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Abstract—In this paper, a theoretical foundation for the Quasi model are developed. Briefly speaking, if neither the long-
Steady-State (QSS) model in power system long-term staliifi term stability model nor the QSS model meets a singularity,
analysis is developed. Sufficient conditions under which # QSS then the QSS model provides correct approximations for the

model gives accurate approximations of the long-term stality - . . .
model in terms of trajectory and w-limit set are derived. These long-term stability model in terms of trajectory if the QSS

sufficient conditions provide some physical insights regating the model moves along the stable component of its constraint
reason for the failure of the QSS model. Additionally, severl manifold and the projection of each point on the trajectory
numerical examples are presented to illustrate the analytial of the long-term stability model lies inside the stabiliggion
results derived. of the corresponding transient stability model. Moreovekr,

Index Terms—sufficient conditions, quasi steady-state model, the QSS model converges to a long-term stable equilibrium
power system long-term stability. point (SEP), then the long-term stability model will cornyer
to the same point. Several numerical examples in which the
QSS model succeeded or failed are analyzed by the derived
analytical results.

HE ever-increasing loading of transmission networks This paper is organized as follows. Sectidh Il recalls basic

T together with a steady increase in load demands he@ncepts of power system models, and Sedfidn Ill introduces
pushed many power systems ever closer to their stabilfy@thematical preliminaries in nonlinear system theofién
limit [T]- [8]. Long-term stability has become more and moréufficient conditions of the QSS model are derived in Section
important for secure operation of power systems. Howeker, Y] and several numerical examples are analyzed based on the
long-term stability model is large and involves differeim¢ derived theorems in Sectignl V. Conclusions and perspective
scales. The time domain simulation approach for the longte stated in Sectidn V1.
term stability model is expensive in terms of computational
efforts and data processing. These constraints are evea mor Il. POWER SYSTEM MODELS
stringent in the context of on-line stability assessmerite T The long-term stability model, or interchangeably complet
quasi steady-state (QSS) proposed_in [4]- [6] tried to remchdynamic model, for calculating system dynamic response
good compromise between accuracy and efficiency for longlative to a disturbance can be described as:
term stability analysis. The assumptions behind the QSSmod

|. INTRODUCTION

that the post-fault transient stability model is stable &mel Ze = chelze za 2,y) @)
long-term stability model is singularity-free are not nesarily za(k+1) = ha(ze, 2a(k), 2, y) (2)
true. There have been some efforts attending to address thes & = f(2e 2d,7,9) (3)
issuesl[7]-[[9]. However, less attention has been paid tthamo 0 = g(ze,2a,2,Y) (4)

critical issue that even these assumptions are satisfie @85
model may still provide incorrect approximations for thege ~ Equation [(#) describes the electrical transmission system
term stability model. Some counter examples in which tiRnd the internal static behaviors of passive devices, &hd (3
QSS model were stable while the long-term stability modélescribes the internal dynamics of devices such as gengrato
underwent long-term instabilities were presentedin [Bdjce their associated control systems, certain loads, and other
the QSS model can not consistently provide correct stgbilidlynamically modeled componentg. and g are continuous
analysis of the long-term stability model, there is a gresch functions, and vector and y are the corresponding short-
to identify conditions under which the QSS model works. |ierm state variables and algebraic variables. Besidestions
this paper, sufficient conditions under which the QSS mod@l) and [2) describe long-term dynamics including expoiaént
can provide correct approximations for the long-term ditgbi recovery load, turbine governor, load tap changer (LTCgrov
excitation limiter (OXL), etc.z. and z; are the continuous
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The transient stability model and the QSS model are r&he stability region of a SER; is the set of all points: such
garded as two approximations of the long-term stability elodthatlim,_, -, ¢(¢,2) — z. In other words, thetability region
in short-term and long-term time scales respectively, &eg t is defined as:
are believed to offer a good compromise between accuracy
and efficiency. In transient stability model, slow variablre Azs) :={z € R": lim ¢(t,z) = x5}
considered as constants. While in the QSS model, the dynamic ) ) t_ﬁoo N o
behavior of fast variables are considered as instantaheoJgOm @ topological point of view, the stability region is an

fast and thus replaced by its equilibrium equations in tigdo OP€n invariantand connected set. Every trajectory in dlggab
term time scale. If we represent the long-term stability elod"€gion lies entirely in the stability region and the dimemsi
and the QSS model im time scale, where- — te, and we Of the stability region isu.

denoter as-L, then power system models can be representBgfinition 2: w-limit Set o _
as shown in Tablg I. A point p is said to be thev-limit point of x if, correspond-

ing to eacte > 0 andT > 0, there is & > T with the property

TABLE | that ||¢(t, z) — p|| < e. Equivalently, there is a sequentein
THE MATHEMATICAL DESCRIPTION OF MODELS IN POWER SYSTEM R, t; — —+oo, with the property thap = lim;_, ;o &(t;, ).
the long-term stability mode 2L = helze, 24,7, 9) The set of alku-limit points for x is defined as its-limit set

Zd(k + 1) = hd(267 Zd(k)7 :B’y)

ex’ :f(ZCvzdvxvy) .
0= g(2¢, 24, %, y) B. Singular Perturbed System

the transient stability model z = f(zc,24,2,Y) . . :
short-term-0-30s 0= 9o 2029 We next consider the following general singular perturbed
the QSS model 2 = he(2e, 24, %, Y) model:
long-term:30s-a few minuteg z4(k + 1) = hg(zc, zq(k), z,y) .
0= f(2c, 24, %, y) Ye:2 = f(z,x) zeR" (6)
OIQ(ZC,Zd7Z’,y) €x = g(Z,ZC) T € §Rm

wheree is a small positive parameter.is a vector of slow
The QSS model may fail to capture dynamics of the longgriables whiler is a vector of fast variables. Leét (¢, zo, zo)
term stability model, thus provide incorrect approximaio denotes the trajectory of modél (6) starting(as, zo) and E
of the long-term stability model leading to incorrect st#pi denotes the set of equilibrium points of it, i.B.= {(z,3) €
assessment. R x R™ : f(z,2) = 0,9(2,2) = 0}. If (25,25) is a SEP of
model [8), then the stability region ¢t;, z;) is defined as:

Ac(zs,zs): = {(z,2) € R" X R™ 1 @e(t, 20, 20) —
(zs,5) ASt — 00}

[1l. M ATHEMATICAL PRELIMINARIES
In this section, some relevant stability concepts from non-
linear system theories are briefly reviewed. Knowledge of
stability region is required in analyzing the QSS model forhe slow model is obtained by setting= 0 in (G):
long-term stability analysis.
0:2 = f(z,2) zeR" @)

A. Stability of Equilibrium Point and Stability Region 0 = g(z2) aeR™

We consider the following autonomous nonlinear dynamicahe algebraic equatio® = g(z,z) constraints the slow
system: dynamics to the following set which is termed @snstraint

