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Abstract—Due to the complicated background and noise of 
infrared images, infrared small target detection is one of the most 
difficult problems in the field of computer vision. In most existing 
studies, semantic segmentation methods are typically used to 
achieve better results. The centroid of each target is calculated 
from the segmentation map as the detection result. In contrast, we 
propose a novel end-to-end framework for infrared small target 
detection and segmentation in this paper. First, with the use of 
UNet as the backbone to maintain resolution and semantic 
information, our model can achieve a higher detection accuracy 
than other state-of-the-art methods by attaching a simple anchor-
free head. Then, a pyramid pool module is used to further extract 
features and improve the precision of target segmentation. Next, 
we use semantic segmentation tasks that pay more attention to 
pixel-level features to assist in the training process of object 
detection, which increases the average precision and allows the 
model to detect some targets that were previously not detectable. 
Furthermore, we develop a multi-task framework for infrared 
small target detection and segmentation. Our multi-task learning 
model reduces complexity by nearly half and speeds up inference 
by nearly twice compared to the composite single-task model, 
while maintaining accuracy. The code and models are publicly 
available at https://github.com/Chenastron/MTUNet.  

 
Index Terms—Target Detection, Semantic Segmentation, Multi-

Task Learning, Infrared Small Target 

I. INTRODUCTION 
nfrared small target detection has significant 

applications in airspace surveillance, maritime 
surveillance, anti-missile and missile guidance, etc. 

Detection of multiple small targets on a single infrared image 
frame is a challenging task. First of all, the small target scale 
brings problems to the target detection task: the multi-layer 
convolution and down-sampling in the feature extraction 
backbone of common target detection networks can easily 
cause the loss of small target features [1]. Performance can be 
improved by fusing shallow features [2], but the contradiction 
between high-level semantics and high-resolution features 
cannot be solved fundamentally. In addition, target anchors and 
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regression methods in common target detection heads don't take 
small targets much into account [3]. What’s more, the number 
of negative samples in the images is too large due to the small 
and few targets, which account for most of the loss during 
training. Most negative samples are easily categorized, so the 
model cannot be optimized in the desired direction. These 
problems have led to an average precision (AP) gap of about 30 
between large and small targets on the COCO test-dev 
benchmark now (RANK 1: DINO[4], APL:76.5, APS:46.7). 
Targets in infrared images cause even more difficult problems, 
such as a lack of shape and texture features, compared to targets 
in visible images. Overall, it is very difficult to detect infrared 
small targets by directly utilizing the network designed for 
normal objects [5–7].  

Therefore, in most of the existing research on infrared small 
target detection, the detection task is regarded as a semantic 
segmentation task [8–13]. The reason why it works well may 
be that semantic segmentation actually classifies every pixel in 
the image, thus avoiding the influence of small target scale. 
However, most of those papers do not specify how to transform 
the result of semantic segmentation into the result of target 
detection, or just calculate the centroid of each target as the 
detection result rather than the typical bounding box. As far as 
we know, a robust, end-to-end, single frame based infrared 
small target detection algorithm has not been proposed. 

Overall, the general object detection method cannot achieve 
accurate results when applied directly to infrared small targets. 
On the other hand, segmentation-based methods cannot 
transform the segmentation results into multi-target bounding 
boxes of appropriate size and cannot deal with overlapping 
targets. We need a robust and effective method to directly detect 
small targets, which is very necessary and valuable. Based on 
these motivations, we propose a multi-task Unet (MTUNet) 
framework for infrared small target detection and segmentation.  

