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Abstract—Collision avoidance plays a major part in the
control of the wheeled mobile robot (WMR). Most existing
collision-avoidance methods mainly focus on a single WMR and
environmental obstacles. There are few products that cast light on
the collision-avoidance between multiple WMRs (MWMRs). In
this article, the problem of simultaneous collision-avoidance and
target tracking is investigated for MWMRs working in the shared
environment from the perspective of optimization. The collision-
avoidance strategy is formulated as an inequality constraint,
which has proven to be collision free between the MWMRs.
The designed MWMRs control scheme integrates path following,
collision-avoidance, and WMR velocity compliance, in which the
path following task is chosen as the secondary task, and collision-
avoidance is the primary task so that safety can be guaranteed in
advance. A Lagrangian-based dynamic controller is constructed
for the dominating behavior of the MWMRs. Combining theo-
retical analyses and experiments, the feasibility of the designed
control scheme for the MWMRs is substantiated. Experimental
results show that if obstacles do not threaten the safety of the
WMR, the top priority in the control task is the target track
task. All robots move along the desired trajectory. Once the col-
lision criterion is satisfied, the collision-avoidance mechanism is
activated and prominent in the controller. Under the proposed
scheme, all robots achieve the target tracking on the premise of
being collision free.

Index Terms—Collision avoidance, motion planning, multiple
wheeled mobile robots (MWMRs), quadratic programming.
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I. INTRODUCTION

ENERALLY speaking, any mechanical device equipped
G with a wheeled mobile driving mechanism can be viewed
as a wheeled mobile robot (WMR). The WMR has wider
covering and social applications as well as strong practi-
cability. With the gradual maturation of several intelligent
technologies, including artificial intelligence, computer vision,
and the Internet of Things, brilliant advances in controlling
WMRs have been made, including the Google Driverless
Car, freight logistics robots such as Kiva, and agricul-
tural mobile robots such as BoniRob. Especially, in recent
years, a cooperative vehicle-infrastructure system, which is
a critical development direction of intelligent transportation
systems and intelligent logistics among others, has been paid
more attention, making the research of the WMR in full
swing. Many achievements ranging from a single WMR
to multiple WMRs (MWMRs) have been reported, such as
in object/obstacle detection and identification [1]-[3]; robot-
environmental/human interaction enhancement [4], [5]; and
localization/navigation [6]-[8], which opens a convenient win-
dow for the path planning and following [2], [9]-[11] of
WMRs; consensus tracking [12], [13]; etc.

With the increasing number of WMRs in the urban environ-
ment and the high safety accident risk, an increasing number
of scholars and industrial people have focused on the safety
assurance. This is mainly because many uncertain factors and
interference, such as pedestrians, buildings, and other team
members, may exist during the desired behavior execution.
On balance, the obstacle avoidance method for WMRs can
be divided into two classes: 1) global and 2) local methods.
The well-known A* and D*, and rapidly-exploring random tree
(RRT) algorithms are global planning methods. These methods
usually need global information of the current environment;
positions of the target and obstacles must be known and accu-
rate. Typical local planning methods include artificial potential
field (APF)-based algorithms [14], [15]; metaheuristic-based
algorithms [16]; artificial neural-network (ANN)-based algo-
rithms [14], [17]; fuzzy-logic (FL)-based algorithms [18]; etc.
This kind of algorithm only needs local information about the
surrounding environment and does not need to understand the
global situation, which is considered to be promising.

Algorithms differ in how they avoid obstacles and have their
respective advantages and disadvantages. For the APF-based
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method, the robot is assumed to move in a virtual potential
field consisting of an attractive potential field and a repulsive
potential field. The target is described as an attractive force,
and the obstacle is described as a repulsive force. The resul-
tant force is used to decide the next direction of the robot.
The method is easy to understand because the mathematical
concept, together with the code implementation, is simple.
However, different potential functions are required for dif-
ferent scenes to avoid a local optimum or the problem that
the target is nonreachable. A metaheuristic-based method is
able to generate the shortest path from the initial position to
the target position. However, it requires large memory com-
pared to the ANN-based method. In terms of path generation,
metaheuristic-based methods take time, and a sized population
is needed to obtain the desired result. ANN-based methods can
learn and can model linear, nonlinear, or complex relation-
ships. Compared to the GA-based method, the ANN method
will fail in a highly chaotic environment [19]. Furthermore, a
great quantity of data is needed for training, so training time
is long. Inspired by human reasoning, FL-based methods can
handle uncertainties and imprecise information using linguistic
rules and can make inferences using environmental data [18].
However, a fuzzy rule base needs to be constructed and tuned
by a human expert. It is difficult to maintain the correctness,
consistency, and completeness of a fuzzy rule base.

To achieve better obstacle avoidance behavior, the fusion of
multiple types of obstacle avoidance methods is becoming a
promising method. To avoid dynamic obstacles, Li ef al. [14]
incorporated the velocity of obstacles relative to the robots into
the potential function. An ANN trained by previous positions
of the obstacle was used to predict the position and velocity
of the obstacle. In [20], a neural network and fuzzy control
were together used for static obstacle avoidance of a single
WMR. In [15], an artificial-potential-field-resistance-network-
based trajectory tracking method for autonomous vehicles was
proposed. By assigning a potential function, the collision-
free requirement was achieved. In [21], aiming at finding an
optimal path for a WMR from source to destination across
multiple obstacles, a genetic-learning-based five-level neural-
network fuzzy approach was proposed, where the obstacle
was denoted by its bounding rectangle. In addition, a pulse-
coupled neural-network method is proposed in [17] to generate
a collision-free path for a mobile robot under a dynamic envi-
ronment. The method requires no prior knowledge of the target
or obstacles and can give the shortest path from the source to
the target. However, one weakness is that global knowledge of
the current environment is assumed to be available, which is
not realistic in real applications. In [22], two fuzzy controllers
were designed to independently dominate a WMR to escape
the encountered environmental obstacles and track the desired
trajectory. Based on the interval type-2 fuzzy neural network
(IT2FNN), the collision-free behavior was achieved in [23].
The above-mentioned works only consider a single WMR. For
the multirobot scene, in [24] and [25], the leader—follower-
based formation control problem of a group of mobile robots
was considered. In [24], other robots in a shared environment
were treated as obstacles. By applying a robust integral of
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the sign of the error (RISE) method, it was ensured that the
entire formation was asymptotically stable during the obstacle
avoidance. In [25], a multiregion obstacle avoidance method
was proposed. Robots performed different operations based
on the divided region criteria. However, robots would stop
when there were obstacles in front of them before making a
decision.

