Platanus × acerifolia stand. (b) The Tilia 

tomentosa stand. 
 

estimating the LAI at stand level using TLS which has the 
advantage of providing multi-level leaf area information and 
avoids the scale effect. 

II. MATERIALS 

A. Study site 
This study includes two distinct experimental sites. The first 

site is a rectangular woodland about 30 m × 50 m, located in 
Yanqi Lake campus of the University of Chinese Academy of 
Sciences (Fig. 1a) (40°24′23″N, 116°40′44″). The woodland is 
composed of four rows of regularly spaced Platanus × 
acerifolia trees with a total number of 50. Each Platanus × 
acerifolia tree is approximately 6.5-13.0 m high with an 
under-crown height of approximately 2.5-3.5 m. The DBH is 
approximately 0.25 m, and the crown width is approximately 
4-6 m.  

The second site is a rectangular woodland approximately 17 
m × 31 m, located in the historical garden of the University of 
Strasbourg (Fig. 1b) (48°35′4″N, 7°45′49″E). The woodland 
consists of two rows of regularly spaced Tilia tomentosa trees 
with a total number of 8. Each Tilia tomentosa tree is 
approximately 9 m high with an under-crown height of 
approximately 2 m. The DBH is approximately 0.32 m, and 
the crown width is approximately 5 m.  
 

B. TLS measurement 
At the Platanus × acerifolia stand, TLS data were collected 

at leafy (June 30, 2021 and July 1, 2021) and leafless (January 
7, 2022) periods using a Trimble X7 laser scanner. 
Specifications of this LiDAR system are shown in Table I. 
During the leafy period, TLS data from twenty-three scans 
were collected to shun the loss of features in the point clouds 
caused by the obstructions among different trees with dense 
foliage and branches. Similarly, twenty-two TLS scans were 
collected during the leafless period to eliminate the effect of 
woody components in the LAI estimation. Point clouds 
acquired from different stations were registered into the same 

coordinate system by the automatic register function of the 
Trimble Perspective software.  

At the Tilia tomentosa stand, TLS data were collected from 
six TLS stations using a FARO Focus 3D X330 laser scanner 
on June 27, 2016. Detailed  information on the Tilia tomentosa 
stand and the experimental data were described in Hu et al. 
[32]. For each station, the point cloud was exported to PTX 
format, which contains the scanner location and information 
(coordinates and intensity) of all emitted laser pulses 
regardless of whether the pulses obtain a return or not.  

TABLE I 
TECHNICAL PARAMETERS OF THE TLS SYSTEM 

Instrument Trimble X7 
Ranging method Time of flight 

Resolution 0.3mrad 
Spacing between points ~4mm at 10m 

Beam divergence 0.6mrad 
 

C. Allometric measurement and total leaf area estimate 
To minimize damage to the trees, a method involving the 

construction of detailed allometric equation was employed to 
provide validation values for the leaf area of individual trees. 
The allometric relationship was established between the leaf 
area and the length of the shoot, which is the woody element 
that directly carried leaves [32, 59, 60]. During the leafy 
period at the Platanus × acerifolia stand, one hundred and 
thirty-six shoots of various lengths were randomly sampled 
from 50 trees, the method adopted in the Tilia tomentosa 
stand[32, 61].  

For each shoot, the shoot length, the number of leaves, and 
the distance between leaf nodes were manually measured by 
using a measuring tape. All leaves were placed on a piece of 
A4 size paper used as an area reference and photographed, and 
then the area of each leaf was extracted through an automatic 
image processing system, which can identify and measure the 
leaves on the A4 size paper in the photos. On the basis of 
these measurements, the allometric statistic of the leaf area 
and the shoot length was established (Fig. 2). In the 
constructed allometric equation, the obtained R2 of 0.94 

(b)(a)



4 
XING et al.: BOTTOM-UP ESTIMATION OF STAND LAI FROM INDIVIDUAL TREE MEASUREMENT USING 
TERRESTRIAL LASER SCANNING DATA 
indicates a robust regression relationship between the leaf area 
and the shoot length. Therefore, allometric statistics were used 
to reliably estimate the total leaf area of each tree if the 
lengths of all branches of each tree is known.  

With the help of PCM v2.0 software [62], the branch lengths 
of all branches of the 50 trees were manually estimated from 
the 23 high-density point clouds acquired during the leafless 
period. Then the total leaf area of each tree was obtained 
according to allometric statistics and used as the reference for 
comparison with other methods.  

 

 
Fig. 2. Allometric relationship between the leaf area and 

shoot length in Platanus × acerifolia trees. 

D. Leaf angle distribution and G function 
Leaf projection coefficient, G, describes the mean projection 

of a unit foliage area in a particular direction. It can generally be  
calculated with the leaf inclination angle distribution [63]. 

The leaf inclination angles of 395 leaves were randomly 
measured using a protractor in the Platanus × acerifolia stand 
at the same time as the TLS data was obtained, that is, on July 1, 
2021. Fig. 3 shows the distribution of leaf inclination angles. 
Then the leaf projection function G can be calculated according 
to the formula as follows (Fig.3): 

𝐺𝐺(𝜃𝜃) = ∫ 𝐴𝐴(𝜃𝜃, 𝜃𝜃𝑙𝑙)𝑔𝑔𝑙𝑙(𝜃𝜃𝑙𝑙)𝑑𝑑(𝜃𝜃𝑙𝑙)
𝜋𝜋
2
0   (1) 

𝐴𝐴(𝜃𝜃, 𝜃𝜃𝑙𝑙)

= �
𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃𝑙𝑙 ,                                            |𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃𝑙𝑙|  > 1

𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃𝑙𝑙 �1 + �
2
𝜋𝜋
� (𝑡𝑡𝑡𝑡𝑡𝑡 𝜑𝜑 − 𝜑𝜑)� , |𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃𝑙𝑙|  ≤ 1

 

(2) 
where 𝜑𝜑 = 𝑐𝑐𝑐𝑐𝑐𝑐−1(cot𝜃𝜃) cot 𝜃𝜃𝑙𝑙, 𝜃𝜃 is the viewing zenith angle, 
𝜃𝜃𝑙𝑙  is the leaf zenith angle, and 𝑔𝑔𝑙𝑙(𝜃𝜃𝑙𝑙) is the leaf angle 
distribution. 
 