In our method, the target detection branch uses UNet as the 
target detection backbone [14] and the improved CenterNet as 
the target detection head [15], which greatly improves the 
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performance of small target detection. The semantic 
segmentation branch also uses UNet as its backbone and uses 
the pyramid pooling module to collect multi-level feature 
information and fuse them [16], which improves the accuracy 
of segmentation predictions. These two processes are called 
single-task learning [17]. According to research, training 
multiple single tasks together via a multi-task network not only 
has a lightweight advantage but can also sometimes improve 
the performance of each task [18,19]. Therefore, we carry out 
multi-task learning for object detection that pays more attention 
to object-level features and semantic segmentation that pays 
more attention to pixel-level features. Results show that the 
performance of the two tasks is maintained at a similar level or 
even gets higher. In addition, compared with two separate 
single-task networks, MTUNet reduces the number of 
parameters and speeds up inference. The contributions of this 
paper are as follows: 

1) To the best of our knowledge, we are the first to propose 
a general end-to-end infrared small target detection and 
segmentation method that uses UNet as the global 
backbone. We believe that the ability of UNet to fuse the 
low-level features and maintain the resolution of the 
feature map is very important for small object vision 
tasks. Then, just attaching a simple but effective 
detection or segmentation head can make the model 
achieve superior performance.  

2) Using the improved CenterNetHead, the object detection 
is carried out directly on the full-resolution feature map, 
which greatly improves the target detection accuracy. 
We prove the advantage of the anchor-free method in 
small target detection.  

3) In the part of semantic segmentation, the pyramid pool 
module is used to enhance multi-level feature 
information. The training method is specially designed 
for the situation where the small target accounts for only 
a few pixels in the image, which improves the precision 
of target segmentation.  

4) Multi-task learning is carried out for infrared small 
target detection and segmentation, and the multi-task 
model can achieve improvement in all metrics. The 
experiments show that the shared backbone makes full 
use of the similar semantic features of the two tasks and 
can help the detection network deal with hard samples. 
Compared with the composite single-task model, 
MTUNet reduces the number of parameters and speeds 
up inference.  

II. RELATED WORK 

A. Infrared Small Target Detection 
The traditional approach to infrared small target detection is 

directly establishing a model to measure the difference between 
an infrared small target and its surroundings. Some studies, 
such as [20,21], use multi-frame methods to detect infrared 
targets, but we only discuss single-frame methods in this paper. 
The single-frame detection problem has been modeled as target 

point detection under different assumptions, such as significant 
target points [22], sparse points in a low-rank background [23], 
and prominent points in a homogeneous background [24,25]. 
Accordingly, the infrared small target detection results can be 
obtained by significance detection, sparse low-rank matrix 
decomposition, or local contrast measurement. Finally, the 
small infrared target is segmented by using the threshold. 
Though these methods are computationally friendly and do not 
require training or learning, it is difficult to design features and 
superparameters artificially. In addition, they cannot adapt to 
changes in target shape and size, as well as complex 
backgrounds. Consequently, we have seen an increase in 
methods based on the deep neural network (DNN) model in 
recent years. These methods have been able to achieve much 
better performance than traditional methods because they can 
learn features from large amounts of data.  

Existing DNN-based methods treat target detection as a 
semantic segmentation task. Dai et al. designed a semantic 
segmentation network using an asymmetric contextual module 
and introduced a dilated local contrast measure to improve their 
model [9,10]. Hou et al. proposed a network that combines 
manual features and convolution neural networks, which can 
adapt to different sizes of targets [11].  

B. Datasets for Infrared Small Targets 
Compared with visible image datasets, infrared image 

datasets have been trapped by the scarcity of public data for a 
long time. Most methods are trained and evaluated on their own 
private datasets. Wang et al. first established an open infrared 
small target data set, which contains 10k images. However, 
many targets in the dataset are too large and inaccurate, which 
affects the effect of training. [8]. Dai et al. published a dataset 
with high-quality semantic segmentation masks, but its target 
detection labels are inaccurate [9]. In order to perform the 
experiments on this dataset, we regenerate the target detection 
annotation in COCO format based on the segmentation 
annotation. Due to the size of the dataset, we divided it into 70% 
training dataset and 30% validation dataset. 

