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Optimizing Privacy-Preserving Outsourced
Convolutional Neural Network Predictions
Minghui Li, Sherman S. M. Chow, Shengshan Hu, Yuejing Yan, Chao Shen, and Qian Wang

Abstract—Convolutional neural network is a machine-learning model widely applied in various prediction tasks, such as computer
vision and medical image analysis. Their great predictive power requires extensive computation, which encourages model owners to
host the prediction service in a cloud platform. Recent researches focus on the privacy of the query and results, but they do not provide
model privacy against the model-hosting server and may leak partial information about the results. Some of them further require
frequent interactions with the querier or heavy computation overheads, which discourages querier from using the prediction service.
This paper proposes a new scheme for privacy-preserving neural network prediction in the outsourced setting, i.e., the server cannot
learn the query, (intermediate) results, and the model. Similar to SecureML (S&P’17), a representative work that provides model
privacy, we leverage two non-colluding servers with secret sharing and triplet generation to minimize the usage of heavyweight
cryptography. Further, we adopt asynchronous computation to improve the throughput, and design garbled circuits for the
non-polynomial activation function to keep the same accuracy as the underlying network (instead of approximating it). Our experiments
on MNIST dataset show that our scheme achieves an average of 122×, 14.63×, and 36.69× reduction in latency compared to
SecureML, MiniONN (CCS’17), and EzPC (EuroS&P’19), respectively. For the communication costs, our scheme outperforms
SecureML by 1.09×, MiniONN by 36.69×, and EzPC by 31.32× on average. On the CIFAR dataset, our scheme achieves a lower
latency by a factor of 7.14× and 3.48× compared to MiniONN and EzPC, respectively. Our scheme also provides 13.88× and 77.46×
lower communication costs than MiniONN and EzPC on the CIFAR dataset.

Index Terms—Secure outsourcing, Machine learning, Convolutional neural network, Homomorphic encryption
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1 INTRODUCTION

MACHINE learning (ML) [1] performs well in many
applications and has been widely used (e.g., [2], [3],

[4]). Neural networks, which identify relationships
underlying a set of data by mimicking how the human
brain operates, have recently gained extensive attention.
Convolutional neural networks (CNN), based on
biologically-inspired variants of multi-layer perceptrons,
are proven to be useful in medical image analysis and
recognition of images and videos.

With the popularity of machine-learning-as-a-service
(MLaaS), the model owners tend to host the model in the
cloud-based MLaaS for providing prediction services.
Nevertheless, it is tempting for an adversary to steal the
model [5], pirate it, or use it to provide a commercial
prediction service for profits [6] since it is a valuable asset.
Moreover, with the knowledge of the model, the risk of

• M. Li, and Q. Wang are with the School of Cyber Science and Engineering,
School of Computer Science, Wuhan University, Wuhan 430072, Hubei,
China, and State Key Laboratory of Cryptology, P.O. Box 5159, Beijing,
100878, China. E-mail: {minghuili, qianwang}@whu.edu.cn

• S. Chow is with the Department of Information Engineering, The Chinese
University of Hong Kong, Hong Kong. E-mail: sherman@ie.cuhk.edu.hk

• S. Hu is with the Services Computing Technology and System Laboratory,
Cluster and Grid Computing Laboratory, National Engineering Research
Center for Big Data Technology and System, School of Cyber Science and
Engineering, Huazhong University of Science and Technology, Wuhan
430074, Hubei, China. E-mail: hushengshan@hust.edu.cn

• Y. Yan is with State Key Laboratory of Information Engineering in
Surveying, Mapping, and Remote Sensing, Wuhan University, Wuhan
430072, Hubei, China. E-mail: yjyan@whu.edu.cn

• C. Shen is with School of Cyber Security, School of Electronic and
Information Engineering, Xi’an Jiaotong University, Xian 710049,
Shaanxi, China. E-mail: cshen@sei.xjtu.edu.cn

compromising the model privacy is higher since white-box
attacks can infer more information than black-box attacks,
e.g., membership inference attack [7], [8], [9] for
determining if a specific sample was in the training dataset.
Knowing the model also makes adversarial example
attacks [10], [11], [12], [13] more effective. A tiny
perturbation of the input can deceive the model and
threaten its accuracy.

Outsourcing the model and the prediction service to any
untrusted cloud platform (say, for relieving from the cost of
maintaining an online server) thus comes with great privacy
and security implications. This paper aims to propose an
efficient prediction service that ensures model privacy, i.e.,
keeping the model private from the querier (as most existing
works) and any hosting server.

1.1 Related Work
Techniques in preserving privacy in neural network
prediction can be broadly categorized into differential
privacy, trusted processors, and cryptography. Differential
privacy [14], [15] adds noise without sacrificing too much
data utility, but it cannot ensure data privacy as much as
the other two classes of techniques. Trusted processor (e.g.,
SGX) approaches [16], [17], [18], [19], [20] work on the data
within the trusted perimeter, but they are subjected to the
memory constraint (currently 128MB) which can be easily
exceeded by a specific layer of a deep neural network.
Cryptographic approaches do not have these problems but
with higher overheads. Ensuring privacy with a tailored
cryptographic design is a recurrent research problem.

Many existing schemes protect the privacy of the query
from the server. Yet, they consider the model owner is the
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server performing the prediction tasks, i.e., the prediction
service only works with the plaintext knowledge of the model.
Some works [21], [22] use additive homomorphic
encryption to perform operations over the encrypted query
and the clear model. Others [23], [24], [25], [26], [27] design
secure two-party computation (S2C) protocols for various
kinds of machine-learning computations. MiniONN [23]
and Gazelle [24] adopted secret sharing in which the query
is secret-shared (between the user) with the server.
DeepSecure [25] preprocesses the data and the neural
network before S2C but leaks some information about the
parameters. XONN [26] ‘‘replaces’’ the matrix
multiplication with XNOR, which is virtually free in GC.
Yet, this scheme only applies to binary neural networks,
i.e., the parameters are binary. EzPC [27] proposes a
compiler that translates between arithmetic and boolean
circuits. However, the S2C-based approach often expects
the queriers to remain online and interact with the server
continuously, thus bringing some burden to the queriers
and incurring higher network round-trip time.

