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Abstract

In a wirelessly-powered communication network (WPCN), an energy access point (E-AP) supplies

the energy needs of the network nodes through radio frequency wave transmission, and the nodes store

their received energy in their batteries for possible data transmission. In this paper, we propose an online

control policy for energy transfer from the E-AP to the wireless nodes and for data transfer among the

nodes. With our proposed control policy, all data queues of the nodes are stable, while the average energy

consumption of the network is shown to be within a bounded gap of the minimum energy required for

stabilizing the network. Our proposed policy is designed using a quadratic Lyapunov function to capture

the limitations on the energy consumption of the nodes imposed by their battery levels. We show that

under the proposed control policy, the backlog level in the data queues and the stored energy level in the

batteries fluctuate in small intervals around some constant levels. Consequently, by imposing negligible

average data drop rate, the data buffer size and the battery capacity of the nodes can be significantly

reduced.

I. INTRODUCTION

Smart electronic devices are increasingly making their way into our daily life. It is predicted

that by 2021, there will be around 28 billion connected devices all over the world [1], a great

number of which will be portable and battery-powered. However, in some applications such

as biomedical implants inside human bodies [2] or distributed monitoring sensors, replacing

the batteries may be infeasible. As such, the problem of providing the required energy for

the portable battery-operated devices has recently received growing attention, both in academia
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and industry [2], [3]. Particularly, the idea of charging batteries over the air is considered as

a promising solution which guarantees an uninterrupted connection and reduces the problem

of massive battery disposal. The key enabling technology for charging over the air is wireless

energy transfer (WET). There are various WET methods including electromagnetic radiation [3],

resonant coupling [4] and inductive coupling [5]. Compared to the two latter methods, electro-

magnetic radiation provides a wider coverage range and is more flexible for transmitter/receiver

deployment and movement [2].

There are numerous studies on energy beamforming as a technique for alleviating the high

transmission path loss in wirelessly-powered communication networks (WPCNs) [6]–[9] as well

as for the simultaneous wireless information and power transfer systems [10]–[12]. Moreover,

[13]–[20] consider cooperation among the users as a useful method to increase the network

coverage in two-hop [13]–[18] and multi-hop [19], [20] WPCNs, respectively. Furthermore, [21]

and [22] study the reliability of data transmission in WPCNs.

In the networks that support continuous or regular communication, the nodes are equipped

with batteries which enable them to store their harvested energy in one time-slot for possible

use in the subsequent time-slots [23]–[26]. In such cases, the network performance should be

analyzed in the long term, because a single time-slot analysis may not be optimal in general. For

this reason, [23] and [24] study the long-term network throughput optimization through Markov

decision processes (MDP). Moreover, in [25]–[29], long-term energy optimality and fairness for

a multi-user downlink WET scenario are studied through Lyapunov optimization technique.

In this work, we design an energy-efficient WET policy that jointly controls data-link power

allocation, data routing, energy beamforming and data/energy transmission time sharing in a

multi-hop WPCN. The problem is cast in the form of minimizing the total average energy

consumption of the network subject to stability of the data queues in the network and the battery

level constraints of the nodes. The battery level constraint complicates finding the optimal control

policy, since high energy consumption in one time-slot degrades the battery level of the node

considerably, which may lead to energy outage in the subsequent time-slots. Therefore, the

optimal decisions in different time-slots are coupled. This coupling makes finding the optimal

policy challenging.

We use Lyapunov optimization method with a novel quadratic Lyapunov function to avoid

energy outage. Based on the proposed Lyapunov function, we propose an online control policy

called energy-efficient controller for WPCN (EECW), that does not require the explicit knowledge
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of the channel statistics. With the proposed policy, the time-slots are devoted to either energy

transfer or data transmission. In energy transmission time-slots, the energy beam is focused

towards the nodes with low battery levels, higher queue backlogs and higher energy-link channel

gains. In data transmission time-slots, the data is routed through the nodes with less congested

queues and higher battery levels.

We analyze the performance of the proposed control policy and prove that for every arbitrarily

chosen value of a parameter V > 0 in our algorithm, the energy consumption under EECW is

within a bounded gap of the order of O( 1
V
) to the optimal policy, while the average backlog of

data queues is upper bounded by O(V ). In addition, we show that the backlog level of the data

queues and the energy level of the batteries converge probabilistically to some constant values,

with the probability of deviation from those values decreasing exponentially with respect to the

amount of deviation. Using this result, we further propose a modified version of EECW which

can significantly reduce the required size of the data buffers in the nodes as well as the required

capacity of their batteries, while imposing a negligible drop rate in the network. Finally, we

present extensive simulations to provide insightful intuitions on the advantages of the proposed

control policy, in terms of its energy requirements for stabilizing a WPCN.

As opposed to [6]–[20], we consider battery-powered nodes and analyze the network perfor-

mance in the long term, instead of a single time-slot analysis. In contrast to [6]–[8], [10]–[24],

[27]–[29], which analyze the throughput, the delay or the outage probability, we study the

optimization of the energy consumption while the data queues are stabilized. Finally, different

form [6]–[11], [21]–[29], we study a general multi-hop WPCN where the data should be routed

through the nodes. The differences in the system model and the problem formulation makes our

results and analysis completely different from those in [6]–[29].

The rest of the paper is organized as follows. The considered system model and our problem

formulation are illustrated in Section II. The proposed control policy as well as its performance

analysis is presented in Section III. The behavior of the data backlog in the queues and the energy

level in the batteries are analyzed in Section IV. Some implementation issues are discussed in

Section V. Simulation results are presented in Section VI, and finally, Section VII concludes the

paper.

Notation: Matrices and vectors are denoted by small and capital boldface letters, respectively.

Moreover, unless otherwise mentioned, vectors are single row-matrices. Also, (.)T , (.)H and

(.)∗ denote transpose, conjugate transpose and element-wise conjugate of a matrix, respectively.
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TABLE I: Notation Summary.

Symbol Definition

N,S,L Number of nodes, streams and data links, respectively.

Un,s(t) The backlog of data queue allocated to stream s at node n in time-slot t.

Bn(t) The battery level of node n in time-slot t.

Nh(l), Nt(l) The head and tail node of link l, respectively.

On, In The set of outgoing links from and incoming links to node n, respectively.

φin
n(t), φ

out
n (t) The energy stored in and drained from the battery of node n in time-slot t, respectively.

φmax The limitation on φin
n(t) and φout

n (t) (i.e., φin
n(t), φ

out
n (t) ≤ φmax ∀t)

w(t), PAP(t) The beamforming vector and the transmission power of the E-AP in time-slot t, respectively.

An,s(t) The instantaneous data of stream s arrived at node n, in time-slot t.

λn,s The data arrival rate of stream s at node n.

µin
n,s(t), µ

out
n,s(t) The total amount of data of stream s that enters to and exits from node n in time-slot t, respectively.

µmax The limit on µin
n,s(t) and µout

n,s(t) (i.e., µin
n,s(t), µ

out
n,s(t) ≤ µmax ∀t)

g(t) = [g1(t), . . . , gL(t)] The vector of data link channel states in time-slot t.

hn(t) = [h1
n(t), . . . , h

M
n (t)] The vector of energy link channel gains for node n in time-slot t.

p(t) = [p1(t), . . . , pl(t)] The vector of power allocations to data links in time-slot t.

Π The set of feasible data-link power allocation vectors.

Rl(p(t), g(t)) The rate-power function of link l in time-slot t.

Rl,s(t) The instantaneous data rate of stream s over link l in time-slot t.

Pmax
WN , Pmax

AP Maximum admissible transmission power of the wireless nodes and the E-AP, respectively.

τf , τd(t), τe(t) Time-slot duration and fraction of time-slot devoted to data and energy transmission, respectively.

Finally, |.| denotes the absolute value (or the modulus for complex numbers), ‖.‖ denotes the

norm of vectors, E{.} represents the expectation and [x]+ = max{x, 0}, ∀x ∈ R.

II. SYSTEM MODEL

The notations used in the paper along with their definitions are presented in Table I. We

consider a WPCN consisting of one energy access point (E-AP) and N wireless nodes, with S

streams of data between distinct endpoints in the network. It should be noted that our analysis

can be extended to consider multiple E-APs. However, for simplicity we focus on networks

with a single E-AP. The wireless nodes are battery-powered, and the batteries are recharged

by the energy received from the E-AP. The E-AP is equipped with M antennas to focus its

transmission beam towards the nodes. Moreover, we assume that the nodes use a single antenna

for both energy reception and data transmission/reception. There exist N energy links between

the E-AP and the nodes and L data links between the nodes. The topology of a sample network

is depicted in Fig. 1a. For each data link l ∈ {1, . . . , L}, Nh(l) and Nt(l) denote the head
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(a) An example of the network topology.

node 4

U4,1

U4,2

B4

link 9

link 10

link 1

R3(p(t), g(t))

link 3

PAP (t)|w(t)h4(t)|
2

R10,1(t)R3,2(t)

(b) An example of a wireless node.

Fig. 1: Sub-figure (a) shows an example of the network topology. The solid black and dashed

red arrows represent the data links and the energy links, respectively. In this example figure,

there are two data streams between nodes 1 and 6 and nodes 2 and 9, i.e., the objective is to

send the messages of node 1 (resp. 2) to node 6 (resp. 9). Sub-figure (b) shows the structure of

node 4. It consists of two data queues and a battery. In this figure, C10,1(t) and C3,2(t) are the

data rates assigned to stream 1 and stream 2 over links 10 and 3, respectively.

Ch. Est. Energy Transmission Data Transmission

τe(t) τd(t)

τf

Fig. 2: A time-slot structure.

node and the tail node of link l, respectively. Moreover, we define In and On as the sets of the

incoming and outgoing data links of node n, respectively.

The time horizon is divided into time-slots with fixed length, indexed by t. Figure 2 shows

the structure of a time-slot. At the beginning of each time-slot t, a small interval is devoted to

channel estimation and control signaling. The rest of the time-slot is divided into two intervals of

lengths τe(t) and τd(t), for energy and data transmission, respectively. We have τe(t)+τd(t) = τf

where τf is the fixed portion of the time-slot allocated for data and energy transmission.

The channel coefficients are assumed to be constant during a time-slot but vary randomly and

independently in successive time-slots. Recall that the E-AP has multiple antennas whereas the

wireless nodes use a single antenna for both energy reception and data transmission/reception.