Li et al. made a thermal infrared ship detection dataset using 
the SDGSAT-1 thermal imaging system [26]. However, thanks 
to the high resolution of SDGSAT thermal imager, the ship 
target has more pixels than the target studied in this paper. In 
[21], Du et al. used a dataset of infrared images for dim small 
aircraft target detection and tracking under ground/air 
background provided by [27], which is a video dataset 
containing 22 videos. However, each video has similar 
backgrounds and the same target, so there is high data 
redundancy between frames. We think it is not suitable for 
training a single-frame detection model for various targets.  

C. Multitask Learning 
The common single-task visual perception networks consist 

of various backbones and various heads. The widely used 
networks are UNet [14] and DeepLab [28] for semantic 
segmentation; Faster-RCNN [3] and YOLO [6] for target 
detection. In contrast, multi-task learning architectures apply
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Fig. 1. Architecture of the proposed MultiTask-UNet.  

different heads for different tasks on the same backbone 
module.  

Multi-task learning can be seen as a transfer of inductive bias 
from the perspective of machine learning, which makes the 
model more inclined to certain assumptions. For example, CNN 
introduces two inductive biases, locality and translation 
equivariance, so that the model can obtain a lot of prior 
information. In multi-task learning, inductive biases are 
provided by other tasks. That makes the model more likely to 
learn features that can explain multiple tasks at the same time, 
which improves the generalization performance. Examples 
mainly related to visual perception tasks are Mask R-CNN [29], 
PanopticFCN [30].  

By preserving and sharing the feature representations of 
different tasks, one task can help the training process of other 

tasks. A multi-task algorithm can combine the processes of 
single-task algorithms in many ways. One way is to use a 
backbone pre-trained on one task and then attach head modules 
for other tasks. In comparison with random initialization 
weights, it can not only speed up convergence but also improve 
performance. Another way is to directly construct a model 
containing a single backbone and multiple heads. By combining 
model structures and loss functions, multiple tasks can be 
trained simultaneously.  

III. PROPOSED METHOD 
In this section, we describe the overall architecture and 
optimization formulation of the proposed model. 

The overall structure of the network is shown in Fig. 1, 
inputting the infrared image to be detected, then generating the 
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semantic segmentation map and outputting the target detection 
bounding box. The scaled input image is processed by the 
UNet-type feature extraction backbone, and the generated 
feature map is sent to the semantic segmentation branch and the 
object detection branch, which finally outputs the semantic 
segmentation map of the target/background and the detection 
results of multiple targets. 

In the existing research, UNet is not normally used as the 
backbone for object detection since it is not cost-effective. For 
objects of normal size, their semantic information can be 
retained in low-resolution feature maps after multi-layer 
convolution and down-sampling and can be recovered by up-
sampling methods such as bilinear interpolation. Although this 
process is very efficient, it limits the model's ability to detect 
small targets. In contrast, UNet preserves the semantic 
information of small targets in the final feature map through 
learnable up-sampling and multi-scale feature fusion. The 
superiority of UNet in small target detection will be verified in 
comparative experiments later on. In addition, UNet performs 
well in the field of medical image segmentation. Medical 
images exhibit similar characteristics to infrared images in 
comparison with natural images. We selected UNet as the 
backbone for the thermal infrared domain because they both 
have simple image semantics, a small amount of data, and a 
need for high-resolution information.  

It is difficult to detect small objects on a small scale because 
object detection focuses on object-level features. Therefore, our 
framework introduces semantic segmentation that focuses on 
pixel-level features for joint learning. Since semantic 
segmentation and target detection are related visual tasks, the 
semantic segmentation branch could assist in improving the 
performance of small target detection.  

A. Detection Branch 
In the common anchor-based target detection methods (such 

as Faster-RCNN), the anchor setting and regression of the 
bounding box do not take into account the problem of the target 
being too small, so we built our target detection head using 
CenterNet[15]. An anchor-free method like CenterNet can 
directly predict the coordinates, sizes, and offsets of key points 
with a simple and lightweight structure. To a certain extent, it 
also compensates for the influence of UNet on the number of 
model parameters and calculation amount.  

