1911.09977v3 [cs.NE] 28 Sep 2020

arxXiv

ACCEPTED AT IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE-2019-0236 1

Artificial neural networks in action for an
automated cell-type classification of biological
neural networks

Eirini Troullinou*f, Grigorios Tsagkatakis, Spyridon Chavlis'?,

Gergely Turi®, Wen-Ke Li$, Attila Losonczy®, Panagiotis Tsakalides*f, and Panayiota Poirazi
“Department of Computer Science, University of Crete, Heraklion, 70013, Greece
fInstitute of Computer Science, Foundation for Research and Technology Hellas, Heraklion, 70013,
Greece
fInstitute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas,
Heraklion, 70013, Greece
$Department of Neuroscience, Columbia University Medical Center, New York, USA

Abstract—lIdentification of different neuronal cell types is critical for understanding their contribution to brain functions. Yet, automated
and reliable classification of neurons remains a challenge, primarily because of their biological complexity. Typical approaches include
laborious and expensive immunohistochemical analysis while feature extraction algorithms based on cellular characteristics have
recently been proposed. The former rely on molecular markers, which are often expressed in many cell types, while the latter suffer
from similar issues: finding features that are distinctive for each class has proven to be equally challenging. Moreover, both approaches
are time consuming and demand a lot of human intervention. In this work we establish the first, automated cell-type classification
method that relies on neuronal activity rather than molecular or cellular features. We test our method on a real-world dataset
comprising of raw calcium activity signals for four neuronal types. We compare the performance of three different deep learning models
and demonstrate that our method can achieve automated classification of neuronal cell types with unprecedented accuracy.

Index Terms—Atrtificial neural networks, calcium imaging, neuronal cell-type classification

1 INTRODUCTION

]

O understand the function -and dysfunction- of neural
Tcircuits we must first identify the subtypes of neurons
that comprise these networks, their biophysical and anatom-
ical characteristics as well as their inter-dependencies. Dif-
ferent cell types typically exhibit different anatomy, connec-
tivity and/or biophysical properties which, in turn, influ-
ence their specific function and role in pathologies such as
epilepsy [1], [2]], anxiety disorder [2], [3], the Tourette syn-
drome [4], autism [5], the Rett syndrome [6] and schizophre-
nia [7], [8]. The development of a cellular taxonomy will
thus facilitate our understanding of both healthy and dis-
eased brain functioning, as most brain pathologies affect
specific neuronal types [9], [10].

Despite this pressing need, neuronal classification re-
mains challenging. Traditional approaches rely on qualita-
tive descriptors, such as the expression of specific molecular
markers (proteins) in combination with their anatomical
characteristics and laminar localization [11], [[12], [13]. These
approaches require sacrificing the animal and slicing its

© 20XX IEEE. Personal use of this material is permitted. Permis-
sion from IEEE must be obtained for all other uses, in any current
or future media, including reprinting/republishing this material for
advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.

brain, so as to image cells under a confocal microscope and
measure the expression levels of specific markers. Moreover,
during this process, many cells die or cannot be identified,
requiring that the process is repeated over many animals.

Given the magnitude and complexity of neuronal clas-
sification, the time-consuming and expensive experiments
that are required, and because the manual classification
attempts using qualitative descriptors are ill-equipped to
deal with big data, high-throughput technologies are de-
manded. Hence, as discussed in the Related Work section,
quantitative methods have recently been developed. These
methods are based on morphological, physiological, molec-
ular, and/or electrophysiological characteristics of neurons
[14], [15], [16], [17] and use supervised or unsupervised clas-
sifiers, providing a quantitative and unbiased identification
of distinct subtypes when applied to selected datasets. How-
ever, obtaining such characteristic features for different cell
classes is still a challenging task, primarily because the char-
acteristic features of specific neurons and their uniqueness
remain largely unknown [11]]. Thus, feature extraction-based
algorithmic approaches entail laborious and expensive ex-
perimentation, often involving several different techniques,
which limits the attractiveness of automated classifiers rely-
ing on such features.

In this work, we introduce a novel method for automated
cell-type recognition that relies on a feature never exploited

ACCEPTED AT IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE-2019-0236 2

before: the timeseries of calcium (Ca?*) activity signals of
neurons, as measured with imaging techniques in the be-
having animal. Specifically, we use timeseries describing the
activity of four neuronal cell-types in the CAl subregion of
the hippocampus: excitatory pyramidal cells (PY) and three
GABAergic interneuronal subtypes, namely parvalbumin-
positive (PV), somatostatin-positive (SOM) and vasoactive
intestinal polypeptide-positive (VIP) cells. Neuronal activity
is measured using Ca*" imaging, which is a powerful tech-
nique for monitoring the activity of distinct neurons in brain
tissue in vivo [18] and is currently the most popular record-
ing technique for behaving animals [19], [20], [21]. Here,
motivated by the challenges that were discussed previously,
we examine the potential of replacing existing approaches
(i.e., feature extraction-based algorithms as well as immuno-
histochemical analysis methods) with fast, reliable, cell-type
classification, which is based on Ca?* imaging recordings
using state-of-the-art Deep Learning (DL) architectures for
timeseries analysis. Towards this goal, we consider the
raw fluorescence signal without any preprocessing. To our
knowledge, this is the first successful attempt to classify cell-
types based solely on the raw Ca*" activity signal.

With the advent of DL, various approaches and models
for timeseries analysis and forecast have been developed
[22], [23], [24]. For different fields and applications, suitable
algorithms and models vary depending on the nature and
purpose of the data. For the task of neuronal cell-type
classification considered in this work, we employ three
types of network architectures, namely 1-Dimensional Con-
volutional Neural Networks (1ID-CNNs), Recurrent Neural
Networks (RNNs) and Long Short-Term Memory Networks
(LSTMs), which are widely used in timeseries analysis. Our
motivation for applying these specific 3 models is that
each of these frameworks is used with particular types of
datasets, as the 1D-CNN model can exploit temporal locality
in timeseries data, while the other two architectures and
especially the LSTM model are ideal for revealing long-
term dependencies. Given that this is the first work on
neuronal cell-type classification using DL models with Ca**
signal data, no prior knowledge exists on how Ca* signal
timeseries are best modelled, so that neuronal cell-types
can be most accurately inferred. Thus, we conducted a
comparative analysis, in order to examine which of them
is the most appropriate for this specific task.

RNN and LSTM are popular models for timeseries data,
we thus also included them in our analysis. RNNs and
LSTMs are known to require a serious amount of training
time when processing long timeseries data and several
studies have focused on the acceleration of these models
via complex algorithmic frameworks [25], [26], [27]. Here,
as discussed in the methodology subsection, we propose
a simple scheme, i.e. a data re-organization, which signifi-
cantly reduces the number of parameters, thus substantially
accelerating the training of these networks when using long
timeseries data.

In summary, we present a novel deep learning approach
for the automated classification of neuronal cell types that
relies on a feature never used before, namely the calcium
activity signal of neurons in the behaving animal. We de-
velop and compare different deep learning models and
demonstrate their ability to achieve high accuracy on a real-

world dataset with four neuronal types. This is the first
demonstration that automated neuronal classification can
be achieved reliably, without requiring laborious, expensive
and highly invasive experiments.

The remainder of the paper is organized as follows: In
section II, we report the motivation and contribution of our
study as well as the related, prior work on neuronal cell type
classification. In Section III, we describe and analyze the
proposed approaches. Experimental results are presented in
Section IV and conclusions are drawn in Section V.

2 OBJECTIVES, RELATED WORK AND CONTRIBU-
TION

Our study investigates whether the selected DL methods
(i.e., ID-CNN, RNN and LSTM) can solve the problem of
neuronal cell-type classification when utilizing as input a
single signal type, namely the raw Ca*" activity signal of
neurons recorded in the CA1 area of the hippocampus from
behaving mice. We focus on a four-class problem, consisting
of PY cells and three GABAergic interneurons (IN) subtypes
(PV, SOM and VIP cells).

2.1 Related Work

Timeseries analysis using DL architectures is among the
most active areas of research in machine learning. DL
architectures like CNN, RNN and LSTM have been used
for a multitude of different tasks including the analysis of
measurements from wearable sensors , modeling networks
traffic for cybersecurity, and high frequency trading in fi-
nance among others [28]. For the case of biological data
analysis, application of DL and traditional machine learning
methods are presented next.