In each time-slot t, gl(t) and hmn (t) represent the channel gains of the link between nodes

Nh(l) and Nt(l) and the link between the m-th antenna of the E-AP and node n, respectively.

Accordingly, we define g(t) , (g1(t), . . . , gL(t)) and hn(t) , (h1n(t), . . . , h
M
n (t)) as the channel
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gain vectors for data links and energy link of node n, respectively. Note that here the energy

links are numbered according to the ID of the energy receiving node whereas the data links are

independently numbered.

Data and Energy Transmission Let p(t) , (p1(t), . . . , pL(t)) denote the data-link power

vector, in which the l-th entry is the allocated transmission power over the l-th data link.

Moreover, let Π denote the finite set of all feasible power vectors. We assume that setting

an element of a power vector in Π to zero results in a new power vector that also belongs to Π.

Furthermore, we assume that the maximum total transmit power of each node is limited to Pmax
WN .

Let Rl(p(t), g(t)) denote the rate-power function in link l under the allocated data-link power

vector p(t) and the channel gain vector g(t). Consider two feasible power vectors p(t) and p̃(t),

where p̃l′(t) < pl′(t) and p̃l(t) = pl(t), ∀l 6= l′. We assume that the rate-power functions under

each of these two power vectors satisfy the following properties

if p̃l′(t) = 0 then Rl′(p̃(t), g(t)) = 0, (1)

∃δ ≥ 0 : Rl′(p(t), g(t))−Rl′(p̃(t), g(t)) ≤ δ(pl′(t)− p̃l′(t)), (2)

Rl(p(t), g(t)) ≤ Rl(p̃(t), g(t)) ∀l 6= l′. (3)

As an example of Rl(p(t), g(t)), the reader may think of

Rl(p(t), g(t)) = log

(

1 +
pl(t)|gl(t)|

2

N0 +
∑

l′∈INt(l)
/l |gl′ (t)|

2pl′ (t)

)

, (4)

where INt(l)/l is the set of the links that interfere with link l. Equation (4) is an appropriate

approximation for the achievable rates in the cases with codewords of moderate/large length.

However, as we show in Section VI, our analysis is also applicable to the case of codewords of

finite length, which results in a different rate-power function. Note that the properties (1), (2) and

(3) are easily satisfied by conventional rate-power functions. Equation (1) indicates that no data

can be passed through a data link if no power is assigned to that link. Inequality (2) is satisfied

by functions with bounded first derivative. Finally, inequality (3) holds due to the interference

effect among wireless links. Let Rl,s(t) denote the transmission rate allocated to stream s in

link l. The sum rate of all streams in link l should not exceed the achievable rate of that link.

Therefore, a feasible rate allocation scheme should satisfy
∑S

s=1Rl,s(t) ≤ Rl(p(t), g(t)).

The E-AP performs energy beamforming to concentrate its transmit energy towards the nodes.

Let w(t) , (w1(t), . . . , wM(t)) denote the normalized beamforming vector of the E-AP. Accord-

ingly, the received energy at each node n, denoted by En(t), is given by
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En(t) ,
∣

∣w(t)hTn(t)
∣

∣

2
EAP(t) ∀n, (5)

where EAP(t) , τe(t)PAP(t) is the E-AP’s transmitted energy and PAP(t) is the E-AP’s transmit

power in time-slot t. The peak transmission power of the E-AP is limited to Pmax
AP , i.e., PAP(t) ∈

[0, Pmax
AP ].

Wireless Nodes As shown in Fig. 1b, each node includes S data queues and a battery. Let

Un,s(t) denote the level of the stored data for stream s in node n at the beginning of time-slot t.

Moreover, let µin
n,s(t) and µout

n,s(t) denote the number of data units of stream s that enter to and

exit from node n during time-slot t, respectively. Accordingly, Un,s(t) evolves as

Un,s(t + 1) =

[

Un,s(t)− µ
out
n,s(t)

]+

+ µin
n,s(t). (6)

The parameters µout
n,s(t) and µin

n,s(t) are determined through the assigned transmission rates and

the external data arrivals, that is,

µout
n,s(t) , τd(t)

∑

l∈On

Rl,s(t), (7)

and

µin
n,s(t) , τd(t)

∑

l∈In

Rl,s(t) + An,s(t), (8)

where An,s(t) ∈ [0, Am] is the number of external data units of stream s that enter node n in

time-slot t. We assume that An,s(t) is a random variable following an identical and independent

distribution in different time-slots. We denote the mean value of An,s(t) by λn,s, and we have

λn,s = λs if node n is the source of stream s and λn,s = 0 otherwise. We denote the vector

of arrival rates by λ = [λ1, . . . , λS]. Furthermore, we assume that µin
n,s(t) and µout

n,s(t) are both

upper bounded by µmax.

The battery of each node is recharged by the energy received from the E-AP and is (partially)

discharged when the node transmits data. Let Bn(t) denote the energy level stored in the battery

of node n at the beginning of time-slot t. Therefore, the battery level at node n evolves according

to

Bn(t+ 1) = Bn(t)− φ
out
n (t) + φin

n (t), (9)

where φout
n (t) = τd(t)

∑

l∈On
pl(t) is the total energy consumption of node n in time-slot t and

φin
n (t) is the portion of the received energy that is stored in the battery of node n in time-slot t.

Intuitively, we expect that a node stores all its received energy from the E-AP, i.e., φin
n (t) = En(t),

but due to the wide transmission beam of the E-AP some nodes may receive more energy than
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they need. Specifically, in some network topologies, the nodes with low energy consumption may

receive parts of the energy that is transmitted towards the nodes with higher energy consumption.

Accordingly, the stored energy in the batteries of the low energy consumption nodes may grow

unbounded. Thus, we let φin
n (t) ≤ En(t). That is, the nodes may store only a portion of their

received energy. We further assume that τd(t)
∑

l∈On
pl(t) and En(t) are both upper bounded by

φmax, and, consequently, we have φin
n (t) ≤ φmax and φout

n (t) ≤ φmax.

Network Controller There exists a network controller, located at the E-AP, that controls both

the data and the energy links, having access to channel state information (CSI) and the level of the

stored data and energy in the queues and batteries of all nodes1. The network controller schedules

data/energy transmission time sharing by specifying τe(t) and τd(t). Moreover, it controls the

energy links by specifying the E-AP transmission power PAP(t) and the beamforming vector

w(t) and controls the data links by determining their power vector p(t) and data routing through

specifying Rl,s(t).

Let Eopt(λ) denote the minimum achievable average energy consumption per time-slot of

the E-AP over all stabilizing polices. We define Eopt(λ) as a function of λ to emphasize the

dependency of the energy consumption on the data arrival rate. In this way, considering the

battery level and the stability constraints, Eopt(λ) can be found as the solution of

Eopt(λ) = minimize
w(t),PAP(t),p(t),
Rl,s(t),τe(t),τd(t)

lim
T→∞

1

T

T−1
∑

t=0

E {EAP(t)} (10a)

subject to lim sup
T→∞

1

T

T−1
∑

t=0

∑

n,s

E {Un,s(t)} <∞, ∀n, s, (10b)

φout
n (t) ≤ Bn(t), ∀n, t, (10c)

p(t) ∈ Π,
S
∑

s=1

Rl,s(t) ≤ Rl(p(t), g(t)), (10d)

PAP(t) ∈ [0, Pmax
AP ], ‖w(t)‖ = 1, (10e)

τe(t) + τd(t) = τf . (10f)

Constraint (10b) ensures a finite average backlog and, accordingly, finite average delay [30,

Chapter 2]. Moreover, Constraint (10c) is the battery level constraint, which guarantees that the

energy consumption of a node is not greater than the stored energy in the battery of the node.

Constraints (10d) and (10e) are the restrictions on the data-links and the energy-links parameters,

respectively, and (10f) is the data/energy transmission time sharing constraint.

1We ignore the cost of the nodes sending feedback to the E-AP to inform it about the CSI and stored data/energy.
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Problem (10) is a stochastic utility optimization problem. In every time-slot t, the network

controller observes the battery levels, the queue backlogs, the instantaneous CSI as well as the

external data arrival and determines the control action. Note that, since the control policy depends

on the queue backlogs and the battery levels, the control actions are not necessarily stationary.

This problem could be tackled by the min drift plus penalty (MDPP) algorithm [30, Chapter 4], if

the energy consumption of the nodes were not restricted by the battery level. However, the battery

constraint complicates our problem and makes it challenging. This is mainly due to the fact that

in the battery-operated case, consuming high energy in a specific time-slot may drastically reduce

the battery level and affect transmission in the following time-slots. Therefore, having the battery

level constraint, policies with independent decisions at each time-slot are not optimal, which is

not acceptable in the MDPP problem formulation. To handle the battery constraint, we define

a Lyapunov function which implicitly takes into account the energy restrictions of the network.

Then, we relax the battery constraint and follow the MDPP approach to design the control policy

based on the new Lyapunov function. Finally, we show that the designed control policy conforms

to the battery constraint.

III. THE PROPOSED CONTROL POLICY

In this section, we construct the EECW. The general idea behind the EECW is to prevent

the queue backlog from growing large, while the energy levels in the batteries of the nodes are

kept at an appropriate level in proportion to their stored data backlog level. For this purpose,

we introduce the imbalance indicators Zn(t), ∀n, as

Zn(t) ,
∑

s

Un,s(t)− CBn(t), (11)

where C , 2δ
1− 1

α

, for some α > 1. Note that C represents an energy to data conversion factor.

The value of Zn(t) indicates the data/energy imbalance at node n in time-slot t. For constructing

the EECW, we follow the MDPP approach. In summary, we follow the following steps:

1) We define the Lyapunov function as

L(t) ,
1

2
‖U(t)‖2 +

1

2
‖Z(t)‖2, (12)

where U(t) , [Un,s(t), ∀n, s] and Z(t) , [Zn(t), ∀n] are the vectors of the backlog level in

the data queues and the imbalance indicators, respectively. According to (12), the Lypunov

function grows if the stored data level in the queues and/or the data/energy imbalance
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increases. As a result, we intuitively expect a stabilizing controller to prevent the Lyapunov

function from growing large.