The original CenterNet uses the up-sampling module with 
DCN to up-scale the output feature map of ResNet to 1/4 of the 
resolution of the original image before detection [31]. In our 
model, UNet is used as the backbone, and its output feature map 
is consistent with the resolution of the input image. Therefore, 
the up-sampling module is no longer required, and the feature 
map with the original image resolution is directly used for 
detection. The CenterNet head in our model actually acts at full 
resolution (Full-CenterNetHead).  

Let's suppose the input feature map is 64W HI R × ×∈ , and the 
detection branch produces three feature maps, namely keypoint 
heatmap, size prediction, and offset prediction.  

Keypoint heatmap: When training, we need to produce a 
keypoint heatmap ˆ [0,1]W H CY × ×∈ , where C represents the 
number of classes. In this task, C equals 1 because we only have 

one target class. ,
ˆ 1x yY =  means a detected keypoint at (𝑥𝑥, 𝑦𝑦) 

while ,
ˆ 0x yY =  means background. For each ground truth 

keypoint p , we splat it onto a heatmap [0,1]W H 1Y × ×∈  using 

a Gaussian kernel 𝑌𝑌𝑥𝑥𝑥𝑥 = 𝑒𝑒𝑒𝑒𝑒𝑒 �−
(𝑥𝑥−𝑝𝑝𝑥𝑥)2+�𝑦𝑦−𝑝𝑝𝑦𝑦�

2

2𝜎𝜎𝑝𝑝2
� . pσ  is an 

object size-adaptive standard deviation [32]. If two Gaussian 
kernels overlap, we take the element-wise maximum [33]. The 
loss between predict heatmap and ground truth heatmap is a 
pixel-wise focal loss[7]: 
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where α  and β  are hyperparameters of focal loss[7]，N is 
the number of keypoints. In our experiment, α  and β  are set 
to 2 and 4, following[32].  
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training process. We use L1 function to calculate loss of the 

prediction 2ˆ W HS × ×∈ only at the center position of target:  
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Offset prediction: In the original CenterNet, due to the 
downsampling by a factor 𝑅𝑅 = 4, the output feature map will 
introduce accuracy errors when remapped to the original image 
size. Thus, for each keypoint, an additional local offset is used 
to compensate for the error. In our model, due to the fact that 
the size of the feature map is the same as the input image, there 
is no such precision error. This means that we do not have to 
predict offsets. Because offset prediction just has a minimal 
effect on the inferencing speed, you can also keep it like 
CenterNet does[15]. Offset prediction does not affect the 
accuracy of object detection in our model.  

The overall loss function is the sum of the loss of the keypoint 
heatmap loss kL  and size loss sizeL : 

 k size sizedetL L Lλ= +                            (3) 
where 𝜆𝜆size = 0.1 , following [15]. 

All outputs use the same feature map produced by UNet 
backbone. The features are passed through separate processes 
of 3 3× convolution, ReLU, and another 1 1× convolution. 
Fig. 2 shows an overview of the detection branch final output.  

In the postprocessing, we extract the locations of peaks in the 
heatmap as keypoint locations. Peak values are used to measure 
detection confidence, and bounding boxes are generated based 
on keypoint coordinates and size predictions.  

B. Segmentation Branch 
This branch uses the semantic segmentation method to predict 

the target and background from feature maps with the same  
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Fig. 2. An overview of the detection branch output. All predictions are produced 
from the same input feature map. Offset prediction does not affect the result 
and can be discarded. 

solution as input images.  
In semantic segmentation, the background is often ignored 

and not included in training. This will cause difficulties in the 
infrared small target segmentation task since the model will 
learn the background as the target class. Because the proportion 
of target pixels in our image is very small, the model cannot be 
optimized in the desired direction. If most of the areas in the 
image are ignored, resulting in a high proportion of 
misclassified background pixels, such a model will be useless. 
In order to obtain the ideal training result, the background is 
seen as a category that can be learned in our model.  