= f(z), zeR" (5) manifold

where f : ®" — R satisfies a sufficient condition for the [i={(z,2) e " x R : g(z,2) = 0} (8)
existence and uniqueness of a solution. The solutiorJof ({ap]e trajectory of model[{7) starting at, is denoted by
starting at initial stater at timet¢ = 0 is called the system do(t, z0, o) and the stability region is
trajectory and is denoted ast,z). z € R" is said to be Y
an equilibrium point of [(B) if f(z) = 0. The definition of Ao(zs,zs) = {(2,2) € I : ¢po(t, 20,70) — (25, 7,) @St — 00}
asymptotic stability is given as below][1]:
Definition 1: Asymptotic Stability as:
An equilibrium pointz € ®" of (B) is said to be asymp-

Thesingular pointsof system[(¥) osingularity S is defined

totically stable if, for each open neighborhotidof z € R", Si={(z2) €T delD,g)(z 7) = 0} ©)
the followings are true: (iY(t,z) € U for all t > 0; (ii) Singular points can drastically influence the trajectodés
lims o0 || @(t,2) — Z ||= 0. the differential-algebraic equation (DAE) system. Tyjflica

Without confusion, we use stable equilibrium point (SERe singular sef is a stratified set of maximal dimensian- 1
instead of asymptotically stable equilibrium point in thiembedded id* andT is separated by into open regions [11]
paper. An equilibrium point ikiyperbolicif the corresponding [12].

Jacobian matrix has no eigenvalues with zero real parts. Abéfinition 3: Type of Constraint Manifold
a hyperbolic equilibrium point is atype-k equilibrium point ~ The connected sét; C I" is atype-k component df if the
if there existk eigenvalues oD, f(Z) with positive real parts. matrix D,.g, evaluated at every point df;, hask eigenvalues



that have positive real parts. If all the eigenvaluesidfg Note thatZ C R" is required to be a compact set, thus the
calculated at points of; have a negative real part, then wesolution of slow model stays inside a compact set to avoid non
call I'; a stable component df; otherwise, it's anunstable essential technicalities with the maximal interval of ditiom
component of". of a solution [14].

We next define the fast model associated with the singularlyTheorem 1 can be extended to the infinite-time interval
perturbed model, i.e. boundary layer model. Define the fashder some additional conditions which ensure stabilitthef
time scalec = ¢/e. In this time scale, mode[]6) takes thesolutions of the singular perturbation problenh (6)/[14].

form: Theorem 2 (Tikhonov's Result on Infinite Interval) [13]
dz " [14]:
Il : do ef(z ) zeR (10) Consider the singular perturbation probldrm (6) andzlet

dx (2,2) c jm j(z) be an isolated root of systein {12). Assume that there exist
= g(z,z T

do positive constants and e, and a compact domaig C R”
Let ¢ (a7, 20, ) denote the trajectory of moddI{10) startin&u‘:h that the following conditions are satisfied for @ll <
at (20, ). tS—l—OO,ZEZ,.Hx—_](Z)HST,O<ESEO _
dx (a). The functionsf (z, z), g(z,2) andj(z) are continuous;
p:om = 9(2,2) 1) (b). The solutionzy(¢) of the slow model starting from

where = is frozen and treated as a parameter. The constrafitfo) = 2o €xists for allty < ¢ < +o0, and thew-limit

manifold T is a set of equilibriums of modelET1L1). For eactiet Of the slow mode[{7) is a SEP denotedas «,); _
fixed z, a fast dynamical model{11) is defined. (c). The fast mode[{11) has the uniqueness of the solutions
Definition 4: Uniformly Asymptotically Stable with prescribed initial conditions. Lek(c) be the solution of

Assuming(z,z) ¢ S, andz = j(z) is an isolated root of System(B); _ _
equation: (_d). The equnlbr_lum pointz = j(z) of fast model is
0=g(z,2) (12) uniformly asymptotically stable in € Z;
(e). The initial conditionzy belongs to the stability region
thenz = j(z) is an equilibrium point of systeni(L1), if =  A(j(z,)) of system [(IB).
j(2) is a SEP of systenl(11) for alt € Z, thenj(z) is  Then for everys > 0, there exists a positive constart
uniformly asymptotically stableith respect to: € Z. such that for all0 < e < ¢*, every solution(z(t), z(t)) of

The next Theorem ensures that, that solutions of the singuige singular perturbation modéll (6) exists for alb> ¢,, and
perturbed model{6) can be, at least for sufficiently small gatisfies

approximated by solutions of the slow modél (7).

Theorem 1 (Tikhonov’s Result on Finite Interval) [13] [14]: [|z(t) — 20(t)|| <6
Consider the singular perturbation probldrh (6) and:let o t—toy ) -
j(2) be an isolated root of systef {12). Assume that there exist [l2(8) = &( ) = 3(z0(0) + ()l < 6

positive constant$; > to, r and ¢, and a compact domaingy. 41 ¢ > to.

Z C R" such that the following conditions are satisfied for acsume the solution of singular perturbation problémh (6)

alto<t<ti,zeZ flo—jiz)[<r0<e<e t t,€)) is unique, then we have [14][15]:
(a). The functionsf(z, z), g(z,z) andj(z) are continuous; (8, €),2lt,€)) aue. el k
(b). The slow model[{7) has a unique solutieg(t) with lim  z(t,e) = lim z(t) = 24 (14)
initial condition z(ty) = zo, defined onty,t;] and z(t) € Z Hol,HJ”x’ B t_l),+°° , B
for all £  [t0, 11 om0 = () = o,
(c). The fast mode[{11) has the uniqueness of the solutions
W|th prescribed |n|t|a| COI’IditiOﬂS. Leﬁ(a) be the SO|uti0n Of |V ANALYT|CAL STUD|ES OFQSSMODEL
system:
Y dx The long-term stability model of power system can be
do 9(20, ), z(00) = @0 (13)  represented as:

(d). The equilibrium pointz = j(z) of fast model is 2= he(e, 2, ), 2o(10) = 20 (15)

!/
uniformly asymptotically stable in € Z; N B B
(e). The initial conditionz, belongs to the stability region Zd(k% = halze, za(k — 1), 2,y),  za(70) = Zl‘i(o)
A(j(20)) of system [IB). er’ = f(ze 2,2, Y), (7o) = g
Then for everys > 0, there exists a positive constagtt 0 = g(ze 2a,2,Y)

such that for allD < € < ¢*, every solution(z(t), z(t)) of the . o
Singu|ar perturbation modd]:l(6) exists at |ea5t[mt1], and wherer = te. Note that shunt compensation SWItChlng and

satisfies LTC operation are typical discrete events capturedy) =
ha(ze, za(k — 1),2,y) and z4 is shunt susceptance and the
|[2(t) — z0(t)|| < 6 transformer ratio, respectively. Transitions of depend on
2 (t) - j(t — to) —j(z0(t) + i (z0)|| < & system variables, thus,; change values from,(k — 1) to
€ zqa(k) at distinct timesr, wherek = 1,2,3,...N, otherwise,

for all tg <t <t. these variables remain constants.