2) We define the Lypunov drift function, which is the expected increment of the Lyapunov

function in successive slots, i.e.,

∆(L(t)) , E {L(t + 1)− L(t)|U(t),B(t)} , (13)

where the expectation is with respect to the randomness in the data and the energy channel

gains and the data arrivals.

3) We define the drift-plus-penalty function as

∆p(L(t), V ) , ∆(L(t)) + V E{EAP(t)|U(t),B(t)}, (14)

where V > 0 is a control parameter. We will derive an upper bound for ∆p(L(t), V ) in

Lemma 1.

4) The EECW is designed to approximately minimize the upper bound obtained in Lemma

1 subject to the instantaneous constraints (10e), (10d) and (10f) but without the battery

constraint (10c).

5) In Lemma 2, we show that the EECW conforms to (10c). Moreover, in Theorem 1, we show

that EAP(λ) obtained by our proposed EECW is within a bounded distance of Eopt(λ), which

depending on the considered value of V can be arbitrarily low, and the average stored backlog

in the queues satisfies (10b).

The details of the analysis are explained as follows. First, Lemma 1 derives an upper bound

on ∆p(L(t), V ).

Lemma 1. For the drift-plus-penalty function (14), we have

∆p(L(t), V ) ≤ B0 + F (t) +
∑

n,s

E {en,s(t)|U(t),B(t)} (Un,s(t) + Zn(t)), (15)

where

F (t) , E {V EAP(t)}+
∑

n,s

E
{

µin
n,s(t)− µ

out
n,s(t)|U(t),B(t)

}

Un,s(t)+

∑

n

E

{

∑

s

µin
n,s(t)−

∑

s

µout
n,s(t)− C

[

φin
n (t)− φ

out
n (t)

]

|U(t),B(t)

}

Zn(t),

(16)

B0 = N × (Sµmax + Cφmax)
2 +N × S × µ2

max and en,s = [µout
n,s(t)− Un,s(t)]

+.

Proof. See Appendix A.



11

The terms in (16) can be rearranged to better demonstrate F (t) as a function of the control

variables. Particularly, we write

F (t) = F̃ (t) + E
{

C(En(t)− φ
in
n (t))|U(t),B(t)

}

Zn(t), (17)

where

F̃ (t) = E

{

τd(t)

(

C

L
∑

l=1

ZNh(l)(t)pl(t)−

L
∑

l=1

∑

s

Wl,s(t)Rl,s(t)

)

∣

∣

∣

∣

U(t),B(t)

}

+ E

{

τe(t)PAP(t)

(

V − C

N
∑

n=1

|w(t)hT
n (t)|

2Zn(t)

)∣

∣

∣

∣

U(t),B(t)

}

+
∑

n,s

λn,s (Un,s(t) + Zn(t)) ,

(18)

and

Wl,s(t) =ZNh(l) − ZNt(l) + UNh(l),s(t)− UNt(l),s(t). (19)

The equality in (17) can be verified by adding and subtracting E {CEn(t)|U(t),B(t)}Zn(t) to

(16) and using the definitions for µin
n,s(t), µ

out
n,s(t), φ

out
n (t) and En(t). The EECW is designed to

approximately minimize the right hand side of (15). In this way, the control policy under the

EECW follows the following procedure:

Initialization: Set U0 , max{φmax(C + αδ), µmax} dummy data units in data queues, i.e.,

Un,s(0) = U0 and assume En(0) = 0, ∀n.

Data Routing in time-slot t: Calculate the weights Wl,s(t), ∀l, s according to (19). Let

sl(t) , argmax
s

{Wl,s(t)} , ∀l, (20)

and
Wl(t) = max

{

max
s
{Wl,s(t)}, 0

}

, ∀l. (21)

The total capacity of link l is assigned to stream sl(t), i.e.,










Rl,s(t) = Rl(p(t), g(t)) s = sl(t),

Rl,s(t) = 0 ∀s 6= sl(t).
(22)

Data link scheduling in time-slot t: The transmission power vector p(t) is determined by

solving

p(t) = argmin
p̃(t)∈Π

L
∑

l=1

[

CZNh(l)(t)p̃l(t)−Wl(t)Rl(p̃(t), g(t))

]

. (23)

Energy link scheduling in time-slot t: The energy beamforming vector is determined as

w(t) = v∗

max(t), (24)

where vmax(t) is the principal eigenvector of H(t) defined as
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Algorithm 1 EECW: Data routing and power scheduling in time-slot t.

1: Calculate Wl,s(t), ∀l, s, according to (19).

2: sl(t)← argmaxsWl,s(t), Wl(t)← max {maxs{Wl,s(t)}, 0}.

3: Rl,sl(t)(t)← Rl(p(t), g(t)) and Rl,s = 0 ∀l, s 6= sl(t). ⊲ Data Routing

4: p(t)← argminp̃∈Π

∑L
l=1

[

JNh(l)(t)p̃l −Wl(t)Rl(p̃, g(t))
]

. ⊲ Data link power scheduling

5: F ⋆
d (t)←

∑L
l=1

[

JNh(l)(t)pl(t)−Wl(t)Rl(p(t), g(t))
]

.

H(t) , C
N
∑

n=1

Zn(t)h
T
n(t)h

∗

n(t). (25)

The transmission power of the E-AP is determined by

PAP(t) =











Pmax
AP , V < C

∑N
n=1 |v

∗
max(t)h

T
n(t)|

2Zn(t),

0, otherwise.

(26)

Data/Energy time sharing in time-slot t: Let

F ⋆
d (t) , C

L
∑

l=1

ZNh(l)(t)pl(t)−

L
∑

l=1

Wl(t)Rl(p(t), g(t)), (27)

and

F ⋆
e (t) , PAP(t)

(

V − C

N
∑

n=1

|w(t)hTn(t)|
2Zn(t)

)

, (28)

where p(t), w(t) and PAP(t) are determined in (23), (24) and (26), respectively. The time sharing

rule is










τe(t) = τf , τd(t) = 0 F ⋆
e (t) ≤ F ⋆

d (t),

τe(t) = 0, τd(t) = τf F ⋆
e (t) > F ⋆

d (t).
(29)

Queues and batteries update in time-slot t: The portion of the received energy that is stored

in the battery is determined by

φin
n (t) = min{En(t), (Zn(t)− µmax)/C}. (30)

The data queues and batteries are then updated according to (6) and (9), respectively.

The EECW policy for controlling the data link and the energy link are summarized in

Algorithms 1 and 2, respectively.
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Algorithm 2 EECW: Beamforming and energy transmission scheduling in time-slot t.

1: Calculate H(t) according to (25).

2: v(t)← the principal eigenvectors of H(t) and w(t)← v∗(t). ⊲ Beamforming

3: if V < C
∑N

n=1 |w(t)hTn(t)|
2Zn(t) then ⊲ Energy link power scheduling

4: PAP(t)← Pmax
AP .

5: else

6: PAP(t)← 0.

7: end if

8: F ⋆
e (t)← V PAP(t)− C

∑N
n=1 φ

in
n (t)Zn(t).

A. Discussion on the Proposed Control Policy

Considering (19), the value of Wl,s(t) increases if the data queue in node Nt(l) is less congested

and/or if there is less data/energy imbalance in node Nt(l). Hence, according to the routing

policy in (22), we expect that with EECW the data will flow towards the nodes with less

congested queues and less data/energy imbalance. The power allocation policy in (23) devises

a compromise between the energy consumption penalty represented by CZNh(l)(t)pl(t), ∀l, and

the data transmission reward represented by Wl(t)Rl(p̃(t), g(t)), ∀l. The beamforming policy

implies that the energy beam is focused towards the nodes with higher data/energy imbalance and

higher energy-link channel gains. Moreover, considering the E-AP transmission power scheduling

in (26), the control parameter V can be described as the energy conservativeness indicator of

the EECW, since by increasing V the E-AP transmits less often.

The time sharing control parameters, F ⋆
d (t) and F ⋆

e (t), can be described as two metrics

representing the gain for data and energy transmission in time-slot t, respectively. These two

parameters take into account the level of the stored energy and data in the nodes as well as the

CSI to determine the energy/data transmission gain. Finally, the policy for storing the received

energy in (30) implies that with a small value of Zn(t) a portion of the received energy may not

be stored in the battery, which prevents the battery from being overcharged. Note that this event

mostly occurs when the energy-link channels are not orthogonal, i.e., hn(t)h
H
m(t) 6= 0, ∀m 6= n.

Otherwise, according to (25) and for a small value of Zn(t), the beamforming vector will be

almost orthogonal to hn(t). Hence, the received energy in node n will be negligible.
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B. Performance Analysis of the Proposed Control Policy

In this section, we evaluate the performance of the proposed policy. In this regard, Lemma 2

introduces some properties that are satisfied with EECW in each time-slot. Particularly, we show

in Lemma 2 that the battery constraint (10c) is satisfied. In Lemma 3, we use the properties of

Lemma 2 to show that EECW approximately minimizes the right hand side of (15). Finally, we

use the result in Lemma 3 to evaluate the energy consumption with EECW and to show that the

backlog in the queues satisfy (10b). First, we present Lemma 2.

Lemma 2. With the EECW, in each time-slot t, we have that

1) The imbalance indicator Zn(t), ∀n, satisfies Zn(t) ≥ µmax.

2) The assigned rate Rl,s(t) is nonzero only if UNh(l),s(t) ≥ U0 + µmax, ∀l, s.

3) The drained energy φout
n (t) is nonzero only if Bn(t) ≥ φmax, ∀n.

Proof. See Appendix B.

The first part of Lemma 2 ensures that the stored amounts of energy in the batteries are

bounded in proportion to the stored backlog in the data queues of the nodes, i.e., CBn(t) ≤
∑

s Un,s(t) − µmax. The second part in Lemma 2 implies that there will be enough data for

transmission, when the outgoing rate from a node is nonzero. Hence, with EECW, we have

en,s(t) = 0, ∀n, s, t. Moreover, the third part in Lemma 2 guarantees that when a node transmits

data, i.e., φout
n (t) > 0, we have φout

n (t) ≤ φmax ≤ Bn(t). Hence, EECW conforms to the battery

constraint (10c).