The input feature map is decoded by the pyramid pooling 
module to produce four feature bins of 1 × 1, 2 × 2, 3 × 3, 
6 × 6 like [16], and then 1 × 1 convolution is used to reduce 
the number of channels from 64 to 16. The feature maps of these 
four scales are upsampled by bilinear interpolation, and then a 
concatenate operation is carried out on the channel dimension 
with the input feature map. Then pooling and convolution 
operations are performed again, and the last activation layer 
selects the sigmoid layer to generate the final segmentation 
prediction. Fig. 3 shows the process of the segmentation branch.  

We use dice loss [34] to train this branch, optimizing a 
weighted smooth dice loss segL  between prediction 
segmentation map and ground truth segmentation map: 
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where true y and pred y represent the corresponding pixel values 
from the ground truth mask and segmentation prediction. We 
use 1smooth =  for computational stability. We calculate

smoothDice  on the target and background classes, respectively. 
The weights clsw  of class target and class background are 10 
and 0.1.  

C. Multi-task Loss Aggregation 
Like other multi-task joint learning studies, we can train these 

two visual tasks at the same time. The object detection branch 
uses detL  for training, and the semantic segmentation branch 
uses segL  for training. The total loss of MTUNet is formulated 
as:  

det det seg segallL L Lλ λ= +                           (6) 

 
Fig. 3. Illustration of the process of the segmentation branch. 

according to loss values in the beginning stage of training, we 
set 3detλ =  and 1segλ =  to balance the effect of individual 
heads on the total loss. Performance metrics could be affected 
by different weight balances.  

IV. EXPERIMENT AND ANALYSIS 
In this section, we will introduce the implementation details and 
evaluation metrics, and compare our model with other methods 
on the same dataset. Experiments on semantic segmentation, 
object detection, and multi-task learning are carried out. To 
verify the effectiveness of our proposed model, we perform 
comparative experiments and ablation experiments.  

A. Implementation Details 
We used the public SIRST[9] dataset for experiments. This 

dataset has accurate semantic segmentation annotation, but its 
object detection annotation is very rough. Therefore, we 
generate the COCO format target detection annotation based on 
the segmentation annotation. Considering the quantity of data 
in this dataset, we divided it into a 70% training dataset and a 
30% verification dataset.  

We use random cropping and random flipping as data 
enhancement, and resize the input image to 320 × 320. We 
employ an SGD optimizer for 200 epochs with an exponential 
decay learning rate scheduler. The initial learning rate is 0.001 
and a weight decay of 0.05 is used. The batch size is set to 4.  

B. Evaluation Metrics 
We use mIoU as the evaluation metric for the semantic 

segmentation task and AP as the evaluation metric for the target 
detection task, following protocols widely adopted in computer 
vision research. It will establish the consistency between 
infrared image and visible image tasks and contribute to the 
development of infrared vision research.  

For the semantic segmentation task, the usual way is to 
generate predicted segmentation maps for each category 
contained in the dataset. Use IoU to compare predicted 
segmentation maps with ground truth masks, and mIoU to 
analyze the average performance of the model on all classes. 
There is only one target class in the SIRST dataset, so we can 
compare the target class segmentation results with other studies. 
Furthermore, as mentioned before, our model treats the target 
and background as separate categories, so we can also calculate 
the IoU of the background class and the mIoU of all classes.  
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TABLE I 
SINGLE-TASK SEGMENTATION PERFORMANCE OF DIFFERENT METHODS  

Method Target IoU Background IoU mIoU 
IPI [35] 25.67 - - 

MDvsFA-cGAN [8] 61.03 - - 
ACM [9] 71.65 - - 

ALCNet [10] 74.70 - - 
DNANet-ResNet34 [13] 76.98 - - 

Ours 78.94 99.98 89.46 

 
We use COCO evaluation metrics to evaluate the 

performance of the target detection part. As with most detection 
tasks, we report average precision over all IoU thresholds (AP), 
AP at IoU thresholds 0.5 (AP50), and 0.75 (AP75). Considering 
the size of small targets, a deviation of a few pixels may cause 
large fluctuations in IoU. An IoU of 50% between the predicted 
bounding box and the ground truth label indicates a reasonable 
enough prediction, so AP50 might be a more useful and fair 
metric.  