Cell-type classification has been extensively studied in
the past decades, however it was primarily aimed at dis-
criminating between healthy and malignant cells [29], [30],
[31], [32]. Hence, little progress has been made in the au-
tomated classification of neuronal cell-types. For example,
it is widely known that the two major neuronal types
of the mammalian brain are the pyramidal cells and the
GABAergic IN. While both PY and IN vary substantially
in their anatomy and biophysical properties across brain
areas, a clear classification of the different cell types has yet
to be achieved. INs in particular come in many different
types and shapes [33], even within the same brain region.
Specifically, the hippocampus has over 20 different types
of INs [34]. In this section we review several qualitative as
well as quantitative approaches, whose ultimate goal is to
automate neuronal cell-type classification.

To aid ongoing efforts towards IN classification, to fa-
cilitate the exchange of information and to build a foun-
dation for future progress in the field, the Petilla Interneu-
ron Nomenclature Group (PING), proposed a standardized
nomenclature of IN properties [16] by defining qualitative
descriptors (i.e., key features) that can be used for their iden-
tification. Such features are morphological, molecular, phys-
iological and biophysical properties of these cells. Based on
these qualitative descriptors, Zeng et al’ [11] reviewed high-
throughput classification methods, such as light microscopy,
electron microscopy, optical imaging of electrical activity

ACCEPTED AT IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE-2019-0236 3

and molecular profiling, which enable the collection of
morphological, physiological and molecular data from large
numbers of neurons.

Guerra et al’ [14] explored the utilization of supervised
and unsupervised classification algorithms to distinguish
INs from PY, based solely on their morphological features.
They used a database of 128 PY and 199 INs from mouse
neocortex, and for each cell, 65 morphological features were
measured, creating a data matrix. Their main finding was
that supervised classification methods outperformed unsu-
pervised algorithms (hierarchical clustering), and thus the
latter approach is not as effective as supervised classification
when distinguishing between the aforementioned cell types.
Eventually, they showed that the selection of subsets of
distinguishing features enhanced the classification accuracy
for both sets of algorithms.

Vasques et al” [15] used 43 morphological features as
predictors and showed the results of applying supervised
and unsupervised classification techniques in order to dis-
tinguish neuronal cell-types. More specifically, they assessed
and compared the accuracy of different classification al-
gorithms trained on 430 digitally reconstructed neurons
and classified them according to layer and/or m-type (i.e
morphology) with young and/or adult developmental state.
Their findings regarding the superiority of supervised algo-
rithms against unsupervised coincide with those of study
[14].

DeFelipe et al’ [35] proposed a classification scheme
based on 6 axonal features, which are considered as a
representative subset of axonal morphological properties
that could be suitable for IN classification. They also de-
signed and deployed an interactive web-based system to
empirically test the level of agreement among 42 experts in
assigning the 6 features to individual cortical INs. Specifi-
cally, experienced neuroscientists were asked to ascribe the
categories they considered most appropriate to each neuron
(there were 6 features and 21 categories in total, and thus,
based on each feature, the neuron would be ascribed to one
out of the 2 or more categories that corresponded to the
specific feature). For some of the proposed features, there
were high levels of observed agreement between experts in
the classification of neurons, while for other features there
was a low level of inter-expert agreement. The ultimate goal
of their experiment was to build a model that could classify
a neuron on the basis of its morphological characteristics
and more specifically, in terms of the 6 features defined in
their study.

Overall, these studies highlight the current state-of-the-
art in cell-type classification in a feature-based manner.
However, to our knowledge, there is no prior work on
neuronal cell-type classification that relies solely on the Ca*"
activity of neurons recorded in vivo from behaving animals.
As such, a major novelty of this work is the application of
DL-based time-series analysis methods in cell classification.

2.2 Our contribution

In this work, we employ and compare the performance of
1D-CNN, RNN, and LSTM models on the task of neuronal
cell-type classification based solely on the raw Ca*" signals
measured in different types of neurons while mice perform

a goal oriented task [36]. A comparative research analysis on
the specific application using the aforementioned models is
missing from the existing literature, and to the best of our
knowledge, this is the first time that algorithmic models
use raw Ca’* signals to classify different neuronal types
in vivo. As discussed in the Related Work section, most
of the algorithmic approaches use morphological features
of neurons, with numerous limitations: (1) the geometry
of individual neurons varies significantly within the same
class, (2) different techniques are used to extract morpholo-
gies (e.g., imaging, histology, and reconstruction techniques)
and (3) there is high inter-laboratory variability, all of which
introduce substantial variability in the measured character-
istics [37].

Moreover, RNN and LSTM models require a consider-
able amount of time when trained with long timeseries data
[25], [26], [27]. Thus, in our work as analytically discussed in
the Methodology subsection, we propose a simple scheme,
i.e. a data re-organization, which significantly reduces the
number of parameters, thus accelerating the training of
these networks when used with long timeseries sequences.

Our work utilizes Ca?* imaging, which is currently the
most widely used technique for recording the activity of
neurons in the behaving animal. It allows the simultaneous
recording of tens to hundreds of cells without causing any
damage to the neural tissue of interest, as opposed to more
invasive, electrode-based recording methods (e.g., tetrodes,
octrodes and silicon probes). Compared to these methods,
Ca?* imaging is also more stable, as the same neurons can
be recorded over time periods that extend from days to
months. Nevertheless, due to its slow kinetics, the signal
produced is not ideal for resolving single spikes and makes
the inference of neuronal cell-types non-trivial. Thus, cell-
type classification relies mostly on the expression of specific
molecular markers [11]], which however are limited to just a
small number of classes, many of which comprise of several
sub-types of INs. Moreover, such an approach is laborious,
expensive and requires the use of many different transgenic
animal lines.

To address these limitations, our work makes the fol-
lowing contributions to the problem of automatic neuronal
cell-type classification:

o We present a comparative research analysis of the
1D-CNN, RNN and LSTM models, in the domain of
timeseries analysis for the task of neuronal cell-type
classification, where such an analysis is missing from
the existing literature.

o To the best of our knowledge, this is the first time that
algorithmic models use raw Ca** signals to classify
different neuronal types. The models are based solely
on the Ca?* imaging signatures of the neuronal types,
unlike existing post-hoc techniques.

o We propose a simple and easily applicable scheme,
which accelerates the training time of RNN and
LSTM models when used with long timeseries data.

e Our proposed approach (i.e., DL models based only
on Ca?" signals) is feature-independent and can thus
replace feature extraction-based methods.

o Performance accuracy is very high, suggesting that a
gradual substitution of immunohistochemical analy-

ACCEPTED AT IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE-2019-0236 4

sis could be potentially considered, as such analyses
are laborious, time-consuming and very expensive.

3 PROPOSED APPROACHES

To assess whether four cell types (PY, PV, SOM and VIP),
whose activity is described with timeseries of raw Ca?*
imaging data can be correctly classified, we employ the
following classification models and compare their perfor-
mance:

e 1-Dimensional Convolutional Neural Networks (1D-
CNN)

e Recurrent Neural Networks (RNN)

e Long Short-Term Memory Networks (LSTM)

3.1 Preliminary Concepts

In this subsection we discuss the theoretical background of
the proposed approaches.

3.1.1 Convolutional Neural Networks

A Convolutional Neural Network (CNN) is a class of deep
neural networks (DNN), most commonly applied to imag-
ing applications that consists of input, output and hidden
layers of nodes along with their respective connections that
encode the learnable weights of the network. CNNs are
regularized versions of traditional Multilayer Perceptrons
(MLPs), which usually refer to fully connected networks,
i.e., each node in one layer connects to all nodes in the
next layer. This characteristic of MLPs makes them prone to
overfitting during training. Hence, one of the distinguishing
property of CNNs compared to MLPs is the local connec-
tivity among nodes. When dealing with high-dimensional
inputs such as Ca®* imaging timeseries data, it is impractical
to connect nodes in one layer with all nodes in the previous
volume because such a network architecture does not take
the overall structure of the data into account.

CNNs exploit local correlations by enforcing a sparse
local connectivity pattern between neurons of adjacent lay-
ers, i.e., each node is connected to only a small region of
the input signal. Namely, in a convolutional layer, nodes
receive input from only a restricted subarea of the previous
layer and this input area of a node is called its recep-
tive field. Another distinguishing feature of CNNs is the
shared weights. In CNNSs, each filter is replicated across
the entire receptive field. These replicated units share the
same parameterization (weight vector and bias) and form
a feature map, i.e., all nodes in a given convolutional layer
respond to the same feature within their specific receptive
field. Replicating units in this way allows for features to be
detected regardless of their position in the visual field, thus
constituting a property of translation invariance.