Consider the long-term stability model {15), it can bénd type component of” where( < k < m + n is defined
regarded as two decoupled systems| (16) (17) shownaas

below whenz, jump from z4(k — 1) to z4(k):
74 JUMp za ) 10 za(k) Tr = {(2c, z4,2,y) € T : there are k eigenvalues of

z(k) = ha(ze, za(k=1),2,y),  24(0) = za(k—1) (16) { D.f Dyf } satisfy Ré\) > 0} (24)
D.g Dyg
and
Whenz. € D, andz, € D, for each fixed:. andz,(k),
2, = he(ze, 2a(k), z,y), 2e(10) = zer (17)  given a point(z., z4(k), z,y) onT, the corresponding transient
er’ = f(ze,2a(k), 2, y), z(79) = x;ﬂ stability model is defined as:
0 = g(zc,zd(k),x,y) T = f(ze,za(k),z,y) (25)
discrete variables, are updated first and then systein](17) 0 = g(2c, za(k), 2, y)

works with fixed parameters,;.

If (2, zq(k),x, S, then(z., zq(k), x+s, yis) is an equilib-
Similarly, whenz, jump from z,(k — 1) to z4(k), the QSS (zc, zalk), 2. ) ¢ (ze: 2a(k), 2t y1) a

rium point of [25), where

model
zis \ _ ( h(ze,za(k)) \ _
ze = he(ze,z4,2,y), ze(T0) = 20 (18) ( Yis ) = ( Iy(ze, za(k)) ) I(z¢, za(k))
za(k) = halze, za(k — 1), 2,9),  2a(70) = 2a(0) If (ze, za(k), 245, yes ) is @ SEP of[(26), then the stability region
0 = f(ze;2d,7,9) of (z¢, za(k), x1s, yrs) is represented as:
0 = Zes Zdy Ty
g( ¢ y) At(Zc, Zd(k), xtsayts) = {(,T, y) €D, x Dya Ze = Ze,
can be decoupled as: za = za(k) : $u(t, ze, za(k), 2, y) = (z¢, 2a(k), Tes, Yes)
za(k) = ha(ze, 2a(k—=1),2,9), (7o) = za(k—1) (19) as t= +oo)
q where ¢, (t, 2., za(k), z, y) denotes the trajectory of the tran-
an sient stability model[(25).
2= he(ze, za(k), 2, y), 2o(r0) = 2 (20) Assuming thatDyg is r!onsingular, then t.rgn.sient stability
model [25) can be linearized near the equilibrium point as:
0 = f(Zc, Zd(k)a xz, y)
0 = g(zc za(k), 2, y) @ = (Daf = DyfDyg™ ' Dug)z (26)
and we can define a subset of the stable component of
A. Models in Nonlinear Framework constraint manifold”s C I'o:
For the study regioW/ = D, x D, x D, x D,, where
D, C®P, D,, C R D, CR™, D, CR", both the long- T's = {(2¢, za, z,y) € T : all eigenvalues\ of
term stability model and the QSS model have the same set of (Dof — Dy fDyg ' D,yg) satisfy Ré)) < 0,

equilibrium pointsE = {(z., zq, x,y) € U : zq(k) = za(k —

1), he(ze, za,2,y) = 0, f(2e, 20,2, y) = 0,9(2¢, 24,2, y) =

0}. Assuming(zeis, zais; Tis; Y1s) € E is a long-term SEP of gych that each point off, is a SEP of the corresponding

both the long-term stability mode[{IL5) and the QSS modghnsient stability model[(25) for fixed. and z4(k). A

(@8) starting from(z.0, 24(0), xf, y) and (z.0,24(0), z§,y5)  comprehensive theory of stability regions can be foundj [1

respectively, and; (7, z«o, za(0), zf, y) denotes trajectory of 1] [17].

the long-term stability model[(15) ang (7, zc0, 24(0), 23, %5) ~ We divide the task of establishing a theoretical foundation

denotes trajectory of the QSS modell(18). Then, the stabilfor the QSS model into two steps &ase | and Case |I.

region of the long-term stability moddl(15) is: Firstly, we analyze the trajectory aneHimit set relations of

the long-term stability mode[{17) and the QSS model (20),
Ai(zets, zais, 015, Y1s) 1= {(2e: 20, 2,9) €U (T, 200, hat is we regard discrete variables as fixed parameters.
2a(0), 70, yo) — (2ets, Zdis, Tis, y1s) 8T = +00} (21)  Next, we move one step further to include discrete dynamics

. ) ) zq and deduce the relations of the long-term stability model

The stability region of the QSS modéL{18) is (I5) and the QSS mod¢l{118) in terms of trajectory anlimit

set.

Before proceeding, we need some important assumptions:
S1. Neither the long-term stability model nor the QSS model
meets singularity points.

S2.The trajectories of the long-term stability model, the QSS
model and transient stability models with specified initial
conditions exist and are unique. Additionally,_ is compact.

and D, g is nonsingulay (27)

Aq(chs, Zdlsy Lls, yls) = {(an Zdy T, y) el: (bq(Ta Zc0
Zd(O), :Ega yg) — (chsa Zdlsy Lls, yls) ast — +OO} (22)

The singular points of constraint manifoldare:

S :={(z¢, za,2,y) €T : det[ gzjgc gzg } =0} (23)



in z. when z, are fixed as parameters. Dgi_g _ll_)ﬁg
Note that the uniqueness of solutions is generally satisfi unction theoremy
in power system models. Besides, since a power system i

S3.Equilibrium point of transient stability model is continu®  proof: If S1 is satisfied, therD,,g andi Dof Dyf are

gansingular, according to the Implicit
be solved from:

real physical system, the_domgir) of each variable is g_e]ngral 0 = flzeza(k),z,y) (31)
compact. As for S3, if S1 is satisfied, we know that equilibriu 0 — i

point of transient stability modé|( 2., z4(k)) is at least locally = 9(ze,zak) 2,y

continuous by Implicit Function Theorem. Moreover, as ) z I (ze, za(k))

only varies slowly and subtly, S3 is also generally satisfieith the solution =\ bo(e za(k)) ) = HzerzalR)),

Y
As a result, if S1 is satisfied, we can safely assume that $Bus the long-term stability modd[ ({17) becomes:
and S3 are satisfied in power system models.