C. Experiment of Semantic Segmentation 
In the first part of experiments, we compare the semantic 

segmentation results of our network with other advanced 
methods, including IPI [35], which performs best in traditional 
methods, and data-driven methods such as MDvsFA-cGAN [8], 
ACM [9], ALCNet [10], and DNANet [13]. We evaluate these 
methods on our own dataset partition, and the results are 
compared as shown in Table I. It can be seen that the DNN-
based method is clearly superior to the traditional method and 
our single-task semantic segmentation part has made a 
significant improvement over other DNN methods, reaching the 
highest target IoU of 78.94. In addition, the background IoU is 
99.98 and mIoU is 89.46, which are not evaluated in other 
methods.  

Fig. 4 shows representative examples of semantic 
segmentation results. There is a lot of noise similar to the target 
in image (3). ALCNet cannot make the correct prediction. 
However, our method can clearly distinguish the target from the 
background. Our model also performs well with multiple 
targets in image (5). In contrast, ALCNet cannot distinguish all 
targets. ALCNet also have some false alarms in some cases with 
a high noise level or a low SCR. The performance of DNANet 
is similar to ours, but its structure is more complex, and its 
segmentation result is less accurate than ours. Our method has 
the best segmentation results in all kind of scenes. 

D. Experiment of Object Detection 
In the second part, experiments demonstrate the effectiveness 

of UNet as a target detection model backbone and the 
performance of the improved CenterNet in small target 
detection. Our model is compared with other architectures in 
two aspects: backbone and detection head. Table II shows the 
results.  

Comparison on backbones: ResNet18, ResNet-34, and 
ResNet-50 are chosen as backbones for comparison. ResNet101 
and ResNet152 are not used because they have many more 
parameters and computations than UNet.  

 

Fig. 4. Segmentation results of images with (1) complex background, (2) low 
SCR, (3) high noise level, (4) dim target, (5) multiple targets. The target area is 
painted in blue and the background area is painted in gray. (a) Input images. (b) 
GT labels. (c) ALCNet. (d) DNANet. (e) Ours.  

It can be seen that UNet is +3.6 AP50 higher (95.6 vs. 92.0) 
than ResNet-50, which proves that UNet is very suitable for 
infrared small target detection. It should be noted that ResNet 
is pre-trained on ImageNet. The absence of pre-training will 
result in significant performance degradation or even make the 
model impossible to optimize. UNet is trained from scratch and 
achieves better results, showing that UNet is more suitable for 
data-scarce infrared vision tasks than ResNet.  

Comparison on detection heads: We compare the 
commonly used RetinaNet [7] with ours. RetinaNet uses Focal 
Loss to refine the model by focusing on hard samples. This 
problem is also one of the difficulties in infrared small target 
detection. RetinaNet surpassed the accuracy of the two-stage 
network and the speed of other one-stage networks. For the first 
time, the one-stage network had completely surpassed the two-
stage network. 

In the original CenterNet, ResNet is used to downscale the 
input image by a factor of 32, and CenterNetHead is used to 
make predictions on the upsampled feature map. We apply a 
full-scale strategy to CenterNetHead by performing two 
additional upsampling operations and then making predictions 
on a feature map of the same size as the original image. We call 
it Full-CenterNetHead, and the original one is called D4-
CenterNetHead. D4 means downsampling by a factor of 4.  