3.1.2 Typical Architecture of a 1-Dimensional CNN

A typical 1ID-CNN architecture, as shown in Fig. c) is
formed by a stack of distinct layers that transform the input
volume into an output volume (holding the class scores)
through a differentiable function. The core building block
of a CNN is the convolutional layer, whose parameters’
consist of a set of learnable filters (or kernels), which have

a small receptive field. Given an input vector z € RN
and a trainable filter f € R' ¥, the convolution of the
two entities results in an output vector ¢ € R¥>*M where
M = N — K + 1. The value of M may vary based on the
stride of the operation of convolution, with bigger strides
leading to smaller outputs.

The trainable parameters of the network, i.e., the filter
and the bias are initialized randomly, but as the network is
trained using the backpropagation learning algorithm, they
are optimized and are able to capture important features
from the given inputs. In order to construct a reliable
network that will be able to capture complex and abstract
features from the input data, we need to build a deep archi-
tecture comprised with more than one convolutional layer.
As we go through layers in deep architectures, the features
not only increase in number (depth size) but also in com-
plexity. In other words, the network builds a hierarchical
representation of the input, as the first layer represents the
input in terms of elementary features and the deeper we go,
the more abstract features can be recognized from the layers.
The capture the complex features requires also to introduce
some non-linearity in our system. Thus, non-linear functions
are interjected between adjacent convolutional layers, and as
a result a two-layer CNN can be proven to be a universal
approximator [38], while the identity function does not
satisfy this property and generally, when multiple layers
use the identity function, the entire network is equivalent
to a single-layer model. Typical choices for the non-linear
function, also known as activation function, include the
logistic (sigmoid) function, the hyperbolic tangent (tanh),
the Rectified Linear Unit (ReLU) and its variations [39].

Another important concept of CNNSs is the pooling layer,
which is a form of non-linear down-sampling. There are
several non-linear functions to implement pooling, among
which max pooling is the most common. Intuitively, the
exact location of a feature is less important than its rough
location relative to other features. This is the idea behind
pooling in CNNs. The pooling layer progressively reduces
the size of the representation, the number of parameters, the
memory footprint and the amount of computation in the
network, and hence also controls overfitting. It is common
to periodically insert a pooling layer between successive
convolutional layers in a CNN architecture.

Eventually, after several convolutional and max pooling
layers, the high-level reasoning in the neural network is
done via the Fully Connected layers (FC), commonly re-
ferred to as as dense layers. As its name implies, nodes
in a fully connected layer have connections to all nodes
in the previous layer leading to a very dense connectivity
structure. Essentially, when the FC is inserted at the end of
the architecture, it looks at the output of the previous layer,
which represents the activation maps of high level features
and determines which features are mostly correlated to a
particular class.

As a final classification step, we use the softmax activa-
tion function, which extends the idea of logistic regression
into a multi-class world. That is, softmax assigns decimal
probabilities to each class in a multi-class problem using the

ACCEPTED AT IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE-2019-0236 5

o or LSTM Unit
W IW3 IW3 Ct-1 >< _|_ Ct or
h :)ﬁ ht1 W, ht W, he+1 — W, hr F¢ It % tanh]
1 Unfold w Tw Tw w v — Gt — ¢t Ot X = cuthppg— e — crhr
1
x W Xe1 | Xt | Xtrt | XT x] el tanh o i i
t-1 Xt+1 Xt
RNN Cells Xt
Xt
(a) (b)
A

(
/ N / 1xC (C=# of classes)

Fully Connected
(classification)
Layer

‘k1‘k2‘ ‘km‘kT

Max Pooling Layer max max max

(size=stride=2) % /\ !\\\

c'y \C'z ‘ c's ‘ c'a ‘ - ‘CM-C}‘CM-Z‘CMJ‘CM‘
Non-linear
activation function
) ‘ ‘ ‘ ’ cm3 ‘ cm-2 ‘ cm-1 ‘ cm ‘ . f2 .
Convolution
of x with f ><\\ *\ms\ Trainable filter (f)

Input vector (x) X1 X2 X4 X5 ‘ XN-5 ‘ XN-4 ‘ XN-3 ‘ XN-2 ‘ XN-1 ’ XN

(C)

Fig. 1. Proposed Deep Learning architectures for the neuronal cell-type classification: (a) RNN architecture: An RNN layer unfolded in 7" RNN
Cells, where T is the total number of timesteps. Every cell receives at timestep ¢, the current value z; and the previous hidden state h;_; value
as inputs and, in our case, only the last cell outputs a vector o, which represents the 4 distinct classes of our problem. (b) LSTM architecture: An
LSTM layer unfolded in 7' LSTM units. At timestep ¢ the gates I, F' and O calculate their activations (i.e. Iz, Ft and O; respectively) considering
the current value x; and the activation of the memory cell at the previous timestep c*'. Circles containing the X symbol represent an element-wise
multiplication between its inputs. The rectangles containing a o symbol represent the application of the sigmoid differentiable function. At the final
timestep T the last LSTM unit outputs the vector o1 with the 4 classes of the problem. (c) 1D-CNN architecture: The input vector z is convolved
with a trainable filter f (stride equal to 1) resulting to a vector ¢, to which a non-linear activation function is applied, resulting to another vector ¢’
with the same size. A max pooling layer of size 2 is also applied to ¢/, in order to down-sample the input representation reducing its dimensionality.

The number of the output nodes C' equals to the number of the classes (4 in our case).

following equation:

eri
C)
Zj:l €%

where z is the input of the fully connected layer and C is the
total number of the distinct classes related to the problem
at hand. This probabilistic approach renders possible to
quantify the level of confidence for each estimation and
provides a lucid view on what has been misconstrued in
the case of misclassification.

o(x;) = for i=1,...,.C 1)

3.1.3 Recurrent Neural Networks

Recurrent Neural Network (RNN) is a kind of neural
network that specializes in processing sequences and has
shown promising results in many Natural Language Pro-
cessing (NLP) tasks [40]. The idea behind RNNSs is the usage
of sequential information, and they are called recurrent
because they perform the same task for every element of a
sequence, with the output being depended on the previous
computations. Another way to think about RNNs is that
they have a memory component, which captures informa-
tion about what has been calculated thus far.

The RNN model in our proposed method receives an in-
put vector x and gives an output vector o, which in our case
are the input timeseries and the cell-type label, respectively.
The diagram in Fig. [[{a) shows an RNN architecture being

unrolled (or unfolded) into a full network, which means that
we write out the network for the complete sequence.

At timestep t, z; € R'*? is the input entry, where d
is the dimensionality of that entry and h; is the hidden
state at timestep ¢. Hidden state h; can be considered as the
memory component of the network, given that it captures
information about what happened in all previous timesteps.
It is calculated based on the following equation and utilizes
the previous hidden state as well as the input at the current
timestep ¢:

hy = fi(Wizy + Wahy—1 + by,) (2

where function f; is usually non-linear, such as tanh or
ReLU, W; and W, are the weight matrices used for both
xy — hy and hy—1 — hy links, respectively, whereas by, is
the bias term added when calculating /;. Hidden state h_1,
which is required for the calculation of the first hidden state,
is typically initialized to zeroes. At the final timestep T, a
dense layer calculates, as shown in Fig. a), the output or,
given by the following equation:

or = fa(Wshr + b,) 3)

where f; is usually a softmax activation function (as in the
case of 1D-CNNs, and generally when the task is a multi-
class classification problem), which takes the logits of the
dense layer and turns them into probabilities, and b, is the
added bias. Note that depending on the task, Fig. [[{a) could

ACCEPTED AT IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE-2019-0236 6

have an output o; at each timestep ¢, but for our application,
which outputs a cell-type label given an input timeseries,
only one output is calculated at the final timestep. Moreover,
unlike a traditional DNN, which uses different parameters
at each layer, an RNN model shares the same parameters
(W1, W), as depicted in Fig. a), across all timesteps. This
reflects that we are performing the same task at each step,
using only different inputs, which greatly reduces the total
number of learnable parameters.

Despite the advantage of the RNNs to remember in-
formation through time, training an RNN is not a simple
task with respect to the backpropagation algorithm, which
is used as in the traditional neural networks but with a little
twist. Because the parameters are shared by all timesteps
in the network, the gradient at each output depends not
only on the calculations of the current timestep, but also on
the previous timesteps. For example, in order to calculate
the gradient at ¢ = j we need to backpropagate j — 1
steps and sum up the gradients. This is called Backprop-
agation Through Time (BPTT) and vanilla RNNs trained
with BPTT have difficulties to learn long-term dependencies
(i.e., dependencies between steps that are far away) [41].
This results in the so-called vanishing/exploding gradient
problem. Thus, in order to address these issues, certain
types of RNNs, such as LSTMs, which are described in the
next subsection, were specifically designed to handle these
drawbacks.

