
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 44, NO. 5, MAY 2006 1359

Using Probability Distribution
Functions for Satellite Validation

David J. Lary and Leslie Lait

Abstract—Probability distribution functions (PDFs) can be used
to assist in the validation of trace gas retrievals made by satellites.
A major advantage of this approach is that large statistical sam-
ples are used that do not require correlative measurements to be
co-located in space and time. Examples are shown from the launch
of UARS through to the present. This approach is also useful to
evaluate the consistency among Aura instruments as well as their
agreement with other datasets. A key feature of this work is putting
the observations of Aura in their long-term historical context via
statistical comparisons with previous datasets collected over more
than a decade. To validate the Aura data, we use data from a va-
riety of platforms including solar occultation (Canadian ACE) and
limb sounder satellite instruments, ozonesondes (WOUDC), lidar
(NDSC), and aircraft instruments (AVE, PAVE, and MOZAIC).
The width of the trace gas PDFs can be used to accurately esti-
mate the atmospheric spatial variability (or representativeness un-
certainty) of trace gases as a function of time and location. This
statistical analysis is also being used as preparation for full Kalman
filter chemical assimilations. The analysis is presented online at
http://www.PDFCentral.info.

Index Terms—Chemical data assimilation, probability distri-
bution functions (PDFs), representativeness uncertainty, spatial
variability.

I. INTRODUCTION

SATELLITE evaluation and validation are necessary, but
sampling issues often make practical application prob-

lematic. In the traditional approach to validation we require
coincidence in space and time. This is a strong constraint which
dramatically reduces the statistical sample sizes we can deal
with. The definition of “coincident” observations varies, but
such measurements are often separated in time by days and in
space by distances on the order of 1000 km or more. While the
approach is suitable for a quick comparison to establish that
the observations are at least the correct order of magnitude,
establishing instrument accuracy or precision through such
comparisons is difficult because of the limited number of co-
incidences and the contribution of real atmospheric variability.
Furthermore, issues of representativeness arise because the
validation exercises are typically limited geographically. It is
therefore useful to augment the traditional approach to valida-
tion with the use of probability distribution functions (PDFs)
of trace gases over an extended period for a given spatial
domain. In this study, we choose to consider an entire month of
data and to specify the spatial domain in terms of Lagrangian
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flow-tracking coordinates. The analysis starts with the launch
of UARS and continues up to the present.

It is worth noting that PDFs have been used in a variety
of tracer studies. These range from considering dispersing
tropospheric pollutant plumes in the planetary boundary layer
[1]–[6], running water channels [7] and clouds [8], pollutant
emission rates [9] to tracer transport and stratospheric O ,
CH , N O, CO, CO , and PV [10]–[25] tracer age and transit
time [17], [26], [27] and estimation of representativeness un-
certainty in chemical data assimilation [28]. Using PDFs for
validation has been found useful by the Aura instrument teams,
for example [29].

Not only does a PDF characterize the tracer distribution, its
shape tells us about mixing barriers, how complete the mixing
is, and chemical processes such as ozone depletion [15], [16],
[23], [24]. For example, a narrow peak in the concentration
PDF indicates that the air is well mixed and significant vari-
ability generating processes have not recently occurred (e.g.,
long range transport). A multimodal distribution indicates air of
different origins (e.g., polar and midlatitude). In general, broad
peaks indicate recent variability generating processes such as
photochemistry or transport (horizontal or vertical). Chemical
processes such as ozone depletion will lead to an asymmetric
broadening of the PDF toward low ozone values. Good exam-
ples of these different cases are shown for POAM observations
of ozone by Strahan et al. [23].

Measurement imprecision is one the factors that affects the
widths of the PDFs, and precision of the measurements is cer-
tainly a parameter that needs validation. In many cases this is
difficult because atmospheric variability swamps the effects of
measurement imprecision. The PDF plots of the type described
here might also help to reduce the atmospheric variability by
indicating locations and conditions where it is minimized.
Comparisons between measurements under these conditions
could then be used to produce upper limits on measurement
imprecision.

A. Flow-Tracking Coordinates

Because a major component of the variability of trace gases is
due to atmospheric transport it makes sense to use a coordinate
system that “follows” the large scale flow pattern to perform
our analyses [80]. In this study Lagrangian flow-tracking coor-
dinates are used.

Under adiabatic conditions air parcels move along isen-
tropic surfaces (surfaces of constant potential temperature, )
[81]–[84]. So when considering tracer fields is a suitable
vertical coordinate. References [85]–[88] have shown the value
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of isentropic maps of Ertel’s potential vorticity (PV) for visu-
alising large scale dynamical processes. PV plays a central role
in large scale dynamics where it behaves as an approximate
material tracer [87].