Fully-homomorphic encryption (FHE) [28] allows
processing (any polynomial functions over) encrypted data.
It is thus a handy tool for not only processing the query in
an encrypted format but also processing over an encrypted
model. Bost et al. [29] considered various machine-learning
classifications (e.g., hyperplane decision-based classifiers,
naı̈ve Bayes classifiers, decision trees) over FHE-encrypted
data. In the case of decision trees, Tai et al. [30] managed to
use only additive HE instead of FHE to support S2C
evaluation, but it is subject to the limitation that the server
needs to know the model in clear. Using multi-key FHE,
Aloufi et al. [31] considered secure outsourcing of
decision-trees evaluation. The evaluation results can only
be decrypted with the help of multiple secret keys from
multiple parties. Chow [32] provided a brief overview of
the state-of-the-art in privacy-preserving decision tree
evaluation. All these works did not consider neural
networks. Indeed, processing an FHE-encrypted neural
network directly without optimization is time-consuming.
FHE also fails to cover common non-polynomial operations
in neural networks. CryptoDL [33] and E2DM [34]
approximate them by polynomials, which degrades the
prediction accuracy. A major drawback is that these
approaches require the model owner to encrypt the model
w.r.t the public key of each querier. It not only does not
scale when there are multiple queriers, but also increases
the risk of model leakage since any querier has the power
to decrypt the model.

1.2 Two-Server Computation Model

To reduce the use of cryptographic techniques, many
works [35], [36], [37], [38], [39] exploited the non-colluding
assumption for the possibility of using lightweight
cryptographic primitives, such as replacing the use of FHE
with additive HE [37], [38]. SecureML [40] uses additive
secret sharing [41] to share the model among two servers.
The querier also secret-shares the query across the servers.
To carry out prediction, the two servers interact with each
other and eventually derive their corresponding share of
the prediction result. The querier can then obtain the final

TABLE 1
Comparison of related work

Privacy

Accuracy Efficiencymodel
para.

inter.
data query

CryptoNets [21] 7 3 3 Low Medium

CryptoDL [33] 3 3 3 Low Medium

E2DM [34] 3 3 3 Low Medium

XONN [26] 7 3 3 Medium High

DeepSecure [25] 7 3 3 High Medium

SecureML [40] 3 3 3 High Medium

MiniONN [23] 7 3 3 High High

Gazelle [24] 7 3 3 High High

EzPC [27] 7 3 3 High High

Our Scheme 3 3 3 High High

result by merging both shares locally. The benefit of using
secret sharing is that both servers can operate over the
secret share, without knowing the underlying secret,
almost as efficient as the operating over the secret itself.
When the servers do not collude, none of the respective
shares reveals anything about the secret.

To speed up the online (inner-product) computation,
SecureML generates Beaver’s multiplication triplet [42] for
additive sharing in an offline preprocessing phase. For the
non-polynomial operation (i.e., comparison), they use Yao’s
garbled circuits (GC) [43] for boolean computations. Yet,
SecureML only focuses on simple neural networks (and
linear/logistic regression) without considering the more
complex convolutional neural networks.

Looking ahead, our scheme follows this design and
incorporates efficiency improvement over it. Fig. 1
overviews such a design, to be explained in Section 3.1.

Table 1 coarsely compares existing schemes. It is fair to
say that there is no outsourcing solution with model privacy
and satisfactory performance in accuracy and efficiency.

1.3 Our Contributions

proposes a new scheme that can simultaneously protect the
query, the model, any intermediate results, and the final
prediction results against the servers. Our contributions lie
in maintaining high accuracy and efficiency, which are
summarized below.
• We design protocols for different stages of the

convolutional neural network prediction.
• We accelerate the triplets generation [40], [42] using

single-instruction-multiple-data (SIMD) [44]. We also
adopt asynchronous computation to speed up both
offline and online computations.

• For non-polynomial activation functions, we design a
series of garbled circuits for S2C between the two
servers. In contrast to existing approaches, which only
approximate the activation functions by polynomials,
our approach preserves the accuracy.
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TABLE 2
Notations

C (m×m) convolutional kernels of CNN

f(x) non-polynomial activation function

G original image (of pixel size n× n)

H convoluted image

J activated image

q × q size of the pooling window

K down-sampled image

W weight matrix in fully-connected layer

F prediction results

· inner product operation

• We also replace the non-polynomial max-pooling
function with the average-pooling function, which is a
linear function for further efficiency improvement. In our
experiment, we train with the MNIST dataset and CIFAR
dataset. Our results demonstrate that the final accuracy
of average-pooling is comparable to that of max-pooling.

• Our experiments on MNIST dataset show that our
scheme achieves 122×, 14.63×, and 8.19× lower latency
than SecureML [40], MiniONN [23], and EzPC [27],
respectively. For the communication costs, our scheme
outperforms SecureML by 1.09×, MiniONN by 36.69×,
and EzPC by 31.32×. Our scheme also incurs 7.14× and
3.48× lower computation costs, and 13.88× and 77.46×
lower communication costs, than MiniONN and EzPC
on the CIFAR dataset.

• We provide a security analysis in the simulation
paradigm to show the privacy of our scheme.

2 PRELIMINARY

2.1 Convolutional Neural Network (CNN) and Notations
We use image processing as a running example since CNN
is good at such kind of tasks. A typical CNN consists of
four classes of layers. The core one is the convolutional layer.
It computes the convolution, essentially an inner product,
between the raw pixel values in each local region of the
image and a set of the convolutional kernel. Table 2 lists
our major notation. For the inner product (denoted by ·) of
two matrices, we first transform the matrices into vectors.

Let G be the query image as an n×n matrix of 8-bit pixel.
For simplicity, we consider only one convolution kernel C
each of size m ×m (i.e., the padding mode is ‘‘same’’). The
convolution transforms G into a matrix H.

After the convolutional layer, it is usually the activation
layer, which applies an element-wise non-polynomial
activation function for increasing the nonlinear properties
of the model. We use the most fashionable ReLU function,
which only keeps the positive part of any real-valued input
(i.e., f(x) = max(0, x)). We let J be the image activated by
f(x), which remains of size n× n.

The pooling layer performs a down-sampling along the
spatial dimensions while retaining critical information. The
usual ones are max-pooling and average-pooling, which

outputs the maximum or the average value of the pool. The
size of the pool is q × q. The resulting smaller image K is of
size (n/q)2.

The final layer is the fully-connected layer. The image
matrix in the previous layer is first transformed into a
column vector of dimension being the neuron numbers of
the first layer in the fully-connected layer, i.e., each element
in the vector is the input of the corresponding neuron.
Every neuron in the previous layer is connected to every
neuron in the next layer. The weight matrix of the
fully-connected layer is denoted by W. By the scalar
product of the output of the previous layer and the
corresponding weight matrix, we obtain a column vector,
each of its elements corresponds to the input of the next
layer. The output of the last layer is deemed as the final
prediction results.

The classes with the desired scores form the final
prediction result F , which correspond to the most probable
category. Our goal is to let the querier learn F without
revealing the query G and the neural network to the
servers.

2.2 Cryptographic Tools

2.2.1 Secure Two-Party Computation (S2C)

S2C allows two parties to jointly compute a function over
their private inputs while warranting the correctness. No
party learns anything about the other’s input beyond what
is implied by the function. Garbled circuits proposed by
Yao [43] can evaluate arbitrary function represented as a
boolean circuit. During the evaluation, no party learns
anything about the input data of others beyond what is
implied by the final results.