3.1.4 Long Short-Term Memory Neural Networks

Long Short-Term Memory is an artificial RNN model [42]
used in the field of DL, which was developed to cope with
the exploding/vanishing gradient problems that can be
encountered when training traditional RNNs. An LSTM has
a similar control flow as a RNN. It processes data passing on
information as it propagates forward. The differences with
an RNN layer are the operations within the LSTM’s units.
LSTMs, sometimes also combined with other methods, and
various extensions or variants of LSTMs do not only process
single data points, such as images [43], but also entire
sequences of data, such as speech or video and therefore
are applicable to tasks, such as speech [44] and handwriting
recognition [45], sign-language translation [46], etc.

A typical LSTM architecture will contain several LSTM
units (as many as the number of timesteps). A common
architecture of an LSTM unit at timestep ¢, as shown in Fig.
), is composed of the cell state ¢; , which is the memory
part of the LSTM unit, and three "regulators”, usually called
gates, that control the flow of information inside the LSTM
unit. Specifically, a forget gate F}, which decides what is
relevant to be kept from prior steps, an input gate I;, which
decides what information is relevant to be added from the
current step, and an output gate O;, which determines what
the next hidden state h; should be. Some variations [47] of
the LSTM units do not include one or more of these gates,
or they have other gates.

The first step of an LSTM unit is to decide what infor-
mation is thrown away from the cell state. This decision
is made by a sigmoid layer called the forget gate layer.
Taken into account the h;_1, which is the hidden state
vector, commonly referred to as output vector of the LSTM
unit, and the current information x;, and outputs a number

between 0 and 1 for each number in the cell state ¢;_1. 1
represents the completely keep this information, while a 0
represents completely get rid of this. The equation for the
forget gate layer is as follows:

F, = 04(Wpay + Rphi—1 + bF) 4)

where o4, denotes the gate activation function, Wr, Rr and
bp are the learnable weights of an LSTM layer, ie., the
input, the recurrent weights and the bias for the forget layer
component, respectively.

The next step consisting of two parts is to decide what
new information will be stored in the cell state. First, a
sigmoid layer, called the input gate layer, decides which
values will be updated and a tanh layer creates a vector
of new candidate values, ¢; that could be added to the
cell state. The equations describing these components at
timestep ¢ are the following;:

I, = 0,(Wixy + Rrhy—1 + br) ®)

Cé = Uc(Wc’xt + Rerhi—1 + bc’) (6)

where o, denotes the candidate cell state tanh activation
function and Wy, Ry, by as well as W, R and b, are the
learnable input and recurrent weights, and the bias for the
input gate and cell candidate, respectively. These two steps
are combined in order to update the old cell state c;_; into
a new cell state ¢; based on the following equation:

ce =Fyxci 1+ I * ¢ 7)

Finally, the LSTM unit decides its output. The output
id based on the cell state, but might be a filtered version.
Firstly, a sigmoid layer, called the output gate layer, decides
what parts of the cell state to output. Then, the cell state
passes via a tanh, so that the values are re-scaled between
—1 and 1 and is multiplied with the output gate layer so
that it outputs only the corresponding parts via the hidden
state h;. The equations describing these components are the
following;:

O; = O'g(Wo.rt + Rohi—1 + bo) (8)

he = Oy * Uc(Ct))

where Wo, Ro, bo in eq. [§| are the learnable input and
recurrent weights and the bias for the output gate. Note that
depending on the task, LSTMs could also output a label at
each timestep t, but for our application, which outputs a
cell-type label given an input timeseries, only one output is
calculated at the final timestep.

3.2 Regularization Methods

Although DL architectures are very powerful machine
learning systems, they contain a large number of parame-
ters, which makes them quite complex models. As a DNN
learns, weights settle into their context within the network.
Weights of nodes are tuned for specific features providing
some specialization. Nodes of neighboring layers rely on
this specialization, which if taken too deep could result in

ACCEPTED AT IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE-2019-0236 7

a fragile model too specialized to the training data. This
reliant on context for a node during training is referred
to complex co-adaptations and can lead to overfitting of
the training data, meaning that the network produces over-
optimistic predictions throughout the training process, but
fails to generalize well on new data leading to a significant
drop in its performance.

Dropout [48] is a regularization technique, which is
essentially used to prevent overfitting while training ANNs
and DNNSs. The term dropout refers to dropping out units
in a neural network, and thus these units are not con-
sidered during a particular forward and backward pass.
More specifically, for the 1D-CNNSs, at each training stage,
individual nodes of a specific layer are either kept with
probability p or dropped out of the net with probability I-
p, so that a reduced network is left with the incoming and
outgoing edges of the dropped-out node to be removed.
Regarding the RNN and LSTM architectures, dropout can
be also applied to the recurrent connections of these net-
works (i.e., the connections related to the hidden states), so
that the recurrent weights could be regularized to improve
performance. For any of the three architectures, each layer
can be associated with a different probability p, meaning
that dropout can be considered as a per-layer operation
with some layers discarding more nodes compared to others
dropping nodes with a lower rate or no rate at all.

3.3 Methodology

Our 1D-CNN architecture accepts the input vector of Ca**
signal z € R1*40% which is standard normalized (z-score).
The first convolutional layer of our system consists of 32
filters, while the rest of the layers consist of 62 filters, re-
spectively. For the specific dataset studied, the most optimal
depth (see next Section) is 3. Generally, the depth (ie.,
number of convolutional layers) as well as the number of
filters for the specific timeseries data application is kept
small to avoid overfitting. Thus, regularization methods
(i.e., dropout) are helpful for our system. Moreover, while in
several applications, the size of the filter is 3 or 5, we used a
trainable filter f € R'*10. Smaller filter sizes applied to our
timeseries data are not effective enough, as Ca®* signal has
slow kinetics, and the signal is not notably distinguishable
in less than 10 timesteps. In contrast, larger filter sizes lead
to overfitting. Eventually, at the end of the network, a FC
is attached, which receives the output of the previous layer
and determines which features are mostly correlated to each
one of the 4 classes.

Regarding RNN and LSTM models, they are usually
more effective with timeseries data, whose length does not
exceed the 100 timesteps in total, since they demand a
considerable amount of time in order to be trained. Thus,
in cases similar to ours, i.e. with long timeseries data, the
following framework is proposed: each timeseries X of
length N should be broken into 7' timesteps with each
timestep x; € R?, where d is the input dimensionality and
t=1,..,7,such that N = d x T"and T" < d. Namely,
each input timeseries X will consist of T" timesteps, where
each timestep is of dimensionality d. In our case, where
each timeseries has a length of N = 4000 timesteps, we
break each timeseries in T' = 2, T = 5 and T' = 10 time-

steps, where each timestep z; is of dimensionality d = 2000,
d = 800 and d = 400, respectively.

4 EXPERIMENTAL ANALYSIS AND DISCUSSION

The DL models that were used in our analysis were imple-
mented using the Tensorflow [49] and Keras open-source li-
braries written in Python programming language. Both Ten-
sorFlow and Keras can perform the calculations on GPUs,
and thus the training time is dramatically reduced. For our
experiments we used Python version 3.6, the Tensorflow
version 1.9 running on NVIDIA GeForce GTX 750 Ti GPU
model under Windows 10 operating system.

4.1 Data Set

The data set used to train the classifiers was collected during
a goal oriented task in awake, behaving mice [36]. Specifi-
cally, head-fixed mice ran on a 2-meter long treadmill belt
equipped with a water delivery port (reward location) and
the neural signals were recorded using the two-photon Ca®*
imaging technique. The mice learned the reward location
after training on the belt for a few days. The recordings were
obtained from the CA1 region of hippocampus, which is
widely known to be involved in spatial memory formation.
The data were then processed in order to translate the
video recordings into fluorescence signals over time. Four
different neuronal types were recorded during the afore-
mentioned task. Namely, the excitatory PY cells, the PV, the
SOM and the VIP inhibitory neurons making the problem
a four-class classification task. Therefore, our design matrix
consists of signals in time (timeseries) of four different neu-
ronal types across all sessions/days and different animals.

4.2

In this subsection we study how the architecture of each
model including the depth and dropout regularization
hyper-parameters, affects the performance as well as the
training time corresponding to 20 epochs. We present the
results in Table [I} We used 3947 examples (1000 PY cells,
1000 SOM cells, 1000 VIP cells and 947 PV cells), where
each example is a timeseries that corresponds to a specific
neuronal cell-type consisting of 4000 timesteps (we have
used the minimum length across all timeseries). We perform
10 random train-test splits, where in every split we use a
fixed number of 3157 training and 790 testing examples,
which have been z-score normalized based on the mean and
standard deviation of the training set. Thus, we report the
mean accuracy and training time of the 10 random train-
test splits and their corresponding standard deviations.
The hyper-parameter values for all the models have been
selected after several pre-experiments in order to obtain the
best set.

