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Abstract—Training large deep learning (DL) models with high performance for natural language downstream tasks usually requires
rich-labeled data. However, in a real-world application of COVID-19 information service (e.g., misinformation detection, question
answering), a fundamental challenge is the lack of the labeled COVID data to enable supervised end-to-end training of the models for
different downstream tasks, especially at the early stage of the pandemic. To address this challenge, we propose an unsupervised
domain adaptation framework using contrastive learning and adversarial domain mixup to transfer the knowledge from an existing
source data domain to the target COVID-19 data domain. In particular, to bridge the gap between the source domain and the target
domain, our method reduces a radial basis function (RBF) based discrepancy between these two domains. Moreover, we leverage the
power of domain adversarial examples to establish an intermediate domain mixup, where the latent representations of the input text
from both domains could be mixed during the training process. In this paper, we focus on two prevailing downstream tasks in mining
COVID-19 text data: COVID-19 misinformation detection and COVID-19 news question answering. Extensive domain adaptation
experiments on multiple real-world datasets suggest that our method can effectively adapt misinformation detection and question
answering systems to the unseen COVID-19 target domain with significant improvements compared to the state-of-the-art baselines.

Index Terms—Domain Adaptation, Contrastive Domain Mixup, Misinformation Detection, Question Answering

✦

1 INTRODUCTION

Pre-trained language models [1], [2] have been proved to
be an efficient method to improve the model’s performance
on many natural language processing (NLP) tasks on social
media [3], [4], [5]. However, for downstream NLP tasks
(e.g., misinformation detection and question answering)
on a specific data domain, supervised training is usually
required to fine-tune the pre-trained models on the target
data domain to ensure the models’ performance on such
domain-specific tasks [6]. In this work, we focus on COVID-
19 given its global impact of the ongoing pandemic and the
“Infodemic”1 it causes on social media [3]. Consider a real-
world application of COVID-19 misinformation detection,
if the language models trained on non-COVID datasets
without any fine-tuning on COVID-19 specific data, these
models might suffer from a severe issue of generalization
and perform poorly on the COVID-19 datasets, due to the
domain shift between the non-COVID training data distri-
bution and the test COVID-19 data distribution.

Indeed, the ongoing pandemic of COVID-19 inspires
a variety of studies [3], [7], [8] to develop NLP models
to provide reliable COVID-19 information services across
various social media platforms (e.g., Twitter, Facebook).
However, the supervised learning approaches often require
a large-scale training dataset while collecting annotations
for COVID training data is extremely expensive and time
consuming due to the cost and complexity in recruiting the

1. https://www.who.int/health-topics/infodemic#tab=tab_1

Figure 1: The Overview of Unsupervised Domain Adapta-
tion. Labeled source domain data and unlabeled target do-
main data (COVID-19 training data) is available for domain
adaptation training.

qualified annotators and keep the annotations update to
date to accommodate the dynamics of COVID-19 knowl-
edge (e.g., different variants of the virus) [9]. Moreover,
our unsupervised domain adaptation setting is motivated
for a more general setting of any early-stage pandemic
(not limited to COVID-19) where there is no ground-truth
information about the novel disease at all, but the need
for correct information is urgent. Therefore, it is critical to
develop unsupervised domain adaptation frameworks to
train COVID models so that knowledge from an existing
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data domain could be adapted and transferred to the un-
seen COVID data domain without requiring any ground-
truth training labels. The general unsupervised domain
adaptation framework is shown in Figure 1. Under an un-
supervised domain adaptation framework, labeled source
domain data and unlabeled target domain data (COVID-19
training data) is available for domain adaptation training.
After performing domain adaptation training, the adapted
model is expected to produce high-quality predictions for
the COVID-19 test data upon its deployment.

In this paper, we explore an unsupervised domain adap-
tation problem of COVID-19 information services on social
media: the COVID models trained on the label-rich source do-
main are adapted to an unlabeled target domain without requiring
supervised training on the target domain. To achieve this goal,
we propose an unsupervised domain adaptation framework
Contrastive Adversarial Domain Mixup + (CADM+), which
uses adversarial domain mixup and contrastive learning to
bridge the gap between the source training domain and
the target COVID domain. The overview of our framework
is shown in Figure 2. Specifically, we firstly leverage pre-
trained models to generate labeled target examples via
pseudo labeling (Figure 2a). Next, we train a domain adver-
sary to establish a learnable intermediate domain mixup to
bridge the domain gap between source and target domains
by perturbing latent representations of input texts from
both domains towards each other (Figure 2b). Finally, we
compute an RBF-based contrastive adaptation loss over the
perturbed adversarial representations, and optimize it to
encourage the model to learn class-aware features and fur-
ther reduce the domain discrepancy (Figure 2c). Eventually,
the COVID models could learn to project the target do-
main COVID-19 data into the learned smooth intermediate
domain, and adapt knowledge from the source domain to
make predictions for the data in the target domain.

To demonstrate the effectiveness of the proposed
CADM+, we evaluate it in two real-world COVID-19 in-
formation services, namely COVID-19 misinformation de-
tection and COVID-19 news question answering, which
have been used widely and have significant impacts in the
information space of pandemic [8], [9], [10], [11]. Regarding
COVID-19 misinformation detection, it is shown in [7] that
the widespread of COVID misinformation could pose a
severe threat to the online ecosystem and the public health.
For instance, in [7], the authors find that COVID-19 misin-
formation has a strong correlation between noncompliance
of health guidance and reduced likelihood in receiving vac-
cines. In comparison, COVID-19 question answering (QA)
systems automatically provide people with answers for
their questions regarding certain COVID-19 texts, so that
people do not need to read the entire document word-by-
word to search for the answers [8]. Both services are in criti-
cal needs to public health and interest, but would originally
require large amounts of labeled text data to enable end-
to-end training of the corresponding misinformation detec-
tion models and the question answering models. For both
COVID-19 information services, our experimental results
suggest that our CADM+ effectively adapts pre-trained lan-
guage models to the target COVID domain, and consistently
outperforms state-of-the-art baselines on several real-world
COVID-19 datasets (i.e., Constraint [11], ANTiVAx [10] and

CoAID [8]).
A preliminary version of this work was presented in [12].