Recently, addressing the collision-avoidance problem from
the perspective of optimization has become popular. A typi-
cal feature of the method is that the collision-free mechanism
is described as an inequality constraint [26]-[29]. At first,
this method was mainly used to address the redundant res-
olution problem of the manipulator [30]-[36]. The basic idea
is that the redundant resolution problem is formulated as a
quadratic programming minimization scheme, and it is solved
from the perspective of optimization. Using this method,
multiple objectives, such as robot joint constraints, target
tracking, and repetitive motion planning can be simultane-
ously achieved by describing them as attachment equality or
inequality constraints. Apart from being applied to manip-
ulators, the inequality collision-avoidance method was used
for a wheeled mobile manipulator and dual redundant robot
manipulators in [37] and [38], respectively. Compared to other
collision-avoidance methods, the method is simple and easy
to implement. By adaptively calculating the distance between
the robot and the obstacle, whose position is transmitted by
a camera, the command that tracks or avoids obstacles is
made based on the setting safety threshold. Motivated by this,
we extend the inequality-based collision-avoidance method
to MWMRs and propose a simultaneous obstacle avoidance
and trajectory tracking scheme for MWMRs working in a
shared environment. Although this collision-avoidance method
has been applied to manipulators and mobile manipulators,
it has seldom been applied to MWMRs. Even for the robot
manipulator, there is little consideration of multimanipula-
tor collision-avoidance. To highlight our work, a comparison
between our work and the above-mentioned work is listed in
Table 1. Moreover, the main contributions of this study are
summarized as follows.

1) Simultaneous collision-avoidance and target tracking are
investigated for MWMRs working in a shared environ-
ment. Not only considering the environmental obsta-
cle, we also cast light on collision-avoidance between
MWMRs.

2) A multiobjective simultaneous optimization scheme
integrating target tracking, collision-avoidance, and
robot velocity compliance is synthesized, and a
Lagrangian-based controller is designed for solving it.
Theoretical analyses and experiments substantiate the
effectiveness of the constructed controller.

3) This is the first work to extend the inequality-based
collision-avoidance method to MWMRs. Although this
collision-avoidance method has been applied to manip-
ulators and mobile manipulators, it has seldom been
applied to MWMRs. Even for manipulators, there is
also little consideration of multimanipulator collision-
avoidance.
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TABLE I
COMPARISON BETWEEN THE CURRENT STUDY AND EXISTING WORK

Physical

Environmental

Collision avoidance

Literature Methods Tasks
constraint obstacles between robots
[14] APF-ANN-integrated No Dynamic No Point-to-point navigation and obstacle avoidance
[20] Neuro-fuzzy-integrated No Static No Obstacle avoidance
[21] Genetic-neuro-fuzzy-integrated No Static No Point-to-point navigation and obstacle avoidance
[22] FL-based No Static No Point-to-point navigation and obstacle avoidance
[23] IT2FNN-based Reactive method No Static No Obstacle avoidance and position stabilization
[37] Optimization Yes Static No Simultaneous obstacle avoidance and target tracking
[24] NN-RISE-integrated No Static and dynamic Yes Simultaneous obstacle avoidance and formation
[25] Steering-based region-division method No Static and dynamic Yes Simultaneous obstacle avoidance and formation
[38] Optimization Yes Static Yes™ Simultaneous obstacle avoidance and target tracking
This paper ~ Optimizaiton Yes Static and dynamic Yes Simultaneous obstacle avoidance and target tracking

* In this study, the employed robot is a dual manipulator robot.
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Fig. 1. Model of the WMR used in this article.

II. KINEMATIC MODEL, OBSTACLE AVOIDANCE, AND
PROBLEM STATEMENT

In this part, a kinematic model of a WMR with four dif-
ferentially driven wheels is first given to lay a basis. We then
introduce the collision-avoidance strategy for the WMR, and
the scheme is further formulated as an inequality. Finally,
based on it, a multiobjective optimization strategy simultane-
ously integrating collision-avoidance and trajectory tracking is
given for MWMRs in a fashion of optimization.

A. Kinematic Model of WMR

A schematic diagram of the employed mobile robot in the
current study is shown on the left-hand side of Fig. 1. The
right-hand side is the kinematics schematic of the mobile
robot. The following assumptions are considered in the robot’s
skid steer motion [39], [40].

1) The mass center of the robot is located at the geometric

center of the body frame.

2) The mobile robot is symmetrical.

3) The two wheels of each side rotate at the same speed.

4) The robot is running on a firm ground surface and four

wheels are always in contact with the ground surface.

5) The robot is subject to a Pfaffian constraint, that is, the

contact between four wheels and the ground surface is
pure rolling and nonslipping.

Assume that point Z is the posture of the WMR at time ¢,
which is defined by the robot’s planner coordinates (x,y)
in the local frame and its heading angle 6. Based on the
above assumptions, the kinematic model of the WMR with
four fixed standard wheels that are differentially driven can be
described as

92 _pw 1)
dr
in which
X cosd O
Z=|y|eR>", B=|sin6 0|ecR>*? (2
6 0 1
v 5 (uyr + up) 2x1
W = =2 e R7*. 3
M [fwr—uz)] ©

v and w denote the linear and angular velocity of a WMR,
respectively, with v = (r/2)(u, + u;) and w = (r/L) (u, — uy).
u; and u, are the velocities of the left wheel and the right wheel
of the WMR, respectively. Parameter r denotes the radius of
the driven wheel. L is the lateral wheel bases. Therefore, (1)
can be further written as

5 (uy + uy) cos 0
5 (uy + uy) sin 6
%(”r —up)

e R3*L, )

SSRSTHeT
Il

Further details of the kinematics analysis of the WMR can
be found in [39]. We define u = [u, u]T € R**!, where
T denotes the transpose of the matrix. Obviously, the action
vector u = [uy, uy]¥ directly affects the next motion of the
robot. To recover point control, we assume that Zef is a
reference point of a WMR with the definition of Zf =
[x+dpcos 6, y+dysin 01%, where 0 < dy < L. The reason for
this is that the position (x, y) and the heading angle 6 cannot
be simultaneously stabilized by a time-invariant feedback [41].
When dy = B, the mass center of the robot will be chosen to
be the reference point. Computing the time derivative of Zf,
combined with (4), we can obtain