Using the properties in Lemma 2, it can be shown that the EECW approximately minimizes

the right hand side in (15). Specifically, with en,s(t) = 0, it suffices to show that EECW

approximately minimizes F (t) in (16). For this reason, let Fmin(t) denote the minimum value

of F (t) in time-slot t over every alternative policy, including the policies that violate the battery

constraint (10c), i.e.,

Fmin(t) = minimize
w(t),PAP(t),p(t),Rl,s(t),τe(t),τd(t)

F (t)

subject to (10d), (10e), (10f).

(31)

Lemma 3 presents the gap between F (t) under EECW and Fmin(t).

Lemma 3. Under EECW, in each time-slot t, we have

F (t) ≤ Fmin(t) + B1, (32)

where B1 , Cφmax(Cφmax + µmax).
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Proof. See Appendix C.

Using the bound in (32), and following the Lyapunov optimization Theorem [30, Theorem 4.2],

we compare the energy consumption under EECW with Eopt(λ) and bound the time-averaged

expected backlog in the queues. Specifically, let Λ denote the set of data arrival rates that are

inside the capacity region of the network. Hence, Problem (10) is feasible if and only if λ ∈ Λ.

Theorem 1 characterizes the performance of the EECW when λ is strictly inside Λ. Particularly,

parts 1 and 2 of Theorem 1 show the optimality of the energy consumption and the stability of

the network under EECW, respectively.

Theorem 1. Suppose that the arrival rates are strictly inside the capacity region, i.e., there is a

scalar ǫmax such that ∀ǫ ∈ (0, ǫmax] : λ+ ǫ ∈ Λ, where ǫ is a vector with all entries equal to ǫ.

With our proposed EECW,

1) The time-averaged expected energy consumption satisfies

lim sup
T→∞

1

T

T−1
∑

t=0

E{EAP(t)} ≤ Eopt(λ) +
B2
V
. (33)

2) The queues are stable and the time-averaged expected sum backlog satisfies

lim sup
T→∞

1

T

T−1
∑

t=0

∑

n,s

E{Un,s(t)} ≤
V Eopt(λ+ ǫmax) + B2

ǫmax
, (34)

where B2 , B0 + B1.

Proof. See Appendix D.

The performance bounds in (33) and (34) introduce a trade-off between the optimality gap

and the average queue backlog that is controlled by V . According to this trade-off, when the

average energy consumption is within O( 1
V
) of the minimum energy, the average backlog could

be upper bounded by a term of the order of O(V ).

IV. TIME EVOLUTION OF DATA BACKLOG AND BATTERY LEVEL

Theorem 1 bounds the average backlog in the queues. However, it does not discuss the behavior

of the backlogs and the battery levels, which are of importance for the implementation of the

policy. In this section, we study the time evolution of the data backlog and the battery level

under EECW using the backlog attraction result in [31]. We show that with EECW the data
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backlog and the battery level converge to a transformation of the dual optimal solution for the

following deterministic problem

V E⋆(λ) = minimize
p(t),w(t),C(l,s)(t),PAP(t),τe(t),τd(t)

V E {EAP(t)} (35a)

subject to E
{

µin
n,s(t)

}

≤ E
{

µout
n,s(t)

}

, ∀n, s, (35b)

E {φout
n (t)} ≤ E

{

φin
n (t)

}

, ∀n, (35c)

(10d), (10e), (10f). (35d)

The solution to (35) is a stationary policy that is only a function of the instantaneous CSI.

Hence, we have omitted the time averages. Specifically, let g
(

[η,β]
)

with [η,β] = [ηn,s ≥

0 ∀(n, s), βn ≥ 0 ∀n] denote the dual function of Problem (35), that is,

g
(

[η,β]
)

= inf
w(t),PAP(t),p(t),

C(l,s)(t),τe(t),τd(t)

[

E {V EAP(t)}+ E

{

∑

n,s

ηn,s
(

µin
n,s(t)− µout

n,s(t)
)

+
∑

n

βn

(

φout
n (t)− φin

n(t)
)

}]

,

(36)

and let [η⋆,β⋆] denote the optimal solution to the dual problem, i.e.,

[η⋆,β⋆] = argmax g
(

[η,β]
)

s.t. η,β ≥ 0. (37)

Let [ν⋆, ζ⋆] = [ν⋆n,s, ∀(n, s), ζ
⋆
n, ∀n] be constructed from [η⋆,β⋆] as

ν⋆n,s = η⋆n,s −
β⋆n
C
, (38)

ζ⋆n =
β⋆n
C
. (39)

Moreover, let ε⋆ = [ε⋆n, ∀n] be constructed from [ν⋆, ζ⋆] as

ε⋆n =

∑

s ν
⋆
n,s − ζ

⋆
n

C
. (40)

Theorem 2 presents the main result on the behavior of queue backlogs and battery levels.

Theorem 2. Suppose that the dual function (36) satisfies

g
(

[η⋆,β⋆]
)

− g
(

[η,β]
)

≥ K
∥

∥[η⋆,β⋆]− [η,β]
∥

∥, (41)

for some K > 0. Then, with the EECW, there exists constants D, c⋆ and β⋆ independent of V

such that for every m ≥ 0 we have

lim sup
T→∞

1

T

T−1
∑

t=0

Pr{∃(n, s) : |Un,s(t)− ν
⋆
n,s| > D +m} ≤ c⋆e−β

⋆m, (42)

lim sup
T→∞

1

T

T−1
∑

t=0

Pr {∃n : |Bn(t)− ε
⋆
n| > ((S + 1)D +m)/C} ≤ 2c⋆e−β

⋆ m
S+1 . (43)
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Proof. See Appendix E.

Theorem 2 shows that the probability that the backlog in data queues and energy level in

batteries deviate from ν⋆ and ε⋆, respectively, decreases exponentially as the deviation increases.

Note that the assumption in (41) holds when the control parameters are chosen from a finite set

[31] which is the case for the digital implementation of the algorithm.

V. EECW IMPLEMENTATION

In this section, we discuss some implementation issues related to EECW. Specifically, we

study the effect of the limited-capacity data buffers and batteries and the complexity of our

proposed policy.

A. Limited Data Buffers and Batteries

A challenge for the implementation of EECW is the limited buffer size and battery capacity

of the nodes. Theorem 2 ensures that with sufficiently large batteries and buffers the probability

of data or energy overflow is small. Hence this limitation does not affect the performance of

the policy. Figure 3 depicts a sample time evolution of the backlog and battery level under

EECW. As can be seen, the backlog converges to a constant value. Also, with a buffer size of

2.5MBytes and a battery capacity of 17mJ there will be no overflow. However, the behavior

of the backlog suggests that, if we tolerate dropping a small amount of data in the initialization

phase of the algorithm, we can further reduce the buffer size and battery capacity. Specifically,

in the steady state region of Figs. 3a and 3b the backlog and the battery level fluctuate ap-

proximately in 0.1MBytes and 2mJ intervals, respectively, which implies that the arrival and

departure processes in steady state can be supported by a 0.1MBytes buffer and a 2mJ battery.

This observation motivates us to modify EECW for limited buffer size and battery capacity

implementation. For this reason, we define virtual queues Ũn,s(t) and Ẽn(t) associated with

each real and finite data queue and battery, respectively. The virtual queues are not physical

queues and are simple counters inside the controller that are updated as

Ũn,s(t + 1) = Ũn,s(t) + µin
n,s(t)− µ

out
n,s(t), (44)

Ẽn(t + 1) = Ẽn(t) + φin
n (t)− φ

out
n (t). (45)

EECW runs based on the values of Ũn,s(t) and Ẽn(t) instead of the real queues, hence µin
n,s(t),

µout
n,s(t), φ

in
n (t) and φout

n (t) will have exactly the same value as we had in the cases with infinite

length real data queue and batteries. Accordingly, the limited buffer sizes and battery capacities
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Fig. 3: A sample time evolution of the data queue backlog and battery processes. Figures 3a and

3b correspond to the queue for stream 1 in node 1 and the battery in node 1 of Fig. 4, respectively.

The data arrival rate is λ = 5 kbps, the Rician K-factor K = 0 dB and V = 3× 1011.

do not affect the decisions of the controller. However, some data units in real buffers may be

dropped due to either buffer overflow or energy outage. Let Ln,s(t) denote the total number of

dropped data units of stream s in node n up to time-slot t. Lemma 4 bounds the time averaged

expected value of Ln,s(t) under the modified EECW for limited buffers and batteries.

Lemma 4. Let Uc and Ec denote the size of the data buffers and the capacity of the batteries,

respectively. Suppose that Uc > 2D+2µmax and Ec >
2(S+1)D

C
+2φmax. With the modified EECW,

we have

lim sup
T→∞

1

T
E {Ln,s(T )} ≤ µmaxc

⋆e−β
⋆ml + 2δφmaxc

⋆e−β
⋆ ml
S+1 , (46)

where

ml = min

{

Uc/2− µmax −D, C(Ec/2− φmax)− (S + 1)D

}

. (47)

Proof. See Appendix F.

Lemma 4 states that the average drop rate decreases exponentially as the buffer size or the

battery capacity increases.

B. Complexity of the Proposed Policy

The most computationally expensive part of EECW is solving Problem (23), which is similar

to the well known max-weight problem. Under the common interference models, this problem

is nonconvex and can be NP-hard [32]. However, many efficient approximate and distributed

solutions are proposed for the max-weight problem [33]–[35], that can be extended to solve (23).
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Fig. 4: The numbers besides the links in sub-figure (a) show the lengths of the links in meters.

Sub-figure (b) shows a permitted set of active links under the node exclusive mode.

As an example, [33] introduces a distributed iterative algorithm based on the block coordinate

descent method for solving a problem similar to (23).

Note that using the same arguments as in [36], it can be shown that a suboptimal scheduling

in each time-slot may result in satisfactory overall performance. Specifically, instead of (32), if

the suboptimal scheduler satisfies

F (t) ≤ γFmin(t) + B3, (48)

in each time-slot t and for some γ ∈ [0, 1] and B3 ∈ R, the time-averaged expected energy

consumption per time-slot will be close to γEopt
(

λ

γ

)

. Accordingly, we may use approximate

schedulers with low complexity or reduce the overhead for CSI estimation, while γ remains

close to unity and the performance loss is negligible. Below, we study the performance loss due

to imperfect CSI through simulation.