RetinaNet is much more complex than CenterNet, but D4-
CenterNetHead outperforms RetinaHead by +2.0 AP50 (89.3 vs. 
87.3) using ResNet-50 backbone. Results show the superiority 
of anchor-free methods like CenterNet in detecting small 
targets. Full-CenterNetHead outperforms D4-CenterNetHead 
by +2.7 AP50 (92.0 vs. 89.3), which shows effectiveness of full-
scale strategy.  
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TABLE II 
SINGLE-TASK DETECTION PERFORMANCE OF DIFFERENT METHODS 

Method Backbone AP50 AP75 AP 

CenterNet ResNet-18 72.40 4.90 22.60 

CenterNet ResNet-34 74.00 6.80 23.40 

CenterNet ResNet-50 89.30 32.40 38.50 

RetinaNet ResNet-50 87.30 25.30 38.40 
CenterNet† ResNet-50 92.00 27.70 40.40 

CenterNet† UNet 95.60 52.40 53.60 
† indicates that a full-scale strategy is applied to the CenterNetHead. Full-
CenterNetHead makes predictions on feature maps of the same size as the 
original images. 

 
TABLE III 

SINGLE-TASK VS. MULTI-TASK RESULTS 

Network Target 
IoU mIoU AP50 AP75 AP 

Only Seg 78.94 89.46 - - - 
Only Det - - 95.60 52.40 53.60 
Only Seg 

(Det Pretrained) 79.72 89.85 - - - 
Only Det 

(Seg Pretrained) - - 98.00 45.50 49.90 

MTUNet 
(Seg + Det) 78.79↓ 89.40↓ 97.50↑ 50.80↓ 52.10↓ 

↑ means outperforming than the single-task model. ↓ means the opposite. 

 
Comparison on AP75 and AP: Our model achieves the 

highest AP50 of 95.60, outperforming all other architectures. It 
is worth noting that compared with the improvement of AP50 
(+3.6), the network using UNet as the backbone has a greater 
improvement in AP75 (+24.7) and AP (+13.2). This shows that 
the model can predict a more accurate and suitable bounding 
box, further proving the effectiveness of Unet backbone. 

E. Experiment of Multi-task Learning 
In the third part, we design and perform the multi-task 

experiments, combining the object detection task that 
prioritizes object-level features with the semantic segmentation 
task that emphasizes pixel-level features. Multi-task learning is 
done in two modes. Table III shows the comparisons of single-
task and multi-task learning. 

Pre-train mode: Pre-train the backbone for a detection or 
segmentation task and then use it to train another. Single-task 
models with the backbone pre-trained outperform the 
counterparts trained from scratch by +0.78 target IoU, +0.39 
mIoU, and +2.4 AP50. The results indicate that the semantic 
features learned by one task can benefit the training process of 
another task.  

Parallel mode: We also train segmentation and detection 
tasks in parallel. MTUNet brings 1.9 AP50 gains over single-
task training, with a similar performance on semantic 
segmentation. The results indicate that the shared backbone 
exploits the similar semantic features of the two tasks. 
Compared with the Only Det (Seg Pretrained) model, the 
accuracy is slightly lower (97.5 vs. 98.0). Since MTUNet can 
also provide segmentation predictions, you can choose what is 
most appropriate for your needs.  

 
Fig. 5: A qualitative analysis of multi-task learning. (a) Input images. (b) GT 
labels. (c) Only Det, (d) Only Det (Seg Pretrained), and (e) MTUNet are 
visualized on the hard samples. 

 
Fig. 6 Inference time with Unet backbone. Benchmark with 2000 images and 
take the average. A composite single-task model takes 29.4ms to test an image. 
In contrast, MTUNet achieves a faster inference time of 16.8ms.  

By comparing the visualization results of the single-task and 
multi-task detection model, you can also find that the semantic 
segmentation task is very helpful for the target detection task. 
In Fig. 5, the infrared image above contains a single target and 
a lot of noise similar to the target. The Only Det model is unable 
to detect the target effectively, but the multi-task model can 
correctly distinguish the hard sample. There are two very close 
targets in the image below. In the segmentation map, the two 
targets are connected. Our detection model can detect these two 
overlapping targets separately and a multi-task learning model 
can obtain more appropriate bounding boxes.  