2.2.2 Secret Sharing

Many S2C protocols [45] operate on secret-shared inputs.
Secret sharing allows one to distribute a secret by
distributing shares to each of many parties. In (t, n)-Shamir
secret sharing [41], there are n shares, which are random
elements of a finite field. Any set of at least t shares allows
recovery of the secret value via Lagrange interpolation of a
degree (t − 1) polynomial embedding the secret. Any
non-qualifying set of shares looks randomly distributed,
which provides perfect confidentiality.

In this paper, we use (2, 2)-secret sharing or simply
additive secret sharing, in which the two shares add up to
the secret value in the field. Specifically, consider the secret
to be shared is s, which is encoded as a t-bit string. One
can pick a t-bit string r uniformly at random. The shares
are r and s − r mod 2t. For sure, r alone is random, and
s− r mod 2t alone is random too since, for every candidate
s′, one must be able to find the corresponding r′ such that
s′ − r′ = s− r due to the existence of the additive inverse.

We operate on the secret-shared values extensively. We
use a unified notation of superscript 1 or 2 to denote the
shared information of servers S1 or S2. For examples, the
shared image held by S1 and S2 are G1 and G2 respectively,
and the i-th row and j-th column entry held by S1 are G1i,j .
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Offline triplet	
generation
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H1

Fig. 1. An overview of our scheme: ReLU means rectified linear unit, which is an activation function. The notations G,H,J ,K,F are described in
Table 2. The superscript 1 or 2 denotes the secret-shared information belong to S1 or S2.

2.2.3 Homomorphic Encryption (HE)
HE (e.g., [28], [46]) allows computations over encrypted
data without access to the secret key. Decrypting the
resultant ciphertexts gives the computation result of the
operations as if they had been performed on the plaintext.
For the public/private key pair (pk , sk), and an encryption
of x denoted by JxKpk , we have homomorphisms ⊕ and ⊗
where JaKpk ⊕ JbKpk = Ja + bKpk , JaKpk ⊗ JbKpk = Ja× bKpk .
Following MiniONN [23], this work uses the ring-based
FHE scheme called YASHE [46]. It offers a plaintext space
that is large enough for usual computation. With
SIMD [44], 4096 independent plaintexts in our application
can be packed to one ciphertext and operated in parallel,
which reduces the communication and computation.

3 OUR CONSTRUCTION

3.1 System Model and Threat Model
Fig. 1 illustrates our system model. In an initialization
stage, the model owner (not depicted) secret-shares the
model (including the convolutional kernel and the weight
in the fully-connected layer) between two servers, S1 and
S2. One of them also needs to set up a public/private key
pair, to be described in Section 3.3.1. Such public key is just
for accelerating the triplet generation in an offline
preparation stage, but not used in the online computation.
Section 3.2 discusses the triplet generation in detail.

To use the prediction service, user U secret-shares the
query into two shares and send them to S1 and S2,
respectively, to be described in Section 3.3.2. S1 interacts
with S2 to make predictions based on the secret shares.

For each stage of the online prediction (including
convolution computation, activation computation, pooling
computation, fully-connected layer), we design secure
interactive protocols to achieve effective computation. Our
protocols rely on the fact that the input (output) of each
stage is secret-shared between two servers, and thus the
sum of computation results from the two shares is equal to
the computation result from the original input.
Section 3.3.3 to Section 3.3.6 discuss the computation of

each layer. To further reduce the online overheads, we
design the accelerated asynchronous online computations
as presented in Section 3.4. After interactions, the servers
derive and return their corresponding shared results to U ,
who can then recover the real prediction result locally.

We assume that S1 and S2 are honest-but-curious and
do not collude with each other. Most service providers are
motivated to maintain their reputation instead of risking it
with collusion. With this assumption, our goal becomes
ensuring both S1 and S2 cannot learn any information
about the model, the query from U , and the (intermediate)
prediction results. Intuitively, this gives us hope for higher
efficiency without greatly affecting accuracy.

3.2 Accelerated Triplet Generation

The convolutional and fully-connected layers involve many
inner-product computations. To reduce the cost of online
computation over secret shares. S1 and S2 first prepare the
multiplicative triplets [42]. Specifically, S1 holds a1 and b1,
S2 holds a2 and b2. They want to compute the multiplication
of a = a1 + a2 and b = b1 + b2 in a shared form i.e., S1
obtains z1, S2 obtains z2 where z1 + z2 = ab. Fig. 2 presents
the triplets generation algorithm TRIP. We have ab = (a1 +
a2)(b1 + b2) = a1b1 + a1b2 + a2b1 + a2b2. It is easy for S1
and S2 to locally compute a1b1 and a2b2, respectively.

To compute a1b2 and a2b1, S1 first encrypts a1 and b1
and sends the ciphertexts to S2. So, S2 can add V1, V2,
which are HE encryption of a1b2 and a2b1 respectively, and
a random number r together to obtain V3 via additive
homomorphism, without any information leakage. The
shared result of S2 is z2 = a2b2 − r. By decrypting V3, S1
obtains v, which is added to a1b1 to obtain the shared
result z1 = ab− a2b2 + r. In this way, the shared results z1
and z2 can recover the multiplication result z by simple
addition, but neither S1 nor S2 can learn z. This
preparation is done in an offline phase.

The triplet generation involves many homomorphic op-
erations. To further speed up the triplet generation process,
we adopt data packing and asynchronous computation.
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tri← TRIP(a1, b1, (pk , sk); a2, b2, pk)

Require: S1 holds a1, b1 ∈ Z2t and the key pair (pk , sk).
S2 holds the other shares a2 = (a − a1) mod 2t, b2 =
(b− b1) mod 2t and the public key pk .
Ensure: S1 gets tri1 = (a1, b1, z1). S2 gets tri2 =
(a2, b2, z2), where z = z1 + z2 = a · b mod 2t.
At S1 side:

1) Encrypt a1 and b1 to have Ja1Kpk and Jb1Kpk ;
2) Send the ciphertexts Ja1Kpk and Jb1Kpk to S2.

At S2 side:
1) Compute V1 = Ja1 · b2Kpk = Ja1Kpk ⊗ Jb2Kpk ,

V2 = Ja2 · b1Kpk = Jb1Kpk ⊗ Jb1Kpk ;
2) Send V3 = V1 ⊕ V2 ⊕ JrKpk to S1, where r ∈ Z2t ;
3) Set z2 = (a2 · b2 − r) mod 2t.

At S1 side:
1) Decrypt V3 to have v = a1 · b2 + a2 · b1 + r;
2) Set z1 = (v + a1 · b1) = (a · b− a2 · b2 + r) mod 2t.

The triplet is tri = ((a1, a2), (b1, b2), (z1, z2)).