Regarding the architectures of the 1D-CNN model,
which are presented in Table [1} each convolutional layer is
followed by a ReLU activation function and the pipeline
ends up with a FC layer. The optimizer that is used in
order to train the network is the Adam gradient-descent
optimizer with learning rate 0.001, and beta; as well as
beta; parameters are 0.9 and 0.99 respectively. The first
convolutional layer of each architecture is convolved with

Impact of Regularization and Network’s Depth

ACCEPTED AT IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE-2019-0236 8

32 filters with kernel size 10 and stride 1, while as we go
deeper, from the second convolutional layer and onwards,
the inputs to succeeding layers are convolved with 64 filters
of kernel size 10 and stride 1. Table[T|shows that the optimal
architecture is the fifth one (bolded mean accuracy), which
is composed of 2 convolutional layers followed by a max
pooling layer of size and stride equal to 2 followed by a last
convolutional layer and a dropout layer.

We observe that the architecture consisting of 2 con-
volutional layers gives a better classification performance
compared to the architectures consisting of 1 and 3 con-
volutional layers, as by using only 1 layer, we create a
very shallow network, which cannot be trained properly,
while 3 layers lead to overfitting. By using the dropout
regularization technique combined with a max pooling layer
in order to control overfitting, we observe that the 5th
architecture, where the dropout layer is inserted just before
the FC layer is the most effective one, as FC layers are
more prone to overfitting due to their large number of
connections. Training time, as expected, increases by adding
more convolutional layers.

Regarding the RNN and LSTM models, each RNN and
LSTM layer is followed by a ReLU activation function
and the pipeline ends up with a FC layer. Moreover, each
RNN and LSTM layer consists of 100 hidden units, which
is essentially the dimensionality of the output space. The
optimizer that we used in order to train the network is
the Adam gradient-descent based algorithm with the same
parameters as before.

More specifically, the optimal architecture for the RNN
model, as shown in Table [I| is obtained in the case of 2
timesteps for a single RNN layer. Moreover, for all different
values of timesteps, the single RNN layer architecture gives
better classification results compared to the stacked RNNs
(i.e., an RNN with more than one layer), which lead to net-
work overfitting. In order to prevent overfitting, we added
a dropout layer, but the performance was not improved (Ta-
ble [I). We also experimented by adding recurrent dropout
layers with and without the dropout layer but the accuracy
performance was significantly dropped (i.e., 1% — 3% lower,
data not shown). We observe again that increasing the
complexity of the architecture by adding extra RNN layers,
the training time is also increased. Regarding the LSTM
model, the highest performing architecture is obtained in
the case of 2 timesteps with 2 stacked LSTM layers (Table[T).
In general, similarly to RNN model, various combinations
of dropout and recurrent dropout layers among the LSTM
layers did not improve the classification performance.

Fig. 2| demonstrates the normalized confusion matrices
corresponding to the optimal architectures of the three mod-
els, as reported in Table [1| (given in bolded). We observe
that for all models, classification errors concern primarily
the VIP cell type, while the PY and PV cells are identified
with higher accuracy.

We observe that 1D-CNN is the optimal model for this
task (Table [1] and Fig.), as it generates the most accurate
predictions. This finding suggests that long-term dependen-
cies are unlikely to be significant in the particular scenario.
This is because both RNN and LSTM models, which are
capable of identifying such dependencies, have a poorer
performance than the CNN architecture. The efficacy of

0.8

e
w@

0.6

o
o

o
F=y
True label

0.4

True label

e
]

0.2

q ol ¢ ®) s ¢ &
Predicted label Predicted label
(a) 1D-CNN (b) RNN

True label

S R
Predicted label
(c) LSTM

Fig. 2. Normalized confusion matrices for the best-performing 1D-CNN,
RNN and LSTM models.

1D-CNN can be attributed to the fact that they take bi-
directional temporal information into account, compared
to the single-temporal-direction features extracted by RNN
and LSTM models.

We also applied our proposed scheme with the data
re-organization when training the RNN and LSTM mod-
els, and we observed that as we reduce the number of
timesteps 7', and hence automatically increase the input
dimensionality d, the classification accuracy is improved
for both models, and the mean training time gets also
substantially decreased (Table [T). We also examined the
case of T' = 4000 timesteps and d = 1, which practically
means that we feed the network with a scalar value at
each timestep. Performance was very poor, as the maximum
classification accuracy that was achieved was around 45%
for both models, and the mean training time was dramat-
ically increased especially for the LSTM model. Thus, we
conclude that for the specific task when using these two
models, a higher input dimensionality is more effective than
an unfolding of many timesteps, which strengthens again
the aforementioned finding that no significant long-term
dependencies exist in the input data.

Overall, we observe that the LSTM model has a lower
performance compared to the RNN, with respect to both the
classification accuracy and the training time. This could be
attributed to overfitting, as the LSTMs are structurally more
complex models compared to RNNs, and given the fact that
we did not use large amounts of training data, this intrinsic
complexity of the LSTM model is probably unnecessary
for the modeling of the specific dataset. Overfitting is also
evidenced by the achieved training accuracy during the last
epochs. While 1D-CNN and RNN models reached a training
accuracy of 95% — 100%, the LSTM model achieved a lower
training accuracy of 88% — 97%.

We also investigated the impact of the number of train-

ACCEPTED AT IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE-2019-0236 9

Models Depth Mean Acc. St. Dev. Mean Tr. Time (sec.) | St. Dev.
1 Conv. Layer 0.8368 0.0116 50.2281 0.8775
2 Conv. Layers 0.8674 0.0116 124.0125 2.7903
- 2 Conv. Layers-Max P.-1 Conv. Layer 0.8739 0.0125 155.3015 1.9314
5 2 Conv. Layers-Max P.-2 Conv. Layer 0.8746 0.0102 188.139 2.9593
el 2 Conv. Layers-Max P.-1 Conv. Layer-Dropout 0.8867 0.0119 161.9093 2.3241
2 Conv. Layers-Max P.-1 Conv. Layer-Dropout-1 Conv. Layer 0.8683 0.0114 197.5203 3.5911
2 Conv. Layers-Dropout-2 Conv. Layers 0.8394 0.0219 345.664 2.3541
3 Conv. Layers 0.8502 0.032 226.925 2.5193
z :}’,* 1 RNN Layer 0.8205 0.011 38.6984 0.6726
%2
Z 2 RNN Layers 0.804 0.03 55.1843 1.1724
~ 2 RNN Layers-Dropout-1 RNN Layer 0.8067 0.0141 71.5421 0.9292
- :}’,* 1 RNN Layer 0.8167 0.01627 49.925 0.6941
%o
E g 2 RNN Layers 0.8065 0.0151 80.2203 1.1572
0 2 RNN Layers-Dropout-1 RNN Layer 0.7975 0.0227 109.6156 1.2772
|2
- @ 1 RNN Layer 0.8026 0.0194 71.8468 0.7897
[
E % 2 RNN Layers 0.8024 0.0273 124.6187 0.979
§ 2 RNN Layers-Dropout-1 RNN Layer 0.7969 0.0133 170.7687 1.6552
s ﬁ* 1 LSTM Layer 0.7734 0.0166 69.35 0.8836
[
QZ) g 2 LSTM Layers 0.7915 0.015 102.8062 1.7754
~ 2 LSTM Layers-Dropout-1 LSTM Layer 0.7897 0.01 141.7281 2.1877
s :’* 1 LSTM Layer 0.7869 0.0211 91.5953 1.3077
o0
cz) g 2 LSTM Layers 0.7822 0.0158 156.3843 2.2983
0 2 LSTM Layers-Dropout-1 LSTM Layer 0.7648 0.018 228.5359 3.7028
%
2_@* 1 LSTM Layer 0.7911 0.0111 140.9765 1.3509
1o
cz) é 2 LSTM Layers 0.7896 0.0171 256.5265 1.333
é 2 LSTM Layers-Dropout-1 LSTM Layer 0.6464 0.1118 381.5828 4.6384

TABLE 1
Mean accuracy performance of the DL architectures on neuronal cell-type classification and their corresponding mean training time across 10
random train-test splits.

ing epochs in the accuracy of the tested architectures. Specif-
ically, we trained our best-performing models for 60, and
100 training epochs and compared their performance with
the one obtained when 20 epochs are used. For the optimal
1D-CNN architecture, the resulting accuracy was 0.8787
and 0.881, for 60 and 100 epochs respectively, compared
to 0.8867 for 20 epochs. This demonstrates that the number
of 20 epochs chosen to train the 1D-CNN model is adequate.
Similarly, for the best-performing RNN model, the accura-
cies achieved were 0.8188 and 0.8169 for 60 and 100 epochs,
respectively compared to 0.8205 for 20 epochs. Finally, for
the best-performing LSTM model, the accuracies achieved
were 0.7911 and 0.7894 for 60 and 100 epochs, respectively,
compared to 0.7915 for 20 epochs. Overall, this analysis
confirmed that using 20 epochs is sufficient for ensuring the
optimal performance while avoiding overfitting and larger
amount of training time.