E. LAI estimate at stand level  
Twelve TRAC measurements and 489 vertical upward 

photographs were used to estimate the LAI of the Platanus × 
acerifolia stand as comparison data (Fig. 1). These data were 
obtained synchronously on June 30, 2021.  

TRAC is a maneuverable optical instrument for retrieving 
LAI by measuring canopy gap size distribution in addition to 
canopy gap fraction along the sample lines [1, 53]. Twelve 
TRAC sample lines with a total of 600 meters were acquired, 
and the regional LAI was retrieved by the TRACWin software 
[64]. Along the same 12 transects in the test area, 489 vertical 
upward photographs were taken uniformly at the same height 
above the ground. The LAI of the stand was obtained as the 
comparison data by using CC, LX, and CLX methods after 
preprocessing such as edge clipping and binarization.  

 

 
 

Fig. 3. The leaf inclination angles distribution and leaf projection function in Platanus × acerifolia trees obtained by 
measuring 395 leaves. (a) Leaf inclination angles distribution. (b) leaf projection function. 
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Fig. 4. Workflow of the proposed LAI estimation method using TLS data and the path length distribution model. 

 

III. METHODS 
In this study, the PATH to TLS data for a single tree was 

applied to LAI estimation. The workflow of the TLS-based LAI 
estimation method proposed in this work is displayed in Fig. 4. 
Firstly, the comparative shortest-path algorithm (CSP)[65] was 
used to automatically segment individual trees, and then the 
segmented results were manually trimmed to obtain complete 
and refined tree crowns. Secondly, the envelope was built for 
each tree crown using the alpha shapes algorithm [66] and the 
segmented point cloud. Thirdly, the path length distribution was 
calculated by simulating the intersection between each emitted 
laser recorded in PTX files and the envelopes. the gap 
probability of each tree was then extracted with the number of 
laser pulses passing through and those entering the tree crown. 
Fourthly, the path length distribution and gap probability were 
substituted into the PATH, and combined with the envelope 
volume to extracted the individual tree LA. Finally, the regional 
LAI was calculated as the ratio of the sum of all individual trees 
LA and the area of the experimental plot. 

 

A. Segment Individual trees 
Individual tree segmentation is the pre-work of obtaining 

single tree LA. Although manual segmentation is accurate, its 
time-consuming and labor-intensive characteristics are not 
conducive to large-scale data processing. Under the guidance of 
ecological theories, the CSP algorithm can efficiently segment 
tree crowns scanned using terrestrial (T)-LiDAR and mobile 
LiDAR through two steps of trunk detection and subsequent 
crown segmentation. 

After merging point clouds from multiple stations, cropping 
to obtain the quadrat data, and removing taller non-tree objects 
such as street lights, the CSP algorithm integrated in the 
LiDAR360 software (GreenValley, Beijing, China) was applied 
to preliminarily segment crowns. While the CSP algorithm 
generally provides stable segmentation results, it is not entirely 
immune to a small number of segmentation errors. Therefore, 

the results were restructured to acquire complete and accurate 
individual crown point cloud data (Fig. 5). This step aimed to 
facilitate a focused evaluation of bottom-up method during 
experiments. 

B. Envelope reconstruction 
As shown in the workflow, an envelope was reconstructed 

for each individual tree crown by using an alpha shape 
algorithm (Edelsbrunner and Mücke, 1994) with the help of 
MATLAB software. This algorithm can build convex and 
concave envelopes. In the present study, concave envelopes 
with alpha radius of 0.5 were used to capture the exact shape of 
the crown points. Additionally, when calculating the gap 
probability based on single-station TLS, the contours were 
further refined by removing large gaps at the edges. 

 

C. Path length distribution extraction 
The path length distribution was calculated based on all the 

laser pulses entering the tree crown. For each laser pulse, its 
path length is defined as the distance between the laser pulse 
entering and exiting the canopy envelope. Scanning 
configuration of the TLS (scanning angle range and angle step 
width) and the original scan file in PTX format was used to 
simulate the spatial distribution of each emitted laser. Then, 
each laser pulse was considered to be an infinitely long ray 
emitted from the TLS, and the intersections between each laser 
pulse and the envelope of the tree under study were calculated. 
After filtering out both pulses that do not intersect the envelope 
and those that intersect the envelope but return in advance due 
to the object blocking between the research tree and the laser 
scanner (where the pulse return coordinate is located before the 
two intersection points between the pulse and the envelope), the 
path lengths of the remaining laser pulses which enter the tree 
crown were calculated as the distance between the two 
intersection points. Finally, the path length distribution was 
obtained from the statistics of all path lengths. 



8 
XING et al.: BOTTOM-UP ESTIMATION OF STAND LAI FROM INDIVIDUAL TREE MEASUREMENT USING 
TERRESTRIAL LASER SCANNING DATA 

 
Fig. 5. Individual trees segmentation result at the Platanus × 

acerifolia stand using the CSP algorithm (after manual editing). 
 