As a result, PV can be used as the horizontal spatial coor-
dinate instead of latitude and longitude [89]–[96]. PV is suffi-
ciently monotonic in latitude on an isentropic surface to act as
a useful replacement coordinate for both latitude and longitude,
reducing the tracer field from three dimensions to two. These
ideas have already led to interesting studies correlating PV and
chemical tracers such as N O and O [93], [97]–[101]. A key
result of these studies is that PV and ozone mixing ratios are cor-
related on isentropic surfaces in the lower stratosphere, as was
first pointed out by Danielsen [83].

Since the absolute values of PV depend strongly upon height
and the meteorological condition, it is useful to normalize PV
and use equivalent PV latitude as the horizontal coordinate
instead of PV itself. is calculated by considering the area
enclosed within a given PV contour on a given surface. The

assigned to every point on this PV contour is the latitude of a
latitude circle which encloses the same area as that PV contour.
Therefore, for every level in the atmosphere has the same
range of values, 90 to 90 . This provides a vortex-tracking,
and indeed a flow-tracking, stratospheric coordinate system. In
this study we have used UKMO meteorological analyses.

B. Analyses Grid

The analyses grid used here is cast in equivalent PV latitude
, potential temperature coordinates. With 30 latitudes

between 85 S and 85 N, and 21 logarithmically spaced isen-
tropic surfaces between the earth’s surface and 2500 K. As the
potential temperature at the surface changes with time we use a
fixed number of isentropic levels between the current potential
temperature of the surface and 315 K. Above 315 K, the levels
remain fixed with time. The fixed isentropic levels correspond
to the UARS surfaces spaced at 6 per decade in pressure (cf.
the UARS reference atmosphere levels [102] of 315, 340, 375,
420, 465, 520, 585, 655, 740, 840, 960, 1100, 1300, 1500, 1700,
1900, 2100, 2300, and 2500 K).

The grid resolution was carefully chosen to ensure that there
is usually a statistically significant number of observations per
analysis grid cell over the entire time period from the launch of
UARS in 1991 up to the present. This allows meaningful repre-
sentativeness uncertainty statistics to be calculated based on the
observations alone. When using equivalent PV latitude ,
potential temperature coordinates for tracer studies short
periods of less than a week are usually used since equivalent
PV latitude is essentially a nonlinear rescaling of PV that de-
pends on the PV gradient and is mostly independent of the large-
scale average PV on the theta surface. For longer time-scales
the PV-tracer correlations are not independent of the large-scale
average PV. In addition there is interannual variability in the
large-scale average PV. However, in this study we are using
regions in equivalent PV latitude-theta space to split the at-
mosphere up in order to do intercomparisons between instru-
ments where we will generally have significant sample sizes,
i.e., greater than around 100 data points. We could equally well

have used latitude and pressure or altitude to do this, but have
found the comparison to be cleaner when we use an equivalent
PV latitude - theta space [96].

II. CONSTITUENT DATASETS USED

In this study we used observations from 33 different ozone
instruments and aircraft campaigns, many of which were not
available for the entire period. A full listing is given in Table I
together with references.

III. HISTORICAL CONTEXT

The number of observational datasets available is very de-
pendent on the constituent. Ozone has the longest time record
and widest array of observation platforms. It is of interest to see
how the observations made by Aura fit into this decade and a
half of observations made since the launch of UARS by satel-
lite, aircraft, lidars and sondes. To do this we have constructed
a complete set of PDFs of all the instruments listed above that
have measured ozone at any time from the launch of the NASA
UARS in October 1991 up until the present.1

Fig. 1(a) shows an example of histograms of ozone obser-
vations using data during the January of all years from the
launch of UARS in September 1991 until the present in the
Lagrangian region .
For this Lagrangian region observations from 13 different
platforms were available including EOS Aura MLS in green,
NASA aircraft campaigns in red, and a few observations from
ACE in black. To put the observation histograms in context it is
valuable to know exactly where the observations were located
within the Lagrangian region and the associated temperatures,
this can sometimes help explain any differences that may exist.
Fig. 1(b)–(e) show histograms of the associated equivalent
PV latitudes , temperatures, pressures (in megabits) and
altitudes (in kilometers).

This example was chosen as there is reasonable agreement
between all the sensors within the envelope observed by the
aircraft campaigns (including the Aura Validation Experi-
ment, AVE). It is clear that there is natural variability in this
Lagrangian region over the month of January. Experience has
shown that a helpful measure is how well the median values
line up. It is interesting to note that there is good agreement
(with the exception of CLAES which we shall examine further)
in the median ozone volume mixing ratio (VMR) between
instruments that made observations in 2004, such as MLS Aura
and AVE aircraft, and others such as ILAS and MLS UARS
which were from earlier years. Another use of this view of the
data is that it allows us to use the data to examine the variability
we expect in a constituent as a function of time and location.

It should also be noted that distributions with only a few mea-
surements are not statistically converged (i.e., if more observa-
tions were available the shape of the histograms would change),
these were only included for the sake of completeness. This is
particularly so in the case of 2004 and 2005 when we would
like to compare ACE and Aura, but the data volume from ACE
is much smaller than that from Aura.