Fig. 2. Secure triplet generation protocol TRIP

3.2.1 Data Packing

Considering n shares 〈ai1, bi1, ai2, bi2〉ni=1, we pack 〈ai1〉ni=1

together to be a single plaintext A1 to generate n triplets
simultaneously. Analogously, we compute the packed data
B1 = 〈bi1〉ni=1, A2 = 〈ai2〉ni=1, and B2 = 〈bi2〉ni=1. The
homomorphic operations are then performed on the
packed data via SIMD [44] to get the packed triplets
((A1, A2), (B1, B2), (Z1, Z2)). They can then be unpacked
to extract the real triplets 〈(ai1, ai2), (bi1, b

i
2), (zi1, z

i
2)〉ni=1,

where zi1 + zi2 = (ai1 + ai2) · (bi1 + bi2). In essence, our
approach reduces the encryption, transmission, addition,
and multiplication costs. We refer to Appendix A for a toy
example for the packed triplet generation process.

3.2.2 Asynchronous Computation

S1 and S2 have to wait for the intermediate results from
the other while generating the triplets. We call this
synchronous computation. To speed it up, we design an
asynchronous computation scheme. Instead of waiting for
the feedback, the servers continue the remaining operations
that do not involve the feedback. For example, S1 can
encrypt b1 when transforming the ciphertext a1. S2 can
encrypt the random number r and compute a2b2 ahead of
time. Such asynchronous computation reduces the waiting
time and the latency. See Appendix A for an illustration.

3.3 Our Scheme

3.3.1 Initialization

S1 possesses one share of the prediction model, i.e., the
convolutional kernel C1 and the weight matrix W1, and the
HE key pair (pk , sk). S2 owns the other share of the
prediction model (i.e., C2 and W2) and the public key pk . U
holds the query image G. They then engage in the TRIP
protocol to generate enough number of multiplicative
triplets tri = ((A1, A2), (B1, B2), (Z1, Z2)).

(H1;H2)← CONV(G1,C1, (pk , sk);G2,C2, pk)

Require: S1 holds the shares of image G1, the
convolutional kernel C1, and the shared triplet (A1 =
〈ak1〉, B1 = 〈bk1〉, Z1 = 〈zk1 〉);
S2 holds shares G2, C2, and shared triplet (A2 = 〈ak2〉,
B2 = 〈bk2〉, Z2 = 〈zk2 〉).
We have zk1 + zk2 = (ak1 +ak2)(bk1 + bk2) or Z1 +Z2 = AB.
Ensure: S1,S2 get shared convoluted images H1,H2

respectively, where H1 +H2 = (G1 + G2) · (C1 + C2).
S1 and S2:

1) for i, j in range n

- Choose the sub-image 〈G1p,q〉
p,q=i+m−1

1

p,q=i−m−1
1

as vector

G̃1i,j and 〈G2p,q〉
p,q=i+m−1

1

p,q=i−m−1
1

as vector G̃2i,j ;

- S1 sends U1 = G̃1i,j −A1, V
1 = C1 −B1 to S2,

S2 sends U2 = G̃2i,j −A2, V
2 = C2 −B2 to S1;

- S1 and S2 compute U = G̃i,j −A, V = C−B;
- S1 computes H1

i,j = −UV + G̃1i,jV + C1U + Z1,
S2 computes H2

i,j = G̃2i,jV + C2U + Z2.
2) Return H1 and H2.

Fig. 3. Secure convolution computation protocol CONV

3.3.2 Secret-Sharing the Query

U randomly secret-shares the pixel Gi,j (i, j ∈ [1, n]) of
query G into G1i,j and G2i,j as Gi,j = G1i,j + G2i,j mod 2t,
where G1i,j is chosen from [0, 2t − 1] uniformly at random.
G1 and G2 are distributed to S1 and S2, respectively. From
the perspective of the server, the received query, either as
G1 or G2, is random by itself.

3.3.3 Convolution Computation

Fig. 3 describes our secure convolution computation
protocol (CONV). Given the secret-shared query (G1, G2)
and the secret-shared convolutional kernel (C1, C2) as
input, the two servers run the CONV protocol and output
the shared results H1 and H2 such that H1 +H2 = G · C.

In more detail, S1 and S2 apply convolution over each
sub-image G̃1i,j and G̃2i,j of the size m ×m from the shared
images G1 and G2, respectively. With tri prepared by the
execution of TRIP in the offline phase, S1 (S2) uses A1 (A2)
as a one-time pad to hide the sub-images G̃1i,j (resp. G̃2i,j)).
Likewise, they use B1 (B2) to hide the convolutional kernel
C1 (resp. C2). After they exchanged these padded shares,
they can locally compute H1 and H2. For correctness:

H1 +H2

=(−UV + G̃1i,jV + C1U + Z1) + (G̃2i,jV + C2U + Z2)

=− UV + (G̃1i,jV + G̃2i,jV ) + (C1U + C2U) + (Z1 + Z2)

=− (G̃i,j −A)V + G̃i,jV + CU + AB

=AV + CU + AB

=A(C−B) + C(G̃i,j −A) + AB

=G̃i,j · C.
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Fig. 4. Our (garbled) circuits for ReLU activation function ActF

3.3.4 Activation Computation
S1 and S2 use the garbled circuit ActF in Fig. 4 to compute
the activation function over H1 and H2. The circuit utilizes
four sub-circuits:
• ADD(a, b) outputs the sum a + b;
• GT(a, b) returns the bit denoting if a > b;
• MUX(a, b, c) outputs a or b according to c, i.e., if c holds,
MUX(a, b, c) = b, otherwise MUX(a, b, c) = a; and

• SUB(a, b) returns the difference a− b.
S1 and S2 run ActF with H1 and (H2, R) being the

respective inputs, where R is a random matrix generated
by S2. The outputs of S1 and S2 are (0|1) · H − R and R,
respectively, where (0|1) denotes a variable of value either
0 or 1 depending on H. To summarize in the standard S2C
notation, ((0|1) · H −R;R)← ActF(H1; (H2, R)).

Specifically, ADD(H1,H2) adds H1 and H2 to get H.
Then, GT(H, 0) compares H and 0 element-wise for ReLU.
The output is a binary matrix B of the same size as H,
where the pixel Bi,j = 1 if Hi,j > 0, 0 otherwise. With B,
MUL(H, 0, B) performs activation function, i.e., if Hi,j > 0
(Bi,j = 1), outputs H, otherwise outputs 0. Finally, SUB
makes element-wise subtraction to have B · H − R, which
is the output of S1. Let J be the activated image B · H.
J 1 = B · H −R. The output of S2 is regarded as J 2 = R.

3.3.5 Pooling Computation
Fig. 5 shows the POOL ‘‘protocol’’ for element-wise
average-pooling over (J 1,J 2) to obtain (K1,K2). S1 and
S2 run POOL with the activated shared data J 1 and J 2

being the respective inputs. The outputs of S1 and S2 are
the secret-shared pooled results K1 and K2, respectively.