D. Gap probability calculation 
The gap probability was calculated based on all laser pulses 

that enter the tree crown, which is consistent with the input for 
the path length distribution. The pulses used have been filtered 
to exclude those that do not intersect with the crown's envelope 
or are obstructed before reaching the tree crown, as detailed in 
Section III.C. In the algorithm implementation, the coordinates 
of the two intersections between each laser pulse and the 
envelope were initially calculated. Subsequently, the laser 
pulses entering the target canopy were categorized into two 
types based on the relative positional relationship between the 
pulse return coordinate and the coordinates of the two 
intersections. Vegetation pulses intersected with vegetation 
elements and returned within the envelope. The return 
coordinate of this type is between the two intersections. 
Penetrating pulses traveled through the tree crown without 
intersecting with vegetation elements. This type of pulse either 
did not return, or if it did, the return coordinate was after the 
two intersections. If the laser pulse return coordinate was before 
the two intersections, it was the obstructed pulse mentioned 
earlier and was not included in the calculation. Finally, the gap 
probability was calculated as the ratio of penetrating pulses to 
all those entering the tree crown. 

 

E. Path length distribution model 
The PATH introduces the path length distribution on the 

basis of Beer's law to describe the spatial distribution of leaves. 
The path length distribution function is defined to describe the 
variation of the path length distribution: 
𝑝𝑝𝑙𝑙(𝑙𝑙) = 𝑝𝑝�𝑙𝑙(𝑙𝑙)

∫ 𝑝𝑝�𝑙𝑙(𝑙𝑙)𝑑𝑑𝑑𝑑
𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚
0

  (3) 

where 𝑙𝑙 is the path length of the ray that travels through the 
interior of the canopy and 𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚  is the max path length. 𝑝̂𝑝𝑙𝑙(𝑙𝑙) is 
the frequency of 𝑙𝑙 falling within the interval [𝑙𝑙, 𝑙𝑙 + 𝑑𝑑𝑑𝑑]. 

When the absolute path length is not available, the relative 
path length 𝑙𝑙𝑙𝑙  is introduced and the path length distribution 
function is modified as: 
𝑝𝑝𝑙𝑙𝑙𝑙(𝑙𝑙𝑙𝑙) = 𝑝𝑝�𝑙𝑙𝑙𝑙(𝑙𝑙𝑙𝑙)

∫ 𝑝𝑝�𝑙𝑙𝑙𝑙(𝑙𝑙𝑙𝑙)𝑑𝑑(𝑙𝑙𝑙𝑙)1
0

  (4) 

where 𝑙𝑙𝑙𝑙 = 𝑙𝑙
𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚

. 𝑝̂𝑝𝑙𝑙𝑙𝑙(𝑙𝑙𝑙𝑙) is the frequency of 𝑙𝑙𝑙𝑙 falling within 

the interval [0,1]. 
Then, the total gap probability canopy 𝑃𝑃 and the LAI within 

the canopy (𝐿𝐿𝐿𝐿𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) can be expressed as integrals weighted 
by the path length distribution function: 

𝑃𝑃 = ∫ 𝑒𝑒−𝐺𝐺∙(𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹∙𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚)∙𝑙𝑙𝑟𝑟 ∙ 𝑝𝑝𝑙𝑙𝑙𝑙(𝑙𝑙𝑙𝑙)1
0 𝑑𝑑(𝑙𝑙𝑙𝑙) (5) 

𝐿𝐿𝐿𝐿𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = ∫ (𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 ∙ 𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚) ∙ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∙ 𝑙𝑙𝑙𝑙 ∙ 𝑝𝑝𝑙𝑙𝑙𝑙(𝑙𝑙𝑙𝑙)𝑑𝑑(𝑙𝑙𝑙𝑙)1
0  (6) 

where 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 is the leaf area density. 𝐺𝐺 is the leaf projection 
function. 𝜃𝜃 stands for the zenith angle. 

Combining with (5) and (6), 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 ∙ 𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚 is eliminated as a 
whole. With the support of TLS data, the absolute path length 
distribution of laser pulses penetrating the tree canopy can be 
directly extracted and used to separate the path length and leaf 
area density. In this context, the PATH is modified to 
accurately retrieve the leaf area density of an individual tree, 
which is expressed as follows: 
𝑃𝑃 = ∫ 𝑒𝑒−𝐺𝐺∙𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹∙𝑙𝑙 ∙ 𝑝𝑝𝑙𝑙(𝑙𝑙)𝑑𝑑(𝑙𝑙)𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚

0   (7) 
Under the condition that the leaf area density is known, it is 

only necessary to quantify the crown volume, and then the leaf 
area of an individual tree can be readily calculated according 
to the following formula: 
𝐿𝐿𝐿𝐿 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 ∙ 𝑉𝑉 (8) 

where 𝐿𝐿𝐿𝐿  is the leaf area of a tree, 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹  is the leaf area 
density, and 𝑉𝑉 is the volume of the tree crown. 

 

F. Weighted mean of the multi-station leaf area density 
Affected by factors such as occlusion, the canopy structure 

information cannot be completely described by the single-
station data. Therefore, the leaf area density inversed base on 
the single-station data has certain limitations. Data from 
different stations provide structural information of the tree 
under study at different distances and views. Integrating 
results from multiple stations is expected to efficiently acquire 
more stable and accurate estimation. To do this, for each tree, 
leaf area densities were calculated separately from each station 
using the PATH, and the results calculated from different sites 
were averaged using a weighting factor. As the number of 
effective laser pulses (those used to calculate the path length) 
most directly reflects the sampling integrity of the tree under 
study at different stations, and the sum of the path lengths 
incorporates additional depth information, providing insights 
into the sampling integrity at the 3D scale. Therefore, the 
number of effective laser pulses and the sum of path lengths 
were used as weighting factors for the fusion of the multi-
station inversion results. The weighted mean and standard 
deviation of the leaf area density are expressed as follows: 