The current paper is a significant extension of the previous
work in the following aspects. First, we extend our pre-
vious framework Contrastive Adversarial Domain Mixup
(CADM) in [12] by explicitly exploring its deployment on
a new COVID-19 information service (i.e., COVID-19 news
question answering). In this paper, we refer the extended
framework on both COVID-19 misinformation detection
and COVID-19 news question answering as CADM+. In
contrast, the conference paper only focuses on COVID-19
misinformation detection, which is a binary text classifi-
cation problem. Second, to extend our CADM framework
for the COVID-19 question answering (QA) problem (i.e.,
CADM+), we designed a new training pipeline and a new
training loss. Under the new training pipeline, the training
of the models (i.e., the CADM+ model and the domain dis-
criminator) as well as training loss are defined over the text
span of COVID data instead of focusing on classifying the
[CLS] token in the misinformation detection task. As such,
the QA model can efficiently learn COVID-19 data features
from the unique data structure in the COVID-19 news QA
application. Third, we added a new set of experiments to
evaluate our proposed CADM+ framework, where one new
linear domain mixup [13] is added for the misinformation
detection application and several new baseline schemes [6],
[14] are added for the COVID-19 news QA application.
In particular, we firstly used a pre-trained question gen-
eration model to generate question-answer pairs for a set
of true COVID-19 news. To this end, we created our new
QA dataset for our social media based COVID-19 news
QA application. Then, we implemented several state-of-the-
art unsupervised domain adaptation baselines for question
answering and compared our proposed framework against
the baseline methods. Finally, we also extended the related
work by reviewing the recent literature on unsupervised
domain adaptation for question answering. We summarize
the contributions of our work as follows 2:

• We propose a novel unsupervised domain adapta-
tion framework CADM+ for COVID-19 information
services using contrastive learning and adversarial
domain mixup.

• Our method learns a smoothed intermediate domain
to transfer knowledge from the source domain to the
target domain by perturbing the latent representa-
tions from both domains towards each other. Com-
bined with contrastive adaptation loss, we bridge
the gap between the source domain and the target
COVID domain.

• To the best of our knowledge, our method is the first
work that adopts latent adversarial examples to es-
tablish domain mixup and contrastive domain adap-
tation for adapting misinformation detection and
question answering models to the unseen COVID
domain.

• We demonstrate the effectiveness of our CADM+
on multiple real-world COVID-19 datasets, and our
method outperforms the state-of-the-art baselines for

2. We adopt publicly available datasets in our experiments and will
release the code upon publication of this work.
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(a) Unadapted (b) Adversarial Domain Mixup (c) Contrastive Domain Adaptation

Figure 2: The Overview of Our Contrastive Adversarial Domain Mixup + (CADM+) for both Misinfomration Detection
and Question Answering: firstly, in (a), a pre-trained models will generate labels for target domain examples via pseudo
labeling, where the green triangles belong to one class (e.g., predicted true information in the misinformation detection
task or predicted answer spans in given contexts in the question answering task) and the green dots belong to another class
(e.g., predicted misinformation in the misinformation detection task or the predicted non-answer spans in the remaining
contexts in the question answering task). In addition, a domain discriminator is trained. Then, in (b), the well-trained
domain discriminator will establish an intermediate domain mixup by perturbing latent representations of input text
from both domains towards each other. At the same time, in (c), we also compute a contrastive adaptation loss over the
perturbed adversarial representations, and optimize it to further reduce the domain discrepancy and increase the models’
performance. Note that (b) and (c) are executed alternately.

two critical COVID-19 information services consid-
ered.

2 RELATED WORK

Misinformation Detection. Great efforts have been made to
detect the misinformation from online platforms (e.g., social
media). In content-based misinformation detection methods
[15], [16], models are trained to extract linguistic features
of input text to evaluate the credibility of information. In
comparison, in [17], knowledge graphs are integrated into
the misinformation detection framework to enhance the
model’s performance, since knowledge graphs could intro-
duce additional information of the specific data domain for
misinformation detection. However, these misinformation
detection systems are built under a supervised learning
setting [9], [18], but regarding COVID-19 misinformation
detection, labeled COVID-19 misinformation data is not
always accessible. Indeed, another thread of studies address
the misinformation detection using unsupervised learning
methods. For instance, in [19], a graph-based method is
proposed to identify the seed set of fake and legitimate
news and then perform progressive label spreading over
the full dataset. In [20], [21], additional resources, such as
user credibility or media credibility, are used to evaluate the
trustworthiness of the news and build the misinformation
detection systems. In [22], autoencoders are used to detect
fake news by comparing reconstruction scores of fake news
and true news. In [23], fake claims are detected by compar-
ing the semantics between the claims and associated news
sources. Nevertheless, the generalization and adaptability
of such misinformation detection systems are not well stud-
ied. Therefore, we focus on domain adaptation of content-

based language models for misinformation detection. Under
unsupervised domain adaptation, the models are trained to
adapted knowledge from a source labeled training dataset
to the unknown COVID-19 dataset.