The pixel value K1
i,j is the average of the corresponding

q × q pixels in J 1. Analogously, K2
i,j can be derived from

J 2. Employing the average value to replace the original
pixels, we can reduce J to the down-sampled image K of
size dnq e × d

n
q e.

(J 1
1 + J 1

2 + · · ·+ J 1
q2)/q2 + (J 2

1 + J 2
2 + · · ·+ J 2

q2)/q2

=(J1 + J2 + · · ·+ Jq2)/q2.

It is easy to see that they can perform the above compu-
tation locally without any interaction.

3.3.6 Fully-Connected-Layer Computation
Finally, the fully-connected layer, in essence, performs dot
products between the pooled data K and the weight
parameters W, which can be computed using the triplets
similar to that in the convolutional layer illustrated in

(K1;K2)← POOL(J 1;J 2)

Require: S1 holds the shared activated image J1;
S2 holds the other shares J2.
Ensure: S1 obtains the shared pooled image K1;
S2 holds the other shareK2.K1+K2 = pooling(J1+J2).
At S1 side:

1) for i, j in range bnq c
- Compute 1

q×q
∑u=q−1

u=0

∑v=q−1
v=0 J 1

qi−u,qj−v .
- Set the averages as the value of K1

i,j .
At S2 side:

1) for i, j in range bnq c
- Compute 1

q×q
∑u=q−1

u=0

∑v=q−1
v=0 J 2

qi−u,qj−v .
- Set the averages as the value of K2

i,j .

Fig. 5. Secure pooling computation protocol
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Fig. 6. Asynchronous computation for online prediction

Fig. 3. We skip the largely repetitive details. Specifically, S1
and S2 take as input the shares K1,W1 and K2,W2

respectively, resulting in the shared prediction results F1

and F2. User U can merge F1 and F2 to recover the
prediction result F = KW.

3.4 Accelerated Asynchronous Online Computations

Finally, we remark that we can accelerate convolution and
fully-connected layers by simultaneously conducting
computations (of U1, V 1, U2, V 2 (pre-transmission),
U, V,H1

i,j ,H2
i,j (post-transmission)) and transmission (of

U1, V 1, U2, V 2). Fig. 6 depicts asynchronous computations
in the convolution layers. The computation process at the
tail of the arrow is in parallel with the transmission process
at the arrowhead. For example, the pre-transmission and
post-transmission operations of query 2 are in parallel with
the transmission of query 1 and query 3, respectively.

4 PERFORMANCE EVALUATION

4.1 Experimental Setup and Dataset

Our experiments use separate machines for U , S1, and S2.
Each has an Intel 4-Core CPU operating at 1.60 GHz with 8
GB RAM, running Ubuntu 18.04 as the operating system.
We implemented our scheme in C++ with Python binding.
For garbled circuits, we use the ABY library with SIMD
circuits [45]. Following MiniONN, we use YASHE for FHE
and implement it by the SEAL library [47], supporting
SIMD. In YASHE, the degree of the polynomial n is set to
be 4096. In this way, we can pack 4096 elements together.
The plaintext modulus is 101, 285, 036, 033. The length of
the plaintext is 64-bit. The ciphertext modulus is 128-bit.
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1) Convolution: input image 28 × 28, window size
5× 5, stride(1, 1), number of output channels of 16:
R16×576 ← R16×25 × R25×576.

2) ReLU Activation: calculates ReLU for each input.
3) Average Pooling: window size 1× 2× 2 and outputs

R16×12×12.
4) Convolution: input image 12 × 12, window size 5 ×

5, stride (1, 1), number of output channels of 16:
R16×64 ← R16×400 × R400×64.

5) ReLU Activation: calculates ReLU for each input.
6) Average Pooling: window size 1× 2× 2 and outputs

R16×4×4.
7) Fully Connected: fully connects the incoming 256

notes to the outgoing 100 nodes: R100×1 ←
R100×256 × R256×1.

8) ReLU Activation: calculates ReLU for each input.
9) Fully Connected: fully connects the incoming 100

notes to the outgoing 10 nodes: R10×1 ← R10×100×
R100×1.

Fig. 7. The neural network architecture on MNIST dataset

These parameters matter in Section 4.3. All results are
averaged over at least 5 runs, in which the error is
controlled within 3%.

We conduct experiments over two standard datasets,
MNIST [48] and CIFAR-10 [49]. The MNIST dataset [48]
consists of 60, 000 grayscale images of hand-written digit
belong to 10 classes, each 28 × 28 pixels. The CIFAR-10
dataset [49] contains 60, 000 color images of size 32 × 32
pixels in 10 different classes.

Apart from real datasets, a realistic neural network
model is also important to demonstrate our system
performance. Fig. 7 and Fig. 8 detail the neural network
architectures we used (following MiniONN [23]) on
MNIST and CIFAR-10 dataset, respectively.

4.2 Accuracy Evaluation
4.2.1 Effect of Pooling Method
To evaluate the effect of average-pooling and max-pooling,
we trained the model on the MNIST and CIFAR-10
datasets for each pooling method. Fig. 9 and Fig. 10 plot
the accuracy against the training epoch for the MNIST and
CIFAR datasets, respectively. The light blue line represents
the accuracy using max-pooling, and the dark blue line
shows the accuracy using average-pooling.

The accuracy grows with the epochs until stabilized.
For the MNIST dataset, after 10 epochs, the accuracy of
max-pooling reaches 98.7%, while that of average-pooling
is just 98.2%. After 100 epochs, the accuracy of
max-pooling achieves 99.1%, and that of average-pooling
achieves 99.0%, with a difference of 0.1%. For the
CIFAR-10 dataset, after 10 epochs, max-pooling achieves
an accuracy of 72% while average-pooling achieves an
accuracy of 65%. After 100 epochs, the accuracy of
max-pooling is 74%, and that of average-pooling is 73%,
with a difference of 1% again. To conclude, their accuracy
differs by just 1%, which is acceptable in most application
scenarios. That said, we remark that it could be too big in
life-critical applications such as disease diagnosis.

1) Convolution: input image 32 × 32, window size
3× 3, stride(1, 1), number of output channels of 64:
R64×1024 ← R64×27 × R27×1024.

2) ReLU Activation: calculates ReLU for each input.
3) Convolution: window size 3×3, stride(1, 1), number

of output channels of 64: R64×1024 ← R64×576 ×
R576×1024.

4) ReLU Activation: calculates ReLU for each input.
5) Average Pooling: window size 1× 2× 2 and outputs

R64×16×16.
6) Convolution: window size 3×3, stride (1, 1), number

of output channels of 64: R64×256 ← R64×576 ×
R576×256.