𝜌̅𝜌𝑤𝑤 = ∑ 𝜌𝜌𝑖𝑖∙𝑤𝑤𝑖𝑖
𝑁𝑁
𝑖𝑖=1
∑ 𝑤𝑤𝑖𝑖𝑁𝑁
𝑖𝑖=1

  (9) 

𝜎𝜎𝑤𝑤 = �∑ (𝜌𝜌𝑖𝑖−𝜌𝜌�𝑤𝑤)2∙𝑤𝑤𝑖𝑖𝑁𝑁
𝑖𝑖=1

∑ 𝑤𝑤𝑖𝑖𝑁𝑁
𝑖𝑖=1

  (10) 

where 𝜌̅𝜌𝑤𝑤 is the weighted mean of the leaf area density, 𝜎𝜎𝑤𝑤 is 
the weighted standard deviation, 𝜌𝜌𝑖𝑖 is the leaf area density that 
was calculated from each station, and 𝑤𝑤𝑖𝑖  is the weighting 
factor.  

 

G. Leaf and woody areas 
Since the leaf and woody components are simultaneously 

recorded by laser scanner during the leafy period, the path 
length distribution method provided the sum of leaf area and 
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Fig. 6. The relationship between the FAVD (normalized) of individual Platanus × acerifolia trees at different stations and 

station visibility rate. Among them, the dotted lines indicate where the visibility rate = 0.8 is located. 
 

woody area (WA), which is called the plant area (PA). This 
had a different physical meaning from the leaf area directly 
provided by the allometric method, resulting in no direct 
comparability between the two results. Therefore, the point 
cloud data of leafless period were used to calculate the woody 
area using the same model used during the leafy period. 
Finally, the leaf area (LA) of the PATH is expressed as 
follows: 
𝐿𝐿𝐿𝐿 = 𝑃𝑃𝑃𝑃 −𝑊𝑊𝑊𝑊 (11) 

where PA is the result of the PATH during the leafy period, 
and WA is the result of the PATH during the leafless period. 

 

H. Evaluation method 
Consistency of the leaf area parameters at individual level 

was accessed using allometric methods and the leaf area index 
at the stand level was assessed by inter-comparison among 
TLS estimation, allometric measurement, TRAC measurement 
and vertical upward photography. Comparisons between the 
reference and estimated leaf area parameters are expressed in 
terms of pearson correlation coefficient (𝑟𝑟), root mean square 
error (RMSE) and normalized RMSE. 

𝑟𝑟 = ∑ (𝑥𝑥𝑖𝑖−𝑥̅𝑥)(𝑦𝑦𝑖𝑖−𝑦𝑦�)𝑛𝑛
𝑖𝑖=1

�∑ (𝑥𝑥𝑖𝑖−𝑥̅𝑥)2𝑛𝑛
𝑖𝑖=1 �∑ (𝑦𝑦𝑖𝑖−𝑦𝑦�)2𝑛𝑛

𝑖𝑖=1

 (12) 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �∑ (𝑥𝑥𝑖𝑖−𝑦𝑦𝑖𝑖)2
𝑛𝑛
𝑖𝑖=1

𝑛𝑛
 (13) 

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚−𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚

 (14) 

where 𝑥𝑥𝑖𝑖 and 𝑦𝑦𝑖𝑖  are the estimated (TLS result) and measured 
(allometric result) values for sample 𝑖𝑖, respectively, 𝑛𝑛 is the 
number of samples, 𝑥̅𝑥 is the mean of estimated values, and 𝑦𝑦�, 
𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚  and 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚  are the mean, max, and min of measured 
values, respectively. 

IV. RESULTS 

A. The result from different stations and the weighted mean 
result of all stations 

For each tree, the leaf area density is retrieved from different 
TLS stations separately, and the weighted mean of the 
different stations is calculated using (9). The result show that 
visibilities of the same tree from different stations, which is 
calculated as the ratio of the number of laser pulses reaching 
the tree crown envelope and the number of laser pulses 
emitted towards the tree crown envelope (Hu et al., 2018), 
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Fig. 7. Weighted impact of different stations results at the Platanus × acerifolia stand. (a) The weighted mean and weighted 

standard deviation of all station results for the fifty trees. (b) The results of the best observation stations and the weighted results 
of all stations when the number of effective laser pulses is used (NP) or the sum of path lengths (SPL) are used as weighting 

factors. 
 

vary dramatically from 0 to 100% and there are very few 
stations with visibilities higher than 80% (Fig. 6). The results 
of stations with little visible proportions (generally less than 
20%) are generally higher than the weighted mean of all 
stations results and volatile. With the increase of visible 
proportion, the retrieval of individual station approaches the 
weighted mean and the stability rapidly improves. The relative 
proportion of the weighted standard deviation to the weighted 
mean of 23 stations results for the fifty Platanus × acerifolia 
trees ranged from 8.8% to 37.9% (Fig. 7a). The relative 
proportion of the weighted standard deviation to the weighted 
mean of 6 stations results for the eight Tilia tomentosa trees 
ranged from 3.2% to 15.4%. Considering these results from 
both study sites, it is showed that this method can consistently 
and reliably characterize various plant areas with low standard 
deviation for different forest types and tree species. 