Zeet = Au € R?*! (5)
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Fig. 2. Basic description of the collision-free strategy proposed in this article.
When a WMR j enters the sensor range of a WMR i, if the collision criterion
HZrefl.Zrefj || < d is satisfied, the obstacle avoidance strategy will assume con-
trol, enabling the robots i and j to always keep a safe distance that is greater
than or equal to d.

with

rcosf rdg sin 6
A:[ 2t

L 2 L
rsin _ rdgpcos®  rsinf + rdy cos 0
2 L 2 L

rcos@ _ rdpsin6

] e R?*2. (6)

B. Collision-Avoidance Strategy

In principle, if no collision between WMR i and WMR j
happens, the distance between their reference points should
always be kept outside a safe range, that is, [|Zref, Zref;| >

d, where | Zser Zuety| = \/(Ziet, = Zuet)T (Zner; — Zeeg) i the
Euclidean norm of Zl-ef’-Zrefj. The safe distance d is a positive
constant determined by the user. Zf, and Zyef; are the reference
points of WMRs i and j, respectively, where i = 1,..., N,
j=1,...,N, with i # j. N is the number of WMRs. Fig. 2
gives a schematic of the elaborated collision-free strategy. By
enabling the distance between the WMRs j and i to always
keep a safe distance that is greater than or equal to d, the
collision-free strategy is achieved.

In order to ensure that ||Zrefizrefj|| > d, a common opera-
tion 1s

a(”Zref,-Zret} ” - d)/at = _kl (”Zrefizrefj H - d) (7)

with k1 > 0, which is a control gain parameter [26]-[28]. In
order to remove the radical sign, we define || Zref; Zref; I? > d>.
Similar to (7), therefore, we have

2(Zref,- - Zrefj)T(Zref,- - Zrefj) > —kie 3

where & = || Zyef, Zrer; | — d*. Combined with (5), (8) can be
further rewritten as

2(Zref,' - Zrefj)T(Aiui _Ajl/tj) > —kje. ©)]

The above is for a safety guarantee strategy among the
robots. For collision-avoidance between a WMR i and an
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environmental obstacle O; (it may be static or dynamic), we
establish the following equation:

2(Zee; — Oj)T(Aiui) > —k (HZref,-OJHZ - dz)

where O; denotes the Cartesian coordinates of the detected
environmental obstacle j.

Remark 1: Based on (5) and (6), since the WMR parameters
r and L are fixed and known, A is uniquely determined by 6,
which is related to u; and u,. Therefore, A can be measured
in real time based on the feedback of u; and u,. Moreover,
the WMR senses environmental information surrounding itself
with a sensor. The positions of both the static and dynamic
environmental obstacles are easy to obtain in real time
through a camera, which has been achieved in [1]-[3], [6],
and [7]. Camera calibration errors were also solved [42], [43].
Consequently, the collision-avoidance strategy introduced in
this article is feasible in real implementations. Notice that this
study focuses on collision-avoidance; object/obstacle detection
and identification are not within the investigation scope of this
study. In this article, positions of obstacles are assumed to be
known in advance.

(10)

C. Unified Optimization Problem Statement

In this article, we aim at achieving three objectives. For
Objective 1 (the desired trajectory tracking task), we assume
that Zcmg; is the desired trajectory point coordinate that the
WMR i is expected to follow. To achieve Zefr, — Zcmg;, We
define

Zref,- = Zcmd,- - k2 (Zref,- - Zcmdl-) (1 1)

which will be shown to enable the desired trajectory tracking
error £ = ||Zref; — Zemg; || to globally converge to O in the
ensuing section.

Objective 2 (the WMR velocity limit)

u, =u =u;

(12)

where 1" and u; are the upper and lower bounds of the wheel
velocity of WMR i, respectively.

Objective 3 (collision-avoidance) was introduced in the
previous section. In order to achieve these three objectives at
the same time, we describe them as a unified minimization
optimization problem, where the trajectory tracking task is
constructed as the cost function, and the velocity limit and
collision-avoidance are attached as two inequality constraints.
Specifically, for the WMR i, we have

muin Hzref,' - Zcmd; + k2 (Zref; - Zcmd;) ”2 (13a)

stoou; <wp <ub (13b)

i
2(Zeet, — Zeety) ' (Aitii — Ajuy) = —kie. (13¢)

Note that due to similarity, we only give the inequality con-
straint, representing the multiple MWRSs’ collision-avoidance.
In the next part, we construct a dynamic Lagrangian-based
controller for solving the resultant (13). Under its control,
outside the nonsafety region (||Zef;Zrer;[| > d), the mobile
robot tracks its desired trajectory with a rational velocity sat-
isfying (13b). If the collision criterion is satisfied, that is,
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||Zrefinefi|| < d, the collision-avoidance mechanism assumes
control, enabling all WMRs to keep a safe distance > d from
their surrounding WMRs.

III. LAGRANGIAN-BASED CONTROLLER DESIGN

In this part, a Lagrangian-based controller will be designed
to find a minimal solution to the resultant optimization
problem (13). The optimization method employed by the
developed controller is the classical Lagrange multiplier
method. Through a suitable choice of controller parameters,
the controller generates a linear velocity v and an angular
velocity w for each WMR to drive them along their respec-
tive desired trajectories as much as possible while ensuring
safety. Before designing the controller, for simplicity, we first
give the combined-formed optimization problem formulation
considering N robots and then introduce a specified-designed
Lagrangian-based controller.