7) ReLU Activation: calculates ReLU for each input.
8) Convolution: window size 3×3, stride (1, 1), number

of output channels of 64: R64×256 ← R64×576 ×
R576×256.

9) ReLU Activation: calculates ReLU for each input.
10) Average Pooling: window size 1× 2× 2 and outputs

R64×8×8.
11) Convolution: window size 3×3, stride (1, 1), number

of output channels of 64: R64×64 ← R64×576 ×
R576×64.

12) ReLU Activation: calculates ReLU for each input.
13) Convolution: window size 1×1, stride (1, 1), number

of output channels of 64: R64×64 ← R64×64 ×
R64×64.

14) ReLU Activation: calculates ReLU for each input.
15) Convolution: window size 1×1, stride (1, 1), number

of output channels of 64: R16×64 ← R16×64 ×
R64×64.

16) ReLU Activation: calculates ReLU for each input.
17) Fully Connected: fully connects the incoming 1024

notes to the outgoing 10 nodes: R10×1 ← R10×1024×
R1024×1.

Fig. 8. The neural network architecture on the CIFAR-10 dataset

4.2.2 Effect of Activation Function

Some FHE-based schemes [21], [33] approximate the activa-
tion function by polynomials. Fig. 11 plots the curves of the
original ReLU function and its approximations with differ-
ent degrees, which are polynomial regression function poly-
fit from the Python package numpy.

The approximation is satisfactory when the absolute
value of the input is smaller than 4. However, for larger
input, the error introduced by the approximation becomes
very large, which in turn affects the prediction accuracy.
Our scheme reaches the same accuracy as plaintext
computation by directly designing the garbled circuits for
ReLU, which compute an identical output as ReLU.

4.3 Efficiency Evaluation

4.3.1 Triplet Generation

Table 3 compares our triplets generation method with prior
work in terms of the computational complexity. As Fig. 2,
triplet generation for two n-dimensional shared vectors of
SecureML [40] encrypts each element of the shared vector,
respectively. This process consists of 5n Enc encryptions,
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Fig. 9. Accuracy of the trained model with different pooling methods
on MNIST dataset

Fig. 10. Accuracy of the trained model with different pooling methods
on CIFAR-10 dataset
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Fig. 11. Approximate function of ReLU activation function

TABLE 3
Comparison of triplet generation

Methodology Complexity Required operations

SecureML [40] O(n) n·(5Enc + 2CMul + 2Add +
1Dec)

MiniONN [23] O(n/l)
n
l
·(5Enc + 2CMul + 2Add +

1Dec)

Our Scheme O(n/l)
n
l
·(5Enc + 2CMul + 2Add +

1Dec)

Enc: encryption; CMul: constant multiplication over ciphertext;
Add: addition between two ciphertexts; Dec: decryption

2n CMul multiplications and additions, n decryptions, in
which n ciphertexts are transferred between the two servers.

In contrast, MiniONN [23] and our scheme use the
packing technique. All the l elements can be computed at
the same time. The n-dimensional vector is compressed
into an (n/l)-dimensional vector. This means that the
complexity of MiniONN and our scheme is just O(n/l).

Table 4 shows that our packed triplet generation is
several order-of-magnitude faster. Further adopting
asynchronous computations improves the efficiency by
13.6%, resulting in an overall speedup of 4697×.

4.3.2 Activation Function
To make our contribution stand out, we run the activation
function circuits alone to demonstrate its performance.
Table 5 summarizes our results. We perform our ReLU
with the SIMD circuits and activate all the 4096 packed
data simultaneously. The offline time costs for circuit

TABLE 4
Triplet generation costs (ms)

Original
triplet

generation

Packed
triplet

generation

Packed triplet
generation

with Asyn. Comp.

Performance
Gain

79716.524 19.635 16.970 4697×

TABLE 5
ReLU costs (ms)

Offline Online Avg.
Offline

Avg.
Online

S1 87.815 752.545 0.021 0.184

S2 100.143 516.413 0.024 0.126

TABLE 6
Polynomial approximation

Approximate Function Time
(ms)

Performance
Gain

0.1992 + 0.5002x+ 0.1997x2 19.02 61×

0.1995 + 0.5002x+ 0.1994x2 −
0.0164x3 38.00 123×

0.1500 + 0.5012x+ 0.2981x2 −
0.0004x3 − 0.0388x4 69.62 225×

0.1488 + 0.4993x+ 0.3007x2 +
0.0003x3 − 0.0168x4 69.64 224×

0.1249 + 0.5000x+ 0.3729x2 −
0.0410x4 + 0.0016x6 82.20 265×

generation are 87.815ms and 100.143ms, respectively. The
time consumptions in the online phase are 752.545ms and
516.413ms. The average per-data time costs of the offline
and online computations are 0.045ms and 0.310ms.

Compared with the existing works using approximated
polynomials, our GC-based circuits also provide higher
efficiency. Table 6 illustrates the approximation polynomial
with different degrees. For degree 6, the polynomial is
0.1249 + 0.5000x + 0.3729x2 − 0.0410x4 + 0.0016x6.
Computing it takes 13 multiplications and 4 additions,
which translates to 82.20ms. Our ReLU circuits thus
outperform polynomial approximation by 265 times.
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TABLE 7
Performance of each stage on the MNIST and CIFAR-10 datasets

MNIST CIFAR-10

Phases Stages Latency (s) Stages Latency (s) Stages Latency (s)

Offline
S1 0.219 S1 3.711 – –

S2 0.252 S2 4.231 – –

Online

1. Convolution 0.055 1. Convolution 0.425 10. Average Pooling 0.000

2. ReLU Activation 0.425 2. ReLU Activation 20.304 11. Convolution 0.566

3. Average Pooling 0.001 3. Convolution 9.062 12. ReLU Activation 1.268

4. Convolution 0.098 4. ReLU Activation 20.304 13. Convolution 0.062

5. ReLU Activation 0.317 5. Average Pooling 0.001 14. ReLU Activation 1.269

6. Average Pooling 0.000 6. Convolution 2.266 15. Convolution 0.015

7. Fully connected 0.006 7. ReLU Activation 5.075 16. ReLU Activation 0.317

8. ReLU Activation 0.031 8. Convolution 2.265 17. Fully connected 0.002

9. Fully connected 0.001 9. ReLU Activation 5.076 – –

Total 3.835 76.224

TABLE 8
Performance of the synchronous and asynchronous computations on the MNIST and CIFAR-10 datasets