For each tree, the station with the largest sum of path 
lengths is selected as the main station, which usually has both 
the highest visibility and the largest number of lidar pulses 
entering the canopy synchronously because of the best 
observation conditions such as being closer to the canopy and 
less blocks in front of the canopy. The leaf area of each tree 
was estimated by three means, including using the best 
observation stations, using all stations with the number of 

effective laser pulses as weighting factors, and using all 
stations with the sum of path lengths (SPL) as weighting 
factors. The three results are consistent for most trees. 
However, in a few trees, we have observed the disunity of the 
three means (Fig. 7b). This may be related to the asymmetry 
of the observed tree crown, which is consistent with the direct 
observations. The average leaf area density weighted by the 
number of pulses and by the sum of path lengths are both 
consistent with the result of the main station (Fig. 7b), thereby 
indicating that either number of pulses or the sum of path 
lengths is a favorable weighting factor. 
 

B. Woody-to-total area ratio 
With the total path lengths as the weight, the leaf area 

density of each individual tree was calculated by weighted 
average of the results from multiple stations, then the leaf area 
density was converted into leaf area by (11) to facilitate 
subsequent analysis. Both the wood and leaf points in the leafy 
period data contribute to the retrieve results so that the result 
of the method based on Beer’s law at the leafy period is the 
plant area. Meanwhile, the result in winter when all the leaves 
have fallen is assumed to represent the woody area for both 
the leafless and leafy periods. Therefore, based on the data of 

 
Fig. 8. The spatial heterogeneity distribution of individual trees leaf area (black numbers above the circles) and woody-to-total 

area ratio (white numbers below the circles) at the Platanus × acerifolia stand. 
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leafy and leafless periods, the path length distribution model is 
used consistently to retrieve the plant area and woody area of 
the researched trees (Fig. 8). The effect of non-photosynthetic 
components on LAI measurements can be described by the 
woody-to-total area ratio, that is, the ratio of woody area to 
plant area. Of the fifty Platanus × acerifolia trees considered 
in this study, the woody-to-total area ratio ranged from 0.05 to 
0.22 with the average of 0.12 and the standard deviation of 
0.04 (Fig. 9). This result agrees well with a previous study 
wherein the mean woody-to-total area ratio of four Platanus × 
acerifolia trees manually measured by Baptista et al. [67] was 
0.11. This also indirectly verifies the reliability of the model 
used in this paper and the accuracy of the results. 

 
Fig. 9. The plant area, leaf area and woody area of fifty 

individual Platanus × acerifolia trees. The dot chart indicates 
the Woody-to-total ratio of different individual tree, and the 
dotted line points to the average Woody-to-total ratio of 50 
trees. 
 

C. Leaf area of individual trees 
At the Platanus × acerifolia stand, the TLS-based “true” 

leaf area of fifty individual trees were successfully calculated 
from the plant area and woody area according to (11) and then 
compared with ground leaf area measurements determined by 
allometric statistics (Fig. 10). The leaf areas of the fifty trees 
ranged from 15.44 m2 to 137.00 m2. Estimates of the LA of 
fifty trees derived from TLS and allometric measurements 
were moderately correlated, with an r value of 0.66 and an 
nRMSE value of 0.19 (Fig. 10a). It can be seen intuitively that 
the four points with large deviations cause great disturbance to 
the results. After eliminating these four points which are 
seriously suspected to be outliers, a significant improvement 
was obtained with an r value of 0.83 and an nRMSE value of 
0.13. Results show TLS-based leaf area estimations were 
strongly correlated with the allometric statistics leaf area 
measurements when very few outlier points were ignored (Fig. 
10a). The existence of very few outlier points will be 
discussed and analyzed later. The LA estimated using the TLS 
main station with the maximum visibility alone, weighted by 
SPL, and weighted by NP are generally consistent (Fig. 10b). 

At the Tilia tomentosa stand, the estimated leaf area for tree 
3 is 189.97 m2, showing a high consistency with the allometric 
measurement results (leaf area: 183.24 m2, plant area: 229.24 
m2 and woody-to-total area ratio: 0.2). After correcting for the 
impact of the woody components based on the woody-to-total 
area ratio of 0.2 obtained from the verification value of tree 3, 
the leaf area of the eight Tilia tomentosa trees ranges from 
153.15 to 190.50 m2. The weighted standard deviation among 
the results from 6 stations for the eight trees ranged from 3.2% 
to 15.4%, with the results from main stations closely aligning 
with the weighted results. Due to the non-specialized station 
layout, trees 1 and tree 8, located at the edge of the study site, 
have incomplete outlines. Although the FAVD inverted from 
different stations is stable and credible, incomplete outline 
leads to an underestimation of the canopy volume, thereby 
underestimating the individual tree leaf area. To address this, 

 
Fig. 10. Comparison of individual tree leaf area between TLS data inversion and allometric measurements at the Platanus × 

acerifolia stand. The points identified in color are considered as outliers. 
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we estimated the volume underestimated proportions of these 
two trees (tree 1: 0.33, tree 8: 0.20) and corrected their leaf 
area accordingly: tree 1 (154.13 – 230.04 m2) and tree 8 
(190.50 – 238.12 m2). 

 

D. Leaf area index of the experimental area 
The LAI of the Platanus × acerifolia stand was calculated 

using the TLS, allometric statistics, TRAC and vertical upward 
photographs data respectively. Four mainstream methods were 
used to correct the clumping effect of the result retrieved with 
vertical upward photographic data, they are the PATH, CC, LX, 
CLX methods. The woody components and leaves could not be 
directly separated in the TRAC and vertical upward 
photographs data, for this reason, the five results based on these 
two types of data were corrected using the woody-to-total area 
ratio (0.12) extracted by TLS result to obtain the true leaf area 
indexes. In Fig. 11 the final LAI results based different data and 
methods are presented. No great difference in LAI is observed 
among the different results. In particular, the estimate from TLS 
(weighted by SPL or NP) is in a good agreement with that from 
TRAC, which is considered the standard for estimating LAI, 
and the absolute errors between them and the estimate from 
allometric statistics are 0.24 and 0.26 respectively. At the stand 
scale, the estimations of the TLS main station with the 
maximum visibility alone (2.72), weighted by SPL (2.63) and 
weighted by NP (2.66) shown high consistency. The four 
estimates based on vertical upward photographs data show 
consistent underestimation compared to the estimate from 
allometric statistics. Severe occlusion effect and inability to 
accurately distinguish between the sky and plants materials due 
to direct sunlight and shadow are two possible causes in 2D 
images. 