Question Answering. Question answering (QA) mod-
els predict answers conditioned on an input question and
a context paragraph [1], [6]. In this paper, we formulate
our COVID-19 QA problem as extractive QA on COVID-
19 news, where the task is to extract answer spans from
an unstructured COVID-19 news for a given question [1],
[6]. We noted that existing works on COVID-19 question
answering mainly focus on handling questions regarding
long and difficult scientific articles [9]. However, we argue
that for general public, the information from scientific re-
search articles could be too difficult to understand, and a
more popular and dominant resource of information during
the pandemic is social media [8]. Therefore, we create a
simple COVID-19 news QA dataset using verified COVID-
19 news collected from social media to study our problem.
Moreover, in [9], the COVID QA models are trained end-to-
end to achieve high performance for the specific COVID-19
domain using labeled data, whereas in this work, we focus
on the unsupervised domain adaptation problem in COVID-
19 QA, where the training labels of COVID data are often
inaccessible due to the cost of annotations and dynamics of
the COVID-19 disease.

Domain Adaptation. Domain adaptation methods are
primarily explored in computer vision tasks [24], and only
limited domain adaptation methods are developed for mis-
information detection and question answering. In [25], lan-
guage models are post-trained in a domain-distinguishing
task to improve the models’ domain adaptation ability for
misinformation detection. In [14], [26], domain adversarial
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training is implemented for misinformation task and ques-
tion answering, so that the models are trained to learn
domain-invariant features. Utilizing contrastive methods,
[6] propose to quantify and reduce the domain discrep-
ancy using explicit distance measures (e.g., maximum mean
discrepancy) to bridge the gap between source domain
and target domain. However, the unsupervised domain
adaptation methods have not been systematically studied
in the COVID-19 domain. In this work, inspired by the
idea of adversarial examples [27] and domain mixup [13],
we propose to establish a smoothed intermediate training
domain by perturbing the latent representations of the input
from both source domain and target domain towards each
other with a domain discriminator and perform contrastive
training on the smoothed domain to transfer knowledge
from the source training domain to the target COVID-19
domain.

3 PROBLEM STATEMENT

3.1 Setup
Data: We define two data domain distributions, namely the
source domain data distribution P and the target domain
data distribution Q. Note that the data formats for the
two COVID-19 information services considered in this work
are different from each other. Regarding the COVID-19
misinformation detection task, we formulate it as a binary
text classification, where each data point (x, y) contains
an input segment of COVID-19 claim or news (x) and a
label y ∈ {0, 1} (y = 1 for true information and y = 0
for false information). As for the COVID-19 news question
answering service, each QA sample is a 3-tuple that consists
of a question xq , a context xc and an answer span y. To
differentiate the notations of the data sampled from the
source distribution P and the target distribution Q, we
further introduce two definitions of the domain data:

• Source domain data: We use the subscript s to
denote the source domain data. In particular, for
the COVID-19 misinformation detection task, the
source domain data form a source domain dataset
X s = {(xs, ys)|(xs, ys) ∼ P}, and for the COVID-
19 news question answering task, the source domain
data is X s = {(xs,q,xs,c,ys)|(xs,q,xs,c,ys) ∼ P}.

• Target domain data: Similarly, we use the subscript t
to denote the target domain data. That is, we have
target domain datasets X t = {xt|xt ∼ Q}, and
X t = {(xt,q,xt,c)|(xt,q,xt,c) ∼ Q} for the two
COVID-19 information tasks respectively. Note, as
discussed in Section 1, we focus on unsupervised
domain adaptation and treat our target domain data
as unlabeled. That is, during training, the ground truth
labels of target domain data yt or yt are not used for
both tasks.

Moreover, for the sake of simplicity, if not explicitly
mentioned, we use x to denote the general input regardless
of its domain, xs to denote the source domain input and
xt for target COVID domain input in both misinformation
detection model and the QA model.

Models: For misinformation detection, the model f takes
an input text x (a COVID-19 claim or a piece of news) to

predict whether the information contained in x is valid or
not. In contrast, the QA model f takes in a question text xq

and a context xc, and is trained to extract an answer span
from the context xc. The QA model predicts which token
(out of all tokens) is the start token and which another token
is the end token. Therefore, the QA task is not a binary
classification task, which is clearly different from the mis-
information detection task. Moreover, due to difference of
the two tasks, our proposed solutions (i.e., the optimization
objective) are also different in misinformation detection and
QA, which we will elaborate in the next section.

3.2 Problem Formulation
Using the labels of the training data, finding the optimal
model corresponding to a specific task is to minimize the
cross-entropy loss Lce over the training data:

Lce = E(x,y)∼X

[
l(f(x), y)

]
. (1)

Our goal is to adapt a classifier f trained on the source
domain data distribution P to the target domain data dis-
tribution Q. For a given target domain input xt, a well-
adapted model aims at making predictions as correctly
as possible. Mathematically, we formulate the problem of
adapting the misinformation detection model and the QA
model as follows:

• Misinformation Detection:

max
f

E(xt,yt)∼Xtest

[
Φ(f(xt), yt)

]
(2)

• Question Answering:

max
f

E(xt,q,xt,c,yt)∼Xtest

[
Φ(f(xt,q,xt,c),yt)

]
(3)

Note that in Equation 2 and Equation 3, we use Xtest to
denote the target domain test data and Φ represents the
performance metrics (e.g., accuracy or F1 score). Here, we
only use the ground-truth labels of test data (i.e., yt and
yt) for evaluation. It is non-trivial to solve Equation 2 and
Equation 3 in our unsupervised setting where the ground-
truth labels of the target domain data are not available.

4 SOLUTION

4.1 Domain Discriminator and Domain Adversarial
Mixup
Domain Discriminator. The first step of our framework
is to train a domain discriminator fD to classify whether
the input data belongs to the source or target domain.
For a better understanding of our model, we visualize the
structure of our domain discriminator in Figure 3. Firstly,
a COVID-19 model is split into a BERT Encoder fe and the
task classifier fy . Sharing the same feature space with fy , the
domain discriminator fD is added after the BERT encoder.