A. Optimization Problem Reformulation

For (13c), it can be rewritten as

A;i O i 5
_Z(Zrefi - Zrefj)T[Iz _12] |: 01 A/:| |:le:| = kle

which can be viewed as a collision-avoidance formulation
between two robots, where I, € R2*Z denotes an identity
matrix. Expanding to N WMRs, let Zrl. = .cmd,- — ko (Zer; —
Zcmd,-) and

Zrefl Zr]
. Zref
Zref = r? ’ € R2N’ Zr = "’2 € RZN
_ZrefN ZrN
[y A O 0
w= | erN, A= 0 A.z 0 c R2VX2N
: : : 0
| un 0 0 AN
(14)
we can obtain
S -
n’}lln HZref - Zr” (15a)
st u" <u<ut (15b)
—2HCAu < Brigh (15¢)
in which
uy uy
- +
u u
u = 2 € RzN, ut 2 e RN
ity uy
the matrix H = blkdiag(M) e RN~N/2x(NV=N) yith
M = [mi2, mi3, ..., miN, m23, ..., mj, ...,mN—-HN] €
RIX(N=N) " blkdiag(e) denotes a diagonal matrix, and mij

Algorithm 1 Pseudocode of the Determination of Parameter C
fori=1:N—-1do
Ctemp = [zeros(N —i,i — 1), ones(N — i, 1), —eye(N —
i, N—1)];
Csave = [Csave: Ctemp];
end for
for j=1: (N> —N)/2 do
for k=1:N do
C2j—1:2j,2k—1:2k) = Csave(j, k)eye(2);
end for
end for

is defined as my;j = (Zef; — Zref/-)T, i=1,...,N—1 and
j=i+1,...,N. Biigh = k1 (§ — d*) and

||Zrcf1 - Z‘refz ”2

2
| Zzer, = Zut 1" | ¢ goemr (16)

”ZrefN,l - ZrefN ||2

for C, C € R(NZ_N)X2N, which is composed of 0, 1, and —1.
For clarity, we give pseudocode of the determination of param-
eter C, as shown in Algorithm 1, where zeros(e), ones(e), and
eye(e) denote the zero matrix, one matrix, and identity matrix,
respectively. Letting B = —2HCA, the kinematic control
problem of N WMRs integrating collision-avoidance, trajec-
tory tracking, and velocity bound constraints is summarized
as

. . -2
HLIII HZref - ZrH (17a)
st u <u<ut (17b)
Bu < Brigh. (17¢)

Remark 2: In real applications, every WMR is equipped
with several sensors to sensors surrounding environmental
information around itself. Therefore, when other WMRs enter
the detection range of a WMR, the position information around
the neighboring WMRs is easier to obtain. Therefore, in
essence, the designed MWMRSs’ kinematic control scheme
with certified safety can be viewed as a distributed frame-
work since the robots do not need to communicate with each
other. To make the design process of the following controller
clear, we give (17) in a fashion of combination.

B. Controller Design

To find the minimal solution of the resultant constrained
optimization problem (17), we design a Lagrangian-based
controller to recursively solve (17). Specifically, a Lagrange
function is first defined

. . 2
L€ Q1) = |Zwt = Z:|” + 2T (Bu — Brignt) ~ (18)
where . € RV~M/2 is the Lagrange multiplier. 2 is a set,
which is chosen to be Q@ = {u € RN, u= < u < ut} to
bound the wheel velocities of the robots. According to the
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Fig. 3. Control block diagram of the developed controller (23) for solving

KKT conditions, an optimal solution of (17) can be written as
the following equations:

oL
u="Pou——) (19)
au

{A =0, if Bu < Brignt

A > 0, otherwise (20)

in which P : R®™ - Q = {u € R, u= < u < ut}
is a piecewise-linear projection operation to a set 2. Based

on [44]-[46], Po(u) = [[Pa@]1, [Pa@)]2, ..., [Pa)]N]
with its ith element defined as

u;, if w <wu;
[Po@)); = wi, if ui <w<u @21
u, if u; > u:r

i

Equation (20) can be further written as
A= max((k + Bu — Bright), O). 22)
Overall, the designed Lagrangian-based controller is

it =—u+Po(u—2A"(Au—2,)— B"A)  (23a)
€l = max((Bu — Biignt + k), 0) -\ (23b)

where € > 0 is a constant that is associated with the conver-
gence speed of the controller (23). Based on our experience
feedback from experiments, € € (0, 0.1) can deliver the better
performance. In addition, A = 0 always holds for Zf, Zer, > d,
which means other robots, or say obstacles, do not threaten
the safety of robot i. Only when the collision criterion is sat-
isfied Zef,Zrer, < d, (23b) comes into force, and A > 0 due
to the collision-avoidance behavior. Algorithm 2 presents the
pseudocode of the designed controller (23) for the simultane-
ous trajectory tracking and collision-avoidance of MWMRs. In
addition, a topological graph of the controller (23) for solv-
ing (17) is given in Fig. 3 to form a better illustration and
enhance readability. Fig. 4 presents a block diagram for the
configuration of the controller.
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optimization problem (17).

Controller

—2HCA}

Fig. 4. Block diagram for the configuration of the controller.

Remark 3: To achieve simultaneous collision-avoidance and
target tracking, together with velocity limits, of a group
of WMRs, we formulate these problems as an optimization
problem. The Lagrange multiplier method is employed in the
controller to obtain the optimal solution. Zhang et al. [47]-[49]
proposed a power-type varying-parameter control method. To
be brief, the solving procedure was divided into three steps:
first, 0L(u, A)/0u and dL(u, A)/0X were rewritten as a linear
matrix equation formatted by WY — G = 0. Through finding
zeros of the linear matrix equation by constructing the error
function evolution formulation ¢ = —ke with e = WY — G and
k =y 4V, an optimal solution of the optimization problem
was found. The method was proven to provide a faster con-
vergence speed and inherent noise tolerance compared to the
traditional zeroing method. Mapping to our study, let

24TA BT 0 u 2477,
W = B O~ g , Y=|A|, G= Bright (24)
0 20 X l 0

and we will obtain a linear matrix equation corresponding to
the resultant optimization problem (17). In this regard, it is
obvious that the difference between the method used in this
article and the power-type varying-parameter control method

ed on May 24,2021 at 09:06:32 UTC from IEEE Xplore. Restrictions apply.
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Algorithm 2 Multiple WMR Trajectory Tracking Control
Method With Certified Safety

Input: Control parameters €, k1, ko, WMR number N, WMR
parameters r, L, dy, task duration and internal 7 and d,
safe distance d, initial parameters 6;(0), éi(O), u;; (0), uy;(0)
and A(0) = 0, physical limits u; , ul-+, desired trajec-
tory information Zgpng; and Zcpgi, initial position Zief,
i=1,---,N.

Output: u;, u, of robot i to generate v, w to driver robots.
while t < T do

1. Reading Z.¢(?), 6(¢), u(t) by sensor.
2. Calculate Zref([) and error £ = Zyef — Zemd-
3. Calculate H, C.
4. Restrict velocities of two wheels of every WMR when
their velocities exceed the bound.
5. Update two wheeled velocities of every WMR using
Eq. (23a).
6. Update state variable A using Eq. (23b).
7. Update 6 and Zs.
end while

lies in the updation of control variable u and state variable A.
In addition to these two algorithms, for instance, six numerical
algorithms proposed in [46] are also a feasible scheme. In the
current study, we focus on extending an optimization-based
inequality obstacle avoidance method to mobile robots and
achieving simultaneous obstacle avoidance and target tracking
for a group of robots. The majority of the study consists of
investigating the effectiveness of the optimization-based con-
trol scheme in MWMRs and ignoring the comparison between
optimization algorithms. Note that as it would the investiga-
tion scope of this study, parameters involved in (24) are not
introduced. Their corresponding explanations can be found
in [48].