2l = he(zesza(k), 2, 12(zc, 2a(K))) (32)
B. Case I: Relations of Trajectory anc-limit Set = He(ze,2a(k), @),  ze(70) = zek
/
Assuming the initial point of the long-term stability model er’ = [flze, za(k), @, l2(2c, 24(k)))
is (zek, za(k), 2%, yL), and the initial point of QSS model is = F(ze,2a(k), ), z(1) =z,
(Zeks za(k), x, yl). Then the initial transient stability model - ) _
can be represented as: Hence, the long-term stability model is transformed int® th

standard singular perturbation problem considered in fidrao
= [(zer-za(k),z,y),  x(to) =z,  (28) 1, and the QSS model is the corresponding slow model. Next,
0 = g(zer,zalk),z,y) from the detailed power system models in Appendix, the
q (2 2a(k) following fact follows.
k ) - < l;(zczjzj(k)) ) — Fact 1 These mapsi., f andg that describe slow dynam-
l%enf(}S) cancbé represented Ics, fast dynamics and algebraic constraints respectiaety
continuous.
& = f(zek, za(k), z, l2(2ek, za(K))) z(ty) =zt (29) With Fact 1 and S3, condition (a) of Theorem 1 is satisfied;
. A g with S2, condition (b) and (c) of Theorem 1 are satisfied.
with equilibrium pointas, = 11 (zek, 2a(k)). Furthermore, if condition (a) of Theorem 3 is satisfied, then

Additionally, denote the solution of QSS mod&l20) 4P is a subset of stable component of the constraint manifold,

Zek(7) € ch and th_e solution of the initial transient St"’lbi”tythus each point ol'y is a SEP of the corresponding transient
tmho??‘l as:clig(t). Beg,lrdes, der}oté)z < Lk)”” o Se a Setdsrih stability model. In other words, (7, zck, za(k), ¢, y})
Ua_g a f)e i H:CD_ 1(zer, za(R))I| < 7, and let o eg alongl'y, thenz = 1;(z., zq4(k)) is asymptotically

r = e X Lzg X Uy X Dy stable uniformly inz., hence condition (d) of Theorem 1

Th;orem_S: (;]rajecto_rthela_?on): ; q is satisfied. Note that it = l1(2., z4(k)) is asymptotically
ssuming there exist positive constamis> 7o, » and<co  gapie o — (2., 24(k)) is necessarily to be isolated by
such that S1-S3 and the following conditions are satisfied f8efinition. Finally, condition (b) of Theorem 3 ensures the

a-" [Ta Zc,Zd,(E,y7€] € [TQ,Tl] X UT X [0760]: i i it i i
. a q satisfaction of condition (e) in Theorem 1. According to
méz)él &1@8 rggf/eecst(;rl}(l)ﬁq@ Zek, 2d(k), oy, yg) of the QSS o o 1, it follows that for every > 0 there exists a
) bs; positive constang* such that for all0 < e < €*, the solution

(b). The projection of initial pointz.x, za(k), %, y.) of the :
long-term stability mode[{17) to the subspacegf andz, (k) (ze(7), 21 (7)) Of system[3P) exists at least ¢m, ], and

8

with the equilibrium point

n

1(zek, za(k)). Equivalently, sy

is inside the stability region of the initial transient steyp satisfies:
model [29).
Then for everyd > 0 there exists a positive constast |2k (T) = Zeu ()| < 6, n<T<m (33
such that for all0 < ¢ < €*, the solution(z.x(7), zx (7)) of - -1
the long-term stability mode[[{17) exists at least [og, 1], 2 (7) = L (Zer(T), za(k)) — Zi( )
and satisfies: +11 (2, 2a(k))|| < 6, 0 <T<T
Ize(7) = Zew(T)[| < 0 (30)  This completes the proof of the theorem.
zk(7) = l1(Zek(7), 2a(k)) Next we proceed to identify the-limit set relation between

T

e : To) 41 (2o 2a(R))]| < 6 the long-term stability mode[{17) and the QSS mofdel (20).

Theorem 4: (w-Limit Set Relation):

for all 7 € 1, 71]. Assuming there exist positive constantsand ¢, such
Theorem 3 asserts that if the projection of initial pointié t that S1-S3 and the following conditions are satisfied for all

long-term stability model lies inside the stability regiofthe [T, z¢, za, , Y, €] € [70, +00] X U, X [0, €o]:

initial transient stability model, andg (7, zcx, za(k), 2}, y{) (a). The trajectoryg,(, zek, za(k), 2}, y}) of the QSS

moves alongly, then for sufficiently smalk, trajectory of model [20) moves along;

the long-term stability mode[[(17) can be approximated by (b). The projection of initial pointz., z4(k), %, yL) of the

trajectory of the QSS mod€l(R0). long-term stability mode[{17) to the subspacegf andz, (k)




family of transient models

is inside the stability region of the initial transient st 1
model [29); T2
(c). Thew-limit set of the QSS mode[[(20) starting from
(Zek, za(k), z}, yl) is @ SEP(zeks, za(k), ks, Yrs)-
Then the solution(z.x(7,€),zx(7,¢)) of the long-term
stability model [[IV) exists for ali > 75, and satisfies the

following limit relations: ek, 2a(F), 2, 9)

™) (ks 2a(K), 2b, 9f)
lim Zek(T,€) = 2 34 S
e—0 T—+400 Ck( ’ ) cks ( ) the stability region of
. o the initial transient
5%01%1'124»00 Tk (7—7 6) = Tks (35) T(};Zlozr;{(;kt)e;: yff asymptotically SEPs ¢q(T72ck,Zd(k)yIz’yZ) stability model
. .. ke 1R IES) of transient models
Theorem 4 asserts that if all conditions of Theorem 3 are Gi(r,7et, 7a(k), 21, )
satisfied and the QSS modell20) converges to a long-term SEP
fth d(lg hen f EE( f'f')' | 9 lthe | 9 FElg. 1. lllustration of Theorems 3 and 4, (7, zck, za(k), z3,y})
ort e QSS model, t ?n orsu 'C|enty5majt € (_)ng-term is constrained onI's all the time. The projected initial point
stability model [I¥) will converge to the same point. (2eks 2za(k), 2t ,yt) of the long-term stability model locates inside
) ) L D.f Dyf At (zek, za(k), xf,yf), then ¢y(, zer, za(k), b, yt) always stays close
Proof: If S1 is satisfied, therD,g and L D.g Dyg 10 ¢q(7, 2k, za(k), zf, yl). Moreover, since ¢q(7, zek, za(k), z, y)
. . . ! 1
are nonsingular. Likewise, we can transform the long-terfAnverges 10 a SERzcks, 2a(k), zks, Yks), G1(T, 2k, 2a(k), z};, vy,) also

-1: - - cks» k ) sy Yks )+
stability model [IV) to systeni{B2) which is the standard o zcks: Za(k), Ths ie)

singular perturbation problem considered in Theorem 2.
From the proof of Theorem 3, we have that with S2, S3. T .
" ' - With lib ted = 11 (2 .
and Fact 1, condition (a) and (c) of Theorem 2 are satisfie I.Deen%l:: tr:Izns]ollal?tlirc])rT%f le(é Or;wiij%):)[ZO) as(r) € D
Besides, condition (a) and (b) of Theorem 4 ensures the . o ) B&(7) € D,
satisfaction of condition (d) and () in Theorem 2 respedyiv and denote the solution of the initial transient stabilitpdal
Finally, with S2 and condition (c) of Theorem 4, it followsath and transient stability models immediately after jump to
’ ’ AN (T—Tk —
the solution of the QSS moddI (20) exists for al> 7, and Zd(]f_:) _?SI’%(_ & ) fotr a!{l f\tt O’t_l’ 2. N
the w-limit set of the QSS model is a SEP, thus condition (t5)e inition h OES'IS en rac Iobn'l' del satisfies th
of Theorem 2 is satisfied. Therefore all conditions of Theore . € Say that the long-term stability model satisfies the con-
2 are satisfied, it follows that for every> 0, there exists a d|t|9n of c9n5|stent attractionif whenever long-term discrete
positive constant* such that for all0 < ¢ < €*, the solution variables jump fromzg(k — 1) t0 z4(k), k = 1,2,3..N,
(204 (7), 2 (7)) of the long-term stability model{17) exists forthe point on the trajectory of the long-term stability model

all 7 > 7o, and satisfies immediately afterz, jump stays inside the stability region of

the corresponding transient stability model.