VI. SIMULATION RESULTS

In this section, we consider a wireless network consisting of one E-AP and nine wireless

nodes, as shown in Fig. 4a. In this network, there are two streams of data, from nodes 1 and 2

to nodes 6 and 9, respectively. We consider the node exclusive model in which the data links are

orthogonal but each node can transmit or receive only over a single data link in each time-slot.

This model represents Bluetooth networks in which the neighboring nodes transmit over distinct

frequencies and each node is equipped with a single half duplex transceiver [37]. Accordingly,

under the node exclusive model, in each time-slot only the links that do not share a common

node are permitted to be active. Figure 4b depicts a sample permitted set of active links under

the node exclusive model.
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The energy- and data-link CSI follow the Rician fading model [38], that is,

hn(t) =

√

βhnK

K + 1
h̄n(t) +

√

βhn
K + 1

hwn (t), (49)

and

gl(t) =

√

βglK

K + 1
ḡl(t) +

√

βgl
K + 1

gwl (t), (50)

where h̄n(t) and ḡl(t) are the deterministic component of the channels, and hwn (t) and gwl (t)

represent the scattered components of the channel. Moreover, K is the Rician K-factor which

determines the ratio between the Rician and the scattered components, and βgl and βhn represent

the path loss and shadowing effects of the data links and the energy links, respectively. The

entries of the energy link scattered component vector hwn (t) and also the data link scattered

component gwl (t) are independent and zero-mean unit variance circularly symmetric complex

Gaussian (CSCG) distributed random variables. The deterministic components, h̄n(t) and ḡl(t),

are modeled as [38, Eq. (2)], and the attenuation factors βhn and βgl are calculated at carrier

frequency 2.4 GHz. Furthermore, in all figures we assume λ1 = λ2 = λ, Pmax
WN = 1mW and,

unless otherwise mentioned, we assume K = 20 dB, Pmax
AP = 4 W and M = 20. We consider

the rate-power function in [39, Eq. (1)]

Rl(p(t), g(t)) = W



log

(

1 +
pl(t)|gl(t)|

2

WN0

)

−

√

√

√

√

1

L

[

1−

(

1 +
pl(t)|gl(t)|2

WN0

)−2
]

Q−1(ρ)



 , (51)

where W and N0 are the channel bandwidth and the noise power spectral density, respectively.

Moreover, L is the length of the codewords and ρ is the maximum block error probability of

the decoder. Hence, the second term inside the brackets in (51) is notable only in the case of

codewords with finite length. Then, letting L →∞, (51) is simplified to (52) for the cases with

asymptotically long codewords,

Rl(p(t), g(t)) =W log

(

1 +
pl(t)|gl(t)|

2

WN0

)

. (52)

We assume W = 100 kHz, N0 = −135 dBm/Hz, ρ = 10−10 and, except for Fig. 10 which

studies the system performance for short packets, that codewords are sufficiently long such that

the second term inside the brackets in (51) can be neglected.

Considering the data arrival rates λ = {0.5, 1.5} kbps and the number of E-AP transmit anten-

nas M = {20, 40}, Fig. 5 demonstrates the trade-off between the average energy consumption

per time-slot and the average backlog in the queues. The result in Fig. 5 conforms to the trade-off

introduced in Theorem 1. That is, the average energy consumption is inversely proportional to

the backlog level. Furthermore, Theorem 1 implies that for sufficiently large V the gap between
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Fig. 5: Average energy consumption per time-slot vs the average backlog in data queues. Data

arrival rates λ = {1, 3, 5} kbps and number of E-AP transmit antennas M = {20, 40}.

the average energy consumption per time-slot and Eopt(λ) is negligible. Hence, the curves in

Fig. 5 converge to Eopt(λ). Comparing the curves for λ = 0.5 kbps and λ = 1.5 kbps, we

observe that the effect of the number of E-AP’s transmit antennas on Eopt(λ) becomes more

dominant as the data arrival rate increases.

Figures 6a and 6b show the average throughput of streams 1 and 2 over different data links,

respectively. This figure is plotted for λ = 2 kbps and V = 1011. We observe in Fig. 6 that the

data is mostly routed through the shorter links, e.g., Fig. 6a indicates that stream 1 reaches node

4 through node 3 instead of being directly transmitted. Transmitting over a shorter link reduces

the energy consumption of node 1 that is far from the E-AP and suffers from high energy-link

path loss. Figure 6b implies that stream 2 is routed through two dominant paths. Specifically,

the first path includes nodes 3, 4 and 5, and the second path includes nodes 7 and 8. Although

the two paths seem to be symmetric according to the topology, the nodes in the first path are

more congested. Hence, the throughput of stream 2 in the second path is approximately 4.5

times larger than the throughput of the first path. Furthermore, the sizes of the nodes in Fig. 6

represent their average queue backlog levels, which shows that the average backlog level in the

nodes increases when the number of hops between the nodes and the destination of the streams

increases. This is intuitive because under the routing policy in (22) and the link scheduling policy

in (23) the probability of transmitting stream s over link l with UNh(l),s(t) − UNt(l),s(t) ≤ 0 is

small.

Consider a limited-capacity data buffer and battery implementation of EECW with battery

capacity Ec = {0.4, 0.8, 1.2} mJ and data buffer size Uc = {25, 50, . . . , 500} kBytes, Fig. 7

demonstrates the steady state average percentage of the dropped data with the modified policy
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Fig. 6: Flow of the data streams in the network, considering λ = 2 kbps. The numbers on the

links are the average throughput of the links in kbps. The thickness of the links and the size

of the nodes are proportional to the throughput of the links and average backlog of the queues,

respectively.
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Fig. 7: The percentage of dropped bits vs the data buffer capacity and the battery capacity. Data

arrival rate λ = 5 kbps, K = 0 dB and V = 3× 1011.

of Section V-A. Here, the results are obtained for λ = 5 kbps, K = 0 dB and V = 3× 1011. As

can be seen in the figure, the percentage of dropped data decreases rapidly as the capacity of

the buffer or the battery increases. Specifically, using batteries with 0.8 mJ capacity, we observe

almost zero drop rate due to energy outage and, consequently, the drop rate becomes independent

of the battery capacity for large values of the battery capacity. Moreover, using data buffers with

200 kBytes capacity, no data overflow will occur and any further increment of the data buffer

size is not necessary. This result conforms to the result in Lemma 4, which implies that the

average probability of dropping data units decreases rapidly as the buffer size and the battery

capacity increase.

Considering Rician K-factors K = {5, 10, 20} dB and λ = 1 kbps, Fig. 8 studies the effect

of the CSI estimation error on the energy consumption. We model the CSI estimation error as in
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[38]. In this model, the deterministic component of the channel is assumed to be known and the

scattered component is estimated by pilot transmission. Specifically, let ĥwn (t) and ĝwl (t) denote

the estimated scattered component of the energy links and data links, respectively. Moreover,

let h̃wn (t) , hwn(t)− ĥwn (t) and g̃wl (t) , gwl (t) − ĝ
w
l (t) denote the CSI estimation error of the

energy links and data links, respectively. The entries of h̃wn (t) are i.i.d. zero mean CSCG random

variables with variance σ2
hn

,

(

βhnψ
h
p

σN (K+1)
+ 1
)−1

, and g̃wl (t) is an i.i.d. zero mean CSCG random

variable with variance σ2
gl
,

(

βglψ
g
p

σN (K+1)
+ 1
)−1

. Here, ψhp and ψgp are the pilots’ energy used for

energy link and data link CSI estimation, respectively, and σN is the variance of the received noise

during pilot transmission. In Fig. 8, the energy consumption under EECW is plotted versus the

pilots’ energy. Here, the results are presented for σN = −90 dBm and sufficiently large values

of V such that the gap between the average energy consumption and Eopt(λ) is negligible.

Moreover, for every value of K three cases are considered, namely, imperfect data-link CSI

(ψgp = ψp, ψ
h
p =∞), imperfect energy-link CSI (ψhp = ψp, ψ

g
p =∞) and imperfect data-link and

energy-link CSI (ψgp = ψhp = ψp), where ψp = {10
0, 100.5, . . . , 107}µJ.

An imperfect CSI results in suboptimal scheduling in each time-slot which, according to the

discussions in Section V-B, may still lead to a satisfactory overall performance. The result in

Fig. 8 indicates the excessive energy consumption due to the imperfect CSI-based suboptimal

scheduling. With large values of K, that is, when the line-of-sight components of the channels

are dominant, the effect of imperfect CSI is negligible. Hence, the resources allocated to pilot

transmission, i.e., time and energy, can be saved by avoiding pilot transmission in every time-

slot. Moreover, as demonstrated in Fig. 8, when ψp exceeds 104, 105, and 106µJ for the cases

with K = 5, 10 and 20 dB, respectively, the energy consumption is almost equal to that in

the cases with perfect CSI. Hence, any further increment of the pilots’ energy has marginal

effect on energy consumption. Also, when ψp becomes less than 102, 103 and 104µJ for the

cases K = 5, 10 and 20 dB, respectively, the energy consumption becomes independent of the

pilots energy. This is because for small values of ψp the estimates ĥwn (t) and ĝwl (t) are almost

independent of their exact values. The results for different values of K imply that when the

scattered component is dominant, i.e., with low values of K, the energy consumption decreases.

This is intuitive because EECW takes advantage of the diversity introduced by the scattered

component, that is, the nodes avoid transmitting in time-slots with low channel gain and save

their energy for possible transmission in subsequent time-slots with higher channel gain. Also,
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it should be noted that in practice when the scattered component becomes more dominant the

path loss increases. Hence, when reducing the value of K, there will be a trade off between the

gain introduced by the diversity and the loss due the increased path loss. Here, we have only

studied the diversity effect.

Considering the maximum E-AP transmission power Pmax
AP = {3, 4, 5} W, Fig. 9 demonstrates

the average backlog in the data queues versus the data arrival rate. Theorem 1 states that the

average backlog under EECW remains finite if the input rate is inside the capacity region of

the network. Accordingly, Fig. 9 shows the maximum value of λ that is supported by EECW or

every alternative controlling policy. As an example, using Fig. 9, we conclude that for Pmax
AP = 4

W no controlling policy can support the streams with arrival rates λ1 = λ2 ≥ 3 kbps.