1These PDFs are available online at PDFCentral (gest.umbc.edu/PDFCen-
tral/) and put the Aura data into a historical context.

Authorized licensed use limited to: NASA Goddard Space Flight. Downloaded on May 15, 2009 at 13:20 from IEEE Xplore.  Restrictions apply.



LARY AND LAIT: USING PROBABILITY DISTRIBUTION FUNCTIONS FOR SATELLITE VALIDATION 1361

TABLE I
CONSTITUENT DATASETS USED IN THIS STUDY

Authorized licensed use limited to: NASA Goddard Space Flight. Downloaded on May 15, 2009 at 13:20 from IEEE Xplore.  Restrictions apply.



1362 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 44, NO. 5, MAY 2006

Fig. 1. (a) Example of histograms of ozone observations using data during the January of all years from the launch of UARS in September 1991 until the present
in the Lagrangian region 455K < � < 585K; 43 < � < 55 . For this Lagrangian region observations from 13 different platforms were available including
EOS Aura MLS in green, NASA aircraft campaigns in red, and a few observations from ACE in black. To put the observation histograms in context it is valuable to
know exactly where the observations were located within the Lagrangian region and the associated temperatures, this can sometimes help explain any differences
that may exist. (b)–(e) Histograms of the associated equivalent PV latitudes (� ), temperatures, pressures (in millibits) and altitudes (in kilometers).

IV. BIAS DETECTION

In some cases, using PDFs affords clear bias detection. For
example, Fig. 2 shows ozone PDFs for observations made by
UARS CLAES (red line) and seven other instruments including
ISAMS (red line) during the January of all years from the launch

of UARS in September 1991 until the present in the Lagrangian
region . For this
Lagrangian region observations from seven different platforms
were available including EOS Aura MLS in black. There is a
clear low bias of CLAES between contemporary measurements
such as ISAMS (green line) and UARS MLS (navy and cyan
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Fig. 2. Example of histograms of ozone observations using data during the
January of all years from the launch of UARS in September 1991 until the
present in the Lagrangian region 1900 K < � < 2300 K;�90 < � <

�79 . For this Lagrangian region observations from seven different platforms
were available including EOS Aura MLS in black.

lines) of around 0.75 ppmv. This is not restricted to this case but
is a general feature of comparisons between CLAES and other
instruments in the upper stratosphere. It is interesting that this
is not true of CLAES observations in the lower stratosphere so
the PDFs can be useful in examining spatially and temporally
changing biases. In their overview of UARS ozone validation
based primarily on intercomparisons among UARS and strato-
spheric aerosol and gas experiment II measurements Cunnold
et al. [103] noted the relatively systematic, vertical structure dif-
ferences between CLAES and other ozone observations.

The same approach has been used for many other instru-
ment combinations and constituents. For example, Fig. 3 shows
a comparison of HNO observations over the northern hemi-
sphere from MLS and CLAES on the 500 K isentropic surface
and demonstrates the use of PDFs in bias detection. When the
MLS PDF (green line) is compared to CLAES (blue line), a
clear bias of approximately 3.5 ppbv can be seen for the primary
(midlatitude) peak. However, the two PDFs cannot be brought
into coincidence by an overall shift of the CLAES curve by this
amount. Indicating that the differences between the measure-
ments cannot be described as a simple bias. These types of dis-
crepancies become clear from an analysis of the shape of the
PDF. This type of analysis will be very useful for the validation
of Aura datasets using coincident ensembles [29].

Other studies have also found issues with the CLAES HNO
data. Kumer et al. [104] compared CLAES version 7 data to two
ATMOS missions and found that the CLAES HNO maximum
VMR values were of the order of 6%–15% less than correla-
tive for CLAES values less than or equal to 8 parts per billion
by volume (ppbv). In a data modeling comparison Chipperfield
et al. [105] found that during the model initialization chemical
inconsistencies in the UARS data became evident.

It is noteworthy that in the case of both O and HNO the
interannual variability between the datasets (not all shown
here) is less than the bias often found between the instruments.
The obvious example of this is CLAES in Fig. 2.

Fig. 3. HNO PDFs for UARS MLS (green line) and CLAES (blue line) on
the 500 K isentropic surface for December 1991. There is an obvious bias of
approximately 3.5 ppbv for the primary (mid-latitude) peak at this altitude.
Notice that a 3.5 ppbv shift of the CLAES curve (dashed blue line) does not
bring the secondary peaks into complete coincidence, indicating that the biases
are mixing ratio dependent.

V. CONCLUSION

A preliminary examination of EOS Aura MLS data indicates
a good agreement with the historical ozone data record since the
launch of UARS in 1991. The analysis used probability distri-
bution functions to put the Aura data in a historical context.2 In
this study we have restricted ourselves to considering PDFs in
interinstrument bias detection. However, they could be used in
many other ways, for example, using the shapes of the PDFs to
examine mixing processes.
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