Fig. 6 shows the inference time of single-task and multi-task 
models. Networks are evaluated on a NVIDIA GeForce RTX 
3070 GPU. A resolution of 320×320 is chosen. MTUNet can 
train multiple tasks simultaneously and shorten the training 
time. Since the head module of our model only occupies a small 
part of the inference time, the inference time (16.8ms) is only 
slightly longer than that of the single-task semantic 
segmentation (14.9ms) and target detection (14.5ms). Our 
single-task model and multi-task model can both satisfy the 
requirement for real-time inference.  
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TABLE IV 
COMPARISON OF DIFFERENT MODELS 

Models Backbone Head params FLOPs FPS AP50 
RetinaNet ResNet50 FPN+RetinaHead 36.10 M 20.44 G 46.4 87.3 

CenterNet ResNet50 D4-CenterNetHead 46.85 M 16.64 G 63.3 89.3 

CenterNet ResNet50 Full-CenterNetHead 46.94 M 29.79G 54.6 92.0 

Only Det UNet Full-CenterNetHead 29.06 M 86.85G 69.0 98.0 

Only Seg UNet PSPHead 29.05 M 77.38G 67.3 - 

MTUNet UNet Multi-head 29.06 M 88.78G 59.5 97.5 

 

F. Network Structure Analysis 
In this section, we analyze the network structure in more 

detail. Table IV shows the representative target detection 
methods discussed in this paper, along with the components 
they use.  

We can see that our model achieves the highest inference 
throughput of 69.0 images/s and the highest AP50 of 95.60 with 
the fewest parameters. Although the UNet module produces a 
large amount of computation, it does not affect the inference 
speed probably because of its simple structure and high 
parallelism. Anchor-based methods such as RetinaNet are more 
complex, time consuming, have lower throughput, and are less 
accurate than anchor-free methods such as CenterNet. 
Compared with Full-CenterNetHead, the original D4-
CenterNetHead predicts on the feature map with 1/4 of the 
resolution of the original image. Although it reduces the 
computation, the AP50 is reduced by 2.7 (89.3 vs. 92.0). Our 
model gives a better speed/accuracy trade-off. 

Thus, we consider UNet+CenterNet to be an effective 
paradigm for detecting small targets. Using an efficient 
backbone for generating feature maps of the same size as the 
input image and a simple detection head with a full-scale 
strategy, both speed and accuracy can be improved.  

Moreover, since the UNet module accounts for more than 
99%  of the parameters, the number of parameters and 
calculations in MTUNet are nearly identical to those in the Only 
Det model. MTUNet can achieve 97.50 AP50 and can detect 
some difficult samples that couldn't be detected before. Its 
shared backbone can reduce the model's storage requirements. 
If you need both segmentation and detection predictions, 
MTUNet is almost half the size of two single-task models, 
making it more suitable for deployment on edge or embedded 
devices.  

V. CONCLUSION 
In this paper, we propose a multi-task learning model for 

infrared small target segmentation and location. Firstly, the 
potential of UNet as the backbone of the infrared image visual 
model is well explored in the single task, and the results 
demonstrate the advantage of the anchor-free method for 
detecting small targets. Then we apply the multi-task learning 
method and achieve similar or even better results on different 
tasks. Our model is suitable for detecting small objects in 
infrared images with complex backgrounds. It can detect targets 
with pixel-level accuracy, provide accurate semantic 
segmentation masks, and satisfy the real-time requirements. 

Compared with the composite single-task network, MTUNet 
reduces about half of the parameters and computations, so it is 
more suitable for deployment on the edge or embedded devices.  

In addition, the multiple branches of our model can be trained 
simultaneously in an end-to-end manner, and the model can add 
new branches when given additional tasks and corresponding 
data annotations. MTUNet should be able to learn similar and 
general features from other tasks, such as super-resolution and 
deblurring, thus improving model accuracy and generalization 
performance. Our work is helpful to promote the research of 
infrared small target detection and can even be extended to 
other fields, such as small object detection in natural images.  
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