Table [2| shows the precision, recall and specificity met-
rics (for each neuronal cell-type separately) derived from
our best-performing model (i.e., the 1D-CNN architecture,
whose mean accuracy in Table[l|is in bold).

Metrics precision recall specificity

PY 0.908 (0.05) | 0.885 (0.06) | 0.967 (0.02)

SOM 0.874 (0.05) | 0.913 (0.03) | 0.954 (0.02)

14Y% 0.932 (0.01) | 0.916 (0.02) | 0.977 (0.006)

VIP 0.819 (0.06) | 0.779 (0.05) | 0.938 (0.03)
TABLE 2

Mean performance and standard deviation (parentheses) of the
best-performing 1D-CNN model for each cell-type

4.3

Unlike other types of datasets used in machine learning like
Imagenet, whose size is directly related to the amount of
human effort involved in annotating images, the case of bi-
ological data offers a significantly more challenging setting.
This is due to the fact that annotations, cell types in this case,
are obtained though the postmortem biophysical analysis of
cells. As such, the availability of training/validation data
is substantially more limited compared to other cases. One
of the objectives in this paper is also to understand the
performance of different DL methods given a relativity

Impact of the training set size

ACCEPTED AT IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE-2019-0236 10

limited set of training examples.

Table [3| demonstrates how the size of the training set
affects the mean accuracy of the best-performing 1D-CNN,
RNN and LSTM models (i.e., models whose mean accuracy
in Table[1|is in bold). We used 4 different training set sizes,
but in each case we retained a fixed-size testing set of 640
examples for a fair comparison.

For a training set of 2560, we used 640 cells from each
category, while for a training set of 3157 we used 800
examples from each category of PY, SOM and VIP, and 757
PV cells. For the dataset with 5137 training examples we
used 1600 examples from each of the PY and VIP classes,
1180 SOM cells and 757 PV cells. Finally, in the case of 6737
training examples we used 2400 examples from each of the
PY and VIP classes, 1180 SOM cells and 757 PV cells.

We found that differences in the performance across
different training set sizes were small for all types of models.
Specifically, the largest difference was observed between
the 2 extreme cases of 2560 and 6737 training examples
and was smaller than 6 — 7%. However, this relatively
small improvement came with a very high cost of required
time for training the models. Indicatively, the mean training
times required by the 1D-CNN, given the extreme cases of
2560 and 6737 examples were 132.46 and 361.155 seconds,
respectively. The same observation is derived from the other
two models, where RNN needs 20.078 and 51.643 seconds
and the LSTM 52.257 and 129.973 seconds.

Training Set Size 1D-CNN RNN LSTM
2560 0.854 (0.02) | 0.792(0.01) | 0.794 (0.01)
3157 0.88 (0.01) 0.829 (0.01) | 0.803 (0.01)
5137 0.907 (0.008) | 0.833 (0.01) | 0.813 (0.01)
6737 0.918 (0.01) | 0.868 (0.01) | 0.848 (0.009)
TABLE 3

Mean accuracy and standard deviation (parentheses) of the
best-performing models for training sets of different size.

4.4 Comparison with other classifiers

To assess whether our approach is better than other types
of popular classifiers, we compared the best-performing
1D-CNN, RNN and LSTM models (models of Table [1] in
bold), against the traditional Machine Learning approaches,
such as the Adaboost and the Support Vector Machine
(SVM) classifiers. In particular, we used SVMs with linear,
Gaussian and polynomial kernels. Table [4f corroborates the
claim that 1D-CNN is the most efficient algorithm for the
task at hand. Its main competitor is the Gaussian SVM,
which outperforms all other models except the RNN, while
Adaboost [50] has the worst performance.

In order to infer the most efficient combination of pa-
rameter values for each of the classifiers, we used the
GridSearchCV implementation [50], which performs an ex-
haustive search over the hyperparameter space. The specific
hyperparameter related to the Adaboost classifier is the
number of estimators at which boosting is terminated. Cor-
respondingly, the hyperparameter related to the Gaussian

Model H Mean Accuracy | St. Dev.

1D-CNN 0.8867 0.0119
RNN 0.8205 0.011
LSTM 0.7915 0.015

Linear SVM 0.6168 0.0125

Gaussian SVM 0.8184 0.0108

Polynomial SVM 0.6477 0.0152
Adaboost 0.568 0.01

TABLE 4

Comparison of the best-performing 1D-CNN, RNN and LSTM models
against the Adaboost and SVM classifiers.

and polynomial SVMs are the gamma and the penalty pa-
rameters. For the polynomial SVM, the degree hyperparam-
eter is also defined, while the hyperparameter related to the
linear SVM classifier is the penalty parameter. Gamma is a
hyperparameter for the non-linear hyperplanes. The higher
its value the harder the classifier tries to fit the training data
set. The penalty parameter of the error term controls the
trade off between a smooth decision boundary and classify-
ing the training points correctly. Degree is a parameter used
with a polynomial kernel and is essentially the degree of the
polynomial kernel used to find the hyperplane to split the
data.

Using GridSearchCV, we found that the Adaboost clas-
sifier works best with 100 estimators (i.e., classifiers). Re-
garding the Gaussian SVM, gamma equal to 0.0001 and
the penalty parameter equal to 100 are the best-performing
combinations. For the polynomial SVM the optimal com-
bination of hyperparameter is a polynomial degree equal
to 3, and the gamma as well as the penalty parameters
are equal to 0.001 and 100, respectively. Eventually, for the
linear classifier, the most optimal penalty parameter equals
to 10. In general, pre-experiments showed that increasing
the values of gamma and the penalty parameters leads to
overfitting, as the classifier tries to perfectly fit the training
data, while for smaller values, the classifier is not trained
properly making more errors during the testing phase.

0.90
0.85
0.80 /
5 075
g
8 0.70
o] model
065 { — 1Dcnn
15TM
0.60 RN
— M
0.55 AdaBoost
1 5 10 15 20

epoch

Fig. 3. Comparison of 1D-CNN, RNN and LSTM with traditional machine
learning models (Gaussian SVM, AdaBoost). Solid lines denote means,
while shaded areas standard deviation across 10 random train-test splits
respectively.

Fig. [3| compares the performance of the proposed DL
models with traditional machine learning methods, such as
the Gaussian SVM and Adaboost. Solid lines denote means,

ACCEPTED AT IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE-2019-0236 11

while the shaded areas denote standard deviation for the
10 random train-test splits. We observe that the mean per-
formance of the DL models improves across epochs (having
also small standard deviations), until they reach a plateau at
20 epochs or earlier. Thus, while 1D-CNN starts in the first
epoch with almost 75% accuracy, it eventually outperforms
all other models. Adaboost on the other hand, has the worst
performance.

4.5

In this subsection, we assess how the classification accuracy
and the training time of the best-performing architectures
(Table [I) are affected by the number of timesteps in the
input. As expected, the results in Table |5 confirm that
decreasing the number of timesteps in the input, results
in lower performance accuracy and smaller training time.
However, when 2000 timesteps are used, while the clas-
sification accuracy (especially for the 1D-CNN model) has
a small drop compared to the 4000 timesteps, the training
time has a sharp decrease, suggesting that the use of 2000
timesteps is an acceptable option for fast and accurate cell-
type classification.

Impact of the number of timesteps

Mean Acc. & Time (sec.)

Timesteps 1D-CNN RNN LSTM
1000 0.8097 (61.314) | 0.7184 (35.793) | 0.7246 (90.784)
2000 0.8505 (96.140) | 0.7715 (37.95) 0.7651 (94.021)
4000 0.8867 (161.90) | 0.8205 (38.698) | 0.7915 (102.806)

TABLE 5
Mean accuracy and training time of the best-performing methods for
various numbers of timesteps

4.6 Testing the models on a new dataset

To assess the generalization performance of our models,
we used a completely new dataset, derived from different
animals performing a different behavioral task (removal of
the reward location, random foraging, unpublished results
from the Losonczy lab). The new dataset includes 119 time-
series of length 2606 timesteps, where 91 of the timeseries
corresponded to the activity of SOM interneurons, while
the rest of them corresponded to the activity of the PV
interneurons.