IV. THEORETICAL ANALYSES

In this section, the convergence of the designed controller
is given. The resultant collision-avoidance inequality is shown
to eliminate collisions between MWMRs.

Definition 1 [50]: A function H(e) is said to be monotone if
it is continuously differentiable and ensures that VH + (VH)T,
where V'H is the gradient of H(e), is positive semidefinite.

Lemma 1 [45], [50]: Let S be a compact set that is positively
invariant with respect to the dynamics of a system x = f(x).
Let V = V(x) € R be a continuously differentiable function,
such that V < 0 in S. Let E be the set of all points in S. Let
E be the set of all points in S, where V = 0. Let M be the
largest invariant set in E. Thus, every solution starting in S
approaches M as t — o0.

Lemma 2 [45], [50]: If the designed controller satisfies

kx = —x + Ps(x — oH(x)) (25)

it will globally converge to the optimal solution of the solved
problem, where ¥ > 0 and ¢ > 0 are constant parameters, and
the definition Pg is the same as Pgq.

Theorem 1: The designed controller (23) globally converges
to the optimal solution of (18). Under its control, tracking

error to the desired trajectory converges to 0, and collision-
avoidance is achieved.

Proof: The proof is composed of three steps, that is:
1) convergence of the tracking error Zget —Zcmd; 2) global con-
vergence of the constructed controller; and 3) effectiveness of
the proposed collision-avoidance strategy.

Step 1: Define the tracking error as £ = Zwf — Zemds
where Zor € R* represents the reference point sets, and
Zemd € R?V represent the desired trajectory sets correspond-
ing to N WMRs. Now, we construct a Lyapunov function as
V = £T¢/2. Obviously, V = £T¢/2 > 0 and V = 0 only when
£=0.

Computing the time derivation of V, we can obtain V =
T = —ktTe < 0and V = 0 only if ¢ = 0. Based on
Lemma 1, the tracking error globally converges to O when
t — oQ.

Step 2: The above-designed RNN controller (23) can further
be rewritten as

6|:u:| _ |:—u + Po(u — 2AT(Au — Z,) — BT))

A — + max((Bu — Brighi + 1), 0) i| 20

Let x = [u, A]T. Equation (23) is reformulated as

€x =—xX+Pax —H(X)) 27
where
2AT(Au—Z.) + B
= . 2
H(X) |: —Bu + Bright ( 8)
For (29), we can obtain
2ATA BT
VH:E)H/B)(:[_B 0:|' (29)
4ATA 0

VHGO + (VHT00 = |77

and VH(x) + VHT(X) is positive semidefinite. Therefore,
H(x) is a monotone function. Following (27), it satisfies
Lemma 1, where k = € and ¢ = 1. Pg = Py = [Pgq; Ppl,
in which Pg is the same as the definition of (19), and
Ppn = max(e,0) is a special projection operator to R.
Following Lemma 2, it can be concluded that the designed
RNN controller (23) globally converges to the optimal solution
of (17).

Step 3: Define D = | ZrefZref;|| — d. Inequality (7) is
rewritten as

j|, based on Definition 1,

D> —kD (30)
and D = 0 only if D = 0. We further rewrite D as
D > e %1!D(0), where D(0) denotes the initial value of D.
Obviously, D > 0, and D = 0 only if D(0) = 0. Since the
control gain parameter k; is a positive constant, D < 0. D =0
is only if D(0) = 0. Therefore, we can easily obtain that
”Zref,-Zrefj” > d when D > —kD. u

Remark 4: Note that D(0) = || Zref; (0)Zrer; (0)|| —d > 0 is
assumed in the above analyses. In general, the WMR almost
never collides with the environmental obstacle or other WMRs
at the initial time in the actual scene.
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V. SIMULATION

Simulations are conducted in this part to substantiate the
effectiveness of the control scheme (23). Without a loss of
generality, the point obstacle was first investigated, where five
cases: 1) collision-avoidance between a single WMR with
multiple static environmental obstacles; 2) collision-avoidance
between a single WMR and dynamic environmental obstacles;
3) collision-avoidance between MWMRs without consider-
ing environmental obstacles; 4) collision-avoidance between
MWMRs considering multiple static environmental obstacles;
and 5) collision-avoidance between MWMRs considering both
static and dynamic environmental obstacles, were consid-
ered. We then considered obstacles with general significance.
Based on the bounding box idea, environmental obstacles were
enveloped with several rectangles of different sizes. Finally,
we considered a scene with more WMRs to show further
applications of the proposed MWMR control scheme.

A. Experiments Setup

The following simulations were performed on a notebook
computer equipped with an Intel Core 2.20-GHz i5-5200U
CPU, 12-GB memory, and Windows 10, 64-bit operating
system. The controller parameter € was valued as 0.02, and
control gain parameters were k; = k; = 8. In addition,
the experimental internal was set as d; = 0.005 s. T; was
determined by the task performed by the robot. The safe
distance d was set as d = 0.3 m (in Fig. 10, d = 0.5
m). Initial attitude 6;(0), 6‘5(0), and initial wheel velocities
u;;(0) and u,;(0) corresponding to every WMR were set to 0,
i=1,2,...,N. Here, parameters ki, kp, and € € (0,0.1) are
usually adjusted manually based on the experimental require-
ment. They determine the obstacle avoidance behavior, the
tracking accuracy of the robot with respect to the desired tra-
jectory, and the convergence rate of the designed controller,
respectively. Theoretically, the larger k; (k) is, the larger
the intensity of obstacle avoidance (the better the tracking
accuracy with respect to the desired trajectory), but at the
expense of increasing computational complexity. Moreover, if
the obstacle avoidance intensity is too high, the robot will have
a large instantaneous acceleration during obstacle avoidance,
which is not expected nor considered a positive outcome.