MNIST dataset CIFAR-10 dataset

Network 1 Network 2 Network 3 Network 4 Network 5

Syn.
Comp

Asyn.
Comp

Syn.
Comp

Asyn.
Comp

Syn.
Comp

Asyn.
Comp

Syn.
Comp

Asyn.
Comp

Syn.
Comp

Asyn.
Comp

Offline Phase (s) 0.007 0.005 0.020 0.016 0.052 0.050 0.471 0.469 7.946 7.845

Online Phase (s) 0.033 0.023 0.050 0.039 0.323 0.319 3.363 3.234 68.278 65.553

Total (s) 0.040 0.028 0.070 0.057 0.375 0.368 3.835 3.703 76.224 73.398

4.3.3 Evaluation on MNIST and CIFAR-10 dataset
Table 7 reports the latency for each stage of the network on
the MNIST dataset (consists of 9 stages as presented in
Fig. 7) and CIFAR-10 dataset (consists of 17 stages as
described in Fig. 8). In the offline phase, the two servers
interact with each other to prepare the triplets and the
ReLU circuits, which costs 0.471s and 7.942s on the MNIST
dataset and CIFAR-10 dataset. In the online phase, the
activation function dominates since it uses garbled circuits.
For the convolution layer, pooling layer, and fully
connected layer, all the computations are executed over
shares, which just takes a little time. Notably, for the client,
encoding the query and decoding the prediction result just
cost 5.568µs and 21.818µs on the MNIST dataset and
CIFAR-10 dataset, respectively.

4.3.4 Evaluation on Different Network Architectures
We conduct experiment over network architectures in five
published works [40], [25], [21], [23], which use a
combination of FC and Conv layers as follows. For
FC(784→ 128), 784 and 128 respectively represent the size
of the input and the output. On the other hand, for
Conv(1 × 28 × 28 → 5 × 13 × 13), the input image is of
size 28 × 28 with 1 channel, the output image is of size

13× 13 with 5 channels. For the square activation function,
it is essentially multiplication operation between two secret
shares. We can achieve this by using the triplet similar to
the convolutional operation in our scheme.
• Network1 [40]: FC(784→ 128)⇒ Square⇒ FC(128→

128)⇒ Square⇒ FC(128→ 10).
• Network2 [25]: Conv(1 × 28 × 28 → 5 × 13 × 13) ⇒

ReLU⇒ FC(845→ 100)⇒ ReLU⇒ FC(100→ 10).
• Network3 [21]: Conv(1 × 28 × 28 → 5 × 13 × 13) ⇒

Square⇒ Pooling(5× 13× 13→ 5× 13× 13)⇒ Conv
(5×13×13→ 50×5×5)⇒ Pooling(50×5×5→ 50×
5× 5)⇒ FC(1250→ 100)⇒ Square⇒ FC(100→ 10).

• Network4 [23]: the same as in Fig. 7.
• Network5 [23]: the same as in Fig. 8.
Table 8 shows the performance of synchronous and

asynchronous computations in both the offline and online
phases on the five networks. For network1, the total time
cost of the existing schemes with synchronous computation
is 0.040s, while the time cost of our scheme with
asynchronous computation is just 0.028s. In other words,
we obtain a 30.0 % performance saving. Analogously, the
savings for network2, network3, network4, and network5
are 18.57%, 1.87%, 3.44%, and 3.71%, respectively. In
short, our asynchronous computation reduces latency.
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Fig. 12. Comparison of the computation overheads Fig. 13. Comparison of the communication overheads

To demonstrate the superiority of our scheme, we
compare with SecureML [40], MiniONN [23], and
EzPC [27]. Fig. 12 and Fig. 13 show the computation and
communication costs on different neural network
architectures, respectively.

On the MNIST dataset (with Network1, 2, 3, 4),
compared with MiniONN [23] (without model privacy),
our scheme performs an average of 14.63× and 36.69×
improvements on computation and communication costs,
respectively. Compared with EzPC [27] (without model
privacy), ours is 8.19× and 31.32× better on average (of
Network1, 2, 3, 4) for the computation and communication
costs, respectively. Compared with SecureML [40] (with
model privacy) using Network1, we provide 122× faster
computation time and 1.09× lower communication cost.

On the CIFAR dataset using Network5, our scheme
achieves 7.14× and 3.48× improvements in reducing
latency compared to MiniONN and EzPC. For the
communication costs, our scheme outperforms MiniONN
by 13.88×, and EzPC by 77.46× times.

5 SECURITY ANALYSIS

Both the query and the model are randomly shared and
distributed to two independent servers. As long as they do
not collude, the privacy of the query and the model are
preserved. More specifically, both servers always process
them either over secret shares or over garbled circuits for
non-linear activation, with the help of pre-computed
triplets, which are independent of the sensitive data. So, no
meaningful information is revealed to either of the servers.

Below we provide a simulation-based proof for security.
Security Definition: Let f = (fU , fS1 , fS2) be a

probabilistic polynomial function and
∏

a protocol
computing f . The user and two servers want to compute
f(G,C1,C2,W1,W2) using

∏
where G is the query image

of the user U , and (C1,W1) and (C2,W2) are the shared
model deposited on the two servers. The view of U during
the execution of

∏
is VU (G,C1,C2,W1,W2) = (G, rU ,mU )

where rU is the random tape of U , and mU is the message
received by U . Simultaneously, the view of S1 and S2 are
defined as VS1(G,C1,C2,W1,W2) = (C1,W1, rS1 ,mS1),
VS2(a, b, c) = (C2,W2, rS2 ,mS2). The protocol

∏
achieving

the function f is regarded as secure if for every possible

input G,C1,C2,W1,W2 of f , there exist the probabilistic
polynomial time simulators ΦU , ΦS1 , and ΦS2 such that,

ΦU (a, fU (G,C1,C2,W1,W2)) ≡p VU (G,C1,C2,W1,W2),

ΦS1(a, fS1(G,C1,C2,W1,W2)) ≡p VS1(G,C1,C2,W1,W2),

ΦS2(a, fS2(G,C1,C2,W1,W2)) ≡p VS2(G,C1,C2,W1,W2),

where ≡p denotes computational indistinguishability.

Theorem 1: The triplet generation protocol in Section 3.2 is
secure against semi-honest adversaries.

Proof : S1 holds the secret key. All the messages passed
from S1 to S2 are encrypted. All those passed from S2 to
S1 are distributed uniformly by adding random data
independent of the data of S2. The view of S1 is
VS1 = (C1,W1, a1, b1, z1), where a1, b1, z1 come from the
triplet of S1. We construct the simulator ΦS1(C1,W1) as:

1) Pick the random integers â1, b̂1, ẑ1 from Z2t .
2) Output ΦS1(C1,W1) = (C1,W1, â1, b̂1, ẑ1).
As the randomness â1 (or b̂1, ẑ1) is generated in the

same manner as a1 (or a1, b1), and independent from the
other data, the distribution of (C1,W1, â1, b̂1, ẑ1) and
(C1,W1, a1, b1, z1) are indistinguishable. Thus we have
proven that VS1 ≡p ΦS1(C1,W1). Analogously,
ΦS2(C2,W2) = (C2,W2, â2, b̂2, ẑ2), VS2 ≡p ΦS2(C2,W2).