[2er(T) = Zer(7)|| < 6 (36)  The following two theorems provide a theoretical founda-
(s AT T0 tion for the QSS model in which trajectory andlimit set
lew(r) = b (Ze(7), 2a(k)) = &l € ) relations of the long-term stability moddl{15) and the QSS
1 (2eks 2a(k))|| < 6 model [I8) are established.
for all = > 7,. Since the solution of the long-term stabilityTheorem 5: (Trajectory Relation)
model [IT)(zer (7, €), 21 (7, €))is unique, we have Assuming there exist positive constanis> 7y, r andeg
) such that S1-S3 and the following conditions are satisfied fo
ohm  Ze(T,€) = Zeks BT all [1, 2, 24, 2, y, €] € [10,71] x Uy x [0, €0]:
lim k(7€) = Ths (38) (@). The trajectory¢,(t, zc0, 2a(0), zd, yd) of the QSS
€30 72400 model [I8) moves along;
This completes the proof of the theorem. And [Fiy. 1 gives an (b). The projection of initial pointz.o, z4(0), 2}, y) of the
illustration of Theorem 3 and Theorem 4. long-term stability mode[{d5) to the subspace:qf andz;(0)
is inside the stability region of the initial transient steip
C. Case II: Relations of Trajectory and-limit Set model [39), and the long-term stability modg[(15) satisfies

Next, we are at the stage to incorporate discrete behavighg condition of consistent attraction.
of z4 in the long-term stability model and the QSS model, and Then for everys > 0 there exists a positive constaeit
explore trajectory and-limit set relations between them.  such that for alb < e < €*, every solution(zcx(7), 2 (7)) of

Assuming zg = z4(0) initially at 75, and jump from system[(IFF) exists at least ¢n., 741], and satisfies:
za(k — 1) to z4(k) at time 7, where k = 1,2,3..N. -
Similarly, the initial point of the long-term stability metl |2k (T) = Zer(T)|| <6 (40)
is (20, 24(0), 2k, y}), and the initial point of QSS model is 2k (T) — l1(Zer(T), 2a(k))
q ,4 initi i ili —
(zc0,24(0), ¢, yg). Then the initial transient stability model _j(T Tk) + 1 Gops za(R)|| < 6

can be represented as:

& = f(2e0,24(0), 2, l2(2c0, 24(0))) x(tg) = xé (39) for all 7 € [, Tk41], k € ]0,1,2...N].



Theorem 5 asserts that if the trajectory of QSS model movesoof: Since (zens, tns) = (zas,Tis), then according to
along I'y, and the projection of each point on trajectory ofheorem 4, we have:

the long-term stability model always lies inside the sigpil

region of the corresponding transient stability modelntfar

sufficiently smalle, trajectory of the long-term stability model
(I5) can be approximated by trajectory of the QSS maddél (18).

lim ZcN (Ta 5) = ZcNs = Zels
e—0 T—+o00
lim

xN(Tv 6) = TNs = Tls
e—0 7=+

Proof: Conditions of Theorem 5 ensure that conditions of Next, since the long-term stability modél {32) with each

Theorem 3 are satisfied for each fixegk), ¥ =0,1,2...N.

fixed parameterzy(k) has a unique solution for alk =

Thus we can apply the conclusions of Theorem 3 for eaohl,2,....N, the whole long-term stability mode[{I15) with
zq(k). We have that, for every > 0 there exists a positive initial condition (z.o, z4(0), z},%5) will also has a unique

constante, such that for all0 < ¢ < ¢, the solution
(zek(7),zi (7)) of system [(I7) exists at least dmy, 711,
and satisfies:

2er(T) = Zer(T)|| <6
2k(7) = L (Zek (7), za(k))

(T 4 L G, za(R)) | < 6

(41)

for all 7 € [, 741]. Let €5 = min(ep, €1, ...€x), then for
everyd > 0 there exists a positive constadit such that for
all 0 < e < €*, the solution(z.x(7), zx (7)) of system [(Il7)
exists at least offr, 7x+1], and satisfies:

[zer(7) = Zer(T)|| < &
k(1) = L1 (Zer(7), za(k))

Lo By N ) )

(42)

€

for all 7 € [, Tk+1], wherek € [0,1,2...N]. The proof is
complete.

solution which is denoted ds. (7, €), (7, €)). Hence we have:

i ) = i se() = s
lim  x(r,e) = lm  ay(7,¢) = 25

e—0 T—+o0 e—0 T—>+o00

The proof is complete.

family of transient models

/\

(20y24(0), 75, 45)

¢q(T7 Ze0, 24(0)7’737!/3)

I\, zo(]yzd(o)7w%)ay(l)

X

the long term SE
(2ets, Zdis: Tis: Yis

(260, 2a(0), 97671/('])

asymptotically SEPs
of transient models

Fig. 2. lllustration of Theorems 5 and 64(, zc0, z4(0), z¢, y3) is con-

We next show they-limit set relation between the |0ng_termstrained orl’s all the time. The projected initial point of the long-terralsility

stability model [Ib) and the QSS modEl(18).
Theorem 6: (w-Limit Set Relation)
Assuming there exist positive constantsand ¢, such

model locates inside the stability region of the initialnsaent stability model,
and the long-term stability model satisfies the conditioncofisistent at-

traction. Finally bothp (7, zco, 2a(0), zd, yd) ande; (7, zco, 24 (0), =k, yb)

converge to the same poilt,;s, zdis, Tis, Yis)-

that S1-S3 and the following conditions are satisfied for all

[T, Zes 2ds X, Y, €] € [T0, +00] X Uy x [0, €o]:
(@). The trajectory ¢, (T, zco, 24(0), 2, yd)
model [I8) moves along,;
(b). The projection of initial pointz.o, z4(0), z}, v}) of the
long-term stability mode[{15) to the subspace:gf andz4(0)
is inside the stability region of the initial transient steyp

of the QSS

model [39), and the long-term stability modEl[(15) satisfies i =

the condition of consistent attraction;