To ensure equal-length examples, we reduced the length
of examples in the first dataset from 4000 to 2606 timesteps.
We then re-trained the best-performing models using only
the first dataset and tested them on both datasets (i.e., the
210 new examples were added to the 790 testing examples
considered in the previous sections). The mean accuracy that
was achieved by the 1D-CNN model was 81.65%, while the
RNN and LSTM models achieved a mean accuracy of 78.3%
and 73.28%, respectively. These results are quite promising
given that the datasets are completely different and the task
performed by the animals is not identical. They further sug-
gest that discriminatory features of the different cell types
may be behavior-independent, thus making our approach
an extremely powerful tool for the online classification of
cell types in behaving animals.

py Jlk:=N 0.05 0.02 0. 0.8

0.8
]]
o som{ 0.03 b 0.6 o 0.6
© o
S pv4 002 015 04 @ 0.4
= 02 & 0.2
vip{ 0.07 0.10 0.09
KN Q Q
q i) Q‘! Ky g r’)0‘h ‘?! &
Predicted label Predicted label
(a) 1D-CNN (b) RNN
0.8
T 0.6
0
L
o 0.4
2
= 0.2

¢ g & S
Predicted label
(c) LSTM

Fig. 4. Normalized confusion matrices of the best-performing architec-
tures of 1D-CNN, RNN and LSTM models tested on a new dataset

As shown in Fig. [all models misclassify more often
the VIP and PV neurons, which are mainly predicted to
be SOM cells. More specifically, the VIP neurons are again
misclassified as SOM cells, as in the first dataset (Fig. @),
while now, PV neurons are also misclassified as SOM cells.
This could be explained by the small number of the newly
added PV cells (just 28), which probably hinders their
correct recognition by the classifier, compared to the 191
newly added SOM cells, where there is more information to
be exploited.

5 CONCLUSION

In this work we propose a DL-based formalization for the
task of automatic neuronal cell-type classification based on
the Ca*" activity signal of neurons in behaving animals.
We considered 1D-CNN, RNN and LSTM architectures and
showed that these DL network architectures are capable of
capturing hidden dynamics/features in the activity signal
and therefore to make accurate predictions. We found that
1D-CNN is the optimal classifier for this task, suggest-
ing the absence of significant long-term dependencies in
the particular dataset. Our results reveal a great potential
for replacing current approaches for cell-type classification
(e.g., with molecular markers and/or feature extraction
algorithms) with 1D-CNN Ca?* imaging-based classifiers,
making neuronal cell-type classification automate.
Moreover, our results set the stage for a deeper investi-
gation of whether automated classification of neuronal sub-
types (i.e., basket and axoaxonic cells that are subtypes of of
the PV cells) is possible. Our current datasets consist of large
families of these subtypes, whose automated discrimination,
if possible, will have major contribution to the design of
experiments, leading to important resource savings (cost,
time, effort and number of animals). Another avenue of ap-
plication involves the development of a continuous learning

ACCEPTED AT IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE-2019-0236 12

ANN. This network should be able to understand when
new cell-types are introduced during testing, and adjust its
parameters so as to recognize them in a next appearance
without requiring to re-train its parameters. These two
research perspectives will be investigated in future work.

ACKNOWLEDGMENTS

This research is co-funded by Greece and the European
Union (European Social Fund-ESF) through the Opera-
tional Programme "Human Resources Development, Edu-
cation and Lifelong Learning’ in the context of the project
‘Strengthening Human Resources Research Potential via
Doctorate Research’” (MIS-5000432), implemented by the
State Scholarships Foundation (IKY).

REFERENCES

(1]

(2]
(3]

(4]

(5]

(6]

(71

(8]

(%]

[10]

(11]

(12]

(13]

[14]

A.]. Trevelyan, D. Sussillo, B. O. Watson, and R. Yuste, “Modular
propagation of epileptiform activity: evidence for an inhibitory
veto in neocortex,” Journal of Neuroscience, vol. 26, no. 48, pp.
12447-12 455, 2006.

T. F. Freund and I. Katona, “Perisomatic inhibition,” Neuron,
vol. 56, no. 1, pp. 3342, 2007.

E. M. Powell, D. B. Campbell, G. D. Stanwood, C. Davis, J. L.
Noebels, and P. Levitt, “Genetic disruption of cortical interneuron
development causes region-and gaba cell type-specific deficits,
epilepsy, and behavioral dysfunction,” Journal of Neuroscience,
vol. 23, no. 2, pp. 622-631, 2003.

P. S. Kalanithi, W. Zheng, Y. Kataoka, M. DiFiglia, H. Grantz, C. B.
Saper, M. L. Schwartz, J. F. Leckman, and E. M. Vaccarino, “Al-
tered parvalbumin-positive neuron distribution in basal ganglia
of individuals with tourette syndrome,” Proceedings of the National
Academy of Sciences, vol. 102, no. 37, pp. 13 307-13 312, 2005.

K. Tabuchi, J. Blundell, M. R. Etherton, R. E. Hammer, X. Liu, C. M.
Powell, and T. C. Siidhof, “A neuroligin-3 mutation implicated in
autism increases inhibitory synaptic transmission in mice,” science,
vol. 318, no. 5847, pp. 71-76, 2007.

V. S. Dani, Q. Chang, A. Maffei, G. G. Turrigiano, R. Jaenisch,
and S. B. Nelson, “Reduced cortical activity due to a shift in the
balance between excitation and inhibition in a mouse model of rett
syndrome,” Proceedings of the National Academy of Sciences, vol. 102,
no. 35, pp. 12560-12 565, 2005.

G. Gonzalez-Burgos and D. A. Lewis, “Gaba neurons and the
mechanisms of network oscillations: implications for understand-
ing cortical dysfunction in schizophrenia,” Schizophrenia bulletin,
vol. 34, no. 5, pp. 944-961, 2008.

D. A. Lewis, T. Hashimoto, and D. W. Volk, “Cortical inhibitory
neurons and schizophrenia,” Nature Reviews Neuroscience, vol. 6,
no. 4, p. 312, 2005.

C. R. Muratore, C. Zhou, M. Liao, M. A. Fernandez, W. M. Taylor,
V. N. Lagomarsino, R. V. Pearse II, H. C. Rice, J. M. Negri,
A. He et al., “Cell-type dependent alzheimer’s disease phenotypes:
probing the biology of selective neuronal vulnerability,” Stem cell
reports, vol. 9, no. 6, pp. 1868-1884, 2017.

N. G. Skene and S. G. Grant, “Identification of vulnerable cell
types in major brain disorders using single cell transcriptomes
and expression weighted cell type enrichment,” Frontiers in neuro-
science, vol. 10, p. 16, 2016.

H. Zeng and J. R. Sanes, “Neuronal cell-type classification: chal-
lenges, opportunities and the path forward,” Nature Reviews Neu-
roscience, vol. 18, no. 9, p. 530, 2017.

G. Maccaferri and J.-C. Lacaille, “Interneuron diversity series:
hippocampal interneuron classifications-making things as simple
as possible, not simpler,” Trends in neurosciences, vol. 26, no. 10, pp.
564-571, 2003.

S. A. Booker and I. Vida, “Morphological diversity and connectiv-
ity of hippocampal interneurons,” Cell and tissue research, vol. 373,
no. 3, pp. 619-641, 2018.

L. Guerra, L. M. McGarry, V. Robles, C. Bielza, P. Larranaga,
and R. Yuste, “Comparison between supervised and unsupervised
classifications of neuronal cell types: a case study,” Developmental
neurobiology, vol. 71, no. 1, pp. 71-82, 2011.

[15]

[16]

[17]

(18]

(19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]

[36]

X. Vasques, L. Vanel, G. Villette, and L. Cif, “Morphological neuron
classification using machine learning,” Frontiers in neuroanatomy,
vol. 10, p. 102, 2016.

G. A. Ascoli, L. Alonso-Nanclares, S. A. Anderson, G. Barrionuevo,
R. Benavides-Piccione, A. Burkhalter, G. Buzsdki, B. Cauli, J. DeFe-
lipe, A. Fairén et al., “Petilla terminology: nomenclature of features
of gabaergic interneurons of the cerebral cortex,” Nature Reviews
Neuroscience, vol. 9, no. 7, p. 557, 2008.