However, we note that the input space of the domain
discriminator of the misinformation detection application is
different from the input space of the domain discriminator
of the question answering application. For instance, the task
classifier of the misinformation detection model takes the
token [CLS] representation from the BERT encoder as input
and returns a binary logit. In comparison, for the QA task,
the task classifier of the QA model takes the representation
of all question tokens and all context tokens, and outputs
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Figure 3: Split a COVID model into a BERT encoder fe and
the task classifier fy . The binary domain discriminator fD
shares the same feature space with the task classifier, and
also takes the same input as the task classifier.

two groups of logits, where the first group predicts the start
position of the answer span and the second group predicts
the end position. Therefore, unlike the domain discriminator
in [14] that always takes the token [CLS] representation as
input, the domain discriminator of our framework will take
the same input of the task classifier, which is different for
different tasks. Moreover, since we only consider two data
domains in this paper (i.e., source data domain and target
data domain), the domain discriminator fD is also binary.
Formally, the domain discriminators of the two tasks are
defined as:

• Misinformation Detection:
ŷ = fD(z), (4)

where z is the representation of token [CLS].
• Question Answering:

ŷ = fD(zcq), (5)
where zcq is the representation of question-context
tokens.

Regarding the training of the domain discriminator, we
highlight that although the ground truth labels of the target
domain data are not used in our framework, we can still
leverage the domain labels of the target domain data. In this
work, the domain discriminator is a binary classifier, and we
explicitly define the domain label yD of the source domain
data as yD = 0 and the domain label of the target domain
data as yD = 1. Therefore, the training of the domain
discriminator is formulated as:

• Misinformation Detection:

min
fD

E(x,yD)∼X ′

[
l(fD(fe(x)), yD)

]
, (6)

• Question Answering:

min
fD

E(xq,xc,yD)∼X ′

[
l(fD(fe(xq,xc)), yD)

]
, (7)

where X ′ represents the merged datasets of both source
domain and target domain training data with domain labels.

Adversarial Domain Mixup. After the domain discrim-
inator is trained, we show how to establish the adversarial
domain mixup in the latent feature space of the model.
Intuitively speaking, the poor generalization of the pre-
trained model on target domain data is due to the large gap
between the source domain and target domain. In return,
bridging the gap between the source and target domains
could contribute to the domain adaptation of the model.
To achieve this goal, we propose to directly perturb the
latent representations of the input data from both source
domain and target domain towards the decision boundary
of the domain discriminator as shown in Figure 2b. To this

end, the perturbed representations (i.e., domain adversarial
representations) from both domains could become closer
to each other, indicating a reduced domain gap. Herein,
the generated domain adversarial representations from both
domains form a smoothed intermediate domain mixup in
the latent feature space of the model.

Mathematically, the optimal perturbation δ∗ to perturb
the latent representation z of a specific training sample x
could be found by solving an optimization problem:

A(fe, fD,x, yD, ϵ) =max
δ

[
l(fD(z + δ), yD)

]
s.t. ∥δ∥ ≤ ϵ, z = fe(x).

(8)

Note that in the above equation, we introduce a hyper-
parameter ϵ to bound the norm of the perturbation δ, so
that the infinity solution could be avoided. Moreover, we
highlight that δ is not a constant. Instead, for a specific
training sample x, we generate its unique perturbation δ.
For different training samples, the perturbations are also
different. Eventually, after applying Equation 8 to all train-
ing samples in the merged training set X ′, we obtain the
adversarial domain mixup Z ′:

Z ′ = {z′|z′ = z +A(fe, fD,x, yD, ϵ), (x, yD) ∈ X ′}
:= Z ′

s ∪ Z ′
t,

(9)

where Z ′
s are perturbed source features and Z ′

t are per-
turbed target features. We use the projected gradient descent
(PGD) to approximate the solution of Equation 8.

4.2 Contrastive Domain Adaptation

Next, we propose a contrastive adaptation loss over Z ′ to
further adapt knowledge from the source data domain to the
target data domain. By minimizing the proposed contrastive
adaptation loss, the domain discrepancy between the source
domain and the target domain will be reduced. Inspired by
[6], our proposed contrastive adaptation loss is two-fold.

Firstly, we reduce the domain discrepancy among intra-
class representations. That is, if input data of the representa-
tions is from the same class but from different data domains,
we will reduce the discrepancy among these representations
by minimizing an adaptation loss term. For instance, in the
misinformation detection task, if a representation from the
source data domain has a label of being true (or false) and a
representation from the target data domain has a pseudo
label of being true (or false), then these two representa-
tions are considered as intra-class representations and we
reduce the domain discrepancy between them. However,
in the question answering task, the label of input data is
not true or false, but a span of answer. Therefore, in this
case, we define the representation of all answer tokens as
one class, and the representation of the combined question-
context tokens as another class. We decrease the discrepancy
among answer representations and among question-context
representations, respectively. For instance, if a representa-
tion from the source data domain represents the span of
answer and a representation from the target data domain
also represents the span of pseudo-labeled answer, then
these two representations are intra-class representations and
we reduce the domain discrepancy between them.
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The second level of our contrastive adaptation loss is de-
fined for inter-class representations. As shown in Figure 2c,
we enlarge the discrepancy of the representations from
different classes. More specifically, in the misinformation
detection task, the discrepancy between the representations
of true information and false information will be enlarged,
and in the QA task, the discrepancy between the answer
representation and the question-context representation will
be increased. As argued in [6], since the models are trained
using labeled source domain data, they can effectively dis-
tinguish the representations of source domain data from
different classes. However, in the target domain, without
any adapted knowledge, the models tend to make mistakes
in terms of recognizing the class of the representations.
Therefore, maximizing the inter-class discrepancy could
help the model to identify the class of the representations.
In terms of COVID-19 misinformation, this helps the model
to identify whether a representation of COVID-19 data is
from the true class (i.e., true information) or the false class
(i.e., false information). As for the COVID-19 news QA, the
model learns to predict whether a representation represents
the answer tokens or just question-context tokens.