(c). Thew-limit set of the QSS mode[(18) starting from

(Zc()a Zd(o)a I(q)a 1/(()1) is a SEP(chsa Zdlsy Lls, yls)-

Fig. @ gives an illustration of Theorem 5 and Theorem
6. Note that the condition of consistent attraction is alci
For instance, assuming when; jump from z4(k — 1) to
za(k), the first point after the jumgz.x, za(k), 2k, yx) ON
o1(T, 20, 2a(0), 2}, y) locates outside the stability region
A(zek, za(k), zi, y) of the transient stability model:

.f(zcv Zd(k)vxvy)a
g(zc, Zd(k)v €L, 1/)

x(to) = . (45)

O =

then ¢;(7, zc0, 24(0), 74, y4) will move away from Ty as

Then the solutior{z.(7, €), z(7, €)) of the long-term stabil- shown in Fig[B.

ity model [IB) exists for ali- > 7y, and satisfies the following

limit relations:
5%01%}24»00 2e(T,€) = Zeis (43)
lim (1, €) = x5 (44)

e—0 T—+400

V. NUMERICAL |LLUSTRATION

In this section, two examples will be analyzed using the
derived theorems. In the first numerical example, the QSS
model provided correct approximations of the long-term sta
bility model since all conditions of Theorem 5 and Theorem 6

Theorem 6 asserts that if all conditions of Theorem 5 agge satisfied. In the second numerical example, the QSS model
satisfied and the QSS model]18) converges to a long-term S&led to give correct approximations due to the violatidn o
of the QSS model, then for sufficiently smallthe long-term condition (b) in Theorem 5. All simulations were done using
stability model will converge to the same point. PSAT 2.1.6[[18].



family of transient models

T 1 part of the stability region of the transient model part of the stability region of the transient model
14 14

- the SR of the transient stability model - the SR of the transient stability model
12 the first point of the long-term 12 the first point of the long-term
To 10 © stability model at z,(1) 10 © stability model at z,(3)
q .4 * the SEP of the transient stability model * the SEP of the transient stability model
Zec ¢q(T,zc(],Zd(],20,yU) o 8 N 8 - =
o e - I 6 .5 :
= — < 5 5,
* >" >"
- 7 J— 5 &r\ﬁ 2 2
/I‘}/ = ¢1(T’zd)’7'dﬂa£0’yo) ° 0
2 -2
the lOng term 2.6 2.65 2.7 275 28 2.85 29 2.6 2.65 2.7 275 28 2.85 29
v; of Exc 2 v; of Exc 2
(ZCISa Zdls; Xls; )
(@) (b)
transient SEPs Fig. 5. lllustration of Theorems 5 and 6. (a). The stabiliggion of the
of transient models corresponding transient stability models in the subspéde® fast variables

whenz, changed to;4(1) at 30s; (b). The same as (a), except thathanged
Fig. 3. lllustration of Theorems 5 and 6. Whep jump to z4(k), the to z4(3) at 50s. In both (a) and (b), the first points of the long-terabiity
first point on ¢; (7, zc0, z4(0), 2k, y})) after the jump gets outside of the model afterz, changed were inside the stability region of the correspandi
stability region of the corresponding transient stabifitydel, thus the long- transient stability models.
term stability model doesn't satisfy the condition of catent attraction, and
#1(T, 20, 24(0), 2§, yb) moves far away from the QSS model from then on.

To check the condition of consistent attraction, we did the
following simulations. When the QSS model was implemented
and the ratio of the LTC firstly jumped at 30s, the intersettio

The first example was a modified IEEE 14-bus systéms [18] the stability region in the subspace of two fast variables
in which QSS model gave correct approximations of the longs plotted in Fig.[Bh, and the first poirt., z4(1), 21, y1)
term stability model. In this system, an exponential recpveon ¢, (7, z.o, 24(0), 2}, y5) when z; jumped to z4(1) was
load was included at Bus 5 and two turbine governors at Brsarked. Additionally, trajectories of two fast variablesthe
1 and Bus 2 were added respectively. The assumption S1 thatresponding transient stability model are shown in Fidt 6
neither the long-term stability model and the QSS model megfan be seen that the trajectory starting from, z4(1), 1, y1)
singularity points was satisfied. And we can safely assurgettled down to the SEP of the transient stability model twhic
that S2 was also satisfied. Besides, from the trajectory ffrther confirmed that(z.i, z4(1), 21, 1) did lie inside the
the QSS model, we can see that S3 was also satisfiedsigbility regionA; (z1, za(1), 11 (ze1, za(1)), l2(2e1, 2a(1))) of
this case. In addition, the trajectory, (7, zc0,24(0), 23, y5) the corresponding transient stability model.
of QSS model moved alon@’;. As QSS model was im-  Fig. shows stability region of the transient stability
plemented 30s after the contingency, fast dynamics settig@del in the subspace of the same fast variables when
down at the time such that the projection of the initigumped fromz,(2) to z4(3). Likewise, this procedure can be
point (zco,za(0),zh, ) of the long-term stability model done successively to verify that the long-term stabilitydsio
lied inside A;(zco,24(0),11(2c0, 2a(0)), l2(2c0, 24(0))). And  satisfied the condition of consistent attraction.
wheneverz, jumped toz,(k), k = 1,2,...N, the first point
(2, za(k), e, yu) ON G(7, 2c0, 2a(0), zh, yhy) after the jump  -ous
stayed inside the stability region of the correspondinggient -0316
stability model such that the long-term stability modelsetd a6 116
the condition of consistent attraction. Since all conditio 114
of Theorem 5 were satisfiedy (7, zco, z4(0), 7}, y5) always - i
stayed close tap,(7, zco, 24(0), 23, yd). Additionally, as the 3} \/V
QSS model converged to a long-term SEP, the long-tel '

A. Numerical Example |

12
——the trajectory of & of Syn 2 —the trajectory of Vi, of Exc 1

— value at the SEP of the transient model|

1.18} |——value at the SEP of the transient model

—-0.3164

dof Syn 2

—_
IS

v, of Exc 1

-0.3166

-0.3168

-0.317

stability model converged to the same point. [Elg. 4 shows t 0 imee® oo e e
trajectory comparisons of the long-term stability modetl an
the QSS model. Fig. 6. Trajectories of the transient stability model whegnumped toz,(1)

at 30s. The trajectories starting from the first point of theg-term stability
model converged to the SEP of the transient stability modethvindicated

2.9 ~Jong-term stability model —ong—term stabiliy mode] tha@ the first point_of the ang-term stability model was dwsithe stability
—QSS model —— QSS model region of the transient stability model.
2.85 1.052
~ ~ 105
g 28 @
] : I 1.048
o © .
F2T : > 1046 B. Numerical Example II
1.044 : i . .
27 1042 This was also a 14-bus system, while the QSS model did
104 not give correct approximations of the long-term stability
0 30 90 time(s) 150 200 0 30 90 time(s) 150 200

model due to the violation of condition (b) in Theorem 5.
Fig. 4. The trajectory comparisons of the long-term stgbitiodel and the The tra]_eCtory comparisons are shown I_n Eb 7. .