Figure 10 studies the effect of the nodes’ distances and the finite length codewords on the

energy consumption of our proposed policy. For this reason, we consider the topology in Fig.
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4a and two scaled versions of this topology, such that every distance in Fig. 4a is scaled by a

factor of 1.1 and 1.2, respectively. Figure 10 demonstrates the average energy consumption per

time-slot under EECW versus the codewords length. This figure is plotted for sufficiently large

values of V such that the gap between the average energy consumption and Eopt(λ) is negligible.

Figure 10 implies that the average energy consumption is considerably affected by the length of

short packets. However, this effect is negligible as the codewords’ length increases. Moreover, the

sensitivity of the average energy consumption to the length of short codewords becomes more

dominant, when the distances increase. Also, we observe in Fig. 10 that the average energy

consumption increases with distance considerably, because of the high sensitivity of the path

loss to the distance.

VII. CONCLUSION

In this paper, we studied a wirelessly-powered communication network with battery-operated

nodes. We proposed a joint power allocation, data routing, data/energy transmission time sharing

and energy beamforming policy to stabilize the network, while minimizing the average energy

consumption in the E-AP. We analyzed the behavior of the backlog in the queues and the stored

energy in the batteries. Also, we proposed a modified version of the policy that significantly

reduces the data buffer sizes and battery capacities, while dropping only a small portion of

the data. As shown, the energy consumption is inversely proportional to the queue backlogs.

Moreover, with an energy-efficient routing policy data is routed through the shorter links and

the nodes that are closer to the E-AP. Also, as was observed, the energy consumption increases
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in the cases with more dominant line-of-sight channel component. Finally, the sensitivity of our

performance metrics, i.e., energy consumption and average backlog, to the system parameters

such as codeword length and nodes distance increases as the data arrival rate increases or the

capacity of the network reduces.

APPENDIX A

PROOF OF LEMMA 1

To prove Lemma 1, we first introduce Lemma 5 which is more general than what is necessary

to prove (15) in Lemma 1. However, it will be useful later in the proof of Theorem 2.

Lemma 5. Consider two arbitrary vectors ν = [νn,s ≥ 0, ∀(n, s)] and ζ = [ζn,s ≥ 0, ∀(n, s)].

For all time-slots t, we have

‖U(t+ 1)− ν‖2 + ‖Z(t+ 1)− ζ‖2 − (‖U(t) − ν‖2 + ‖Z(t)− ζ‖2) ≤ B0

+ 2
∑

n,s

(Un,s(t)− νn,s)
(

µin
n,s(t)− µout

n,s(t)
)

+ 2
∑

n

(Zn(t)− ζn)

(

∑

s

µin
n,s(t)−

∑

s

µout
n,s(t)

− C
(

φin
n(t)− φout

n (t)
)

)

+ 2
∑

n,s

en,s(t)(Un,s(t) + Zn(t)).

(53)

Proof. Considering Un,s(t+ 1), ∀n, s, and (6), we have

(Un,s(t+ 1)− νn,s)
2
=
(

[Un,s(t)− µout
n,s(t)]

+ + µin
n,s(t)− νn,s

)2
=
(

Un,s(t) + en,s(t)− µout
n,s(t) + µin

n,s(t)− νn,s
)2

(a)

≤ (Un,s(t)− νn,s)
2 + 2 (Un,s(t)− νn,s) (µ

in
n,s(t)− µout

n,s(t)) + 2Un,s(t)en,s(t) +
(

en,s(t) + µin
n,s(t)− µout

n,s(t)
)2

(b)

≤ (Un,s(t)− νn,s)
2
+ 2 (Un,s(t)− νn,s) (µ

in
n,s(t)− µout

n,s(t)) + 2Un,s(t)en,s(t) + µ2
max,

(54)

where (a) holds since the term −2νn,sen,s(t) ≤ 0 is removed. The inequality (b) holds since

|e(n,s)(t) + µin
n,s(t) − µ

out
n,s(t)| ≤ µmax and, consequently,

(

e(n,s)(t) + µin
n,s(t)− µ

out
n,s(t)

)2
≤ µ2

max.

Furthermore, considering Zn(t + 1), we have

(Zn(t+ 1)− ζn)
2 =

(

∑

s

Un,s(t+ 1)− CBn(t+ 1)− ζn

)2

(a)
=

(

Zn(t)− ζn +
∑

s

en,s(t) +
∑

s

(

µin
n,s(t)− µout

n,s(t)
)

− C
(

φin
n(t)− φout

n (t)
)

)2

(b)

≤ (Zn(t)− ζn)
2
+ 2 (Zn(t)− ζn)

(

∑

s

(µin
n,s(t)− µout

n,s(t))− C(φ
in
n(t)− φout

n (t))

)

+

2Zn(t)
∑

s

en,s(t) +

(

∑

s

(

en,s(t) + µin
n,s(t)− µout

n,s(t)
)

− C
(

φin
n(t)− φout

n (t)
)

)2

(c)

≤ (Zn(t)− ζn)
2
+ 2 (Zn(t)− ζn)

(

∑

s

(µin
n,s(t)− µout

n,s(t))− C(φ
in
n(t)− φout

n (t))

)

+

2Zn(t)
∑

s

en,s(t) + (Sµmax + Cφmax)
2,

(55)
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where (a) can be verified using (6), (9) and (11). The inequality (b) comes from ζn
∑

s en,s(t) ≥

0, and the inequality (c) holds since |
∑

s

(

en,s(t) + µin
n,s(t)− µ

out
n,s(t)

)

− C
(

φin
n (t)− φ

out
n (t)

)

| ≤

Sµmax + Cφmax. Taking summation over n, s of both sides in (54), we obtain

||U(t + 1)− ν||2 ≤||U(t) − ν||2 + 2
∑

n,s

(Un,s(t)− νn,s(t)) (µ
in
n,s(t)− µout

n,s(t)) + 2
∑

n,s

Un,s(t)en,s(t) + µ2
max.

(56)

Moreover, taking summation over n of both sides in (55), we obtain

||Z(t+ 1)− ζ||2 ≤||Z(t)− ζ||2 + 2
∑

n,s

(Zn,s(t)− ζn,s(t))

(

µin
n,s(t)− µout

n,s(t)− C
(

φin
n(t)− φout

n (t)
)

)

+

2
∑

n,s

Zn,s(t)en,s(t) + (Sµmax + Cφmax)
2.

(57)

Summing both sides of (56) and (57) and rearranging the terms, (53) is proved.

Proof of Lemma 1. Noting that L(t) = 1
2
‖U(t)‖2 + 1

2
‖Z(t)‖2, Lemma 1 can be proved using

(53) by setting ν and ζ to all zero vectors, adding V EAP(t) to both sides and taking expectation

conditioned on U(t) and Z(t).

APPENDIX B

PROOF OF LEMMA 2

Proof of the first claim: We prove the first claim by induction. It is straightforward to show

that Zn(t) ≥ µmax is satisfied at t = 0. Assuming Zn(t) ≥ µmax for some t ≥ 0, we have

Zn(t + 1) =
∑

s

Un,s(t+ 1)− CBn(t+ 1)=Zn(t) +
∑

s

en,s(t)+

∑

s

µin
n,s(t)−

∑

s

µout
n,s(t) + Cφ

out
n (t)− Cφin

n (t)
(a)

≥ Zn(t)− Cφ
in
n (t)

(b)

≥ µmax.

(58)

The inequality (a) holds by neglecting the positive terms and noting that

Cφout
n (t)−

∑

s

µout
n,s(t) = τd(t)

(

C
∑

l∈On

pl(t)−
∑

s

∑

l∈On

Rl,s(t)

)

≥ τd(t)

(

C
∑

l∈On

pl(t)−
∑

l∈On

Rl(p(t), g(t))

)

(a)

≥ τd(t)

(

C
∑

l∈On

pl(t)− δ
∑

l∈On

pl(t)

)

≥ 0. (59)

The inequality (a) in (59) comes from (2), and the last inequality holds since C ≥ δ. The

inequality (b) in (58) holds because, from (30), we have Cφin
n (t) ≤ Zn(t) − µmax. Note that

we need the assumption Zn(t) ≥ µmax, since otherwise φin
n (t) = min{En(t), (Zn(t)− µmax)/C}

becomes negative, which is not feasible. Equation (58) implies Zn(t + 1) ≥ µmax. Hence, the

first claim is proved.

Proof of the second claim: Assume
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Un,s(t) ≥ U0, ∀n, s. (60)

In the following, we show that this assumption holds for all time-slots t. Consider link l̃ and

stream sl̃(t), which is defined in (20). We use contradiction to show that if

UNh(l̃),sl̃(t)
(t) ≤ U0 + µmax, (61)

no power will be assigned to link l̃ in the optimal solution of (23), and hence, no data will

be transmitted over link l̃. Let p(t) denote the optimal solution of (23). Assume that pl̃(t) is

nonzero and (61) holds. Moreover, let p̄(t) denote a power vector, such that










p̄l(t) = pl(t), ∀l 6= l̃,

p̄l̃(t) = 0.
(62)

Then, we have
∑

l

[CZNh(l)(t)pl(t)−Wl(t)Rl(p(t), g(t))] −
∑

l

[CZNh(l)(t)p̄l(t)−Wl(t)Rl(p̄(t), g(t))]

(a)
= CZNh(l̃)

(t)pl̃(t)−Wl̃(t)Rl̃(p(t), g(t)) −
∑

l 6=l̃

Wl(t)[Rl(p(t), g(t)) −Rl(p̄(t), g(t))]

(b)

≥ CZNh(l̃)
(t)pl̃(t)−Wl̃(t)Rl̃(p(t), g(t))

(c)

≥ pl̃(t)
[

CZNh(l̃)
(t)− δWl̃(t)

] (d)

≥ pl̃(t)ZNh(l̃)
(t)(C − δ) ≥ 0,

(63)

where (a), (b) and (c) hold due to the properties of the rate-power function in (1), (3) and (2),

respectively. To verify that the inequality (d) holds, it suffices to show that Wl̃(t) ≤ ZNh(l̃)
(t).

Note that, from (19) and (21), we have Wl̃(t) = ZNh(l̃)
(t)−ZNt(l̃)

(t)+UNh(l̃),sl̃(t)
(t)−UNt(l̃),sl̃(t)

(t).