In terms of computing our contrastive adaptation loss,
we propose to measure the discrepancy among token classes
using radial basis functions (RBF). In [28], RBF is proved to
be an efficient tool to quantify uncertainty in deep neural
networks. Recall pseudo labeling is used in our frame-
work to classify the representations of target domain data
into different classes, so that we can compute the intra-
class loss and inter-class loss introduced above. Since our
pseudo labeling process is designed to automatically filter
out low-confident labels for the target domain data, using
RBF to measure the discrepancy among token classes could
efficiently improve the quality of the pseudo labels and
ultimately contribute the domain adaptation training of
the model. Formally, with the definition of the RBF kernel
k(z1, z2) = exp[−∥z1−z2∥2

2σ2 ], we define the class-aware loss
for the misinformation detection task and the question an-
swering task as follows:

• Misinformation Detection:

Lcon(Z ′) =

−
|Z′

s|∑
i=1

|Z′
t|∑

j=1

1(y
(i)
s = 0, ŷ

(j)
t = 0)k(z

(i)
s , z

(j)
t )∑|Z′

s|
l=1

∑|Z′
t|

m=1 1(y
(l)
s = 0, ŷ

(m)
t = 0)

−
|Z′

s|∑
i=1

|Z′
t|∑

j=1

1(y
(i)
s = 1, ŷ

(j)
t = 1)k(z

(i)
s , z

(j)
t )∑|Z′

s|
l=1

∑|Z′
t|

m=1 1(y
(l)
s = 1, ŷ

(m)
t = 1)

+

|Z′
s|∑

i=1

|Z′
s|∑

j=1

1(y
(i)
s = 1, y

(j)
s = 0)k(z

(i)
s , z

(j)
s )∑|Z′

s|
l=1

∑|Z′
s|

m=1 1(y
(l)
s = 1, y

(m)
s = 0)

+

|Z′
t|∑

i=1

|Z′
t|∑

j=1

1(ŷ
(i)
t = 1, ŷ

(j)
t = 0)k(z

(i)
t , z

(j)
t )∑|Z′

t|
l=1

∑|Z′
t|

m=1 1(ŷ
(l)
t = 1, ŷ

(m)
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(10)

where ŷt is the pseudo label of the target domain
samples and z denotes the representation of token
CLS.

• Question Answering:

Lcon(Z ′) = − 1

|Z ′|

|Z′
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t|∑
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t|∑
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|Z′
t|∑
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k(ẑ
(i)
t,a, ẑ

(j)
t,cq),

(11)

where ẑt,a and ẑt,cq are the mean vectors of repre-
sentation of pseudo labeled answer and question-
context tokens.

Overall Contrastive Adaptation Loss. Now, we merge
the cross-entropy loss of the task classification problem and
the above contrastive adaptation loss into a single optimiza-
tion objective for the COVID model:

Lall = Lce(X ) + λLcon(Z ′), (12)

where Lce is the cross-entropy loss over the training data
with ground-truth label or the pseudo label, and λ is the
hyperparameter to adjust the domain adatation strength. In
our experiments, we sample mini-batches of source domain
data and target domain to compute the overall loss instead
of computing all combinations for Lcon. Moreover, we com-
pute the RBF kernel with multiple bandwidths for Lcon,
since multiple bandwidths of the RBF kernel encourage
the model to learn a smoothed and generalized feature
space [6]. Finally, we highlight that the intrinsic difference
between the misinformation detection task and the QA task
leads to the different designs of our solutions. Comparing
Equation 10 and Equation 11 when computing the con-
trastive loss, the criterion used to determine intra- or inter-
data points are drastically different in these two tasks.

4.3 Overall Framework

The overall framework is summarized in Algorithm 1. With
the trained model f = fe◦fy , we firstly compute the pseudo
labels for the target domain data within a mini-batch (Line
7-Line 8). Line 9 - Line 16 show the process of establishing
the adversarial domain mixup by performing PGD with
fD. Next, we compute our contrastive loss (Equation 12)
over the generated adversarial domain mixup to update
the model f (Line 17 - Line 18). Note that the quality
of the adversarial domain mixup is highly related to the
accuracy of the domain discriminator due to the fact that
the adversarial domain mixup is established by the domain
discriminator. Therefore, after we update the COVID-19
misinformation detection model or the COVID-19 news
question answering model, the domain discriminator is also
updated using training data with domain labels from source
domain and target domain (Line 19 - Line 20).