 
Fig. 11. Comparison of the LAI retrieved from different data 

and methods at the Platanus × acerifolia stand. 
 
By combining the quadrat area of 246.5 m2 with the leaf area 

of four trees (trees 2, 3, 6, and 7) that have complete outlines 
(864.71 m2), the inverted LAI of the Tilia tomentosa stand is 

3.51. Compared to the allometric result of 3.65 from the urban 
tree database[68, 69], the difference is 0.14, and the relative 
error is 3.91%. Considering all eight trees, the quadrat area is 
527 m2, and the LAI allometric result is 3.27. Initially, TLS 
estimated a value of 2.64. After correcting the leaf area of tree 1 
and tree 8 with incomplete outlines, the final stand LAI is 2.87 
indicating a deviation of 0.4 and a relative error of 12.3% when 
compared to the allometric result. 

E. Estimations under different parameter settings 
The estimation of individual tree leaf area depends on 

accurately obtaining the gap probability and path length 
distribution within the target tree canopy. In this process, data 
quality parameters represented by scanning resolution and 
envelope construction parameters represented by alpha radius 
are involved. To thoroughly investigate the influence of 
different parameter settings on leaf area estimation, controlled 
variable experiments were conducted within the Platanus × 
acerifolia stand. 

Scanning resolution is a crucial indicator for characterizing 
TLS data quality, and also reflects the efficiency of data 
acquisition. To analyze the influence of scanning resolution on 
leaf area estimation, the original point cloud with an angular 
resolution of 0.3 mrad was subsampled at intervals of 2, 3 and 
4 points. Subsequently, TLS datasets with angular resolutions 
of 0.6, 0.9 and 1.2 mrad were constructed. The same method 
and process were applied to estimate the leaf area based on the 
TLS data at different resolutions. The three experiments with 
resolutions of 0.6 mrad, 0.9 mrad and 1.2 mrad were 
conducted simultaneously for individual tree segmentation, 
thus the differences in leaf area estimation were only caused 
by the variations in scanning resolution. The envelopes 
reconstructed from the TLS data at different resolutions show 
nearly no difference. In comparison to 0.6 mrad result, the 
average relative errors of leaf area for 50 individual trees at 
resolution of 0.9 mrad and 1.2 mrad were 2.52% and 4.24%. 
Compared to the 0.3 mrad result, the average relative errors in 
the three experiments (0.6 mrad, 0.9 mrad, and 1.2 mrad) were 
4.01%, 4.55%, and 4.60%, respectively. These errors resulted 
from differences in both scanning resolution and the outcomes 
of individual tree segmentation. At the stand scale, the LAI 
inverted from the data at four resolutions was 2.63, 2.60, 2.62 
and 2.67, respectively. In general, scanning resolution 
demonstrated minimal impact on leaf area inversion. 

The alpha radius (r) is the core parameter of alpha shape 
algorithm. Based on the original r=0.5, adjustments were made 
only to alpha radius=0.3, 0.4, 0.6, and 0.7 to consider the 
impact of envelope construction parameters on inversion 
results. With the increase of r, the envelope volumes of 
individual trees exhibit a consistent rise. As r increased from 
0.3 to 0.7, the average envelope volume of 50 individual trees 
increased by 70.55%, while the corresponding average relative 
error of leaf area was only 8.74%. Compared with the results 
obtained when r is set to 0.5, the average relative errors of leaf 
area at r values of 0.3, 0.4, 0.6, and 0.7 are 7.12%, 4.03%, 
2.81%, and 4.24%, respectively. While the envelope volume 
undergoes significant changes with varying values of r, the 
inversion results for leaf area remain remarkably stable. 
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V. DISCUSSION 

A. Consistency of leaf area by PATH and allometric model 
Although a good allometric equation of branch length with 

leaf area for Platanus × acerifolia trees has been obtained, it is 
undeniable that the allometric result itself has certain errors for 
individual trees with variability. It took nearly a month to 
accurately measure the length of all branches in the point 
cloud data, but the measurement error is still unavoidable, 
especially at the top of the tree crown where the point cloud 
was considerably missing. The four suspected outliers within 
the Platanus × acerifolia stand can be divided into two 
categories, among which the TLS estimates of the three trees 
numbered 34, 35, and 41 are significantly higher than those of 
the allometric results. The common problem of the three trees 
is that the canopy is irregular. There are unique branches at the 
lower part of the canopy that protrude from the entire canopy 
and form a joint sub-canopy (Fig. 12). Meanwhile, a station 
(usually is the main station) is set just below the sub-canopy, 
and the result of this station are significantly higher than other 
stations. The internal reason may be that the sub-canopy is too 
close to the scanner, so that the gap probability is obviously 
underestimated. At the same time, we use a finer concave 
envelope and remove the large gap at the edge of the 
envelope, which inadvertently amplifies the effect of locally 
shorter path lengths, further exacerbating the overestimation 
of FAVD. Using a relatively rough concave envelope may be 
an effective solution. The concave envelope makes the canopy 
become a whole again, which eliminates the underestimation 
of the gap probability caused by the perspective scanning. 
Table II shows that the results of convex envelope are rough 
but stable, while the result of the refined concave envelope are 
precise but more sensitive to the special-shaped crown, which 
may lead to an overestimation. 