Theorem 2: The query distribution protocol in Section 3.3.2 is
secure against semi-honest adversaries.

Proof : User U additively shares the query image into
two parts. The views of the three parties are VU = (G, RG),
VS1 = (C1,W1,G1), VS2 = (C2,W2,G2), where G1 = RG ,
G2 = G −RG . We construct a simulator ΦS1(C1,W1) as:

1) Pick random integers R̂G from Z2t and set Ĝ1 = R̂G .
2) Output ΦS1(C1,W1) = (C1,W1, Ĝ1).
Both RG and R̂G are generated randomly. Hence the

distribution of RG and R̂G are indistinguishable. As a
consequence, we have VS1 ≡p ΦS1(C1,W1). Analogously,
ΦS2(C2,W2) = (C2,W2, Ĝ2), VS2 ≡p ΦS2(C2,W2).

Theorem 3: The convolutional computation protocol in
Section 3.3.3 is secure against semi-honest adversaries.

Proof : The two servers perform the convolution with the
help of triplets. Their views VS1 and VS2 are
(C1,W1,G1,H1, A1, B1, Z1), (C2,W2,G2,H2, A1, B1, Z1)
respectively. We construct a simulator ΦS1(C1,W1) as:

1) Call the triplet generation protocol to have Â1, B̂1, Ẑ1.
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2) Pick the random integers Ĝ1, Û2, V̂ 2 from Z2t .
3) Compute Û = Ĝ1 − Â1 + Û2, V̂ = C1 − B̂1 + V̂ 2.
4) Compute Ĥ1 = −Û V̂ + Ĝ1V̂ + C1Û + Ẑ1.
5) Output ΦS1(C1,W1) = (C1,W1, Ĝ1, Ĥ1).
The distribution of H1 and Ĥ1 are indistinguishable.

Hence VS1 ≡p ΦS1(C1,W1) holds. Analogously, we have
ΦS2(C2,W2) = (C2,W2, Ĝ2, Ĥ2), and VS2 ≡p ΦS2(C2,W2).

Theorem 4: The activation computation protocol in
Section 3.3.4 is secure against semi-honest adversaries.

Proof : The two servers compute the activation function
by using the designed garbled circuits. The view of S1 is
VS1 = (C1,W1,H1,J 1). The view of S2 is
VS2 = (C2,W2,H2,J 2). Since the garbled circuits are
secure against semi-honest adversaries, we only consider
the inputs and outputs of the circuits rather than the
internal details. We construct a simulator ΦS1(C1,W1) as:

1) Pick the random integers Ĥ1, Ĵ 1 from Z2t .
2) Output ΦS1(C1,W1) = (C1,W1, Ĥ1, Ĵ 1).
The distributions of H1 (J 1) and H1 (Ĵ 1) are

indistinguishable. Hence VS1 ≡p ΦS1(C1,W1) holds.
Analogously, we have ΦS2(C2,W2) = (C2,W2, Ĥ2, Ĵ 2),
and VS2 ≡p ΦS2(C2,W2).

Theorem 5: The pooling computation protocol in Section 3.3.5
is secure against semi-honest adversaries.

Proof : The view of S1 is VS1 = (C1,W1,J 1,K1). The
view of S2 is VS2 = (C2,W2,J 2,K2). We construct a
simulator ΦS1(C1,W1) as:

1) Pick the random integers Ĵ 1, K̂1 from Z2t .
2) Output ΦS1(C1,W1) = (C1,W1, Ĵ 1, K̂1).
Since the distribution of J 1 (K1) and J 1 (K̂1) are

indistinguishable, VS1 ≡p ΦS1(C1,W1) holds. Analogously,
ΦS2(C2,W2) = (C2,W2, Ĵ 2, K̂2), and VS2 ≡p ΦS2(C2,W2).

Theorem 6: The fully connected protocol in Section 3.3.6 is
secure against semi-honest adversaries.

Proof : The views VS1 and VS2 are
(C1,W1,K1,F1, A1, B1, Z1), (C2,W2,K2,F2, A2, B2, Z2)
respectively. We construct a simulator ΦS1(C1,W1) as:

1) Call the triplet generation protocol to have Â1, B̂1, Ẑ1.
2) Pick the random integers K̂1, Û2, V̂ 2 from Z2t .
3) Compute Û = K̂1 − Â1 + Û2, V̂ = W1 − B̂1 + V̂ 2.
4) Compute F̂1 = −Û V̂ + K̂1V̂ + W1Û + Ẑ1.
5) Output ΦS1(C1,W1) = (C1,W1, K̂1, F̂1).
The distribution of F1 and F̂1 are indistinguishable.

Hence VS1 ≡p ΦS1(C1,W1) holds. Analogously, we have
ΦS2(C2,W2) = (C2,W2, K̂2, F̂2), and VS2 ≡p ΦS2(C2,W2).

6 CONCLUSION AND FUTURE WORK

Neural-network prediction has unprecedented accuracy in
many tasks, notably in image-based algorithms. However,
privacy concerns have worried people when they hand in
their data as a query. On the other hand, we see a growing
market for machine learning model, the worry of model
privacy is more pressing. We improve neural-network
prediction in the secure outsourcing setting The privacy
guarantees is that the servers providing the prediction
service can get nothing about the query, the model, any
intermediate results, and the final result. We design
garbled circuits for non-linear activation function, which

preserves the accuracy of the underlying neural network.
We also reduce the overheads of computation and
communication by adopting packing and asynchronous
computation. Our experiments over both MNIST and
CIFAR-10 datasets showcase our improvement.

As a very active research area, many works consider
additional features. We discuss two limitations of our
approach. Our scheme fails to provide verifiability, i.e., the
servers can deviate from the protocol specification and
return wrong results. In critical applications, it is necessary
to consider such possibility of malicious acts. Fortunately,
the non-colluding assumption could be ‘‘fully leveraged’’
for achieving verifiability, specifically, by designing the
corresponding maliciously-secure protocols, assuming
more than two non-colluding servers [50].

Another limitation of our result is that we did not
exploit GPU at all, despite its popularity in plaintext
machine-learning. Some recent works integrate both SGX
and GPU for prediction [18] and training [20]. Using the
GPU to aid secure computation with SGX for training is
already highly non-trivial [18], [20], using it to further
improve cryptographic approaches would be a very
interesting and challenging future direction.
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APPENDIX

FURTHER ILLUSTRATION

Here we provide two supplementary illustrations for our
triplet generation protocol in the offline phase. Fig. 14
(left) illustrates the existing synchronous design. Our
asynchronous design, which keeps the servers busy with
the remaining operations that do not involve feedback from
the other, is illustrated in Fig. 14 (right) Finally, Fig. 15
illustrates a toy example for the packed triplet generation.
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