Different from previous domain adaptation work in NLP
tasks [14], [26], we leverage the power of adversarial exam-
ples to establish a smoothed intermediate domain mixup

This article has been accepted for publication in IEEE Transactions on Emerging Topics in Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TETC.2024.3354419

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

Algorithm 1: Contrastive Adversarial Domain
Mixup
1 Inputs Source data X s, unlabeled target data X t,

pre-trained model f = fe ◦ fy , pre-trained domain
discriminator fD ;

2 Hyperparameters: Number of iteration N , batch size B,
confidence threshold τ , scaling factor λ adversarial
radius ϵ, number of steps for PGD K and step size of
PGD η;

3 Output: domain adapted model f ;
4 for training iterations do
5 Load a mini-batch Ms from X s ;
6 Load a mini-batch Mt from X t ;
7 Compute pseudo labels for Mt;
8 Filter Mt with minimum confidence threshold τ ;
9 for xi ∈ Ms ∪Mt do

10 Compute zi = fe(xi) ;
11 Initialize z′

i = zi;
12 for k = 1, 2, ..., K do
13 L(z′

i) = l(fD(fe(z
′
i)), yD) ;

14 z′
i =

∏
B(zi,ϵ)

(z′
i + ηsign∇z′

i
L(z′

i)), where
∏

is the projection operator ;
15 end
16 end
17 Compute Equation 12 over the adversarial domain

mixup and the training data Ms ∪Mt ;
18 Perform backpropagation and update f ;
19 Compute Equation 6 or Equation 7 over Ms ∪Mt ;
20 Perform backpropagation and update fD ;
21 end

instead of neutralizing the domain information of the rep-
resentation via domain discriminator. Moreover, unlike [13],
where linear interpolation is used to construct the domain
mixup, our domain mixup is generated by the domain
discriminator fD and therefore is non-linear and learnable.
Finally, our two-fold contrastive adaptation loss (i.e., inter-
class loss term and the intra-class loss term) further transfers
knowledge from the source domain to the target unseen
domain. By minimizing the contrastive adaptation loss, our
method minimizes the discrepancy between two domains
via RBF distance and also encourages the model to learn
class-separating features.

5 EVALUATION

5.1 Experimental Design
Datasets: For the misinformation detection task, we use
three source misinformation datasets (GossipCop [29],
LIAR [15] and PHEME [30]) released before the COVID
outbreak and two COVID misinformation datasets (Con-
straint [11] and ANTiVax [10]) collected after the outbreak
as target datasets. As for the QA task, SearchQA [31],
TriviaQA [32] and NewsQA [33] are selected as source
datasets. Moreover, since there is no COVID-19 news QA
dataset from current literature, we create our own COVID-
19 news QA dataset. In particular, we pick the true news
from CoAID [8] dataset as the context, and use a pre-trained
T5 model [34] to generate question-answer pairs. In fact,
CoAID is also a COVID-19 misinformation dataset, but we
noticed that this dataset is extremely imbalanced (more than
90% are true information), which could cause a problem of
labeling shifting [35] in our task. Therefore, we only use it

to generate COVID-19 news question-answer pairs instead
of using it for misinformation detection. The T5 model we
used is pre-trained on SQuAD [36], so SQuAD is not used
as source domain dataset in the QA experiments. In Table 1,
we show two generated COVID-19 news question-answer
pairs. The contexts are true COVID-19 news collected from
social media platforms [8]. For the datasets that do not con-
tain validation and test set, we split the data into training,
validation, and test sets with the ratio of 7:1:2 as in [17], [26].

Table 1: Generated COVID-19 news question-answer pairs.

Context: Reported coronavirus disease COVID-19 cases likely rep-
resent only fraction of all sars-cov-2 virus that causes COVID-19
infections. This may be because unknown proportion of people that
have mild or no symptoms do not seek medical care or do not get
tested when they sought medical care.
Question: What type of virus causes COVID-19 infections?
Answer: Sars-cov-2 virus.

Context: COVID-Net provides national data on laboratory con-
firmed hospitalizations. On April 17, data were added on COVID-
19-associated hospitalizations by age with race and ethnicity in-
formation and on selected underlying medical conditions, such as
asthma cardiovascular disease.
Question: What provides national data on laboratory confirmed
hospitalizations?
Answer: COVID-Net.

Table 2: Supervised training results.

Dataset BA ↑ Acc. ↑ F1 ↑

CoAID 0.8892 0.9720 0.9846
Constraint 0.9350 0.9327 0.9323
ANTiVax 0.9303 0.9191 0.9291

CoAID News - 0.5877 0.6442

Model: Following [26], the commonly used RoBERTa
[2] was selected as the misinformation detection model,
whereas for the QA task we use the BERT-QA model [1], [6],
[14]. Moreover, we also provide supervised training results
of the models to show the domain gap between the source
domain and target domain, which could be regarded as
performance upper bounds of all domain adaptation models
including our CADM+.

Baselines: For COVID-19 misinformation detection and
COVID-19 news question answering, we directly test the
source domain pre-trained models on target domain test set
and use the test results without any domain adaptation as
the naive baseline. Moreover, further state-of-the-art domain
adaptation methods are selected for comparison in both
tasks. The baselines methods are selected based on the code
availability and whether the algorithms’ performance could
be reproduced. In particular, for the misinformation detec-
tion task, we select 1) DAAT [25], where the misinformation
detection model is post-trained to improve the domain-
adversarial adaptation, 2) EADA [26], where energy-based
domain adversarial training is performed using autoen-
coder, and 3) LDM, the linear domain mixup technique
presented in [13]. In comparison, for the QA task, we
select MRQA [14] and CAQA [6] as baseline algorithms for
comparison. However, both methods are modified for a fair
comparison: MRQA is modified to be unsupervised, and the
question generation (QG) of CAQA is removed. Finally, in
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both tasks, all compared methods including ours are trained
using exactly the same labeled source domain datasets and
the unlabeled target domain datasets for fair comparison. As
for evaluation, the adapted models are tested on the target
(COVID) datasets only.

Evaluation Metrics: Regarding the evaluation metrics,
we focus on accuracy (or exact match for QA) and F1
score. However, we argue that in terms of COVID-19 mis-
information detection, it is important to correctly identify
both true information and false information even when
the distribution of the dataset is imbalanced. Therefore, we
also use balanced accuracy (BA) to evaluate the models’
performance in the misinformation detection task. Formally,
balanced accuracy (BA) is defined as the average value of
sensitivity and specificity:

BA =
1

2
(TPR+TNR) =

1

2
(

TP

TP + FN
+

TN

TN+ FP
), (13)

where TPR represents sensitivity and TNR represents speci-
ficity. TP, TN are true positive and true negative, FP and FN
refer to false positive and false negative, respectively.