TABLE II 
DIFFERENCES IN THE LA RESULTS OF USING CONVEX AND 

CONCAVE ENVELOPES FOR SPECIAL-SHAPED CROWNS of 
Platanus × acerifolia TREES  
Tree ID Allometric (m²) Concave (m²) Convex (m²) 

34 59.1 137.0 86.9 
35 52.5 121.2 78.5 
41 68.4 132.0 44.7 

One observation is that the upper branches of the 
experimental Platanus × acerifolia trees had a more 
pronounced tendency to grow upwards, rather than emanating 
more lateral branches. This characteristic would lead to an 
overestimation of LA when finely measuring the upper 
branches. The upward growth trend of the tree numbered 49 is 
more obvious, which is not limited to the upper part of the 
canopy. At the same time, the point cloud of the upper part of 
this tree is very complete, and the number of branch 
measurements is the largest (163) among the 50 trees (ranging 
from 32 to 163, the average is 78). The allometric result of the 
tree numbered 49 is nearly twice as high as for several trees 
with the same approximate envelope volume (Table III). This 
evidence suggests that the error of the Platanus × acerifolia 

tree numbered 49 comes from a significant overestimation of 
the allometric result rather than an underestimation of TLS 
method. 

TABLE III 
BASIC INFORMATION OF THE Platanus × acerifolia TREE 

NUMBERED 49 AND TREES WITH APPROXIMATE SAME 
ENVELOPE VOLUMES 

Tree     
ID 

Volume 
(m3) 

PATH 
(m²) 

Nb Allometric 
(m²) 

05 86.9 84.4 91 64.8 
49 92.0 59.7 163 121.8 
36 92.1 73.7 89 60.9 

Nb number of branch measurements 

B. Consistency of LAI by using the different data and method 
Our analysis showed that LAI estimate at the Platanus × 

acerifolia stand from TLS was in good agreement with that 
from TRAC which corrects clumping effect and provides the 
true LAI. The allometric result and vertical upward 
photographs result are also used as references. In spite of the 
drawbacks of these methods, we show that these very different 
techniques generated similar results, indicating that the TLS 
methods show a high degree of robustness (Fig. 11). The 
results from the vertical upward photographic data show a 
consistent underestimation as reported in many previous 
studies (Fig. 11). There are three possible reasons for the 
underestimation. First, in 2D images, the problem of occlusion 
is more noticeable than with TLS. Second, some photos were 
taken in direct sunlight so that the plant materials are difficult 
to be differentiated from the sky, which may cause an 
overestimation of the gap probability and thus significant 
underestimation of LAI. Otsu method [70] was applied in this 
study to improve the accuracy of results, especially in 
comparison with single manual thresholding. Nonetheless, 
some errors could still be detected in the images. Third, the 
degree of closeness between the G-value used in the model 
and the real G-value at a specific shooting angle affected LAI 
extraction accuracy. The mean G-value (0.66) of the 0-
15°angles was used, which does not rule out an 
underestimation of the LAI caused by this value being higher 
than the true G value. 

 
Fig. 12. Schematic diagram of abnormal tree crown and 

lidar station location. 
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C. Consistency of using the leaf area density and path length 
distribution 

Different from most previous studies, this study did not set 
up multiple favorable observation stations for individual trees, 
but placed enough shared stations within the the Platanus × 
acerifolia stand to cover all study trees. This method is closer 
to the real application scenario, but it also faces many 
challenges. For each tree, only a few stations with 
unobstructed views can provide the overall path length 
distribution and gap probability of the studied tree, which 
corresponds to a high confidence result. The vast majority of 
stations are blocked in varying degrees. The uncertainty of 
path length distribution and gap probability obtained by these 
blocked stations increases, which leads to a decrease of the 
consistency of results from different stations. When the 
occlusion is further increased, it is almost impossible to obtain 
the point cloud of the studied tree through the block by 
multiple canopies, but since the TLS height is usually lower 
than the bottom of the canopy, it is still possible to obtain the 
lower layer point cloud of the studied tree. Direct observation 
shows that the proportion of woody components at the bottom 
of the canopy is higher, and the large gap at the edge of the 
envelope is removed when the envelope is refined, so that the 
results of these stations are significantly higher than the 
average of all stations. The retrieval of different stations is 
rapidly stable with the improvement of visibility (Fig. 6). 
Another interesting phenomenon observed in Fig. 6 is that 
there is usually a rise at the end of the FAVD-Visibility curve 
when there are multiple stations with a visibility rate close to 
100% for an individual tree. This phenomenon is considered 
to be caused by the distance between the lidar station and the 
tree crown. LiDAR is a kind of perspective scanning, and a 
two-dimensional gap is used in this study. This may lead to 
underestimation of the gap probability in cases where the 
scanner is too close to the crown, special-shaped crowns, and 
used too fine concave envelope. 

Visibility is a potential index for screening effective 
stations. Although several of these results would enlarge the 
weighted standard deviation, we considered the results of all 
stations. The use of weighted mean demonstrates the 
following advantages despite the feasibility of filtering the 
data with low reliability: consistency, universality, and 
efficiency. At the Platanus × acerifolia stand, with the 
introduction of sum of path lengths as a weighting factor, the 
contribution of the main station was approximately 7.8%-
72.3%, and the contribution of stations which visibility below 
20% was only approximately 1%. All of these indicate that 
through the weighted average, the data of all stations were 
efficiently considered, and the uncertainty of the low-
confidence stations to the weighted mean was largely limited. 
Meanwhile, the LA of each tree and the LAI of the stand 
estimated using only the main station is consistent with that 
weighted by the number of pulses or by the sum of path 
lengths in this study (Fig. 10b, 11). The reason is that the 
visibility of each tree is above 80% using only the main 
station, with 23 scans in an urban forest containing 50 trees. It 

indicates using the main station alone might be enough to 
characterize the LA of individual tree and the LAI of the plot 
if the visibility of each tree from the main station reaches a 
certain standard. The 23 scans set in the Platanus × acerifolia 
stand might be sufficient but redundant for characterizing au 
urban forest of 50 trees, and the minimum required number of 
scans could be studied in the future. 