Remark 5: Among simulation, three groups of WMR param-
eters are used: one is r = 04 m, L = 1.85 m with
u; = _”T = —2 m/s, and dp = 0.75 m (correspond-
ing to Figs. 5 and 6). The other is r = 1.5 m, L = 3 m
with u; = —u;r = —4 m/s, and dy = L/2 (corresponding
to Figs. 7-9). Parameters used in Fig. 10 are r = 0.04 m,
L = 0.185 m, and dy = 0.075 m, which are consistent with
the WMR parameters used in the physical experiment. This is
to show feasibility of our scheme applied to various types of
WMRs.

B. Point Obstacle Collision-Avoidance

1) Single Robot Multiple Static Obstacle Collision-
Avoidance: In this experiment, the robot was expected to move
4-m forward along a straight line from [0, 0] at a speed of
0.1 m/s. We set up two static obstacles, O; and O,, whose
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Fig. 5. Collision avoidance and the desired trajectory tracking results between
a single robot and multiple environmental obstacles, where two static obstacles
are considered. (a) Tracking result. (b) Tracking error ||Zief — Zemdll at the
x-axis and y-axis. (c) Distance profiles ||Zf — O]l and ||Zf — O3 ||. (d) State
variables A. (e) Heading angle 6 profile. (f) Profiles of linear velocity v and
angular velocity w of the robot.
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Fig. 6.  Collision avoidance and the desired trajectory tracking results

between a single robot and a dynamic obstacle (triangle). (a) Tracking result.
(b) Tracking error ||Zyef — Zemd |l at the x-axis and y-axis. (c) Heading angle
0 profile. (d) State variables A.

positions are [1,0.2]T and [2,0.2]T, to show the collision-
avoidance behavior of the robot. For intuitive observation, the
initial position of the robot was set to [0, 0]T. Simulation
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Fig. 7.

Collision avoidance based on different environments. (a) Collision avoidance between the MWMRs without the environmental obstacle. (b) MWMR

collision-avoidance considering the environmental static obstacle. (¢c) MWMR collision-avoidance considering the environmental dynamic obstacle. From top
to down and from left to right are the tracking results and the tracking error corresponding to the WMRs 1, 2, and 3, respectively.

results achieved by the controller (23) are shown in Fig. 5.
Fig. 5(a) illustrates the collision-avoidance result and trajec-
tory tracking result, where the desired trajectory is denoted
by a red line. The black line denotes the trajectory achieved
by the robot. The hexagon denotes the initial position of the
WMR, and the square denotes the target position. Fig. 5(a)
and (c) shows that the WMR successfully avoided the colli-
sion with two static obstacles and always kept a safe distance
that is greater than 0.3 from two obstacles Oy and O;. Outside
the nonsafety region (i.e., ||Zef — Oill > d, i = 1, 2) means
that the obstacles O; and O did not threaten the safety of
the WMR, and the WMR moved along the desired trajec-
tory because the trajectory tracking task was prominent and
the collision-avoidance was not activated. The tracking errors
| Zref — Zemdll at both the x-axis and the y-axis were at the
10~* level at t = [30, 40]s [see Fig. 5(b)]. Around # = 10 s
and r = 20 s, the distances between robot and obstacles O
and O, satisfied the collision criteria. The collision-avoidance
strategy (17c) came into force, where A > O [see Fig. 5(d)].
At this time, the top priority in the control task was collision-
avoidance. The heading angle 6 of the robot changed because
the robot steered to avoid obstacles O and O; [see Fig. 5(e)].
Due to the collision-avoidance behavior, the tracking error of
the robot was greater than 0. Fig. 5(f) shows the linear veloc-
ity v profile and the angular velocity w profile of the robot.
Outside the nonsafety region, the robot moved at the desired
linear velocity of 0.1 m/s. To avoid obstacles O and O», the
robot steered so that v and w changed. Here, profiles of the left
wheel’s velocity u; and the right wheel’s velocity u, are not
given since they can be easily derived based on both Fig. 5(f)
and (3).

2) Single Robot Dynamic Obstacles Collision-Avoidance:
In practice, an obstacle is not always static. We consid-
ered the collision-avoidance problem between the WMR and
the dynamic obstacle. The desired trajectory was a circle;
the tracking trajectory was defined as [0 4 cos(0.57),0 +
sin(0.51)]T. The task duration was set as Ty = 12.5 s. The
dynamic obstacle O, was denoted by a triangle, whose posi-
tion varied three times along the movement direction. Circle
obstacle O; was still considered to be static. In this exper-
iment, the initial position of the robot was set to [0.5, 0]7.
Fig. 6 shows the corresponding simulation result. Fig. 6(a)

shows that the WMR achieved collision-avoidance three times
during its movement. For the middle position of the dynamic
obstacle, the collision-avoidance was not activated because
the collision criteria were not satisfied. Fig. 6(b)—(d) shows
the tracking error profiles, the heading angle 6 profile, and
the state variable A profile, respectively. At one point, the
heading angle of the WMR was 0. This is because the robot
located at [0.5,0]T needed to approach the initial position
[1,0]T of the desired trajectory. Based on Fig. 6, the con-
clusion is similar to that obtained from Experiment 1. If the
collision-avoidance strategy was not activated, then A = 0.
The top priority in the control task was the trajectory tracking
task. If not, the collision-avoidance task was prominent, which
resulted in changes in A and 6 and in tracking error.

3) Collision-Avoidance Between the MWMRs: The existing
obstacle avoidance schemes mainly focus on the collision-
avoidance between the applied object and the environmental
obstacles. In this experiment, we cast light on the collision-
avoidance between MWMRSs. The number of the WMR was
chosen to be 3, where WMR 1 moved anti-clockwise and
the other two WMRs moved clockwise from different speci-
fied initial positions so that they encountered each other. The
desired trajectory tracking results of the three robots and obsta-
cle avoidance results are shown in Fig. 7(a). From top to
bottom and from left to right are the tracking results and the
tracking error corresponding to WMRs 1, 2, and 3, respec-
tively. At + = 2 s, WMRs 1 and 2 encountered each other.
Since the distance between them met the collision criterion,
the collision-avoidance strategy assumed control, and their
respective tracking errors reached 0.1. By enabling the distance
between WMRs 1 and WMR 2 to be maintained at a set-
ting safety threshold of 0.3, safety was ensured. WMRs 2 and
WMR 3 encountered each other at = 5 s. Under the designed
obstacle collision strategy, as expected, they also successfully
escaped each other and maintained a safe distance. For all
WMRs, after their distance was outside the safe distance, they
returned to their predefined paths. Under the designed con-
troller, the tracking errors of three robots converged to zero
outside the nonsafety region.