5.2 Evaluation Results

COVID-19 Misinformation Detection. The first set of ex-
periments are designed to evaluate the efficacy of our
proposed CADM+ framework for the COVID-19 misinfor-
mation detection task. From Table 3, we observe that our
method consistently outperforms all baseline algorithms
in terms of adapting the models to the unseen COVID-19
domain. For instance, consider the setting where the model
is adapted from source domain PHEME to target domain
Constraint. This setting is the most challenging one: the
model can only make random guess on the target Con-
straint dataset (BA=0.4889) without any domain adaptation.
Under this setting, EADA failed to adapt the model by
achieving a balanced accuracy of 0.4944. As for the other
baseline DAAT, the adapted model only performs slightly
better, namely BA=0.5227. In contrast, the performance of
the model trained using our framework could be signifi-
cantly improved (e.g., BA=0.6430). In addition to BA, similar
trends could be observed on other metrics for this chal-
lenging setting as well. Regarding other adaptation settings
with different source and target domain combinations, our
adapted models could still achieve a better performance on
all metrics. For instance, when adapting from LIAR to AN-
TiVAX, compared to non-adapted model, the increase of the
model’s performance on three metrics using our framework
is 30.84%, 45.22% and 83.85%, which is significantly larger
than the best baseline method EADA with 13.59%, 34.74%
and 79.96%.

Moreover, we also observe that our CADM+ is more
consistent than the other two baseline methods. For in-
stance, regardless of the source domain dataset and target
domain dataset, our method could consistently adapt the
misinformation detection model to the target domain. How-
ever, on some source and target domain combinations, the
baseline methods successfully adapt the model but on other
combinations the baseline methods simply fail. For instance,
compared to the results without any domain adaptation,
the gap between source domain GossipCop and target

domain Constraint could be efficiently reduced using our
method, whereas the domain gap is increased when EADA
is deployed. In terms of the concrete numerical results, the
adapted model trained with our framework could achieve
an increased balanced accuracy of 0.7787 from 0.5638 while
EADA reduces the model’s performance on balanced accu-
racy from 0.5638 to 0.5210.

COVID-19 News Question Answering. The second set
of the experiments is conducted on the COVID-19 News
QA task (Table 4). Since QA is not a binary classification
problem (the number of overall classes is the length of the
context), we only report exact match (E.M.) and F1 scores.
We observe that our framework could better adapt the QA
model from all three source datasets to the target COVID-
19 domain than other two baselines. For instance, compared
to the non-adapted model, the model’s E.M. is increased by
22.16% when adapted from SearchQA to CoAID News using
our framework, which is significantly greater than 2.05% of
MRQA and 9.23% of CAQA. As for the other two source
datasets, our method also outperforms the baseline methods
on both metrics.

Finally, it is expected that the adapted models perform
worse in both misinformation detection and question an-
swering. This is because there is no overlap between the
source datasets and the target COVID dataset. Moreover,
as shown in Table 5, since the source domain is drastically
different from the target COVID domain, and there is no
ground-truth for target domain, adapting the models could
be quite challenging.

5.3 Qualitative Results

Next, we visualize the representations of [CLS] token in
Figure 4 and Figure 5 for COVID misinformation detection
application. From both figures (first rows), it is observed that
the representations of true information and misinformation
are clustered together before adaptation. That is, before
adaptation, there exists no obvious gap between the true
information and misinformation in the features space of
the models. In other words, the classifier fails to correctly
classify a COVID claim being true or false. In comparison,
as shown in the second row of Figure 4 and Figure 5, with
CADM+, the models learn to separate the features of true
information and misinformation. However, we also observe
some mistakes made by CADM+ for data samples near the
decision boundaries of Figure 4 and Figure 5. We discuss
the limitation of our scheme in the “Limitation and Future
Work” section.

6 LIMITATIONS AND FUTURE WORK

This paper focuses on the unsupervised domain adaptation
problem for COVID-19 information services on social media
data. In our experiments, we show the effectiveness of our
proposed CADM+ framework in terms of adapting the
misinformation detection model and the QA model from the
source training domain to the unseen target COVID domain.
Moreover, we highlight that there exists great potential to
further augment our proposed CADM+ framework based
on the evolving dynamics of the COVID pandemic. Firstly,
with increasing medical research on COVID virus, more
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Table 3: Results of domain adaptation for COVID-19 misinformation detection.

Target Dataset Source Dataset LIAR GossipCop PHEME

Metric BA ↑ Acc. ↑ F1 ↑ BA ↑ Acc. ↑ F1 ↑ BA ↑ Acc. ↑ F1 ↑

Constraint

No Adaptation 0.7231 0.7322 0.7822 0.5638 0.5832 0.7110 0.4889 0.5047 0.6360
DAAT 0.7606 0.7626 0.7795 0.7178 0.7276 0.7806 0.5227 0.5411 0.6763
EADA 0.7776 0.7794 0.7950 0.5210 0.5430 0.6944 0.4944 0.4969 0.6391
LDM 0.7995 0.8075 0.8406 0.5108 0.5336 0.6918 0.5029 0.5262 0.6884