The assumptions (60) and (61) imply that UNh(l̃),sl̃(t)
(t) − UNt(l̃),sl̃(t)

(t) ≤ µmax. Moreover,

from part 1 in Lemma 2, we have ZNt(l̃)
(t) ≥ µmax. Accordingly, we obtain UNh(l̃),sl̃(t)

(t) −

UNt(l̃),sl̃(t)
(t) − ZNt(l̃)

(t) ≤ 0 and, consequently, Wl̃(t) ≤ ZNh(l̃)
(t). The final inequality in (63)

contradicts the optimality of p(t), and implies that pl̃(t) = 0 when the assumptions (60) and

(61) hold.

To complete the proof of the second claim, we need to show that the assumption (60) holds

for all time-slots t. For this reason, note that at t = 0, (60) holds due to the initialization step.

We show that (60) holds for t ≥ 0 by induction. Specifically, assume (60) holds in time-slot t.

For the queues that satisfy Un,s(t) ≥ U0 + µmax, we have Un,s(t+ 1) ≥ U0 since µout
n,s(t) ≤ µmax.

Moreover, consider the pair (l, sl(t)) with UNh(l),sl(t)(t) < U0 + µmax. According to (63), we

have pl(t) = 0 and, consequently, Rl(p(t), g(t))(t) = 0, which implies that no data will exit

UNh(l),sl(t)(t). Hence, we have UNh(l),sl(t)(t+ 1) = UNh(l),sl(t)(t) ≥ U0. This completes the proof

of the second claim.
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Proof of the third claim: We use contradiction to prove the third claim. Assume

Bñ(t) ≤ φmax, (64)

and consider l̃ ∈ Oñ. Moreover, let p(t) be the optimal solution of (23), and assume that pl̃(t)

is nonzero. We define p̄(t) as in (62). Accordingly, we have

∑

l

[CZNh(l)(t)pl(t)−Wl(t)Rl(p(t), g(t))] −
∑

l

[CZNh(l)(t)p̄l(t)−Wl(t)Rl(p̄(t), g(t))]

(a)

≥ pl̃(t)
[

CZñ(t)− δWl̃(t)
]

(b)

≥ pl̃(t)
[

CZñ(t)− δ(Zñ(t) + Uñ,s
l̃
(t)(t))

]

= pl̃(t)Zñ(t)

[

C − δ

(

1 +
Uñ,s

l̃
(t)(t)

∑

s Uñ,s(t)− CBñ(t)

)]

(c)

≥ pl̃(t)Zñ(t)

[

C − δ

(

1 +
Uñ,s

l̃
(t)(t)

Uñ,s
l̃
(t)(t)− CBñ(t)

)]

(d)

≥ pl̃(t)Zñ(t)

[

C − δ

(

1 +
Cφmax + αδφmax

Cφmax + αδφmax − Cφmax

)]

(e)

≥ pl̃(t)Zñ(t)

(

C

(

1−
1

α

)

− 2δ

)

= 0.

(65)

Here, (a) follows the same steps as (a), (b) and (c) in (63), and (b) results from removing the

negative terms in Wl̃(t). Moreover, the inequality (c) comes from Uñ,s
l̃
(t)(t) ≤

∑

s Uñ,s(t) and

Uñ,s
l̃
(t)(t) ≥ CBñ(t). The inequality Uñ,s

l̃
(t)(t) ≥ CBñ(t) holds because, from part 2 in Lemma

2, we have Uñ,s
l̃
(t)(t) ≥ U0 ≥ Cφmax and from assumption (64) we have Bn(t) ≤ φmax. To verify

the inequality (d), note that the function x
x−y

over the set {(x, y) : x ∈ R
+, y ∈ R

+, x > y} is

decreasing with respect to x and increasing with respect to y. Hence, (d) results from substituting

Uñ,s
l̃
(t)(t) with Cφmax + αδφmax ≤ U0 and substituting Bñ(t) with Cφmax. The last equality (e)

can be verified using C = 2δ
1− 1

α

. The result in (65) shows that the power vector p(t) with nonzero

pl̃(t) cannot be the optimal solution of (23). Hence, the third claim is proved.

APPENDIX C

PROOF OF LEMMA 3

Considering (17), the intended result in (32) will be proved if we show that

C
(

En(t)− φ
in
n (t)

)

Zn(t) ≤ B1, (66)

and that EECW solves
minimize

w(t),PAP(t),p(t),Rl,s(t),τe(t),τd(t)
F̃ (t)

subject to (10d), (10e), (10f),

(67)

in each time-slot. First, we show that (66) holds. Assuming Zn(t) > (Cφmax + µmax), we have

(Zn(t)− µmax)/C > φmax ≥ En(t).

Thus, from (30), we have φin
n (t) = En(t), under which (66) holds. Considering Zn(t) ≤ (Cφmax+

µmax), we have
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C
(

En(t)− φ
in
n (t)

)

Zn(t) ≤ CEn(t)Zn(t) ≤ Cφmax(Cφmax + µmax) = B1.

Hence, (66) holds for every Zn(t).

We now show that EECW solves (70). Note that to minimize the expectations in (18), it

suffices to minimize the inner terms of the expectation for every given CSI. The structure of

F̃ (t) in (18) reveals that it can be minimized over the control variables separately. Specifically,

irrespective of the time sharing, the power vector p(t) and the assigned rates Rl,s(t) can be

determined by solving

minimize
p(t), Rl,s(t)

Fd(t) , C

L
∑

l=1

ZNh(l)(t)pl(t)−

L
∑

l=1

S
∑

s=1

Wl,s(t)Rl,s(t)

subject to (10d),

(68)

and w(t) and PAP(t) can be determined by solving

minimize
w(t), PAP(t)

Fe(t) , PAP(t)

(

V − C

N
∑

n=1

|w(t)hTn(t)|
2Zn(t)

)

subject to (10e).

(69)

It is straightforward to verify that the routing and the data-link scheduling policies in (22) and

(23) solve (68). Moreover, using eigenvalue decomposition and noting that Zn(t) is nonnegative,

it can be verified that the energy-link scheduling policy in (24) and (26) solves (69). Accordingly,

F ⋆
d (t) and F ⋆

e (t) are the optimal values of problems (68) and (69), respectively, and the optimal

time sharing is determined by the solution of

minimize
τd(t), τe(t)

τd(t)F
⋆
d (t) + τe(t)F

⋆
e (t)

subject to (10f),

(70)

which is given by (29). This completes the proof of Lemma 3.

APPENDIX D

PROOF OF THEOREM 1

We follow the Lyapunov optimization method in [30, Section 4] to prove Theorem 1. For this

reason, we first define

Ēopt(λ) , minimize
w(t),PAP(t),p(t),
Rs

l
(t),τe(t),τd(t)

lim
T→∞

1

T

T−1
∑

t=0

E {EAP(t)} (71a)

subject to lim sup
T→∞

1

T

T−1
∑

t=0

E {φout
n (t)} ≤ lim sup

T→∞

1

T

T−1
∑

t=0

E
{

φin
n (t)

}

∀n, (71b)

(10b), (10d), (10e), (10f). (71c)
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The defined problem in (71) is similar to (10) except that the battery constraint (10c) is replaced

with a less restrictive constraint on the average energy consumption (71b). Hence, we have

Ēopt(λ) ≤ Eopt(λ), with Eopt(λ) being the solution to Problem (10). The new Problem (71)

follows the same framework as introduced in [30, Eq. (4.31)-(4.35)]. According to [30, Theorem

4.5], for every σ > 0 and for data arrival rate λ + ǫ with ǫ < ǫmax, there is a stationary policy

that is only a function of the instantaneous CSI and the data arrivals, and satisfies (10d), (10e),

(10f). Under the stationary policy in [30, Theorem 4.5] in each time-slot t we have

E {EAP(t)} ≤ Ēopt(λ+ ǫ) + σ,

λn,s + ǫ+ E

{

τd(t)
∑

l∈In

Rl,s(t)

}

≤ E

{

τd(t)
∑

l∈On

Rl,s(t)

}

+ σ ∀n, s,

E {φout
n (t)} ≤ E

{

φin
n (t)

}

+ σ ∀n.

(72)

Note that [30, Theorem 4.5] only states the existence of a stationary policy with properties in

(72) while it does not derive such policy. However, using the properties in (72) and following

the steps in [30, Theorem 4.2] and [30, Theorem 4.8], Theorem 1 can be proved. We sketch the

outline of the proof for the readers convenience. From Lemma 1 and the fact that en,s(t) = 0

under EECW, we have

∆(L(t)) + V E {EAP(t)|U(t),B(t)} ≤ B0 + F (t). (73)

Let F stat(t) denote the value of F (t) under the stationary policy satisfying (72). Using (72) in

(16) with σ → 0 and noting that Ēopt(λ+ ǫ) ≤ Eopt(λ+ ǫ), it can be verified that

F stat(t) ≤ V Eopt(λ+ ǫ)− ǫ
∑

n,s

Un,s(t). (74)

From (32), we have F (t) ≤ B1 + Fmin(t) ≤ B1 + F stat(t), which together with (73) and (74)

imply

∆(L(t)) + V E {EAP(t)|U(t),B(t)} ≤ B2 + V Eopt(λ+ ǫ)− ǫ
∑

n,s

Un,s(t), (75)

with B2 = B0 + B1. Taking expectation with respect to U(t) and E(t) from both sides in (75)

results in

E {L(t+ 1)} − E {L(t)}+ V E {EAP(t)} ≤ B2 + V Eopt(λ+ ǫ)− ǫ
∑

n,s

E {Un,s(t)} . (76)

Summing both sides of (76) over t = 0, . . . , T − 1 yields
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E {L(T − 1)} − E {L(0)}+ V

T−1
∑

t=0

E {EAP(t)} ≤
(

B2 + V Eopt(λ+ ǫ)
)

T − ǫ

T−1
∑

t=0

∑

n,s

E {Un,s(t)} .

(77)

By rearranging the terms in (77) and dropping the negative terms whenever appropriate, we

would have
1

T

T−1
∑

t=0

E {EAP(t)} ≤
B2
V

+ Eopt(λ+ ǫ) +
E {L(0)}

T
, (78)

1

T

T−1
∑

t=0

∑

n,s

E {Un,s(t)} ≤
B2 + V Eopt(λ+ ǫ)

ǫ
+

E {L(0)}

T
. (79)

The bounds in (78) and (79) can be separately optimized over values of ǫ ∈ (0, ǫmax]. Letting

ǫ → 0 in (78) and ǫ = ǫmax in (79) and taking limits as T → ∞ concludes the claims of

Theorem 1.