QSS model. The trajectory of the long-term stability modslofved that of In this case, S1-S3 was also satisfied, and trajectory
the QSS model until both of them converged to the same lamg-&EP. bq (T, 2c0, 24(0), ;Ug’ yg) of the QSS model moved alonig.



——the long-term stability model ——the long—term stability model part of the stability region of the transient model part of the stability region of the transient model
——QSS model 2 ——QSS model 15 - the SR of the transient stability model 15 - the SR of the transient stability model
-0.35 the first point of the long-term the first point of the long-term
- © stability model at (1) © stability model at z,(2)
z Q 15 10 ient stability model 10 stability model
o] w o~ o~
n  -0.4 — o ©
= 5 2 2
o o 1 w [n]
o >- % 5 5 5
-0.45 S K]
0.5
0 0
70'50 30 90 150 200 GO 30 90 150 200
time(s) time(s) 35 36 37 38 39 35 36 37 38 39
v; of Exc 2 v; of Exc 2
Fig. 7. The trajectory comparisons of the long-term stgbinodel and the (@) (b)

QSS model. The QSS model converged to a long-term SEP whsléotig- ] o

term stability model stopped at 101.2155s s due to instphitiused by wild Fig. 9. lllustration of Theorems 5 and 6. (a). The stabiliggion of the

oscillation of transient variables. corresponding transient stability model in the subspactvoffast variables
when z, changed tozg(1) at 30s. The first point of the long-term stability
model was inside the stability region of the correspondiaggient stability
model; (b). The same as (a) except thgtchanged toz;(2) at 40s. The first

O v er———— 38 T vajectony ofv, o Exc 2 point of the long-term stability model was outside the digbregion of the
Log, L QSSmodel 367) | value at the SEP of the ransientmocel] - COTTESPONAiNg transient stability model.
’ 3.66
% 1.055 S
g g g 3.65
8 105 . 3.64
> g 3.63 38 384 ——the trajectory of v , of Exc 2
1.045 3821 | value at the SEP of the transient model|
3.62 3.7 3.8
1.04 3.61 N ~ 378
0 30 90 4ime(s) 150 200 0 2 4Iime(s)6 8 10 5 3.6 g e
(@) (b) ::‘ 35 > 374
Fig. 8. (a). The trajectory comparison of the long-term iitgbmodel 34 L a7z
and the QSS model wheg; were fixed atz4(1), and both the long-term :ggé";%‘d‘;'m stability model 37
stability_model and the QS_S model_ _converged to the same tkenmg-SEP. 33— 00 0 200 3.68; > T e 5 0
(b). Trajectory of the transient stability model whep changed tozg(1) time(s) time(s)
at 30s. The trajectory starting from the first point of thegdarm stability (a) (b)

del d to the SEP of the t ient stabilit del. . . . ”
modet converged fo the ot the Transient stability mode Fig. 10. (a). The trajectory comparison of the long-ternbifitg model and

the QSS model when, were fixed atz;(2). The long-term stability model
became unstable while the QSS model converged to a long-&&m (b).

it ; Trajectory of the transient stability model whep changed toz4(2) at 40s.
However, condition (b) of Theorem 5 was violated. When The trajectory starting from the first point of the long-testability model

jumped fromz4(0) to z4(1) at 30s, the long-term stability gig not converge to the SEP of the corresponding transiailisy model.

model fixed atz,(1) was stable, the trajectory comparison

is plotted in Fig.[8R in which both the long-term stability

model and the QSS model converged to the same long-term ] ) - ] )

SEP. Fig.[8Bb shows the trajectory of a fast variable in tfodel did not satisfy the condition of consistent attractio

transient stability model and Fig]9a shows stability regid ~ In summary, fast dynamics were excited by the evolution
the corresponding transient stability model in the subspdc of long-term discrete dynamics,; such that the condition
two fast variables. of consistent attraction was violated. As a result, the QSS

However whenz, jumped fromzy(1) to z4(2) at 40s, the model did not provide correct approximations of the long-
long-term stability model was no longer stable which can ¥erm stability model in terms of trajectories and presented
seen from the trajectory comparison in Hig.]10a. The tramsiéncorrect stability assessment in concluding that the {terg
variables were excited due to the evolution of discreteaiaeis Stability model was stable while the long-term stability aeb
z¢ and the trajectory of the long-term stability model wa¥as long-term unstable.
trapped in a stable limit cycle. From a physical viewpoint, We provide some physical explanation behind sufficient
the OXL of the generator at Bus 2 reached its limit while theonditions of the QSS model to explain when the QSS model
LTC between Bus 2 and Bus 4 tried to restore the voltage @ty fail. In long-term time scale, LTCs are to restore the
Bus 4 thus required more power support from the generatoad-side voltages and hence the corresponding load ppwers
at Bus 2. The conflict between the OXL and the LTC resulteghile OXLs restrict the power support from generatdrs [6].
in the limit cycle shown in Figl_10a. The counter effects between LTCs and OXLs further introduce

Similarly, Fig.[I0b shows the trajectory of a fast varialile ilarge changes on exciters, leading to long-term instadslit
the transient stability model, and Figl]9b shows the stgbii- However, the QSS model assumes that variables of exciters ar
gion of the corresponding transient stability model in tame stable and converge instantaneously fast as LTCs and OXLs
subspace as Fif.19a. From these two figures it can be seen évatve, therefore, large changes occurring in the vargabfe
the first point (ze2, z4(2), 2, y2) of éi(7, zc0, 24(0), 2k, y})  exciters are not reflected in the QSS model. As a result, when
after z; jumped to z4(2) lied outside the stability region the described physical mechanism of long-term instabdlity
A(ze2, 24(2), U1 (ze2, 24(2)), l2(202, 24(2))) of the correspond- curs, the QSS model can fail to provide correct approxinmatio
ing transient stability model. As a result, the long-terabdity of the long-term stability model.



VI. CONCLUSIONS ANDPERSPECTIVES

A theoretical foundation for the QSS model intended for
power system long-term stability analysis has been deeelop
Sufficient conditions for the QSS model to approximate the
long-term stability model are derived and relations ofetcaj
tory as well asw-limit point between the long-term stability
model and the QSS model are established. Several numerical
examples in which the QSS model either succeeds or fails
to provide accurate approximations are analyzed using the
derived analytical results.

The analytical results derived also point to a research
direction for improving the QSS model. It has been shown
that the QSS model will provide accurate approximations if
the trajectory of QSS model moves along the stable component
of the constraint manifold and fast dynamics are not excited
by the slow variables. All conditions in Theorem 5 are easy
to check except the condition of consistent attraction.nf a
efficient numerical scheme can be developed to check this
condition, then the QSS model can be improved based on the
theoretical foundation. It's our intent to develop an img@ad

QSS model to accurately approximate the long-term stx,itbili‘f"here

model.