CADM+ (Ours) 0.8288 0.8304 0.8420 0.7787 0.7780 0.7828 0.6430 0.6547 0.7301

ANTiVax

No Adaptation 0.5444 0.4929 0.4162 0.5695 0.6501 0.7673 0.5294 0.6196 0.7531
DAAT 0.6228 0.5778 0.5393 0.6692 0.7161 0.7918 0.5895 0.6498 0.7518
EADA 0.6184 0.6642 0.7490 0.5509 0.6434 0.7709 0.5411 0.6328 0.7632
LDM 0.5009 0.3973 0.0152 0.5000 0.6050 0.7539 0.5036 0.6076 0.7549

CADM+ (Ours) 0.7123 0.7158 0.7652 0.7522 0.7701 0.8152 0.6752 0.7323 0.8107

True False Wrong

(a) Unadapted: LIAR (b) Unadapted: GossipCop (c) Unadapted: PHEME

(d) Adapted from LIAR (e) Adapted from GossipCop (f) Adapted from PHEME

Figure 4: Constraint Adaptation: adapted from source datasets (i.e., LIAR, GossipCop, PHEME).

labeled COVID data become available. Although enabling a
pure supervised training of the COVID models could still be
too expensive, it is feasible to enable semi-supervised train-
ing of the model using limited labeled COVID data. In terms
of CADM+, one possible research direction is to add a new
semi-supervision module to the current CADM+ framework
to further improve its domain adaptation performance.

We further discuss some limitations of CADM+. Firstly,
CADM+ mainly performs the adaptation w.r.t. the input
data (latent representations). However, in addition to the
domain shift of input data, another key factor that leads
to a large domain discrepancy is the shift of labels, which
is not considered in CADM+. With more labeled COVID
training data, it is also possible to further enhance the

CADM+ by adding a new label correction module, where
the main challenge is the unknown distribution of target
domain labels. As such, CADM+ could reduce the domain
discrepancy with respect to the joint distribution of in-
puts and labels. Secondly, we observe another limitation of
CADM+: degraded performance on the samples near the
decision boundary. According to Figure 4 and Figure 5, it is
observed that in general, the adapted models are still prone
to making wrong predictions on the samples that are close
to the decision boundary. For instance, in Figure 4d and
Figure 5d, when the samples are close to the other class, then
error occurs with a larger probability. To address such hard
samples, uncertainty-based importance re-weighting tech-
niques [37] could be adopted to improve the performance
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True False Wrong

(a) Source Domain: LIAR (b) Source Domain: GossipCop (c) Source Domain: PHEME

(d) Adapted from LIAR (e) Adapted from GossipCop (f) Adapted from PHEME

Figure 5: ANTiVax Adaptation: adapted from source datasets (i.e., LIAR, GossipCop, PHEME).

Table 4: Results of domain adaptation for COVID-19 news
question answering.

Source Dataset Target Dataset CoAID News

Metric E.M. ↑ F1 ↑

SearchQA

No Adaptation 0.3412 0.4239
MRQA (supervised) 0.5995 0.6546

MRQA (unsupervised) 0.3482 0.4291
CAQA 0.3727 0.4771

CADM+ (Ours) 0.4168 0.4873

TriviaQA

No Adaptation 0.3642 0.4504
MRQA (supervised) 0.5922 0.6492

MRQA (unsupervised) 0.3798 0.4623
CAQA 0.3808 0.4605

CADM+ (Ours) 0.3913 0.4778

NewsQA

No Adaptation 0.4724 0.5899
MRQA (supervised) 0.6132 0.6641

MRQA (unsupervised) 0.4899 0.5992
CAQA 0.5095 0.6047

CADM+ (Ours) 0.5160 0.6106

of CADM+.

7 DISCUSSION

The main challenge of our domain adaptation setting lies
in the emerging nature of the target domain (e.g., COVID-
19). The novel virus (i.e., COVID-19) itself is a new bio-
logical and medical concept, and there is no authoritative
and ground-truth knowledge of the training samples in

Table 5: Detailed comparison between source domain and
target domain.

Source
Dataset

Domain Training
Label

Example

LIAR Politics Available Newly elected republi-
can senators sign pledge
to eliminate food stamp
program in 2015.

GossipCop Gossip Available Cindy Crawford’s
daughter Kaia Gerber
wears a wig after dining
with Harry Styles.

PHEME Rumors Available Charlie Hebdo became
well known for publish-
ing the Muhammed car-
toons two years ago.

Target
Dataset

Domain Training
Label

Example

Constraint COVID Unavailable Heart conditions
like myocarditis are
associated with some
cases of COVID19.

ANTiVax COVID Unavailable The vaccine can cause in-
fertility.

this emerging domain at the early stage of the pandemic.
Moreover, unlike traditional domain adaptation settings
in misinformation detection, where the source domain or
target domain are daily-life related (such as political news,
celebrity gossips), COVID-19 is relatively new and adapting
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the knowledge from existing data to a new target domain
could be more challenging. For instance, celebrities might
get involved in political events, indicating potential over-
laps between political news domain and the celebrity gossip
domain. However, due to the novelty and emergency nature
of COVID-19 as the target domain, the domain discrepancy
between the source and target domain could be larger than
normal, making the domain adaptation task in such settings
more challenging and interesting.

8 CONCLUSION

In this paper, we present a novel unsupervised domain
adaptation framework for COVID-19 information services
on social media data. Our unsupervised framework is moti-
vated by the fact that the ground-truth labels of the COVID-
19 data are not always available but the need for high-
quality information services is always persistent and urgent.
In addition to COVID-19, our method has the potential
to provide efficient solutions to many other information
services (e.g., sentiment analysis, hate speech detection) on
social media platforms, when the training labels of target
domain data are missing. Our unsupervised domain adap-
tation is realized via a novel adversarial domain mixup and
contrastive learning. Extensive experimental results on two
real-world COVID-19 information services suggest that our
method could successfully and efficiently adapt the models
from source domain to the target domain without requiring
labels of COVID-19 data for both tasks.
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