APPENDIX E

PROOF OF THEOREM 2

Let D(t) denote the distance between [U(t),Z(t)] and [ν⋆, ζ⋆], i.e., D(t) = ‖[U(t),Z(t)]−

[ν⋆, ζ⋆]‖. To prove Theorem 2, we need Lemma 6, which bounds the variation of D(t) in

successive slots.

Lemma 6. With EECW, there is a constant K̃ > 0 such that for time-slot t we have

E
{

D2(t+ 1)−D2(t)|U(t),Z(t)
}

≤ B2 − 2K̃D(t). (80)

Proof. Let Y (t) , E {D2(t+ 1)−D2(t)|U(t),Z(t)} from (53) with ζ = ζ⋆, ν = ν⋆ and

en,s(t) = 0, we have

Y (t) ≤ B0 + 2
∑

n,s

E

{

(

Un,s(t)− ν⋆n,s
) (

µin
n,s(t)− µout

n,s(t)
)

}

+

2
∑

n

E

{

(Zn(t)− ζ⋆n)

(

∑

s

(

µin
n,s(t)− µout

n,s(t)
)

− C(φin
n(t)− φout

n (t))

)}

.

(81)

Adding and subtracting 2E {V pAP(t)} to the left hand side in (81) and rearranging the terms,

we obtain

Y (t) ≤ B0 + 2E

{

V PAP(t) +
∑

n,s

Un,s(t)
(

µin
n,s(t)− µout

n,s(t)
)

+

∑

n

Zn(t)

(

∑

s

(

µin
n,s(t)− µout

n,s(t)
)

− C
(

φin
n(t)− φout

n (t)
)

)

}

−

2E

{

V PAP(t) +
∑

n,s

ν⋆n,s
(

µin
n,s(t)− µout

n,s(t)
)

+
∑

n

ζ⋆n

(

∑

s

(

µin
n,s(t)− µout

n,s(t)
)

− C
(

φin
n(t)− φout

n (t)
)

)

}

.

(82)
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Let N(t) and B(t) denote the vectors [Nn,s(t) ∀(n, s)] and [Bn(t) ∀n] where

Nn,s(t) , Un,s(t) + Zn(t),

Bn(t) , CZn(t).
(83)

Using (83), η⋆n,s = ν⋆n,s + ζ⋆n and β⋆n = Cζ⋆n, (82) can be rewritten as

Y (t) ≤ B0 + 2E

{

V PAP(t) +
∑

n,s

Nn,s(t)
(

µin
n,s(t)− µout

n,s(t)
)

−
∑

n

Bn(t)
(

φin
n(t)− φout

n (t)
)

}

− 2E







V PAP(t) +
∑

n,s

η⋆n,s
(

µin
n,s(t)− µout

n,s(t)
)

−
∑

(n)

β⋆
n

(

φin
n(t)− φout

n (t)
)







.

(84)

From (32), it can be verified that EECW approximately minimizes the first expectation in the

right hand side of (82) and accordingly (84). Hence, we can write

Y (t) ≤ B0 + B1 + 2 min
w,PAP,p,

C(l,s),τe(t),τd(t)

E

{

V PAP +
∑

n,s

Nn,s(t)
(

µin
n,s(t)− µout

n,s(t)
)

−
∑

n

Bn(t)
(

φin
n(t)− φout

n (t)
)

}

− 2 min
w,PAP,p,

C(l,s),τe(t),τd(t)

E







V PAP +
∑

n,s

η⋆n,s(µ
in
n,s(t)− µout

n,s(t))−
∑

(n)

β⋆
n(φ

in
n(t)− φout

n (t))







= B2 + 2g ([N(t),B(t)]) − 2g ([η⋆,β⋆]) ≤ B2 − 2K‖[N(t),B(t)] − [η⋆,β⋆]‖,

(85)

where the first equality holds according to (36), and the second inequality results from (41).

Note that [N(t),B(t)] is constructed from [U(t),Z(t)] by a linear one-to-one transform. Hence,

there is a constant K̃ > 0 such that

‖[U(t),Z(t)]− [ν⋆, ζ⋆]‖≤
K

K̃
‖[N(t),B(t)]− [η⋆,β⋆]‖. (86)

Using (86) in (85) completes the proof of Lemma 6.

Note that (80) implies that the distance between [U(t),Z(t)] and [ν⋆, ζ⋆] does not grow large,

that is, the expected gradient of their distance D(t) is negative when D(t) is greater than B2/2K̃.

Lemma 6 together with the exponential Lyapunov drift analysis in [31, Theorem 1] imply that

there are constants D, c⋆ and β⋆ such that

lim sup
T→∞

1

T

T−1
∑

t=0

Pr{∃(n, s) : |Un,s(t)− ν
⋆
n,s| > D +m} ≤ c⋆e−β

⋆m, (87)

lim sup
T→∞

1

T

T−1
∑

t=0

Pr{∃(n) : |Zn(t)− ζ
⋆
n| > D +m} ≤ c⋆e−β

⋆m. (88)

The proof of (87) and (88) is similar to [31, Theorem 1] and is omitted for brevity. Here, we

use (87) and (88) to prove (43). According to the definition of Zn,s(t) in (11), we have

Bn(t) =

∑

s Un,s(t)− Zn(t)

C
. (89)



34

Moreover, we have

ε⋆n =

∑

s ν
⋆
n,s − ζ

⋆
n

C
. (90)

According to (89) and (90), Bn(t) is within ((S + 1)D + m)/C distance of ε⋆n, whenever

Un,s(t), ∀s, and Zn(t) are within D + m
(S+1)

distance of ν⋆n,s and ζ⋆n, respectively. Hence, we

have

Pr {∃n : |Bn(t)− ε
⋆
n| > ((S + 1)D +m)/C} ≤

Pr

{

∃(n, s) : |Un,s(t)− ν
⋆
n,s| > D +

m

S + 1

}

+ Pr

{

∃n : |Zn(t)− ζ
⋆
n| > D +

m

S + 1

}

.

(91)

Summing both sides of (91) over t, taking limit superior and using subadditivity property of

lim sup, we obtain

lim sup
T→∞

T−1
∑

t=0

Pr{∃n : |Bn(t)− ε
⋆
n| > ((S + 1)D +m)/C} ≤

lim sup
T→∞

T−1
∑

t=0

Pr{∃(n, s) : |Un,s(t)− ν
⋆
n,s| > D +

m

S + 1
}+

lim sup
T→∞

T−1
∑

t=0

Pr{∃n : |Zn(t)− ζ
⋆
n| > D +

m

S + 1
} ≤ 2c⋆e−β

⋆ m
S+1 ,

(92)

where the last inequality holds due to the upper bounds of (87) and (88). This completes the

proof of Theorem 2.

APPENDIX F

PROOF OF LEMMA 4

Implementing EECW in the cases with a limited battery and buffers, data is dropped due to

either low buffer space or energy outage. Let Lbn,s(t) and Len,s(t) denote the total number of data

units that are dropped up to time t due to low buffer space and energy outage, respectively. We

have

Ln,s(t) = Lbn,s(t) + Len,s(t). (93)

Moreover, let Mn,s(t) denote the total number of data units of stream s that have entered node

n up to time t while the level of Ũn,s(t) has been outside the interval of length Uc around ν⋆.

We have

Mn,s(t) ≤

t
∑

τ=0

µin
n,s(τ) 1

(

|Ũn,s(τ)− ν
⋆| ≥ Uc/2− µmax

)

, (94)
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where 1
(

x ≥ a
)

= 1 if x ≥ a and 0 otherwise, for x, a ∈ R. We claim that

Lbn,s(t) ≤Mn,s(t) ≤

t
∑

τ=0

µin
n,s(τ) 1

(

|Ũn,s(τ)− ν
⋆| > Uc/2− µmax

)

. (95)

To prove (95), suppose that a genie-aided dropping discipline is used for dropping data units

when overflow occurs. The genie-aided algorithm selects the data units to be dropped arbitrarily

among those data units that have entered node n when the level of Ũn,s(t) has been outside the

interval of length Uc around ν⋆. With the genie-aided algorithm, we have Lbn,s(t) < Mn,s(t)

since only the data units counted under Mn,s(t) are candidates to be dropped. The number of

dropped data units is independent of the discipline for selecting the dropped data units. Hence

(95) always holds independently of the algorithm for dropping the data.

Let L̂en(t) denote the amount of energy that is not stored in the battery of node n due to

energy overflow. Using a similar argument for deriving (95), L̂en(t) is bounded by

L̂en(t) ≤
t
∑

τ=0

φin
n (τ) 1

(

|En(τ)− ε
⋆
n| > Ec/2− φmax

)

. (96)

From (2), we have Le(n,s)(t) ≤ δL̂en(t) and, consequently,

Le(n,s)(t) ≤ δ

t
∑

τ=0

φin
n (τ) 1

(

|En(τ)− ε
⋆
n| > Ec/2− φmax

)

. (97)

Taking time average expected value of both sides in (93) and using the upper-bounds in (95)

and (97), we obtain

lim sup
T→∞

1

T
E {Ln,s(T )} ≤ lim sup

T→∞

1

T

T
∑

τ=0

µmaxE
{

1

(

|Un,s(τ) − ν⋆| > Uc/2− µmax

)}

+

lim sup
T→∞

1

T

T
∑

τ=0

δφmaxE
{

1
(

|En(τ) − ε⋆n| > Ec/2− φmax

)}

(a)

≤ lim sup
T→∞

1

T

T
∑

τ=0

µmax Pr{|Un,s(τ) − ν⋆| > D +ml}+

lim sup
T→∞

1

T

T
∑

τ=0

δφmax Pr{|En(τ) − ε⋆n| > ((S + 1)D +ml)/C}
(b)

≤ µmaxc
⋆e−β⋆ml + 2δφmaxc

⋆e−β⋆ ml
S+1 ,

(98)

where (a) holds since E
{

1
(

x > a
)}

= Pr{x > a} and from (47) we have D+ml ≤ Uc/2−µmax

and ((S + 1)D +ml)/C ≤ Ec/2 − φmax. The last inequality (b) results from the upper-bounds

of (42) and (43) with m = ml.
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