The TLS stations layout at the Tilia tomentosa stand were 
not specifically tailored for the selected experimental area, 
resulting in only one-sided observational point cloud for 
several trees located at the edge of the study site. This narrow 
observation condition posed limitations in obtaining the 
complete outline of the tree crown. The weighted standard 
deviations for four trees (tree 1, 4, 5 and 8), affected by 
incomplete outlines, range from 9.45% to 15.41%. The 
relatively low standard deviations indicate that the FAVD 
inversion from different stations remain relatively stable under 
conditions of incomplete outlines. However, incomplete 
outlines can lead to an underestimation of canopy volume, 
thereby underestimating individual tree leaf area and stand 
LAI. Therefore, when deploying TLS stations, the relative 
positions of the stations should still be considered to ensure 
the acquisition of complete outlines of the target canopies. 
Typically, achieving this is not difficult. It requires having 2-3 
stations among the shared stations capable of capturing the 
complete outlines for the target tree crown. It's worth noting 
that it is recommended to set up stations outside the 
experimental site to obtain complete tree crown outlines for 
trees located at the edges. 

D. Parameter sensitivity analysis 
The TLS scanning resolution affects leaf area estimation 

from two aspects: path length distribution and gap probability. 
Under different scanning resolutions, extremely small 
differences between envelopes basically only occur at the 
edges. The path length distribution is determined by the 
envelope shape, so the path length distribution is not sensitive 
to the TLS resolution. The envelope is composed of triangular 
patches, with more gaps clustered around the edges. As the 
scanning resolution decreases, the sampling at the edges 
decreases, and the resulting gap probability fluctuation may be 
a direct source of inversion uncertainty. The average relative 
error of 50 individual Platanus × acerifolia trees at 0.3 and 
1.2 mrad resolution is relatively small (4.60%), indicating that 
the method is not sensitive to scanning resolution, which is 
positive for large-area forest estimation. In large-area forest 
estimation, using relatively low-resolution settings and more 
stations may be a more practical observation strategy. 
Relatively low resolution is conducive to improving data 
collection efficiency, while more stations facilitates obtaining 
the complete outline of the tree crown and improving the 
stability of individual trees inversion.  

According to the principles of the alpha shape algorithm, a 
decrease in the alpha radius results in tighter generated 
envelopes, leading to a reduction in the consistency of 
envelope volume. As the envelope tightens, the gaps at the 
edges gradually disappear. The path length distribution is 
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insensitive to these changes, while the gap probability 
estimation increases, resulting a corresponding rise in the 
FAVD estimation. This offsetting effect significantly mitigates 
the impact of volume changes. The average relative error of 50 
individual Platanus × acerifolia trees remains relatively small 
(8.74%) when alpha radius is set to 0.3 and 0.7, indicating that 
the method is not sensitive to the alpha radius. Furthermore, 
comparisons with the result when alpha radius is 0.5 (average 
relative errors: 0.3: 7.12%, 0.4: 4.03%, 0.6: 2.81%, 0.7: 
4.24%) reveals that within a certain range, a larger alpha 
radius, i.e., a relatively loose envelope, can provide more 
stable inversion results. Therefore, the recommended alpha 
radius values are 0.5 and 0.6. 

VI. CONCLUSIONS 
An efficient and automatic method is proposed to estimate the 

individual tree leaf area in forest areas. By this method, we 
realize bottom-up estimation of forest-stand level LAI based on 
individual tree leaf area. By comparing TLS estimates with 
allometric equation measurements, this study demonstrated that 
not specialized but regional TLS data can provide statistically 
similar true LA estimates of individual trees (r = 0.83, nRMSE = 
0.13, after removing 4 outliers). Due to the mutual occlusion 
between tree crowns, there are great differences in the 
observation capacity of different stations. Visibility is a potential 
index for screening effective stations. The retrieval of different 
stations rapidly stabilizes with the improvement of visibility. 
Moreover, the weighted average of the results of all stations with 
the sum of path length or the number of pulses as weighting 
factors is an efficient and stable method. The canopy envelope 
has an impact on the inversion results. Specifically, the refined 
concave envelope is beneficial for more accurate results. 
However, the result of the convex envelope exhibits better 
stability in complex cases such as special-shaped canopy. At the 
Platanus × acerifolia stand, the results of the proposed method 
are consistent with the allometric measurement and TRAC 
instrument measurement (Allometric:2.39 m2·m-2, TLS:2.63 
m2·m-2, and TRAC:2.65 m2·m-2). Generally, 23 shared stations 
under the forest are enough to accurately obtain the LA of 50 
individual trees and the LAI in an urban forest stand. Consistent 
results in the Tilia tomentosa stand demonstrate the generality 
and applicability of the method to different forest types and tree 
species. The proposed bottom-up approach provides a new way 
of estimating the LAI at stand level using TLS. It has the 
advantage of providing multi-level leaf area information and 
avoiding the scale effect, showing great potential in the study of 
spatial heterogeneity of LAI, tree competition, and forest spatial 
structure. The application of this method to airborne LiDAR for 
large-scale observations and the further exploration of acquiring 
the 3-D distribution of leaf area density within individual trees 
remain two significant directions for future efforts. 
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