L. M. McGarry, A. M. Packer, E. Fino, V. Nikolenko, T. Sippy,
and R. Yuste, “Quantitative classification of somatostatin-positive
neocortical interneurons identifies three interneuron subtypes,”
Frontiers in neural circuits, vol. 4, p. 12, 2010.

C. Stosiek, O. Garaschuk, K. Holthoff, and A. Konnerth, “In vivo
two-photon calcium imaging of neuronal networks,” Proceedings
of the National Academy of Sciences, vol. 100, no. 12, pp. 7319-7324,
2003.

A. Birkner, C. H. Tischbirek, and A. Konnerth, “Improved deep
two-photon calcium imaging in vivo,” Cell calcium, vol. 64, pp.
29-35, 2017.

S. L. Resendez and G. D. Stuber, “In vivo calcium imaging to
illuminate neurocircuit activity dynamics underlying naturalistic
behavior,” Neuropsychopharmacology, vol. 40, no. 1, p. 238, 2015.

W. Gobel and E. Helmchen, “In vivo calcium imaging of neural
network function,” Physiology, vol. 22, no. 6, pp. 358-365, 2007.
M. Ravanelli, P. Brakel, M. Omologo, and Y. Bengio, “Light
gated recurrent units for speech recognition,” IEEE Transactions
on Emerging Topics in Computational Intelligence, vol. 2, no. 2, pp.
92-102, 2018.

J.-C. Hou, S.-5. Wang, Y.-H. Lai, Y. Tsao, H.-W. Chang, and H.-M.
Wang, “Audio-visual speech enhancement using multimodal deep
convolutional neural networks,” IEEE Transactions on Emerging
Topics in Computational Intelligence, vol. 2, no. 2, pp. 117-128, 2018.
K. Zheng, W. Q. Yan, and P. Nand, “Video dynamics detection
using deep neural networks,” IEEE Transactions on Emerging Topics
in Computational Intelligence, vol. 2, no. 3, pp. 224-234, 2017.

V. Khomenko, O. Shyshkov, O. Radyvonenko, and K. Bokhan,
“Accelerating recurrent neural network training using sequence
bucketing and multi-gpu data parallelization,” in 2016 IEEE
First International Conference on Data Stream Mining & Processing
(DSMP). 1EEE, 2016, pp. 100-103.

O. Kuchaiev and B. Ginsburg, “Factorization tricks for Istm net-
works,” arXiv preprint arXiv:1703.10722, 2017.

D. Neil, M. Pfeiffer, and S.-C. Liu, “Phased Istm: Accelerating
recurrent network training for long or event-based sequences,”
in Advances in neural information processing systems, 2016, pp. 3882—
3890.

H. I. Fawaz, G. Forestier,]. Weber, L. Idoumghar, and P-A.
Muller, “Deep learning for time series classification: a review,”
Data Mining and Knowledge Discovery, vol. 33, no. 4, pp. 917-963,
2019.

M.-C. Su, C.-Y. Cheng, and P.-C. Wang, “A neural-network-based
approach to white blood cell classification,” The scientific world
journal, vol. 2014, 2014.

R. Tomari, W. N. W. Zakaria, M. M. A. Jamil, FE. M. Nor, and N. F. N.
Fuad, “Computer aided system for red blood cell classification in
blood smear image,” Procedia Computer Science, vol. 42, pp. 206—
213, 2014.

R. Geetha, S. Sivasubramanian, M. Kaliappan, S. Vimal, and S. An-
namalai, “Cervical cancer identification with synthetic minority
oversampling technique and pca analysis using random forest
classifier,” Journal of medical systems, vol. 43, no. 9, p. 286, 2019.

C. Shah and A. G. Jivani, “Comparison of data mining classi-
fication algorithms for breast cancer prediction,” in 2013 Fourth
international conference on computing, communications and networking
technologies (ICCCNT). IEEE, 2013, pp. 1-4.

A. Kepecs and G. Fishell, “Interneuron cell types are fit to func-
tion,” Nature, vol. 505, no. 7483, pp. 318-326, 2014.

K. A. Pelkey, R. Chittajallu, M. T. Craig, L. Tricoire, J. C. Wester, and
C. J. McBain, “Hippocampal gabaergic inhibitory interneurons,”
Physiological reviews, vol. 97, no. 4, pp. 1619-1747, 2017.

J. DeFelipe, P. L. Lopez-Cruz, R. Benavides-Piccione, C. Bielza,
P. Larranaga, S. Anderson, A. Burkhalter, B. Cauli, A. Fairén,
D. Feldmeyer et al., “New insights into the classification and
nomenclature of cortical gabaergic interneurons,” Nature Reviews
Neuroscience, vol. 14, no. 3, pp. 202-216, 2013.

G. F. Turi, W-K. Li, S. Chavlis, I. Pandi, J. OHare,]J. B. Priestley,
A. D. Grosmark, Z. Liao, M. Ladow, J. E. Zhang et al., “Vasoactive

ACCEPTED AT IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE-2019-0236

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

intestinal polypeptide-expressing interneurons in the hippocam-
pus support goal-oriented spatial learning,” Neuron, vol. 101, no. 6,
pp. 1150-1165, 2019.

R. Scorcioni, M. T. Lazarewicz, and G. A. Ascoli, “Quantitative
morphometry of hippocampal pyramidal cells: differences be-
tween anatomical classes and reconstructing laboratories,” Journal
of Comparative Neurology, vol. 473, no. 2, pp. 177-193, 2004.

K. Hornik, “Approximation capabilities of multilayer feedforward
networks,” Neural networks, vol. 4, no. 2, pp. 251-257, 1991.

B. Xu, N. Wang, T. Chen, and M. Li, “Empirical evaluation
of rectified activations in convolutional network,” arXiv preprint
arXiv:1505.00853, 2015.

J. Ebrahimi and D. Dou, “Chain based rnn for relation classifica-
tion,” in Proceedings of the 2015 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, 2015, pp. 1244-1249.

R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of
training recurrent neural networks,” in International conference on
machine learning, 2013, pp. 1310-1318.

S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural computation, vol. 9, no. 8, pp. 1735-1780, 1997.

W. Byeon, T. M. Breuel, F. Raue, and M. Liwicki, “Scene labeling
with Istm recurrent neural networks,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2015, pp.
3547-3555.

A. Graves and J. Schmidhuber, “Framewise phoneme classification
with bidirectional Istm and other neural network architectures,”
Neural networks, vol. 18, no. 5-6, pp. 602610, 2005.

A. Graves, M. Liwicki, H. Bunke, J. Schmidhuber, and
S. Ferndndez, “Unconstrained on-line handwriting recognition
with recurrent neural networks,” in Advances in neural information
processing systems, 2008, pp. 577-584.

L. Gao, Z. Guo, H. Zhang, X. Xu, and H. T. Shen, “Video cap-
tioning with attention-based Istm and semantic consistency,” IEEE
Transactions on Multimedia, vol. 19, no. 9, pp. 2045-2055, 2017.

S. Xingjian, Z. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong, and W.-c.
Woo, “Convolutional Istm network: A machine learning approach
for precipitation nowcasting,” in Advances in neural information
processing systems, 2015, pp. 802-810.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: a simple way to prevent neural
networks from overfitting,” The journal of machine learning research,
vol. 15, no. 1, pp. 1929-1958, 2014.

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro,
G. S. Corrado, A. Davis, J. Dean, M. Devin et al., “Tensorflow:
Large-scale machine learning on heterogeneous distributed sys-
tems,” arXiv preprint arXiv:1603.04467, 2016.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,
J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,
and E. Duchesnay, “Scikit-learn: Machine learning in Python,”
Journal of Machine Learning Research, vol. 12, pp. 2825-2830, 2011.

13

	1 Introduction
	2 Objectives, Related Work and Contribution
	2.1 Related Work
	2.2 Our contribution

	3 Proposed Approaches
	3.1 Preliminary Concepts
	3.1.1 Convolutional Neural Networks
	3.1.2 Typical Architecture of a 1-Dimensional CNN
	3.1.3 Recurrent Neural Networks
	3.1.4 Long Short-Term Memory Neural Networks

	3.2 Regularization Methods
	3.3 Methodology

	4 Experimental Analysis and Discussion
	4.1 Data Set
	4.2 Impact of Regularization and Network's Depth
	4.3 Impact of the training set size
	4.4 Comparison with other classifiers
	4.5 Impact of the number of timesteps
	4.6 Testing the models on a new dataset

	5 Conclusion
	References