4) MWMR  Collision-Avoidance  Considering  Static
Environmental Obstacles: In real applications, a WMR
should not only escape the neighboring WMRs but also avoid
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Fig. 8. Experimental results corresponding to the single enveloping shape & 9. Obstacle avoidance in a complicated environment. The obstacle was

environmental obstacle, where the obstacle was enveloped as a rectangle with
different attitudes based on the encountered obstacle shape.

encountered environmental obstacles. Two static environ-
mental obstacles were considered. Experimental results are
illustrated in Fig. 7(b). For WMRs 1 and 3, while avoiding
neighboring robots, they also avoided collisions with the
encountered environmental obstacles. When WMR 3 was
close to the triangle and circle obstacles, its movement
direction deviated from the desired trajectory to maintain a
safe distance from the encountered environmental obstacles.
After keeping a safe distance from the obstacle, WMR 3
returned to the desired path step by step and moved along
the desired path, with a promising tracking error of 1074,
until it reached the destination. We also observed that the
tracking error of WMR 3 changed three times since the
collision-avoidance strategy mechanism participated in the
control process three times.

5) MWMR Collision-Avoidance Considering Dynamic
Environmental Obstacles: Fig. 7(c) shows the simulation
results corresponding to a case that considers MWMR
collision-avoidance as well as collision-avoidance with static
and dynamic obstacles. Similar to the previous illustrated
simulation results, outside the nonsafety region, the three
robots moved along the desired trajectory with a promising
tracking error that converged to 0. Inside the nonsafety region,
the collision-avoidance strategy was activated by keeping
a safe distance from the environmental obstacles and other
WDMRs, such that safety was ensured.

C. Generalized Obstacle Collision-Avoidance

We considered obstacles with general significance. Based
on the bounding box idea, they can be enveloped as a geo-
metric shape, such as a circle, a rectangle, or a combination
of them, denoted by a set of points. By describing the dis-
tance between the WMR and the enveloping obstacle as a
point-to-point distance, the collision-avoidance between the
WMR and the complicated environmental obstacle was easy to
achieve. Fig. 8 shows the experimental results corresponding
to a single environmental obstacle enveloped as a rectangle.
Obstacle avoidance in a complicated environment is shown in
Fig. 9, where the obstacle is assumed to be enveloped as a
combination of several geometric shapes, as shown in cyan.
Fig. 9(a) and (b) shows U-shaped and right-angle-shaped tra-
jectory tracking results corresponding to one WMR and two
WMRs, respectively. Following them, we observed that all
WMRs moved along the respective expected trajectories. Only

assumed to be enveloped as a combination of several geometric shapes, as
shown in cyan. (a) U-shaped trajectory tracking corresponding to one WMR.
(b) Right-angle-shaped trajectory tracking corresponding to two WMRs.

when the obstacle was detected, and their distance satisfied the
collision criterion, did the WMRs deviate from the respec-
tive expected trajectory to avoid collisions. After keeping a
safe distance that was greater than or equal to d, the WMRs
returned to the desired trajectory. In addition to avoiding the
environmental obstacles, WMRs 1 and 2 encountered each
other at the mark shown in Fig. 9(b). Since their trajectories
were the same, they each followed a trajectory parallel to the
desired trajectory after 4 s.

D. Extension

In the previous experiments, the number of WMRs was cho-
sen as 3 or 1 to show the feasibility of the control scheme (23)
for the simultaneous target tracking and obstacle avoidance of
MWMRs. A common scene with more WMRs was considered
to show further applications of the control scheme. As shown
in Fig. 10(b), WMRs were required to reach a specific location
along the desired trajectory. Because the WMRs may come
from different directions, they will inevitably encounter each
other during movement. We simplified every route into six
lines, shown in different colors in Fig. 10(b), where the arrow
denotes the movement direction of the WMR. Fig. 10(a) shows
the eventual simulation result. Under the designed controller,
six WMRs successfully escaped the other WMRs encountered
during their movement. When obstacles did not threaten the
safety of robots, they moved along their respective trajectories.
Fig. 10(c)—(i) provides snapshots of the experimental results
corresponding to different times. Before ¢t = 10 s, because all
WMRs were far away from each other, the motion planner
played a leading role in the controller and had all WMRs per-
form trajectory tracking tasks. It can be seen from Fig. 10(c)
that, as expected, six robots successfully tracked their respec-
tive straight-line trajectories under the designed controller. At
t = 10—13 s, the distance between WMR 1 and WMR 2 satis-
fied the collision criterion (as did WMR 3 and WMR 6), and
the collision-avoidance strategy was activated. At this time,
the top priority of the control task was collision-avoidance
instead of the trajectory tracking task. Therefore, WMR 1 and
WMR 2, together with WMR 3 and WMR 6, steered and
deviated from their respective trajectories [see Fig. 10(d)].
Benefitting from A > 0, the distance between WMR 1 and
WMR 2, and the distance between WMR 3 and WMR 6, main-
tained a safety threshold of 0.5 m during collision-avoidance.
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Fig. 11. Distance profiles corresponding to Fig. 10, which shows that dis-
tances between all robots were greater than or equal to the safety threshold
0.5 m under the proposed controller. Based on the setting collision-avoidance
criterion, no collision is shown in Fig. 10.

For WMR 4 and WMR 5, it was determined by distance com-
putation that they had no risk of collision at the present time.
The top priority in the control tasks of both WMR 4 and
WMR 5 was still trajectory tracking. Therefore, the collision-
avoidance strategy was not activated with A = 0. However,
when ¢t = 17 s [see Fig. 10(d)], WMR 6 threatened the safety
of WMR 5. To keep a safe distance from WMR 6, the
collision-avoidance strategy of WMR 5 was activated. At this
time, for WMR 1 and WMR 2, and for WMR 3 and 6, since
they had no risk of collision, A decreasing to 0, and the motion
planner was again dominant. Similarly, when ¢+ = 20 s and
t = 22 s, the collision criterion was satisfied for WMR 1 and
WMR 4 and for WMR 2 and WMR 6, respectively. They also
successfully avoided their respective encountered robots as
expected. After r = 25 s [see Fig. 10(i)], no robot encountered
any other robots again. Therefore, all robots moved along the
desired straight-line trajectory. At r = 30 s, all WMRs stopped.
Fig. 11 shows the distance profiles corresponding to Fig. 10.
It can be seen that distances between robots were greater
than or equal to the safety threshold of 0.5 m, based on the
collision-avoidance criterion, which shows that no collisions
occurred.
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Fig. 12. Experimental scenario and configuration.