APPENDIXA
DETAILED POWER SYSTEM MODELS [4] [18]

A. Generator (GEN):
Notations are in Tablglll. Dynamic Equations:

b = Mw-1) (46)
S (pm — Pe — Dw)/M (47)
by = (=fs(ey) — (xa —xg)ia +v}) /Ty (48)
éfi = (_efi + (g — x;)iq)/TéO (49)
[fs(e;,) is a function for saturation and
Pe = (Vg + Talq)iq + (Va + Tala)ia (50)
vp = vp 4+ Ko(w —1) = Kp(p —1°) (51)

besidesv, and v, are defined asy; = vsin(é — 6), v, =
veos(d — #), and following equations describe the relation
between the voltage and currefit= v, + rui, — e + Tyid,
0 =104+ reiq— el — x;iq.

Algebraic Equations:

0 =vqiqg +vgiqg —p 0=104lq — v4iqg — ¢

52
Ongn—pm Ozv?—vf (52)
B. Automatic Voltage Regulator (AVR):
Notations are in Tablell.
Dynamic Equations:
U = (v=vm)/T, (53)
. Ky
Ur1 = (Ka(vref — Um — Ur2 — T_fvf) - Url)/Ta(54)
. K
v = (s i)/ Ty (55)
f
v = —(vf(Ke+ Se(vy)) —vr)/Te (56)

TABLE Il
SYNCHRONOUSMACHINE VARIABLES
Variable Description
0 generator rotor angle
w generator rotor speed
ey g-axis transient voltage
el d-axis transient voltage
D mechanical power
p2, initial mechanical power
vy field voltage
vjl initial field voltae
Téo g-axis open circuit transient time constant
T d-axis open circuit transient time constant
Zq g-axis synchronous reactance
xy g-axis transient reactance
ra armature resistance
M = 2H | mechanical starting time ¢2inertia constant)
D damping coefficient
Ko, speed feedback gain
K, active power feedback gain
[o18 base frequency
Pe electrical power
vpr i o <y <ot
v =4 Ul i vy > uler
ot it v < 0

and S, is the ceiling function:S, (vs) = A ePelvsl.
Algebraic Equations:

syn

0 = vr—wy

0
Upref = Uref

TABLE Il
EXCITER VARIABLES
Variable Description
e maximum regulator voltage
vy minimum regulator voltage
K, amplifier gain
Ta amplifier time constant
Ky stabilizer gain
Ty stabilizer time constant
Ke field circuit integral deviation
Te field circuit time constant
T measurement time constant
Ae 157 ceiling coefficient
Be 274 ceiling coefficient
Uref(vgef) the reference voltage(or initial
Vr1,092,Um state variables

C. Turbine Governor (TG):

Notations are in TableV.
Dynamic Equations:

(pin - Igl)/Ts

T3
(1= )1 — 22) T,
(1= o2 + ) — 20)/Ts

10

(57)

(58)
(59)

(60)
(61)

(62)



where

1
Pin Dorder + R (Wrep — w) (63)
if pmin S p:n S pmaz
if py, > pmer

if p, < pmin

*

Pin
max

p
min

p

pm x.q3 + T5 (xq2 + Tc qu) (65)

Algebraic Equations:

syn
m

0=pm— 0= w?ef — Wref (66)

TABLE IV
TURBINE GOVERNORVARIABLES

Variable Description
Wb, ; reference speed
R droop
ma maximum turbine output
minimum turbine output
governor time constant
servo time constant
transient gain time constan
power fraction time constan
reheat time constant
state variables (i=1,2,3)

p
p

min

Ts
T
15
T,
15
Lgi

D. Over Excitation Limiter (OXL):

Notations are in tablg]V.
Dynamic Equations:

{OXL
if 5 > i

{OXL
if ip < iy

(i —i§™)/To (67)

0

VOXL

VOXL

Algebraic Equations:

0

+1)
q

(v +7g) +p? +(:C (68)

Ya(v +74) + W
(vg +79)* +p°
Ugef _

0 (69)

Uref +V0x1

with 7, = z4p/v, 74 = z4q/v. And the over excitation limiter
starts to work after a fixed delay, regardless of the field
current overload.

TABLE V
OVER EXCITATION LIMITER VARIABLES
Variable Description
T4 d-axis estimated generator reactance
Zq g-axis estimated generator reactance
if synchronous machine field current
z’i}m maximum field current
vge ; the reference voltage of automatic voltage regulator
To integrator time constant
p(or q) active (or reactive) power of generator
Ko fixed time delay
VOXL state variabe
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E. Exponential Recovery Load (ERL):
Notations are in tablE"VI.
Dynamic Equations:

(70)
(71)

ip = —xp/Tp+ps—pt

_xq/Tq +qs — q¢

Tqg =
where p, and p, are the static and transient real power
absorptions, similar definition fogs and ¢;. p% and¢? are

PQ Ioad power from power flow solutions. Beside8, =

k
p q° glooqL, pe = PO(0/u0)%, py = pO(v/00)e
p°(v/v°)

P/,

Algebralc Equanons:

Zp/Tp + Dt (72)
q = Iq/Tq + qt (73)
TABLE VI
EXPONENTIAL RECOVERY LOAD VARIABLES
Variable Description
kp active power percentage
kq reactive power percentage
Ty active power time constant
Ty reactive power time constant
Qs static active power exponent
ai dynamic active power exponenf
Bs static reactive power exponent
Bt dynamic reactive power exponeit
Tp,Tq state variabels |

F. Load Tap Changer (LTC):

my + Am if v > vy +d andmg < m™*
Mpyp1 = mr —Am if v <wvg+dandmy > m™"
mp otherwise

(74)
The tapping delay are assumed to be independent,dfut
larger for first tap change than for the subsequent ones while
without the inverse time characteristic. Refer [to [4] formmo
details.

APPENDIXB
DETAILED AND GENERIC LONG-TERM STABILITY MODELS

The detailed and generic long-term stability model are
shown in Table['VIl. Moreover, the detailed variables and
their corresponding generic variables z4, x andy are also
indicated.
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TABLE VII
LONG-TERM STABILITY MODEL AND CORRESPONDING GENERIC VARIABLES

Detailed Long-Term Stability Mode

Generic Long-Term Stability Mode| Detailed Variables

TG: (60)-[62), OXL: [67),
ERL: (70)-[72).

Ze = €he(2ey 2d, T, ) slow continuous variables.:
TG: 241,242,243, OXL: voxr, ERL: 2,,2,.

LTC: (73).

za(k + 1) = ha(ze, za(k), 2, y) slow discrete variables;: m;,.

GEN: (46)-[49),
AVR: B3)-(58).

fast continuous variables:
GEN: 5,w,e;,e’d, AVR: Uy, Ur1,02,05

T = f(zcazduxuy)

TG:(68), OXL:(68)169),
ERL:(72)-[73), GEN[(GR),
AVR:(E8)-(59), power relations.

algebraic variableg:
TG: Wrefs OXL: if, AVR: Urefs
GEN: p,q,pm, vy, Bus:v andé.

0= g(2¢, 24,7, Y)

(1]

[2]

(3]

(4]

5]

(6]

[7]

(8]
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