VI. PHYSICAL EXPERIMENTS

To show the feasibility of the proposed control scheme in
real applications, a physical experiment was implemented in
Xtark mobile robots with four differentially driven wheels. The
basic parameters of the Xtark robot are listed in Table II. In
this experiment, dp was valued as 7.5 cm to choose the mass
center of the robot as the reference point. The experimental
scenario and configuration are shown in Fig. 12. The WMR
and notebook computer were connected to a common WIFI
network by a router. The notebook computer was set as the
master, and it controlled the movement of the robots by a
robot operating system (ROS). A mobile phone placed on a
tripod was used to photograph the motion state of the MWMRs
while they executed the desired task. The controller used in
the WMR was an opensource control module for the ROS on
Pi (OpenCRP), which can be embedded directly on Raspberry
Pies.

Figs. 13—-15 of the three physical experiments correspond
to one WMR’s collision-avoidance; two WMRs’ collision-
avoidance, where a WMR can be viewed as a dynamic obstacle
for another WMR; and three WMRSs’ collision-avoidance,
respectively. The mark on the robot indicates the forward
direction of the robot. As shown in Fig. 13, the WMR needs
to track a U-shaped trajectory. Two mineral water bottles
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Fig. 13. Environmental obstacles collision-avoidance illustration: snapshot of single WMR collision-avoidance for a U-shaped path where two static obstacles
are placed on the path. (a) Desired trajectory. (b) and (e) Collision avoidance behavior. (c) and (f) WMR returns to its desired trajectory when obstacles do
not threaten the safety of the WMR. (d) and (g) WMR moves along the circle trajectory, at which point the trajectory tracking task is the top priority. (h) Real

trajectory.
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Fig. 14. Dynamic obstacles collision-avoidance illustration: snapshot of two
WMRs’ collision-avoidance, where they would encounter each other at the
halfway point of the desired tracking path. (a) Desired trajectory. (b) Collision
avoidance behavior. (c) Robots return to their respective desired trajectories.
(d) Real trajectories achieved by robots.

were placed on the path, as shown in Fig. 13(a), to show
the collision-avoidance behavior of the WMR. Fig. 13(b) and
(e) shows the WMR avoiding mineral water bottles. Since the
distance between the WMR and bottles was detected to be less
than the safety threshold, collision-avoidance was activated so
that the WMR steers. When the mineral water bottle did not
threaten the safety of the WMR, the WMR would gradually
return to the desired path since the trajectory tracking became
a top priority again, as shown in Fig. 13(c) and (f). Unlike the
robot’s behavior when avoiding the first mineral water bottle,
the time taken for the robot to return to the desired trajectory
was longer than the former when the WMR avoided the second
bottle, and there was some shaking, albeit for a short period
of time. This phenomenon can be observed in the attached

TABLE II
BASIC PARAMETERS OF THE USED XTARK ROBOT

Length 23.2cm
Xtark Width 14.0cm
Height 9.5cm

Weight 2.5kg

Diameter 8cm
Wheel Thickness 3.3cm
Wheelbase 18.5cm

video. Fig. 13(d) and (g) are snapshots showing the WMR
tracking the circle trajectory. When A = 0, the WMR moved
along the desired trajectory, and the WMR stopped when it
reached its destination. Fig. 14 is a snapshot corresponding
to the two WMRs, where two robots that are 2.5 m away
from each other gradually approach each other with an equal
forward velocity of 0.1 m/s. Fig. 14(a) and (d) shows the ini-
tial state and the final state of the two WMRs, respectively.
Fig. 14(b) and (c) indicates the collision-avoidance behavior
of the WMRs. Fig. 14 shows that, in the beginning, the two
robots moved along the desired straight-line trajectory. When
the two robots were close to each other, the position distance
norm between them satisfied the collision criteria. The two
robots deviated from the desired trajectory to satisfy the safety
rule [see Fig. 14(b)]. As shown in Fig. 14(c), the two robots
again steered to return to the desired trajectory. When no con-
trol signal was sent to the robots, the WMR stopped. The
three WMRs’ collision-avoidance is shown in Fig. 15(a). As
expected, every WMR successfully avoided collision with the
other two WMRs and reached their respective destinations.
The dynamic obstacle avoidance process corresponding to the
above physical experiments is shown in the attached video.
Remark 6: Among the simulation and physical experiments,
multiple groups of wheel parameters (r and L) were given
and tested to show the feasibility of our method applied to
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Fig. 15. Multiple robots’ collision-avoidance illustration: snapshot of three
WMRs’ collision-avoidance. (a) Desired trajectory. (b) Collision avoidance
behavior. (c) Robots return to their respective desired trajectories when the
other two robots do not threaten the safety of a robot. (d) Real trajectories.

differentially driven WMRs with different sizes. Based on the
simulation results, the path achieved by the WMR is smooth
and stable. However, it is necessary to point out that in our
experiments, the real trajectory of the robot was different from
the simulation results to some extent. This may be due to the
road condition, wheels, car size and shape, or communica-
tion response delay. This phenomenon could be weakened by
appropriately increasing the safe distance or adjusting control
parameters.

VII. CONCLUSION

A Lagrangian-based dynamic controller was designed for
the simultaneous obstacle avoidance and target tracking of
MWMRs. Three objects were achieved, successfully incorpo-
rating the path following both collision-avoidance and robot
velocity compliance. Theoretical analyses showed that the
controller globally converges to the optimal solution of the
problem. Numerical experiments and physical experiments
substantiated the feasibility of the controller and theoretical
analyses. If obstacles do not threaten the safety of the robot,
the top priority in the controller is the target tracking task and
A = 0. All robots move along their respective desired trajecto-
ries with the desired tracking error. If the distance between a
robot and environmental obstacle or other robots satisfies the
collision criterion, the collision-avoidance strategy is activated
and leads the controller, enabling the WMR to always keep a
safe distance > d from other objects by steering. A case with
more WMRs has also been considered, showing the potential
application of the proposed scheme.

In a future study, we will be devoted to simultaneous coop-
erative kinematic control and collision-avoidance control of
MWMRs under partially known information in unknown envi-
ronments. How to weaken the influence of feedback gain
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of interest.
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